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Energy-Efficient Cell Activation, User Association,
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Abstract—Next generation (5G) cellular networks are expected
to be supported by an extensive infrastructure with many-fold
increase in the number of cells per unit area compared to today.
The total energy consumption of base transceiver stations (BTSs)
is an important issue for both economic and environmental
reasons. In this paper, an optimization-based framework is
proposed for energy-efficient global radio resource management
in heterogeneous wireless networks. Specifically, with stochastic
arrivals of known rates intended for users, the smallest set
of BTSs is activated with jointly optimized user association
and spectrum allocation to stabilize the network first and then
minimize the delay. The scheme can be carried out periodically on
a relatively slow timescale to adapt to aggregate traffic variations
and average channel conditions. Numerical results show that the
proposed scheme significantly reduces the energy consumption
and increases the quality of service compared to existing schemes
in the literature.

I. INTRODUCTION

Commercial wireless networks are evolving towards higher
frequency reuse by deploying smaller cells to meet increasing
demand for mobile data services. In a heterogeneous network
(HetNet), macro cells provide for wide area coverage and
for serving highly mobile users, whereas dense deployment
of femto, pico, and/or micro cells, possibly with distributed
antennas, can support much higher data rates per unit area.

The energy consumption due to information and commu-
nication technologies worldwide is rising rapidly [1]. As the
number of base transceiver stations (BTSs) increases, it is ever
more important to manage their energy consumption. An active
macro BTS consumes 40 to 80 watts on transmission, whereas
the total power consumption is typically hundreds to well over
1,000 watts, which includes the power for signal processing,
computation, cooling, and radio frequency power amplification
(see, e.g., [2]–[6] and references therein). Hence, savings from
transmit power control alone are relatively limited. Much more
significant power savings can be accomplished by turning a
BTS off or switching it to deep sleep mode.

In this paper, we study how to support given traffic with as
few active small cells as possible to conserve energy in a Het-
Net. Because it may take many seconds to reactivate a BTS in
deep sleep [7], the on-off decision should rely on the aggregate
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traffic and average channels conditions collected over a period,
possibly lasting a minute or more. Cell activation/deactivation
thus occurs on a much slower timescale than channel-aware
scheduling, which typically occurs over time slots of a few
milliseconds [8]. The central problem considered here is how
to jointly optimize spectrum allocation and user association to
minimize the number of active cells. Without loss of generality,
we focus on downlink data transmissions.

The problem formulation in this paper builds upon prior
work [9]. The following two features distinguish this paper
and [9] from most existing work on energy-efficient resource
management in the literature, including [10]–[20]. First, we
consider stochastic packet arrivals to user traffic queues in
lieu of static data rate requirements. Stochastic traffic better
models the challenges for small cells as they have much
more pronounced traffic variations than macro cells. The
proposed slow timescale resource management adapts to the
average traffic load, thus avoiding frequent on/off updates
due to varying user equipment (UE) data rates. Second, the
formulation here facilitates the maximum amount of spectrum
agility. Specifically, by considering all possible reuse patterns,
arbitrary (possibly nonconsecutive) spectrum can be allocated
to a link from any BTS to any UE (see also [21], [22]). This
is in contrast to the full-spectrum reuse (i.e., all BTSs use all
available spectrum) assumed in [10]–[19].

The optimization problem formulated here is a mixed inte-
ger program, where cell activation decisions are expressed as
binary variables. The problem is solved numerically using an
iterative algorithm based on reweighted `1 minimization [23].
The method was interpreted as majorization-minimization
in [24]. Reference [13] uses the same method to solve the cell
activation and user association problem under full-spectrum
reuse and static rate requirements.

Numerical results show that the proposed resource man-
agement method achieves significant energy savings as well
as throughput gains in a typical HetNet. In particular, the
performance advantages of spectrum agility is demonstrated
by comparing with the method in [13]. As previously noted
in [9], spectrum agility is crucial for improving network
throughput. Intuitively, improved spectrum allocation allows
more BTSs to be turned off. Furthermore, a silent BTS causes
no interference to other cells, so that the remaining BTSs
may attain higher spectral efficiencies [25]. This may present
additional opportunities for turning off BTSs and adding more
energy savings.

The proposed method offers a different tradeoff between
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Fig. 1. The topology of a HetNet with n1 = 2 macro BTSs, n2 = 10
randomly deployed pico BTSs and k = 66 user groups.

performance and complexity than in [13]. The scheme in [13]
is computationally feasible for a HetNet with hundreds of
BTSs, whereas the method here is feasible for a cluster of
at most 20 to 30 BTSs due to a large number of additional
spectrum allocation variables in the optimization problem.

