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Stability Analysis of Slotted Aloha with

Opportunistic RF Energy Harvesting

Abdelrahman M.Ibrahim, Ozgur Ercetin, and Tamer ElBatt

Abstract

Energy harvesting (EH) is a promising technology for realizing energy efficient wireless networks. In

this paper, we utilize the ambient RF energy, particularly interference from neighboring transmissions, to

replenish the batteries of the EH enabled nodes. However, RFenergy harvesting imposes new challenges

into the analysis of wireless networks. Our objective in this work is to investigate the performance of a

slotted Aloha random access wireless network consisting oftwo types of nodes, namely Type I which

has unlimited energy supply and Type II which is solely powered by an RF energy harvesting circuit. The

transmissions of a Type I node are recycled by a Type II node toreplenish its battery. We characterize

an inner bound on the stable throughput region under half-duplex and full-duplex energy harvesting

paradigms as well as for the finite capacity battery case. We present numerical results that validate our

analytical results, and demonstrate their utility for the analysis of the exact system.

Index Terms—Wireless networks, slotted Aloha, opportunistic energy harvesting, interacting queues.

I. INTRODUCTION

One of the prominent challenges in the field of communicationnetworks today is the design of

energy efficient systems. In traditional networks, wireless nodes are powered by limited capacity

batteries which should be regularly charged or replaced. Energy harvesting has been recognized as

a promising solution to replenish batteries without using any physical connections for charging.
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Nodes may harvest energy through solar cells, piezoelectric devices, RF signals, etc. In this

paper, we focus on RF energy harvesting. Recent studies present experimental measurements

for the amount of RF energy that can be harvested from variousRF energy sources. Two main

factors affect the amount of RF energy that can be harvested,namely, the frequency of the RF

signal and the distance between the “interferer” and the harvesting node, e.g., see Table I in [1].

Recently, an information-theoretic study of the capacity of an additive white Gaussian noise

(AWGN) channel with stochastic energy harvesting at the transmitter has shown that it is equal to

the capacity of an AWGN channel under an average power constraint [2]. This, in turn, motivated

the investigation of optimal transmission policies [3] forsingle user [4]–[6] and multi-user [7]–

[9] energy harvesting networks. The optimal policy that minimizes the transmission completion

time was studied in [4]. In [5], the authors studied the problem of maximizing the short-term

throughput and have shown that it is closely related to the transmission completion time problem

[4]. The authors in [6] studied the optimal transmission policies for energy harvesting networks

under fading channels. Moreover, [7]–[9] extends the analysis to broadcast, multiple access,

and interference channels, respectively. The authors in [10] introduced the concept of energy

cooperation where a user can transfer portion of its energy,over a separate channel, to assist

other users.

Significant research has also been conducted on RF energy harvesting. In [11], the author

discusses the fundamental trade-offs between transmitting energy and transmitting information

over a single noisy link. The author derives the capacity-energy functions for several channels.

The authors in [12], extend the point-to-point results of [11] to multiple access and multi-

hop channels. Recently, several techniques were proposed for designing RF energy harvesting

networks (RF-EHNs), e.g., [13]. The RF energy harvesting process can be classified as follows:

i) Wireless energy transfer, where the transmitted signals by the RF source are dedicated to energy

transfer, ii ) Simultaneous wireless information and power transfer, where the transmitted RF

signal is utilized for both information decoding and RF energy harvesting, andiii ) Opportunistic

energy harvesting, where the ambient RF signals, considered as interference for data transmission,

are utilized for RF energy harvesting. The receiver architecture may also vary as follows [13],

[14]: a) Co-located receiver architecture, where the radio receiver and the harvesting circuit

use the same antenna for both decoding the data and energy harvesting, andb) Separated

receiver architecture, where the radio receiver and the harvesting circuit are separated, and
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each is equipped with its own antenna and RF front-end circuitry.

In [14], the authors discuss the practical limitations of implementing a simultaneous wireless

information and power transfer (SWIPT) system. A major issue is that energy harvesting circuits

are not able to simultaneously decode information and harvest energy. Hence, the authors in [14]

proposed and analyzed two modes of operation for the co-located receiver architecture, that is,

time switching and power splitting. Furthermore, the RF energy harvesting transceivers may

also be classified as:a) Half-duplex energy harvester, where a co-located RF energy harvesting

transceiver can either transmit data or harvest RF signals at a given instant of time, andb) Full-

duplex energy harvester, where a node is equipped with two independent antennas and can

transmit data and harvest RF signals, simultaneously. In this paper, we investigate opportunistic

RF energy harvesting under the half-duplex and full-duplexmodes of operation.

The cornerstone of random access medium access control (MAC) protocols is the Aloha

protocol [15], which is widely studied in multiple access communication systems because of its

simplicity. The applications of Aloha-based protocols range from traditional satellite networks

[16] to radio frequency identification (RFID) systems [17] and the emerging Machine-to Machine

(M2M) communications [18]. It is also considered as a benchmark for evaluating the performance

of more sophisticated MAC protocols. Based on the Aloha protocol, nodes contend for the

shared wireless medium and cause interference to each other. Hence, the service rate of a node

depends on the backlog of other nodes, i.e., the nodes’ queues becomeinteractingas originally

characterized in [19]. Tsybakov and Mikhailov [20] were thefirst to analyze the stability of

a slotted Aloha system with finite number of users. Rao and Ephremides [21] characterized

the sufficient and necessary conditions for queue stabilityof the two user case, using the so-

calledstochastic dominancetechnique. In addition, they established conditions for the stability

of the symmetric multi-user case. Other works followed and studied the stability of slotted Aloha

with more than two users [22]–[25]. The authors in [26] extended the stability analysis under the

collision model to a symmetric multi-packet reception (MPR) model, which was later generalized

to the asymmetric MPR model in [27].

Perhaps the closest to our work are [28], [29] which characterize the stability region of a slotted

Aloha system with energy harvesting capabilities, under the multi-packet reception model. The

authors considered a system where the nodes harvest energy from the environment at a fixed

rate and, thus, the energy harvesting process is modeled as aBernoulli process.
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In this work, we analyze the stability of a slotted Aloha random access wireless network

consisting of nodes with and without RF energy harvesting capability. Specifically, we consider

a wireless network consisting of two nodes, namely a node of Type I which has unlimited energy

supply and a node of Type II which is powered by an RF energy harvesting circuit. The RF

transmissions of the Type I node are harvested by the Type II node to replenish its battery.

