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Abstract—How would a cellular network designed for maximal
energy efficiency look like? To answer this fundamental question,
tools from stochastic geometry are used in this paper to model
future cellular networks and obtain a new lower bound on the
average uplink spectral efficiency. This enables us to formulate a
tractable uplink energy efficiency (EE) maximization problem
and solve it analytically with respect to the density of base
stations (BSs), the transmit power levels, the number of BS
antennas and users per cell, and the pilot reuse factor. The closed-
form expressions obtained from this general EE maximization
framework provide valuable insights on the interplay between
the optimization variables, hardware characteristics, and prop-
agation environment. Small cells are proved to give high EE,
but the EE improvement saturates quickly with the BS density.
Interestingly, the maximal EE is achieved by also equipping the
BSs with multiple antennas and operate in a “massive MIMO”
fashion, where the array gain from coherent detection mitigates
interference and the multiplexing of many users reduces the
energy cost per user.

I. INTRODUCTION

The biggest challenges for next generation wireless commu-
nication systems (5G) are to support the ever-growing demands
for higher data rates and to ensure a consistent quality of
service (QoS) throughout the entire network [3]. To meet
these demands, the network area throughput (in bit/s/km2)
needs to increase by a factor of 1000 over the next 10–
15 years [4]. At the same time, the power consumption of
the information and communication technology (ICT) industry
and the corresponding energy-related pollution are becoming
major societal and economical concerns [5]. Credited sources
foresee that, to meet such a 1000× higher data traffic without
increasing the ICT footprint, new technologies that improve
the overall energy efficiency (EE) by 1000× must be devel-
oped [6]. Hence, higher network area throughput on the one
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hand and less power consumption on the other are seemingly
contradictory 5G requirements [7]. There is a broad consensus
that these goals can only be jointly achieved by a substantial
network densification.

Two promising technologies towards network densification
are small-cell networks [8], [9] and massive MIMO systems
[10]–[12]. The first technology relies on an ultra-dense and
irregular operator-deployment of low-cost and low-power base
stations (BSs), with higher density where the user load is
higher. Bringing the BSs and user equipments (UEs) closer to
each other can increase the area throughput, while significantly
reducing the radiated signal power. However, this may come
at the price of a substantial increase of the circuit power con-
sumption (per km2) due to the larger amount of hardware and
infrastructure [13]. In contrast, the massive MIMO technology
aims at evolving the conventional BSs by using arrays with
a hundred or more small dipole antennas. This allows for
coherent multi-user MIMO transmission where tens of users
can be multiplexed in both the uplink (UL) and the downlink
(DL) of each cell. It is worth observing that, contrary to what
the name “massive” suggests, massive MIMO arrays are rather
compact; 160 dual-polarized antennas at 3.7 GHz fit into the
form factor of a flat-screen television [14]. In massive MIMO
systems, the area throughput is improved by the multiplexing
gain, while the array gain from coherent processing allows
for major reductions in the emitted power. Similar to small-
cell networks, however, the potential throughput gains from
massive MIMO come from deploying more hardware (i.e.,
multiple antenna branches per BS), which in turn increases
the circuit power consumption per BS.

In summary, both densification technologies can improve
the area throughput and reduce the radiated power, but at
the cost of deploying more hardware infrastructure. Hence,
the overall EE of the network can only be improved if these
benefits and costs are properly balanced. The main objective of
this paper is to develop an analytical framework for designing
dense cellular networks for maximal EE, as well as to provide
guidelines for practical deployment when (among others) the
spectral efficiency (SE), radiated power, BS density, number of
antennas and UEs per BS, channel estimation, and the circuit
power consumption are taken into account from the outset.