The remainder of this paper is organized as follows. The
system model is introduced in Section II. The optimization
problems are presented in Section III, and the algorithms are
introduced in Section IV. Simulation results are presented in
Section V, and conclusions are drawn in Section VI.

II. SYSTEM MODEL

We consider the downlink of a HetNet with n BTSs,
including n1 macro BTSs and n2 = n−n1 pico BTSs. Denote
the set of macro and pico BTSs as N1 = {1, · · · , n1} and
N2 = {n1 + 1, · · · , n}, respectively. Let N = {1, · · · , n}
denote the set of all the BTSs. All BTSs operate on the same
licensed band of W Hz. The frequency resources are assumed
to be homogenous on a slow timescale.

The key to total spectrum agility is the notion of pattern [9].
A pattern over a set of time-frequency resources is a subset of
transmitters sharing the resources. In the downlink, a pattern A
is a subset of {1, . . . , n}, and all BTSs in A have simultaneous
access to the frequency band associated with the pattern.
Assuming known transmit power spectral densities (PSDs),
a particular pattern determines the signal-to-interference-plus-
noise ratio (SINR) and hence the spectral efficiencies of all
links in the network. The allocation problem can then be
formulated as how to divide the resources among all 2n

patterns. In a simple example with only 2 BTSs, there are only
patterns: {1}, {2}, {1, 2}, and ∅, which denote the patterns
used respectively by BTS 1 and BTS 2 exclusively, the pattern
used by both BTSs, and the pattern used by none, respectively.
For every pattern A ⊂ N , let yA be the fraction of total
bandwidth allocated to it. Clearly,∑

A⊂N
yA = 1, (1)

and any efficient allocation would set y∅ = 0.
At the slow timescale considered it is reasonable to treat

users near each other with similar quality of service (QoS)
requirements as a group. Denote the set of all user groups
as K = {1, · · · , k}. An example HetNet model with n = 12

BTSs and k = 66 user groups is shown in Fig. 1, where
each group of UEs is assumed to be located at the center
of each hexagon (as in [25]). For ease of characterizing the
delay as the objective, the aggregate traffic of group j UEs is
modeled by Poisson traffic arrivals with arrival rate λj . The
packet length is exponentially distributed with average length
L. It is possible to adopt a different traffic and queueing model
(see, e.g., [26]).

We assume each BTS assigns different spectrum resources
to different user groups. This can be viewed as statistically
multiplexing the packet streams from different user groups.
The packets from the same group of UEs are served according
to a ‘first in first out’ policy. Hence, each user group effectively
has a virtual queue. We also assume multiple BTSs can serve
the same group of UEs.1

We assume BTS i transmits to its UEs with fixed flat
transmit PSD, pi. The spectral efficiency of the link i → j
under pattern A depends on the receive power and the inter-
ference. For concreteness in obtaining numerical results, we
use Shannon’s formula to obtain:

si→jA =
W 1(i ∈ A)

L
log2

(
1 +

pig
i→j∑

i′∈A\{i} pi′g
i′→j + nj

)
(2)

in packets/second, where 1(i ∈ A) = 1 if i ∈ A and 1(i 6∈
A) = 0 otherwise, gi→j is the power gain of the link i →
j, and nj is the noise PSD at group j UEs. The link gain
gi→j includes pathloss and shadowing effects over the slow
timescale considered in this paper. Hence gi→j is a constant
in each decision period independent of the frequency. If small
scale fading is included in gi→j on the slow timescale, then
ergodic spectral efficiency must be used instead of (2), since
the decision period spans many coherence time intervals.

All packets intended for group j UEs arrive at an M/M/1
queue. Denote the bandwidth allocated to BTS i to serve group
j UEs under pattern A as xi→jA . The service rate for this queue
contributed by BTS i under pattern A is si→jA xi→jA . This rate
is guaranteed regardless of the activities of the other BTSs and
queues. The total service rate for queue j is a linear function
of the bandwidths:

rj =
∑
i∈N

∑
A⊂N

si→jA xi→jA packets/second. (3)

Hence the average packet sojourn time of the M/M/1 queue
for group j UEs takes a simple form [27]:

tj =
1

(rj − λj)+
seconds, (4)

where (x)+ = max{0, x}, so tj = +∞ if rj ≤ λj .