Our contribution in this paper is multi-fold. First, we outline the difficulties in analyzing the

stability of the exact RF energy harvesting Aloha systemSO and for mathematical tractability we

introduce an equivalent systemSG. Second, we generalize thestochastic dominance technique

for analyzing RF EH-networks. Third, we characterize an inner bound on the stable throughput

region of the systemSG under the half-duplex and full-duplex energy harvesting paradigms.

Also, we derive the closure of the inner bound over all transmission probability vectors. Fourth,

we investigate the impact of finite capacity batteries on thestable throughput region. Finally,

we validate our analytical findings with simulations and conjecture that the inner bound of the

systemSG is also an inner bound for the exact systemSO.

The rest of this paper is organized as follows. In Section II,we present the system model

and the assumptions underlying our analysis. In Section III, we describe the energy harvesting

models for the systemsSO andSG. Our main results are presented in Section IV and proved in

Section V. In Section VI, we investigate the impact of finite capacity batteries and full-duplex

energy harvesting on the stability region of our system. We corroborate our analytical findings

by simulating the systemsSO andSG in Section VII. Finally, we draw our conclusions and point

out directions for future research in Section VIII.

II. SYSTEM MODEL

We consider a wireless network consisting of two source nodes and a common destination, as

shown in Fig. 1. We consider a slotted Aloha multiple access channel [15], where time is slotted

and the slot duration is equal to one packet transmission time. We assume two types of nodes in

our system: Type I node has a data queue,Q1, and unlimited energy supply, while Type II node

has a data queue,Q2, and a battery queue,B, as shown in Fig. 1. Moreover, packets arrive to

the data queues,Q1 andQ2, according to independent Bernoulli processes with ratesλ1 andλ2,

respectively. The transmission probabilities of Type I andII nodes areq1 andq2, respectively.

We assume perfect data channels, i.e., the destination successfully decodes a data packet,
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Type I

Type II

Destination

Battery

Energy path

Data path

Fig. 1: System model

if only one node transmits. If two nodes transmit simultaneously, a collision occurs and both

packets are lost and have to be retransmitted in future slots. At the end of each time slot, the

destination sends an immediate acknowledgment (ACK) via anerror-free feedback channel.

Data packets of Type I and II nodes are stored in queuesQ1 andQ2, respectively. The evolution

of the queue lengths is given by [25]

Qt+1
i = max{Qt

i − Y t
i , 0}+X t

i , i = 1, 2. (1)

whereX t
i ∈ {0, 1} is the arrival process for data packets andY t

i ∈ {0, 1} is the departure process

independent ofQi status, i.e.,Y t
i = 1 even if the data queue is empty [27].X t

i is a Bernoulli

process with rateλi andE[Y t
i ] = µi.

We assume that Type II nodes operate under a half-duplex energy harvesting mode, i.e., they

either harvest or transmit but not both simultaneously1. Hence, the harvesting opportunities are

in those slots when a Type II node is idle while a Type I node is transmitting. The channel

between the two source nodes is a block fading channel, wherethe fading coefficient remains

constant within a single time slot and changes independently from a slot to another. For Rayleigh

fading, the instantaneous channel power gainht at time slott is exponentially distributed, i.e.,

ht ∼ Exp(1). Let Pj be the transmission power of nodej, and l be the distance between the

two source nodes. We consider the non-singular2 pathloss model with(1 + lα)−1, whereα is

1We extend the analysis to the case of full-duplex RF EH in Section VI.
2In order to harvest significant amount of RF energy,l is typically small. Hence, we use a non-singular (bounded) pathloss

model instead of a singular (unbounded) pathlossl−α model, because the singular pathloss model is not correct for small values
of l due to singularity at0, [30].
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the pathloss exponent. We use power and energy interchangeably throughout the paper, since

we assume unit time slots. In the next section, we develop a discrete-time stochastic process to

model RF energy harvesting.

III. ENERGY HARVESTING MODELS

Prior work largely models the energy harvesting process as an independent and identically

distributed (iid) Bernoulli process with a constant rate [29]3. In the following, we first study the

RF energy harvesting process of the exact systemSO and show that the inter-arrival time of the

energy arrivals has a general distribution. Second, we propose an equivalent systemSG where

the inter-arrival time of the energy arrivals is geometrically distributed with the same mean as

SO.

A. RF Energy Harvesting Model of the exact systemSO

The received power at a Type II node from the transmissions ofType I node at time slott is

PR(t) = ηP1ht(1 + lα)−1, whereP1 is the transmission power of Type I node andη is the RF

harvesting efficiency [13]. Recent studies demonstrated that η typically ranges from0.5 to 0.7,

where its value depends on the efficiency of the harvesting antenna, impedance matching circuit

and the voltage multiplier [31]. In order to develop the analytical model underlying this paper,

we approximate the continuous energy arrival process in quantas of sizeγ joules.

Typically, we need to harvest RF energy from multiple transmissions of Type I node in order

to accumulateγ joules. Conceptually, accumulatingγ joules is equivalent to having a single

energy packet arrivalto the battery. We model the battery of a Type II node as a queuewith

unit energy packet arrivals from the harvesting process, and unit energy packet departures when

Type II node transmits. There is an energy packet arrival to the battery queue at the end of the

time slot in which the accumulated energy exceedsγ, see Fig. 2. LetZ be the number of Type

I transmissions needed to harvest one energy unit.

Lemma 1. For a persistent (q1=1) and saturated Type I node, the probability mass function

(PMF) of Z, when the channel between Type I and II nodes is modeled as a Rayleigh fading

3Typically, the energy harvesting process is not iid, because to harvest one energy unit, energy is accumulated over multiple
slots.
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Fig. 2: A unit of energy is harvested every time the accumulated energy in the battery exceeds
γ.

channel with parameterht, is given by

P[Z = k] =
e−θ θk−1

(k − 1)!
, k = 1, 2, · · · , whereθ =

γ(1 + lα)

ηP1

(2)

Proof: Note that if the accumulated received energy overk slots is greater than or equal to,

γ while the accumulated received energy up to slotk − 1 is less thanγ, then we needk slots

to harvest one energy unit.

P[Z = k] = P

[

k
∑

t=1

PR(t) ≥ γ,
k−1
∑

t=1

PR(t) < γ

]

(3)

(a)
= P

[

k−1
∑

t=1

ht < θ

]

− P

[

k
∑

t=1

ht < θ

]

(4)

(b)
=

e−θ θk−1

(k − 1)!
, k = 1, 2, · · · , (5)

(a) follows from applying the law of total probability, i.e,

P

[

k−1
∑

t=1

ht < θ

]

= P

[

k−1
∑

t=1

ht < θ,

k
∑

t=1

ht ≥ θ

]

+ P

[

k−1
∑

t=1

ht < θ,

k
∑

t=1

ht < θ

]

, (6)

= P

[

k−1
∑

t=1

ht < θ,
k
∑

t=1

ht ≥ θ

]

+ P

[

k
∑

t=1

ht < θ

]

. (7)

The distribution of sum of independent exponential random variables is an Erlang Distribution.

Hence,
∑k

t=1 ht ∼ Erlang(k, 1), wherek is the shape parameter andht ∼ Exp(1). From, the
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cumulative distribution function (CDF) of the Erlang distribution, we know that

P

[

k
∑

t=1

ht < θ

]

= 1−
k−1
∑

j=0

e−θ θj

j!
, (8)

Hence, (b) is obtained by substituting (8) in (4).

From (5), we notice that the distribution of the inter-arrival times of the energy harvesting

process is a shifted Poisson distribution, i.e.,Z = V +1, whereV is a Poisson random variable

with meanθ. The expected inter-arrival time of the harvesting processis given byE[Z] = 1+θ. In

the general case where Type I node is unsaturated and transmits with probabilityq1, characterizing

the PMF ofZ is challenging because the queue evolution process is not aniid process. For

instance, ifQt
1 = 2, we know for sure thatQt+1

1 ≥ 1.

B. RF Energy Harvesting Model of the equivalent systemSG

For the mathematical tractability of the results derived inlater sections, we consider a system

SG, where the RF energy harvesting process is an iid Bernoulli process. Letph|{1} be the mean

of the iid Bernoulli process of unit energy packet arrivals,where it can be interpreted as the

probability of success in harvesting one energy unit given that Type I node is transmitting. Based

on the fact that the inter-arrival time of a Bernoulli process is geometrically distributed, the mean

inter-arrival time is1/ph|{1}. Hence, the relationship between the exact harvesting process inSO

and the equivalent Bernoulli process inSG is given by

ph|{1} =
1

1 + θ
. (9)

In general, an iid Bernoulli process has a rateph|M, whereph|M is the probability of harvesting

one energy unit given a set of nodesM are transmitting. Under half-duplex energy harvesting,

Type II node only harvests from the transmissions of Type I node, when the Type II node is not

transmitting, i.e., the probability of harvesting one energy unit given Type II node is transmitting

ph|{2} = 0, and the probability of harvesting one energy unit given both nodes are transmitting

ph|{1,2} = 0. For convenience, we denoteph|{1} by ph.

C. Analyzing the Battery queue inSG

We assume that a Type II node opportunistically harvests RF energy packets from the trans-

missions of Type I node. Also, transmitting a single data packet costs one energy unit. LetH t
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denotes the energy harvesting process modeled as a Bernoulli process. Assuming half-duplex

harvesting,4 the average harvesting rate is the difference between the fraction of time slots in

which the Type I node is transmitting and the fraction of timeslots in which both nodes are

transmitting, i.e.,

E[H t] = q1ph P[Q1>0]− q1q2ph P[Q1>0, B>0, Q2>0]. (10)

The battery queue evolves as [29]

Bt+1 = Bt − µt
B +H t, (11)

whereµt
B ∈ {0, 1} represents the energy consumed in the transmission of a datapacket at time

t. Under backlogged data queuesQ1 andQ2, the average rate of harvesting becomes

E[H t|Q1>0, Q2>0] = q1ph

(

1− q2P[B>0|Q1>0, Q2>0]
)

. (12)

Now, the energy harvesting rate is only dependent on the battery queue status. Thus, if the

battery queue is empty, the energy harvesting rate isq1ph, otherwise it is reduced toq1ph(1−q2)

because of the half-duplex operation. Hence, the battery queue forms a decoupled discrete-time

Markov chain, as shown in Fig. 3. By analyzing the Markov chain we find the probability that

the battery is non-empty, as given by the following lemma.

Lemma 2. For a half-duplex RF energy harvesting node with infinite capacity battery, the

probability that the battery is non-empty, given that the data queuesQ1 andQ2 are backlogged,

is given by

P[B > 0|Q1 > 0, Q2 > 0] = min

{

q1ph
q2(1 + q1ph)

, 1

}

. (13)

Proof: Let π = [π0, π1, ...] be the steady-state distribution of the Markov chain shown in Fig.

3. Applying the detailed balance equations, we obtainπk =
(

q1ph
q2

)k

(1−q2)
k−1π0, k = 1, 2, · · · .

Therefore, by substituting in the normalization condition
∑

i πi = 1, we get the utilization factor

ρ = 1− π0 =
q1ph

q2(1+q1ph)
. Hence,P[B > 0|Q1 > 0, Q2 > 0] = min {ρ, 1} .

IV. M AIN RESULTS

In this section, we present our main results pertaining to the stable throughput region of the

opportunistic RF energy harvesting slotted Aloha networkSG. We adopt the notion of stability

4In the sequel, we will extend the model to full-duplex as well.
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Fig. 3: Markov chain model of the battery queue given that thedata queuesQ1 andQ2 are
backlogged. Note thatδ′=1−q1ph− q2 andδ=1−q1ph(1− q2)− q2.

proposed in [25], where the stability of a queue is determined by the existence of a proper

limiting distribution. A queue is said to be stable if

lim
t→∞

P[Qt < x] = F (x) and lim
x→∞

F (x) = 1. (14)

The stability of a queue is equivalent to the recurrence of the Markov chain modeling the

queue length.Loynes’ Theorem[32] states that if the arrival and service processes of a queue

are strictly jointly stationary and the average arrival rate is less than the average service rate,

then the queue is stable. Also, if the average arrival rate isgreater than the average service rate,

then the queue is unstable and the queue sizeQt approaches infinity almost surely. The stable

throughput region of a system is defined as the set of arrival rate vectors,(λ1, λ2) for our system,

for which all data queues in the system are stable.

Next, we establish sufficient conditions on the stability ofthe opportunistic RF energy har-

vesting AlohaSG. Assuming half-duplex energy harvesting and unlimited battery capacity, the

stability region is characterized by the following theorem.

Theorem 1. An inner bound on the stable throughput region of the opportunistic RF energy

harvesting slotted AlohaSG is the triangle OBD, shown in Fig. 4. Assuming half-duplex energy

harvesting and unlimited battery size, the region is characterized by

R
inner
G =







(λ1, λ2)
∣

∣

∣
λ1 ≤ q1

(

1− λ2

1− q1

)

, λ2 ≤
(1− q1)min

{

q1ph
(1+q1ph)

, q2

}

λ1

q1

(

1−min
{

q1ph
(1+q1ph)

, q2

})







. (15)

Proof: The proof is established in the Sections V-A to V-E.