1On a slow timescale this can be realized by letting different BTSs serve
different subsets of individual UEs.
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III. OPTIMIZATION FRAMEWORK

A. Baseline Formulation

The basic energy-efficient resource allocation problem is
formulated as:

minimize
r,x,y,z

∑
i∈N2

cizi (P1a)

subject to zi ∈ {0, 1}, ∀i ∈ N2 (P1b)

rj =
∑
i∈N

∑
A⊂N

si→jA xi→jA , ∀j ∈ K (P1c)∑
j∈K

xi→jA ≤yA, ∀i ∈ N , A ⊂ N (P1d)∑
A⊂N

∑
j∈K

xi→jA ≤ zi, ∀i ∈ N2 (P1e)

xi→jA ≥ 0, ∀i ∈ N , j ∈ K, A ⊂ N (P1f)

rj − λj ≥ τ−1j , ∀j ∈ K (P1g)∑
A⊂N

yA = 1 (P1h)

where:
• The variables r, x, y, and z are the vector forms of

(rj)j∈K,
(
xi→jA

)
i∈N , j∈K, A⊂N , (yA)A⊂N , and (zi)i∈N2

,
respectively.

• (P1a) is the total energy cost of the network, where
zi constrained by (P1b) is a binary variable indicating
whether pico BTS i is on or off, and ci is the power cost
of pico BTS i if it is active. While the macro BTSs are
assumed to be always on to provide basic coverage, it is
easy to include their on-off decisions as variables as well.

• (P1c) is the service rate of each user group as given in (3).
• (P1d) guarantees that, for every pattern A, the total

bandwidth a BTS allocates to all groups does not exceed
the bandwidth assigned to pattern A.

• (P1e) states that a pico BTS i uses no spectrum if it is
off and uses at most 1 unit of bandwidth if it is on.

• (P1f) constrains all bandwidths to be nonnegative.
• (P1g) is the QoS constraint for each user group, where
τj is the maximum delay allowed for group j UEs. The
constraint is equivalent to letting tj in (4) satisfy 0 ≤
tj ≤ τj . In lieu of QoS, quality of experience (QoE) can
be considered using the proposed framework as well. To
achieve this, each user group can be further divided into
smaller groups representing different rate, delay and other
QoS preferences. Also, QoE may be modeled a general
user-dependent utility function Qj(λj , rj).

• (P1h) constrains the total system bandwidth to be one
unit.

The formulation P1 addresses joint user association, spec-
trum allocation, and BTS activation all under one framework.
The objective and all the constraints are linear. Solving P1
minimizes the energy cost by turning off pico BTSs not needed
to satisfy the delay requirements.

B. Structure of the Optimal Solution

One concern with P1 is that the spectrum is divided into up
to 2n patterns (segments), which may be impractical for all but

very small networks. Fortunately, we can use Carathéodory’s
Theorem to show that there exists an optimal allocation that
uses no more than k patterns.

Theorem 1: There exists an optimal solution of P1 in which
y is k-sparse, i.e.,∣∣∣∣{A | yA > 0, A ⊂ N}

∣∣∣∣ ≤ k. (5)

Proof: We first reformulate P1 by defining a new set of
variables {vi→jA }, which represent the fraction of spectrum
under pattern A that BTS i allocates to group j. The con-
straints (P1c)–(P1f) then become:

rj =
∑
A⊂N

(∑
i∈N

si→jA vi→jA

)
yA, ∀j ∈ K (P2a)∑

j∈K
vi→jA ≤1, ∀i ∈ N , A ⊂ N (P2b)∑

A⊂N

∑
j∈K

vi→jA yA ≤ zi, ∀i ∈ N2 (P2c)

vi→jA ≥ 0, ∀i ∈ N , j ∈ K, A ⊂ N . (P2d)

This problem, P2, where {vi→jA } replaces {xi→jA }, is clearly
equivalent to P1. Solving P2, the actual spectrum allocations
are given by xi→jA = yAv

i→j
A .

In the remainder of this proof, we show that if a solution
(r,v,y, z) to P2 exists, then there exists a k-sparse y∗ and
rate tuple r∗ such that (r∗,v,y∗, z) is feasible. This attains
the original objective (P1a) because z remains the same. We
shall verify the feasibility constraints pertaining to (r∗,y∗),
including (P1g), (P1h), (P2a), and (P2c).

Suppose y has more than k nonzero elements. Let its
support be S (yA = 0 if A /∈ S). Let us define a k-vector
tA for every A ∈ S with its elements determined by tj,A =∑
i∈N s

i→j
A vi→jA . According to (P2a), a convex combination

of the vectors (tA)A∈S with (yA)A∈S as coefficients form
the optimal rate tuple: r =

∑
A⊂N yAtA By Carathéodory’s

Theorem, r can be represented as a convex combination of
no more than k + 1 of those vectors, denoted as (tA)A∈S∗ .
Moreover, either r is on the boundary of the convex hull of
(tA)A∈S∗ or it is an interior point. In either case, there exists
r∗ on the boundary that dominates r in every dimension.
Clearly, r∗ is the convex combination of at most k vectors
from (tA)A∈S∗ . Therefore, there exists y∗ satisfying (P1h)
with support S∗∗ ⊂ S∗ ⊂ S, such that |S∗∗| ≤ k and

r∗ =
∑
A∈S∗∗

y∗AtA (6)

which implies (P2a). Because r∗ dominates r in every dimen-
sion, (P1g) is satisfied. It remains to show that (P2c) holds. For
every i with zi = 1, (P2c) is satisfied due to (P1h) and (P2b).
For every i with zi = 0, (P2c) requires that vi→jA = 0 for every
j and every A ∈ S with yA > 0, which implies that (P2c)
remains true for y∗, because its support is dominated by that
of y. This completes the proof.

C. Comparison with Full Spectrum Reuse [13]
The algorithm to be introduced for solving P1 is related

to the majorization-minimization approach in [13], which is
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based on reweighted `1 minimization proposed in [23]. To fa-
cilitate a fair comparison, we formulate an analogous problem
to the one in [13] for cell activation and user association under
the current framework. With minor changes, the optimization
problem in [13] becomes:

minimize
r,x,z

∑
i∈N2

cizi (P3a)

subject to zi ∈ {0, 1}, ∀i ∈ N2 (P3b)

rj =
∑
i∈N

si→jN xi→j , ∀j ∈ K (P3c)∑
j∈K

xi→j ≤ zi, ∀i ∈ N (P3d)

xi→j ≥ 0, ∀i ∈ N , ∀j ∈ K (P3e)

rj − λj ≥ τ−1j , ∀j ∈ K (P3f)

where all variables have the same physical meaning as in P1.
The key change from P1 to P3 is that only full spectrum reuse
is allowed, where the spectral efficiency of the link i → j is
si→jN . P3 optimizes user association and the pico BTS on/off
selection to minimize the energy cost. The performance of
allocations based on P1 and P3 will be compared in Section V
using numerical examples.

D. Generalization of the Framework

The objective (P1a) is equal to the weighted `0 norm of z:∑
i∈N2

ci|zi|0 (7)

where for any real number z, |z|0 = 0 if z = 0 and |z|0 = 1
otherwise. Hence P1 admits an equivalent formulation with
the objective function changed to (7) and with (P1b) relaxed
to zi ∈ [0, 1], i ∈ N2.

P1 can also be generalized to utility functions of the form:∑
i∈N2

ci|zi|0 + f(r,x,y, z) (8)

subject to the same constraints, where zi∈ [0, 1] indicates the
fraction of the total bandwidth used by BTS i. The objec-
tive (8) is highly versatile. For example, letting f(r,x,y, z) =∑
i∈N bizi accounts for the transmit power consumption being

proportional to the bandwidth allocation; letting

f(r,x,y, z) = β
∑
j∈K

λj∑
l∈K λl

· 1

rj − λj
, (9)

incorporates the cost of delay in the objective, where β
accounts for the tradeoff between energy and delay.

IV. REWEIGHTED `1 MINIMIZATION

With the weighted `0 norm (7) as its objective, P1 is a mixed
integer program. It is generally difficult to solve due to its
combinatorial nature. Such optimization problems frequently
appear in sparse signal recovery, portfolio optimization, and
statistical estimation. In this paper, we present an algorithm
based on a low-complexity method, called reweighted `1
minimization [23].

A. Algorithm Based on Reweighted `1 Minimization

The basic algorithm for solving P1 consists of iterating
between solving a convex optimization problem with weighted
`1 norm relaxation of the `0 objective (7), and updating the
weights. The continuous convex optimization problem based
on `1 relaxation is:

minimize
r,x,y,z

∑
i∈N2

wicizi (P4a)

subject to zi ≥ 0, i ∈ N2 (P4b)
(P1c)–(P1h)

where the objective function becomes a weighted `1 norm of
z in lieu of the weighted `0 norm.

Algorithm 1 Reweighted `1 minimization.

INPUT: (λj)j∈K,
(
si→jA

)
i∈N , j∈K, A⊂N

, and (ci)i∈N2
.

OUTPUT: (r, x, y, z).
Initialization: w1

i ← 1, ∀i ∈ N2,
u−1 ← 0, u0 ←

∑
i∈N2

ci, and t← 1.
while t ≤ T and |ut−1 − ut−2| > ε1 do

1. Compute (rt, xt, yt, zt) and the corresponding
optimum ut by solving P4 with (wti)i∈N2

as the weights.
2. Update the weights by wt+1

i ← 1
zti+ε2

, ∀i ∈ N2.
3. t← t+ 1.