Theorem 2. The closure of the inner boundRinner
G over all transmission probability vectors
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q = (q1, q2) is characterized by

C(Rinner
G

) =
⋃

q

So(q) =







(λ1, λ2)
∣

∣

∣
λ2 ≤

phλ1

2

(

1−λ1+λ2+
√

(1+λ1−λ2)2−4λ1

)







. (16)

Proof: The proof is established in Section V-F.

V. STABILITY ANALYSIS

For the majority of prior work on stability analysis of interacting queues, the service rate of a

typical node decreases with respect to the transmissions ofother nodes in the system. Perhaps,

the most basic example is the conventional slotted Aloha system [21], where increasing the

service rate of an arbitrary node comes at the expense of decreasing the service rate of other

nodes. For our purposes, we refer to such systems without energy limitations as “interference-

limited” systems.

On the other hand, in our RF energy harvesting system, transmissions from interfering nodes

give rise to two opposing effects on Type II (RF energy harvesting) nodes. Similar to classic

interference-limited systems, the interfering nodes create collisions and, thus, decrease the ser-

vice rate of RF energy harvesting nodes. Meanwhile, transmissions from interfering nodes are

exploited by RF energy harvesting nodes to opportunistically replenish their batteries. Therefore,

from the perspective of an RF energy harvesting node, a fundamental trade-off prevails between

the increased number of energy harvesting opportunities and the increased collision rate, which

are both caused by interference. As will be shown formally, this fundamental trade-off splits the

stable throughput region for RF energy harvesting slotted Aloha networks into two sub-regions,

a sub-region where interference is advantageous for the RF energy harvesting node and another

sub-region where it is not. These two sub-regions map directly to two modes of operation for

our system and are characterized as follows:

1) Energy-limited mode:is the sub-region of the stable throughput region in which the trans-

missions of interfering nodesenhancethe throughput of the RF energy harvesting node,

i.e, the throughput enhancement due to the increased harvesting opportunities outweights

the degradation due to collisions created by the interfering nodes.

2) Interference-limited mode:is the sub-region of the stable throughput region in which the

transmissions of interfering nodesdo not increasethe throughput of the RF energy har-
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Fig. 4: The energy limited and interference limited sub-regions of the stable throughput region
of SD are characterized by the triangles BCO and BCD, respectively.

vesting node, i.e, the throughput degradation due to collisions equals or outweighs the

throughput increase due to the increased energy harvestingopportunities.

The two parts of the stable throughput region for our system are shown in Fig. 4, where the

energy-limited region is enclosed by the triangle BCO and the interference-limited region is

enclosed by the triangle BCD.

In order to characterize the inner bound on the stability region of SG in Theorem 1, we

introduce a deprived systemSD where Type II node transmits only in the time slots in which

Q1 is non-empty. We derive the stability region ofSD, by going through the following three

steps discussed next. First, we characterize the average service rates of the two interacting data

queues. Second, we generalize theStochastic dominance techniqueproposed in [21] to capture

our system dynamics and two-mode operation. Third, we derive the stability conditions ofSD

using the generalized stochastic dominance approach. Finally, we prove in Section V-E that the

stability region ofSD is an inner bound on the stability region ofSG.

A. Service Rates of the Interacting Queues inSG

The average service rates of the data queues,Q1 andQ2, in SG are given by

µ1 = q1

(

1− q2 P[B>0, Q2>0|Q1>0]
)

, (17)

µ2 = q2 P[B>0, Q1=0|Q2>0] + q2 (1− q1) P[B>0, Q1>0|Q2>0]. (18)
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where the service rate of the Type I node,µ1, is the fraction of time in which Type I node

decides to transmit, excluding the fraction of time in whichType II node is also transmitting. A

Type II node transmits, if it is active, i.e.,B>0 andQ2>0, and decides to transmit. Similarly,

the service rate of the Type II node,µ2, is the fraction of time in which Type II node has a

non-empty battery and decides to transmit, excluding the fraction of time in which both nodes

are transmitting. Note that the queue evolution equation in(1) implies thatP[Q1 > 0] = 1 in

(17) andP[Q2 > 0] = 1 in (18).

In our system, we have three interacting queues, namelyQ1, Q2 andB. The analysis of three

interacting queues is prohibitive and, hence, calculatingthe probabilityP[B>0, Q1=0|Q2>0].

Therefore, we consider a systemSD whereP[B > 0, Q1 = 0|Q2 > 0] = 0, i.e., we consider a

lower service rate for the Type II node, since it transmits only in the time slots in whichQ1 is

non-empty. The relationship between the two systems is discussed in Section V-E.

B. Service Rates of the Interacting Queues inSD

In order to analyze the interaction betweenQ1 andQ2 in SD, we decouple the battery queue,

B, by substituting the probability of the battery queue beingnon-empty with the conditional

probability given by Lemma 2. Hence, the average service rates of the data queuesQ1 andQ2

are given as µ1 = q1

(

1− q2 P[B>0|Q1>0, Q2>0] P[Q2>0|Q1>0]
)

(19)

= q1

(

1−min
{ q1ph
(1 + q1ph)

, q2

}

P[Q2>0|Q1>0]
)

. (20)

µ2 = q2 (1− q1)P[B>0|Q1>0, Q2>0] P[Q1>0|Q2>0] (21)

= (1− q1)min
{ q1ph
(1 + q1ph)

, q2

}

P[Q1>0|Q2>0]. (22)

The probability thatQi is non-empty given thatQj is saturated (always backlogged) is given by

P[Qi > 0|Qj > 0] = λi

µs
i

, i = 1, 2, i 6= j, whereµs
i is the service rate ofQi given that both data

queues are saturated. We deriveµs
i , i = 1, 2 in Section V-D.

From (20), we note thatµ1 decreases with increasingP[Q2 > 0|Q1 > 0]. Recall that for

the interference-limited region, increasing the service rate of one node comes at the expense of

decreasing the service rate of other nodes. The system is interference-limited from the perspective

of Type I node, since increasingλ2 comes at the expense of decreasingµ1. Also, from (22), we

observe thatµ2 is increasing inP[Q1 > 0|Q2 > 0]. Hence, increasingλ1 increasesµ2 until both
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data queues are saturated. Thus, the system is energy-limited from the perspective of the Type

II node until the data queues become saturated.