end while

Algorithm 1 states the iterative procedure. It starts with the
weights w as a vector of all ones. In the tth iteration, the
algorithm first computes (rt, xt, yt, zt) by solving (P4) with
wt as the weights. In fact, this is a simple linear program.
The weights are then updated as wt+1

i ← 1/(zti + ε2), where
ε2 is some small number. If ε2 = 0, the weight wi is the
inverse of zi. Hence wizi is a good approximation of |zi|0.
We can also view wi as a penalty term. If zti is large, then
wt+1
i ≈ 0, whereas if zti is small, then wt+1

i � 1, so that
zi is more likely to be driven to 0 in the following iteration.
The algorithm terminates if either the maximum number of
iterations T is reached or convergence (according to some
predefined threshold ε1) is achieved.2

An alternative explanation of Algorithm 1 based on the
majorization-minimization approach is given in [13]. It makes
use of the following property of the `0 norm [23], [24]:

|z|0 = lim
ε→0

gε(z) (10)

for z ≥ 0, where

gε(z) =
log(1 + zε−1)

log(1 + ε−1)
. (11)

The majorization-minimization method can be regarded as
solving a sequence of minimization problems, where in each
instance it minimizes a surrogate function that locally ma-
jorizes the true objective function (see [24], [28] for more

2Here, convergence refers to the objective not necessarily the variables.
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details). For a concave and differentiable function f , a simple
and effective majorization-minimization update is:

zt+1 = arg min
z∈ζ

f(zt) + ∆f(zt)T (z − zt), (12)

where ζ is the feasible set of the problem. Since for every ε >
0, gε is concave on [0,∞), substituting (7) and (10) into (12),
we obtain:

zt+1 = arg min
z∈ζ

∑
i∈N2

1

zi + ε2
cizi, (13)

where ζ is the feasible set of P4. It is easy to see that (13)
is exactly what Algorithm 1 computes in each iteration.
Hence Algorithm 1 can be viewed as using the majorization-
minimization method to minimize the approximate objective:
f(z) =

∑
i∈N2

cigε2(zi). The concavity of f(z) and (13)
imply f(zt+1) ≤ f(zt), which establishes the convergence
of Algorithm 1.

B. A Refined Algorithm

Algorithm 1 mainly deals with the combinatorial nature
of P1 introduced by the binary variables z. However, the
number of variables in P4 is O(kn2n) due to the 2n frequency
patterns. We next reduce the complexity and improve the
convergence speed somewhat using the fact that switching
each BTS off halves the number of available patterns.

There are two important properties of P4 and Algorithm 1.
First, if zi = 0, according to (P1d) and (P1e), then yA = 0
for every A that contains i. Second, if ε2 is close to 0, once
Algorithm 1 decides to switch a certain BTS off in some
iteration, it is unlikely to be reactivated in later iterations. This
is because the weight ε2−1 corresponding to zi = 0 is typically
much larger than that corresponding to any other nonzero
element. Based on these two properties, a refined version of
Algorithm 1 is proposed in Algorithm 2, which reduces the
dimensions of the feasible set during the iterations.

Algorithm 2 A refined algorithm.

INPUT: (λj)j∈K,
(
si→jA

)
i∈N , j∈K, A⊂N

, and (ci)i∈N2
.

OUTPUT: (r, x, y, z).
Initialization: w1

i ← 1, ∀i ∈ N2,
u−1 ← 0, u0 ←

∑
i∈N2

ci, and t← 1.
while t ≤ T and |ut−1 − ut−2| > ε1 do

1. Compute (rt, xt, yt, zt) and the corresponding
optimum ut by solving P4 with (wti)i∈N2

as the weights.
2. Update the weights by wt+1

i ← 1
zti+ε2

.
if ∃i ∈ N2 s.t. zti = 0, and

∑
i: zti>0 w

t+1
i < α

ε2
then

N2 ← {i | zti > 0, i ∈ N2}
N ← N1 ∪N2

end if
3. t← t+ 1.

end while

The only change from Algorithm 1 is that the BTSs turned
off at the end of each iteration are eliminated from future
optimizations if a certain condition is met. Namely, if some
zi becomes zero in any iteration, we then compare the sum

of the penalties on all nonzero components,
∑
i:zi>0 w

t+1
i

against the penalty on any zero component up to a scale factor,
namely, α/ε2. If the total penalty on the nonzero terms is
smaller, the pico BTSs with zero zi will be ignored in future
iterations, i.e., future optimizations of P4 will be considered
for the reduced pico BTS set N ′2 = {i | zi > 0, i ∈ N2}.
Analogous to Algorithm 1, Algorithm 2 can be regarded as
updating a sequence of objective functions f t in the same
form, but with N2 updated in each iteration. With slight abuse
of notation,3 we have f t(zt) = f1(zt). It is also easy to show
that f t+1(zt+1) ≤ f t+1(zt) = f t(zt) ≤ f t(zt−1). Hence the
values of the approximate objective f1 after each iteration
form a monotonically decreasing sequence, which establishes
the convergence of Algorithm 2.