In Fig. 4, we depict the stable throughput regionRD of the systemSD. The boundary between

the energy-limited part and the interference limited part,from the perspective of the Type II node

is λ1 = λ̃1, whereλ̃1 is the arrival rate forQ1 at which both data queues,Q1 andQ2, become

saturated. Accordingly, the energy-limited sub-region ischaracterized by

RD|λ1≤λ̃1
=
{

(λ1, λ2) ∈ RD| λ1 ≤ λ̃1

}

, (23)

and the interference limited sub-region is characterized by

RD|λ1>λ̃1
=
{

(λ1, λ2) ∈ RD| λ1 > λ̃1

}

. (24)

C. The Generalized Stochastic Dominance Approach

In this section, we rely on stochastic dominance arguments [21], which are instrumental in

establishing the stable throughput region ofSD. However, the conventional stochastic dominance

approach should be modified for our system, since the transmission of dummy packets by Type

I node increases the harvesting opportunities for Type II node. Thus, in order to construct

a hypothetical “dominant” system in which the queue lengthsare never smaller than their

counterparts in the systemSD, the hypothetical system proposed in [21] is modified to capture

the two-mode operation inherent to our RF EH system.

Recall, from (22), that the service rate ofQ2 increases withλ1. Thus, it is straightforward to

show that, using classic stochastic dominance arguments, saturatingQ1 increases the service rate

of Q2. Hence, the queue length in this hypothetical system (particularlyQ2) no longer dominates

(i.e. could be smaller) its counterpart in the systemSD and, thus, the classic stochastic dominance

argument fails. For example, if we consider the case whereλ1 = 0 andλ2 > 0, we observe that

λ2 ≤ q2 belongs to the stable throughput region, which contradicts(22), where forλ1 = 0, we

get λ2 = 0.

Hence, we define the hypothetical system for our RF EH system to be constructed as follows:

• Arrivals at data queuesQ1 andQ2 occur at the same instants as in the systemSD.

• Transmission decisions, determined by independent coin tosses, are identical to those in the

systemSD.
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• In the energy-limited region, Type I node does not transmit dummy packets. Thus, the

energy arrivals to the battery queue of the harvesting node occurs exactly at the same

instants as in the systemSD.

• In the interference-limited region, if the data queue is empty and the node decides to

transmit, a dummy packet is transmitted, if the node has sufficient energy to transmit.

From the construction of the new hypothetical system proposed above, it can be noticed that

it behaves like the systemSD in the energy-limited region and dominates the systemSD in the

interference-limited region. Thus, this hypothetical system dominates our systemSD because

the transmissions of dummy packets collide with the transmission of the other node. Also, the

transmissions of dummy packets consume energy without contributing to the throughput of Type

II node.

D. Establishing the Stability Conditions ofSD

In order to derive the stability conditions of the systemSD, we construct two dominant

systems, where in the first dominant system Type II node is backlogged and in the second

dominant system, Type I node is backlogged only in the interference-limited region.

1) First dominant system:In this hypothetical system, we consider the case where the Type

II node continues transmitting dummy packets whenever its data queue,Q2, is empty given that

its battery is non-empty. Since the system is interference-limited from the perspective of Type I

node, our dominant system is identical to the one proposed in[21]. Hence, the saturated service

rate ofQ1 is given by

µs
1 = q1

(

1−min
{ q1ph
(1 + q1ph)

, q2

})

. (25)

Also, by substitutingP[Q1 > 0|Q2 > 0] = λ1/µ
s
1 in (22), the service rate ofQ2 becomes

µ2 =
(1− q1)min

{

q1ph
(1+q1ph)

, q2

}

λ1

q1

(

1−min
{

q1ph
(1+q1ph)

, q2

}) . (26)

Therefore, the stable throughput region of the first dominant systemS1 is given by

R1 =







(λ1, λ2)
∣

∣

∣
λ1 ≤ q1

(

1−min
{ q1ph
(1 + q1ph)

, q2

})

, λ2 ≤
(1− q1)min

{

q1ph
(1+q1ph)

, q2

}

λ1

q1

(

1−min
{

q1ph
(1+q1ph)

, q2

})







.

(27)
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Also, since the system becomes interference-limited from the perspective of node II, when

the data queues,Q1 andQ2, are backlogged,̃λ1 is given by

λ̃1 = µs
1 = q1

(

1−min

{

q1ph
(1 + q1ph)

, q2

})

. (28)

2) Second dominant system:In this hypothetical system,Q1 is backlogged only in the interference-

limited region from the perspective of Type II node. In the interference-limited part ofR2, the

saturated service rate ofQ2 is given by

µs
2 = (1− q1)min

{

q1ph
(1 + q1ph)

, q2

}

. (29)

Similarly, by substitutingP[Q2 > 0|Q1 > 0] = λ2/µ
s
2 in (20), we obtain

µ1 = q1

(

1− λ2

1− q1

)

. (30)

Therefore, the stable throughput region of the interference-limited part of the second dominant

system is given by

R2|λ1≥λ̃1
=
{

(λ1, λ2) | λ̃1 ≤ λ1 ≤ q1

(

1− λ2

1− q1

)

, λ2 ≤ (1− q1)min
{ q1ph
(1 + q1ph)

, q2

}}

.

(31)

The stable throughput regions of the dominant systemsR1 andR2|λ1≥λ̃1
are shown in Fig. 4.

3) Stability region of the systemSD: In the following lemma we derive the relationship

between the stable throughput region of the dominant systems R1 andR2|λ1≥λ̃1
and the original

systemRD.

Lemma 3. The stable throughput regionRD of the systemSD is given by the union of the

stable throughput region of the first dominant system and theinterference-limited part of the

second dominant system, i.e.,RD = R1 ∪ R2|λ1≥λ̃1
.

Proof: The stable throughput region of the original system is the union of the two dominant

systems, based on [21], i.e.,RD = R1∪R2. From the construction of the second dominant system,

we know that the energy-limited region is identical to the original system, i.e.,R2|λ1<λ̃1
=

RD|λ1<λ̃1
. Hence, we haveR2 = RD|λ1<λ̃1

∪ R2|λ1≥λ̃1
andRD = R1 ∪ RD|λ1<λ̃1

∪ R2|λ1≥λ̃1
.

Now, assume that the rate pair(x1, x2) ∈ RD|λ1<λ̃1
. Hence,x1 < λ̃1 andx2 ≤ µ2. Since we
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achieve the maximum service rate for Type II node by backlogging Q2, from (27) we obtain

x2 ≤
(1− q1)min

{

q1ph
(1+q1ph)

, q2

}

x1

q1

(

1−min
{

q1ph
(1+q1ph)

, q2

}) . (32)

Therefore, the rate pair(x1, x2) ∈ R1 andRD|λ1<λ̃1
⊆ R1.