To avoid a premature reduction of the feasible set, the
weights on active and inactive BTSs are compared in Algo-
rithm 2. When

∑
i:zt+1

i >0 w
t+1
i < α/ε2, it is easy to see that

an off BTS in the current iteration will not be turned back on
in the next iteration according to Algorithm 1. This is because
the total reduction of the objective achieved by turning off all
currently active BTSs in the next iteration is not enough to
compensate for the increased cost due to reactivating a single
currently inactive BTS. By setting the scale factor α small
enough, the off BTSs that are eliminated from the feasible
set are unlikely (albeit still possible) to be turned on again
according to Algorithm 1. If l pico BTSs are removed from
N2, the number of variables is reduced by a factor of 2l,
which results in a 2l complexity reduction in future iterations.
The performance of Algorithms 1 and 2 will be compared in
Section V. Algorithms 1 and 2 can be used to solve P4 if
the function f in (P4a) is convex. The only difference then is
that the continuous optimization problem in each iteration is
a convex optimization problem instead of a linear program.

C. Post Processing

The post processing in [13] rounds up the continuous relax-
ation of user associations to binary associations. This is not
an issue in the model considered here since user association
over a slow timescale is indirectly determined by the amount
of resources allocated to each group. However, a different
post processing can be used to improve the delay performance
without increasing the energy cost, since the objective (P1a)
only depends on the binary variables z.

Here post processing is executed after a solution of P1
is obtained. The process is performed over the subset of
active BTSs, with all off BTSs removed from the formulation.
Specifically, the post processing is to solve the following
problem (cf. [9]):

minimize
r,x,y

∑
j∈K

λj∑
l∈K λl

· 1

rj − λj
(P5a)

subject to (P1c)–(P1h)

where objective (P5a) is the average packet sojourn time in
the network. P5 is a convex program and is much easier to
solve than P1.

3zt corresponds to the (possibly reduced) set N2. Here f1(zt) is evaluated
by setting any zti not in the original N2 to zero.
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TABLE I
PARAMETER CONFIGURATIONS.

Parameter Value/Function
macro transmit power 46 dBm
pico transmit power 30 dBm

total bandwidth 10 MHz
average packet length 0.5 Mb
macro to UE pathloss 128.1 + 37.6 log10(R)
pico to UE pathloss 140.7 + 36.7 log10(R)

We shall see in Section V that post processing can greatly
improve the delay performance in the light traffic regime.
The post processing is helpful if the objective only depends
on the `0 norm. We can also consider the generalizations in
Section III-D to minimize the total combined cost of energy
and delay.

V. NUMERICAL RESULTS

In this section, we demonstrate the effectiveness of the
proposed method through numerical examples. In particular,
we compare the performance of Algorithms 1 and 2 for
solving P1 as well as the performance of Algorithm 1 for
solving P3, which basically corresponds to the scheme of [13].

A. Simulation Setup

The simulation is carried out over the network in Fig. 1.
The HetNet is deployed on a 500× 1000 m2 area. The entire
geographic area is divided into a hexagonal grid with 66
hexagons. Each hexagon represents a user group. The UEs
within each hexagon/user group are assumed to be at the center
of the hexagon. The BTSs are assumed to be at the vertices
of the hexagons. There are two macro BTSs in the HetNet
denoted by the dark squares. Ten pico BTSs are randomly
placed in the network denoted by the triangles.

The spectral efficiency is calculated by (2) with a 30 dB
cap on the receive SINR (i.e., an SINR greater than 30 dB
is regarded as 30 dB). The pathloss models used for macro
and pico BTSs are the urban macro (UMa) and urban micro
(UMi) models specified in [29]. Other parameters used in the
simulation are given in Table I, which are also compliant with
the LTE standard [29]. In the simulation, we only consider
pathloss without slow and fast fading.

B. Energy-Efficient Spectrum Allocation

Fig. 2 illustrates the energy cost due to different alloca-
tion schemes at different traffic intensities. In the simula-
tion, a random vector [a1, · · · , ak] is first generated with
E[ai] = 1, i = 1, · · · , k. Given the average arrival rate λ̄,
let λ = λ̄[a1, · · · , ak], i.e., the arrival rates of all user groups
are scaled proportionally with λ̄. The delay requirement for all
UEs is 0.5 seconds, i.e., τj = 0.5, ∀j ∈ K. The energy costs
of all pico BTSs are set at one unit, i.e., ci = 1, ∀i ∈ N2.
Hence the y axis also indicates the number of active pico
BTSs. The curve marked by circles is obtained by solving P3
using Algorithm 1, which can be interpreted as applying the
scheme of [13] to the scenarios presented in this paper. The
two curves marked by squares and triangles are achieved by
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Fig. 2. Comparison of energy costs of different allocation schemes.

solving P1 using Algorithms 1 and 2, respectively. These two
curves coincide because those two algorithms yield the same
energy savings in this case. The curve without any marker
is achieved by solving P1 using a standard integer program
solver (to be specified shortly).