Proposition 1. The stability region of the systemSD is given by

RD =







(λ1, λ2)
∣

∣

∣
λ1 ≤ q1

(

1− λ2

1− q1

)

, λ2 ≤
(1− q1)min

{

q1ph
(1+q1ph)

, q2

}

λ1

q1

(

1−min
{

q1ph
(1+q1ph)

, q2

})







. (33)

Proof: For the purpose of the proof, we also define a conventional Aloha system with nodes

with unlimited energy supplies, i.e.,SAloha. The outline of the proof is as follows

(i) The generalized stochastic dominance approach proves the necessity of the stability con-

ditions onQ1 andQ2 in (33). Meanwhile, it only proves the sufficiency of the stability

conditions forQ2.

(ii) The stability condition onQ1 in SAloha is sufficient for stability ofQ1 in SD.

(iii) The stability condition onQ1 is the same in both systemsSAloha andSD.

(iv) From (ii) and (iii), we establish the sufficiency of the stability condition onQ1 for SD.

The detailed proof is as follows

(i) Recall that for systems with unlimited energy such asSAloha, the sufficient and necessary

stability conditions are given by the union of the stabilityregions of the two hypothetical

systems in [21]. On the other hand, for a system with batteries the transmission of dummy

packets in the hypothetical system wastes the energy of the nodes which limits the data

transmissions in future slots. For instance, in a hypothetical system wherethe first node

is backlogged, there may exist instants at whichthe first nodeis unable to transmit due

to energy outage, while it is able to transmit in the originalsystem. Hence,the second

node in the hypothetical system may have a higher success rate compared to the original

system, and the sample path dominance is violated. Consequently, the union of the stability

conditions of two hypothetical systems is only a necessary condition for the stability of the

original system [29]. In our paper, we arrived to (33) by applying the generalized stochastic

dominance approach, in which the first dominant system is constructed such that Type II

node continues transmitting dummy packets whenever its data queue,Q2, is empty. The
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transmission of dummy packets from Type II node in this system wastes energy. Therefore,

Type I node in this dominant system may have a better success rate compared to that of

the systemSD. Therefore, the generalized stochastic dominance approach only proves the

necessity of the stability condition onQ1 in (33). On the other hand, the stability condition

on Q2 is sufficient and necessary, since Type I node has unlimited energy and the previous

argument only applies to nodes with batteries.

(ii) In SAloha the two contending nodes have unlimited energy, while inSD the transmissions of

the Type II node are constrained by the energy in the battery.Hence, the second contending

node inSAloha, transmits more frequently than a Type II node with the same transmission

probabilityq2 in SD. Consequently, there are more collisions inSAloha compared with those

in SD and the service rate of Type I node inSD cannot be smaller than the service rate

of the first contending node inSAloha. Therefore, the stability condition onQ1 in SAloha is

sufficient for stability ofQ1 in SD.

(iii) In the stability analysis ofSD, we proved that the stability condition onQ1 is λ1 ≤
q1

(

1− λ2

1−q1

)

, which is identical to the stability condition onQ1 in SAloha [21].

(iv) The sufficiency of the conditionλ1 ≤ q1

(

1− λ2

1−q1

)

for the stability ofQ1 in SD follows

from its sufficiency forQ1 in SAloha. Therefore, the stability conditions in (33) are necessary

and sufficient conditions and the regionRD is the exact stability region of the systemSD.

E. The Relationship between Stability Regions ofSG and SD

Lemma 4. The stability region of the systemSD is an inner bound on the stability region of

the systemSG, i.e.,RG ⊇ RD.

Proof: According to the assumptionP[B>0, Q1=0|Q2>0]=0 in the systemSD, a Type II

node has a lower service rate compared to a Type II node in the systemSG. Hence, the length of

Q2 in the systemSD is never smaller than its counterpart in the systemSG, i.e., the systemSD

dominatesSG from the perspective of Type II node. Consequently, the stability of Q2 in SD, is

sufficient for the stability ofQ2 in SG. Additionally, the assumptionP[B>0, Q1=0|Q2>0]=0,

implies that Type II node is not transmitting in the time slots at whichQ1 is empty. Hence,

the number of idle slots increases, since at those time slotsType I node has no data packets to

transmit. Accordingly, the service rate of Type I node is notaffected, and the stability condition
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on Q1 is the same inSD andSG. We conclude that the stability region ofSD is an inner bound

on the stability region ofSG.

Finally, from Proposition 1 and Lemma 4 we arrive to Theorem 1.

F. The Closure over all Transmission Probabilities

In this subsection, we prove Theorem 2. The closure of the inner boundRinner
G , is defined

by the union of all stability regions for a given(q1, q2), i.e., C(Rinner
G

) =
⋃

(q1,q2)

R
inner
G ((q1, q2)). In

R
inner
G , the service rate of Type II node is always lower than the arrival rate of Type I node, i.e.,

µ2 < λ1. Also, from (15), we note thatµ2 is increasing inmin{ q1ph
(1+q1ph)

, q2}, while µ1 is not

affected byq2. Hence, in order to find the closureC(Rinner
G

), we need to findq2 that maximizesµ2.

From (15), we observe that for maximizingµ2, the transmission probability of Type II nodeq2

should be greater than or equal toq∗2 = (q1ph)/(1 + q1ph). Also, increasingq2 beyondq∗2 does

not affect the service rateµ2.

Interestingly, we can interpretq∗2 using Renewal reward theorem[33]. Assume that the data

queues are backlogged and Type II node transmits whenever itreceives an energy packet, i.e.,

q2 = 1. Let the expected rewardR that Type II node obtains, be the transmission of one data

packet, i.e.,E[R] = 1. Also, the expected number of time slots,T , needed for the transmission

of one data packet is one slot for transmission, and(q1ph)
−1 slots are needed for harvesting

one energy packet. Hence, the expected time needed for a transmissionE[T ] = 1 + (q1ph)
−1.

Using the renewal reward theorem, we find that the effective transmission rate of Type II node

is given byq2,eff =
E[R]
E[T ]

= q1ph
1+q1ph

. Therefore, the previous expression represents the maximum

possible transmission rate of Type II node, which is the minimum transmission probabilityq2

that maximizesµ2. Now, the problem of finding the closureC(So), reduces to finding the closure

of Rinner
G ((q1, q

∗
2)) over all q1, i.e., C(Rinner

G
) =

⋃

q1∈[0,1]

R
inner
G ((q1, q

∗
2)), where

R
inner
G ((q1, q

∗
2)) =

{

(λ1, λ2)
∣

∣

∣
λ1 ≤ q1

(

1− λ2

1− q1

)

, λ2 ≤ (1− q1)phλ1

}

, (34)

which represents the triangle OBD in Fig. 6, whereD = (q1, 0), and B=
(

q1
1+q1ph

, q1ph(1−q1)
1+q1ph

)

.

Since, we know that the regionRinner
G consist of two line segments, the closureC(Rinner

G
) can be

found be taking the union of the closures of the line segmentsOB, BD. First, we find the closure

of the line segmentOB by solvingx = q1
1+q1ph

, andy = q1ph(1−q1)
1+q1ph

. The solution represents the
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trace of the pointB for q1 ∈ [0, 1], which is y = phx(1 − x
1−phx

). Hence, the closure ofOB is

given by
COB =

{

(λ1, λ2)
∣

∣

∣
λ2 ≤ λ1ph

(

1− λ1

1− λ1ph

)}

, (35)

which is represented in Fig. 5 byC1
OB and C2

OB. Note thatCOB is a convex region, since it

is a hypograph of a concave function. Next, in order to find theclosure of BD, we solve

max
q1∈[0,1]

q1

(

1 − λ2

1−q1

)

. The solution gives us the closure of the line segment extending OB to

the λ2-axis, represented byC1
BD and C2

BD in Fig. 5. However, since we want the closure ofBD

and not the extension,CBD is limited from the left by the trace of the pointB. Thus, the closure

of BD is the region bounded from the left byC2
OB and bounded byC1

BD from the right. It is

characterized by

CBD =
{

(λ1, λ2)
∣

∣

∣

√

λ1 +
√

λ2 ≤ 1, λ1>
1+2ph−

√
1+4ph

2p2h
, λ2>λ1ph

(

1− λ1

1−λ1ph

)}

. (36)

Note that the second condition can be found by solving the twoequations ofC2
OB and C1

BD.

Finally, the closureC(Rinner
G

) is the union ofCOB andCBD, which is represented byC1
OB andC1

BD in

Fig. 5. After some algebraic manipulations, we obtain (16).

Remark: (16) can also be obtained by maximizing the service rate of Type II nodeµ2, subject

to the stability condition of Type I nodeλ1 ≤ µ1, i.e,

max
q1∈[0,1]

(1− q1)phλ1 s.t λ1 ≤ q1

(

1− λ2

1− q1

)

. (37)

Hence, the closure of our system is equivalent to maximizingµ2, becauseµ2 is upper bounded

by µ1. Thus, by maximizingµ2, we implicitly maximizeµ1.

VI. M ODEL EXTENSIONS

In this section, we discuss two extensions to the previous stability analysis. First, we investigate

the impact of having a finite capacity battery on the stable throughput region. Second, we

investigate the effect of having a full-duplex RF energy harvesting node.

A. Finite Capacity Battery

In this subsection, we investigate the impact of having a finite capacity battery on the stable

throughput region obtained in Theorem 1. LetM be the capacity of Type II node battery. Thus,
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Fig. 5: The closureC(Rinner
G

) = C1
OB ∪ C1

BD, for ph = 0.2.

the battery evolution equation becomes

Bt+1 = min
{

Bt − µt
B +H t,M

}

(38)

Similar to the unlimited battery capacity case, the batteryqueue forms a decoupled discrete time

Markov chain given that the data queues are backlogged. By analyzing the Markov chain we

find the probability that the battery queue is non-empty.

Lemma 5. For a half-duplex RF energy harvesting node with battery of sizeM , the probability

that the battery is non-empty,ζ , given the data queuesQ1 andQ2 are backlogged, is given by

ζ =















ρ

(

1−
(

q1ph(1−q2)

q2

)M

1−ρ
(

q1ph(1−q2)

q2

)M

)

, q2 6= q1ph
1+q1ph

,

1, q2 =
q1ph

1+q1ph

(39)

where ρ = q1ph
q2(1+q1ph)

is the probability that the battery is non-empty in the infinite capacity

battery case.

Proof: Along the lines of Lemma 2.

Next, we apply the same procedure used in proving the stability region for the infinite battery

capacity case.

Corollary 1. An inner bound on the stable throughput region of the opportunistic RF energy

harvesting slotted Aloha is the triangle OED, shown in Fig .6. Assuming half-duplex energy
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Fig. 6: The stable throughput region of opportunistic energy harvesting Aloha with finite
capacity battery is characterized by the triangle OED.

harvesting and a battery of sizeM , the region is characterized by the following equation

R
inner
G =

{

(λ1, λ2)| λ1 ≤ q1

(

1− λ2

1− q1

)

, λ2 ≤
q2(1− q1)ζλ1

q1 (1− q2ζ)

}

(40)

Proof: Along the lines of Theorem 1.

The reduction in the stability region due to finite capacity battery is the triangle OEB shown

in Fig. 6.

B. Full-Duplex Energy Harvesting

Now, we investigate the effect of having a full-duplex RF energy harvesting Type II node, i.e.,

the harvesting circuit is separated form the transmission circuit. Hence, a node can transmit and

harvest simultaneously. Also, full-duplex energy transmission is advantageous because harvesting

self-interference may introduce high energy yield. In the full-duplex RF energy harvesting

paradigm, we have three types of harvesting opportunities.First, harvesting the transmissions of

Type I node while Type II node is silent. Similar to the half-duplex case, we model this case by

a Bernoulli process with meanph|{1}. Second, harvesting the self-interference of Type II node

while Type I node is silent, which is modeled by a Bernoulli process with meanph|{2}. Third,

harvesting both transmissions of Type I node and the self-interference of Type II node, which

is modeled by a Bernoulli process with meanph|{1,2}.

In order to characterize the probabilitiesph|{2} and ph|{1,2}, we use a similar approach to

the one used in characterizingph|{1} in Section III. We assume that the loopback interference

coefficient c ∈ [0, 1] is known [34]. Also, we assume a Rayleigh fading channel between the
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transmit antenna and the harvesting antenna, i.e.,gt ∼ exp(1). In case only self-interference is

present, the received power at time slott is equal toPR(t) = ηP2cgt. Hence, using the same

approach as in the half-duplex case, we obtain

ph|{2} =
1

1 + γ

ηP2c

. (41)

In case both transmissions of Type I node and the self-interference are present, the received

power at time slott is equal toPR(t) = η(P1ht(1 + lα)−1 + P2 c gt). The probabilityph|{1,2}

can be characterized in a similar fashion5.

For a full-duplex harvesting node, the average energy harvesting process of the battery queue

is given by

E[H t] = q1ph|{1}P[Q1 > 0] + q2ph|{2}P[Q1 = 0, B > 0, Q2 > 0] (42)

+ (q2ph|{2} + q1q2(ph|{1,2} − ph|{2} − ph|{1}))P[Q1 > 0, B > 0, Q2 > 0],

whereph|M, is the harvesting probability given a setM of nodes are transmitting. The battery

queue forms a decoupled Markov chain given that the data queues are backlogged. By analyzing

the Markov chain we find the probability that the battery is non-empty, which is given by the

following lemma.