According to Fig. 2, the solution to P1 greatly outperforms
the solution to P3. The solution to P3 can only support up to
1.4 packets/second per user group. In contrast, the proposed
scheme here can serve up to 4.3 packets/second per user group,
a three-fold throughput gain.

The results obtained using Algorithms 1 and 2 to solve P1
are very close to the solution obtained using a standard integer
program solver. (We observe that at most one extra pico
BTS is turned on in all traffic regimes.) Similar results are
observed with random realizations of the network and traffic
distribution.

The spectrum allocation and user association according to
the solution to P1 are shown in Fig. 3. Each pie chart indicates
the spectrum allocation at the corresponding user group. The
different colors represent different patterns, and the amount of
spectrum resources allocated to each group under each pattern
is denoted by the size of the corresponding pie. The average
packet arrival rate of each group is shown by the number above
the pie chart. Each line segment joining a BTS and a group
means the group is served by the BTS. The color bars on top of
each figure shows the actual spectrum partition into different
patterns.

In both Fig. 3a and Fig. 3b, the spectrum resources allocated
to each user group is roughly proportional to the corresponding
traffic demand. The light traffic scenario is shown in Fig. 3a.
All the pico BTSs are turned off, leaving the 2 macro BTSs to
serve all the user groups. The spectrum in Fig. 3a is divided
into two segments each exclusively used by one of the macro
BTSs. Apparently, the allocation is suboptimal in terms of user
association, since both macro BTSs intrude into the other cell
to serve some user groups that should obviously be served
by the other macro BTS. This is because the objective in P1
is only to minimize the number of active pico BTSs. The



7

0 100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

  
0.35

  
0.94

  
0.88

  
0.55

  
0.62

  
0.59

  
0.21

  
0.3

  
0.47

  
0.23

  
0.84

  
0.19

  
0.23

  
0.17

  
0.23

  
0.44

  
0.31

  
0.92

  
0.43

  
0.18

  
0.9

  
0.98

  
0.44

  
0.11

  
0.26

  
0.41

  
0.59

  
0.26

  
0.6

  
0.71

  
0.22

  
0.12

  
0.3

  
0.32

  
0.42

  
0.51

  
0.086

  
0.26

  
0.8

  
0.029

  
0.93

  
0.73

  
0.49

  
0.58

  
0.24

  
0.46

  
0.96

  

0.55

  
0.52

  
0.23

  
0.49

  
0.62

  
0.68

  
0.4

  
0.37

  
0.99

  
0.038

  
0.89

  
0.91

  
0.8

  
0.099

  
0.26

  
0.34

  
0.68

  
0.14

  
0.72

(a) average packet arrival rate = 0.5 packets/second
0 100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

                           

3.2

                           

8.5

                           

7.9

                           

5

                           

5.6

                           

5.3

                           

1.9

                           

2.7

                           

4.2

                           
2.1

                           

7.6

                           

1.8

                           
2

                           
1.5

                           

2

                           

3.9

                           

2.8

                           

8.3

                           

3.9

                           
1.7

                           

8.1

                           

8.8

                           

3.9

                           
1

                           
2.3

                           
3.7

                           

5.4

                           

2.4

                           

5.4

                           

6.4

                           
2

                           
1.1

                           

2.7

                           

2.9

                           

3.8

                           

4.6

                           
0.77

                           

2.4

                           

7.2

                           
0.26

                           

8.4

                           

6.6

                           
4.4

                           

5.2

                           
2.1

                           
4.1

                           

8.7

                           
4.9

                           

4.7

                           

2.1

                           

4.4

                           

5.6

                           
6.1

                           
3.6

                           

3.3

                           

8.9

                           
0.34

                           

8

                           

8.2

                           

7.2

                           

0.89

                           

2.4

                           
3

                           

6.1

                           
1.2

                           

6.5

(b) average packet arrival rate = 4.3 packets/second

Fig. 3. Spectrum allocation and user association before post processing in light and heavy traffic regimes.
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Fig. 4. Spectrum allocation and user association after post processing in light and heavy traffic regimes.

algorithm terminates as soon as a feasible spectrum allocation
is found that satisfies the user delay requirements using the
minimum number of pico BTSs. The heavy traffic scenario is
shown in Fig. 3b. The spectrum allocation is topology aware.
Each pico BTS serves nearby user groups. Macro BTSs then
serve the user groups in coverage holes of the pico BTSs. The
two pico BTSs turned off are near clusters of other pico BTSs.
The spectrum is orthogonalized among nearby user groups,
and is efficiently reused by user groups that are far away.

The spectrum allocations in the light and heavy traffic
regimes after the post processing for further delay improve-
ment, as described in Section IV-C, are shown in Fig. 4. The
allocation in the light traffic regime is shown in Fig. 4a. The
spectrum is still divided into 2 segments. However, instead of
assigning each segment to each BTS exclusively, one segment
is shared by both BTSs and the other is exclusively used
by the macro BTS on the left. The post processing achieves

fractional frequency reuse, i.e., full frequency reuse among
all user groups in cell centers, whereas user groups at cell
edges are served with the spectrum exclusively allocated to
the left macro BTS. The reason that cell edge users in the
right macro cell are also served by the left macro BTS is due
to the relatively small network size.

The spectrum allocation after post processing shown in
Fig. 4b is similar to that in Fig. 3b. This is because as the traffic
gets close to the maximum throughput, there is little margin
to further reduce the delay once the delay requirements are
met. The post processing reduces the average packet sojourn
time in the network from 0.49 seconds to 0.29 seconds in the
light traffic regime. However, it only reduces the delay from
0.5 seconds to 0.45 seconds in the heavy traffic regime.
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Fig. 5. Runtime comparison at different traffic intensities.

TABLE II
NUMBER OF ITERATIONS USING ALGORITHM 1 AND ALGORITHM 2.

arrival rate (packets/second) 0.48 1.43 2.39 3.34 4.30
iterations for Algorithm 1 2 2 13 57 102
iterations for Algorithm 2 2 2 9 6 13

C. Runtime Considerations

The runtimes of the four schemes are shown in Fig. 5. The
curves are marked in the same way as in Fig. 2. The optimiza-
tion problems were solved in Matlab using CVX from CVX
Research, Inc. on an Intel Core i7 2.4 GHz quad-core computer
with 16 GB RAM. The continuous linear program P4 in the
iterations of Algorithms 1 and 2 was solved by the default
linear program solver of Gurobi [30]. The parameters in
Algorithms 1 and 2 are T = 200, ε1 = ε2 = 10−9 and
α = 0.1. The curve without marker was solved by the default
linear integer program solver of Gurobi.

Although the solution to P3 is suboptimal in both energy
savings and network throughput, it can be solved much faster
than the other three, and can be applied to large systems
with hundreds of BTSs [13]. Among the remaining three
algorithms, Algorithm 2’s runtime is the most favorable under
all traffic conditions.

The number of iterations when using Algorithms 1 and 2 is
shown in Table II. In the light traffic regime, both algorithms
converge within two iterations. In fact, both algorithms imme-
diately realize that all pico BTSs should be turned off under
such light loads. Hence the reduction of the feasible set in
Algorithm 2 never happens. In the moderate and heavy traffic
regimes, Algorithm 2 takes fewer iterations due to the feasible
set reduction. The runtime using Algorithm 2 is reduced by as
much as 42 times compared to Algorithm 1 as shown in Fig. 5.
The shorter runtime is due to both faster convergence and
lower computational complexity in each iteration with reduced
dimensions.

D. Overhead

A central controller needs to know the traffic intensity of

all UE groups and the spectral efficiency of all links (i.e.,
λ and s) in order to perform the proposed energy-efficient
global resource management. Location information can help
to identify users from different groups, which can be acquired
using standard positioning schemes. The traffic information
for each UE group can be measured at its serving BTS. The
link gains are routinely measured by the BTSs. If BTS i does
not receive signals from UE group j, then the gain of link
i→ j can be regarded as zero.

On the slow timescale considered, the overhead of storing
and forwarding the aforementioned information over backhaul
links is quite small. For example, to describe 10,000 param-
eters (32 bits each) once every minute translates to about 5
kilobits per second (kbps). The decision variables need to be
fed back to each BTS after solving the optimization problem.
The number of variables sent to each BTS is at most O(k2).
Even with a million variables per minute, the overhead is
merely 500 kbps.

VI. CONCLUSION

Traffic-driven radio resource management on a slow
timescale has been proposed and studied for improving en-
ergy efficiencies in HetNets. Joint spectrum allocation, user
association, and cell activation significantly reduce energy
cost and improve system throughput. The proposed algorithms
can efficiently optimize a network cluster with up to 20
BTSs. The improved performance is at the cost of increased
computational complexity for exploiting spectrum agility.

The main drawback of the current problem formulation is
that the complexity scales exponentially with network size
due to the combinatorial patterns. In practice, many of the
2n patterns in a large HetNet can be easily ruled out, i.e., two
BTSs far apart will not interfere with each other, and a UE
will not be served by a BTS far away. Extending this approach
to much larger HetNets is ongoing work. The general resource
management framework has also been extended to mixed fast
and slow timescales in preliminary work [31].
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