Lemma 6. For a full-duplex RF energy harvesting node with infinite capacity battery, the

probability that the battery is non-emptyΨ, given the data queuesQ1 andQ2 are backlogged,

is given by

Ψ = min

{

q1ph|{1}
q2(1− q1(ph|{1,2} − ph|{1})− (1− q1)ph|{2})

, 1

}

. (43)

Proof: Along the lines of Lemma 2.

We notice that the probability of non-empty battery for the full-duplex case is higher than

that of the half-duplex case, i.e,Ψ ≥ q1ph|{1}

1+q1ph|{1}
. The stable throughput region of the system is

given by

Corollary 2. An inner bound on the stable throughput region of the opportunistic RF energy

harvesting slotted Aloha, under full-duplex energy harvesting mode and infinite capacity battery,

5In order to characterizeph|{1,2}, we need the distribution of the sum of independent gamma distributed random variables, all
with integer shape parameters and different rate parameters, which is called the generalized integer gamma distribution (GIG)
[35].
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Fig. 7: The stability regions of RF EH-Aloha under half/full-duplex modes vs. slotted Aloha
with unlimited energy supply.

is the region characterized by

R
inner
G =

{

(λ1, λ2)| λ1 ≤ q1

(

1− λ2

1− q1

)

, λ2 ≤
q2(1− q1)Ψλ1

q1 (1− q2Ψ)

}

(44)

Proof: Along the lines of Theorem 1.

VII. N UMERICAL ANALYSIS

A. RF EH-Aloha SystemSG Vs. Slotted Aloha

In Fig. 7, we compare the stable throughput region of the conventional slotted Aloha with

unlimited energy supply with our RF EH-Aloha systemSG. The stability regions are shown for

q1 = 0.4, ph|{1} = 0.2, ph|{2} = 0.2, andph|{1,2} = 0.35. Also, we consider different values forq2

to compare between full-duplex and half-duplex energy harvesting. We observe that the stability

region of slotted Aloha is significantly reduced when RF energy harvesting is implemented, due

to the energy limited sub-region. Also, for smallq2, i.e., q2 <
q1ph|{1}

1+q1ph|{1}
, we observe that the

stability regions of half-duplex and full-duplex EH-Alohaare identical, because the service rate

of Type II node is limited by the transmission probabilityq2. On the other hand, for largeq2,

i.e., q2 > Ψ, full-duplex RF energy harvesting expands the stability region, which agrees with

intuition. From Fig. 7(a), we notice that increasingq2 beyondΨ enhances the throughput of

node2 in the slotted Aloha system. However, the throughput of the Type II node in full-duplex

EH-Aloha is limited byΨ.
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Fig. 8: The stability regionsRD illustrated with the simulated sum average queue lenghts.

B. Validating the Stability Conditions using Simulations

In Fig. 8 and 9, we simulate the energy harvesting Aloha system SD for q1 = 0.4, q2 =0.4,

ph=0.6 and the queues are averaged over105 time slots. In particular, Fig. 8 shows the sum of

the average queue lengthsE[Qt
1]+E[Qt

2] versus the arrival rates(λ1, λ2). We observed that the

system exhibits unstable behavior, shown by the increase inthe average queue lengths, as we

cross the boundaries of the stability region. Fig. 9 shows the average service rate ofQ2 versus

the arrival rates(λ1, λ2). It shows that the maximum service rate (lower left corner points in

the contour plot), for a givenλ2, is achieved on the boundary of the stability region. These

observations support thatRD in Proposition 1 is indeed the stability region ofSD.

For the aforementioned parameters, we simulate the systemSG in order to verify the inner

bound in Theorem 1. Similarly, the sum of the average queue lengths and the average service

rate ofQ2 are shown in Fig. 10 and 11, respectively. We notice from Fig.10 that there exist

rate pairs outside the left hand side of the stability regionfor which the queues exhibit a stable

behavior. Additionally, Fig. 11 suggests that the maximum service rate (lower left corner points

in the contour plot), for a givenλ2, is achieved outside the stability region. These observations

indicates thatRinner
G is an inner bound on the stability region ofSG, as proposed in Theorem 1.

Finally, we show the utility of the stability regionRinner
G , for the exact systemSO which is

described in Section III-A. We simulate the exact behavior of the system forη=0.7, γ=0.2335,
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Fig. 9: Simulation of the average service rate ofQ2 in systemSD.
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Fig. 10: The stability regionRinner
G illustrated with the simulated sum average queue lenghts.

P1 =1 and (1+lα)−1 =0.5. Hence,θ=0.667 and from (9) we getph =0.6. The sum average

queue lengths is shown in Fig. 12 versus the arrival rates(λ1, λ2). We observe that the behavior

of the average queue lengths inSO is very similar toSG. Henceforth, we conjecture that the

stability regionRinner
G is also an inner bound for the stability region of the exact systemRO.

To further support our analytical results, Fig. 13 and 14 present sample paths for the evolution

of the queuesQ1 and Q2 in the systemsSD, SG and SO. Note that the sample path of the

evolution of an unstable queue should show an increasing tendency such that the queue size
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Fig. 11: Simulation of the average service rate ofQ2 in systemSG.
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Fig. 12: The stability regionRinner
G compared with the simulated sum average queue lenghts of

the exact systemSO.

grow unboundedly as time increases. In Fig. 13, we show the evolution of Q2 for two arrival

rate pairsTo andTi. We observe thatQ2 exhibits unstable behavior atTo in SD, while it exhibits

stable behavior inSG and SO. This supports our claim that the stability condition onQ2 in

(15) is sufficient and necessary inSD, while it is only sufficient inSG andSO. While, Fig. 14

suggests that the stability condition onQ1 in (15) is sufficient and necessary inSD, SG andSO.
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Fig. 13: Sample paths for the evolution ofQ2 in the systemsSD, SG andSO.
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VIII. C ONCLUSION

In this paper, we studied the effects of opportunistic RF energy harvesting on the stability of

a slotted Aloha system consisting of a Type I node, which has unlimited energy supply, and a

Type II node, which is solely powered by an RF energy harvesting circuit. We illustrated the

intricacy in analyzing the exact behavior of such systems and proposed an equivalent system for

which we were able to derive analytical results. In particular, we characterized an inner bound

on the stability region under the half-duplex and full-duplex energy harvesting paradigms, by
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generalizing thestochastic dominance techniquefor RF EH-networks. We verified our analytical

findings by simulating the exact and equivalent systems. Theextension of our analysis to a

random access network with multiple nodes can provide further insights to the development

of efficient medium access protocols for networks with RF energy harvesting capabilities, and

presents itself as a promising future research direction.
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