A. Related Works

The EE of cellular networks has been defined from different
perspectives in the last decade [15], [16]. One of the most
common definitions is a benefit-cost ratio, where the service
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quality per area unit (a.u.) is compared with the associated
energy costs. In this paper, the following general definition is
used:

EE =

Area spectral efficiency [bit/symbol/km2]

Transmit power + Circuit power per a.u. [J/symbol/km2]

which yields to an EE metric measured in bit/J.1

Most of the early works that analyzed the EE, as defined
above, have focused on the single-cell case wherein the
interference from other cells is neglected. Examples in this
context are [13], [17]–[23]. In particular, in [17] the authors
consider the UL power allocation of multi-user MIMO systems
and show that the EE is maximized when specific UEs are
switched off. The UL was studied also in [18], where the EE
was shown to be a concave function of the number of BS
antennas, M , and the UE rates. The DL has been investigated
in [13], [19], [20], whereof [13] and [19] show that the EE is a
concave function of M , while a similar result is shown for the
number of UEs, K, in [20]. Unfortunately, in these works, the
system parameters were optimized by means of simulations
that (although useful) do not provide a complete picture of
how the EE is affected by M and K. Recently, [21] derived
the optimal M and K for a given UL sum rate, while [23]
derived the optimal M , K and UE rates to maximize the EE
jointly for the UL and DL. These two works utilize a realistic
power consumption model where the dissipation in circuits
depends non-linearly on the above parameters. Simple closed-
form expressions for the EE-maximizing parameter values
and their scaling behaviors are derived for zero-forcing (ZF)
processing with perfect channel state information (CSI) and
verified by simulations for other processing schemes under
imperfect CSI.

The EE analysis of multi-cellular networks is much more
involved than in the single-cell case due to the complicated
network topology and the arising inter-cell interference. The
simplest approach is to rely on heavy Monte Carlo simula-
tions. Attempts in this direction can be found in [24] and
[25]. Unfortunately, Monte Carlo simulated results are often
anecdotal since one cannot separate fundamental properties
from behaviors induced by parameter selection. Alternatively,
simplified network topologies can be considered, such as the
Wyner model [26] or the symmetric grid-based deployment
[23]. While attractive for its analytical simplicity, the Wyner
model does not well capture the essential characteristics of
real and practical networks [27]. Similarly, the symmetric grid-
based models cannot capture the irregular structure of small-
cell network deployments.

The need for developing tractable (yet reasonably accurate)
models for future dense networks has increased the interest
in random spatial models; more particularly, in using tools
from stochastic geometry [28], wherein the BS locations form
a realization of a spatial point process—typically a Poisson

1Some prior works have considered erroneous EE metrics in bit/J/Hz, by
forgetting to scale both the numerator and the denominator with the symbol
rate (or the bandwidth) that was explicitly (or implicitly) assumed in order to
compute the noise power and the dimensionless SNR value. These works are
not mentioned in this section for obvious reasons.

point process (PPP). A major advantage of this approach is the
ability of providing tractable expressions for key performance
metrics such as the coverage probability and the average SE
of the network. A few prior works have also derived EE-
related performance metrics and showed how these depend
on the BS and UE densities; for example, [29] compares the
deployment of two types of single-antenna BSs, while [30]
studies the EE when multi-antenna BSs serve one UE each. In
[31], the authors focus on the analysis and design of energy-
efficient heterogeneous cellular networks (HetNets) through
the deployment of small cells and sleeping strategies. The
effect of cross-tier BS cooperation and clustering on the EE
in the DL is studied in [32]. In contrast to the UL analysis in
our paper, the vast majority of work on the EE in multi-cell
networks using stochastic geometry has focused on the DL.
Furthermore, prior work usually aims at deriving closed-form
SE and EE expressions, which often turn out to be involved
and cumbersome to optimize, thereby providing little or no
useful insights on the optimal system design.

B. Major Contributions
This paper considers the UL of a multi-cell multi-user

MIMO network in which the BSs are distributed according
to a homogenous PPP of intensity λ. Each BS is equipped
with M antennas and communicates with K single-antenna
UEs uniformly distributed within its coverage area. Coherent
detection based on maximum ratio combining (MRC) is used
at the BSs, based on CSI acquired from UL pilot signaling
with each pilot symbol being reused in 1/β of the cells.
In addition, we assume that the UEs are prone to practical
transceiver hardware impairments and apply UL power control
based on statistical channel inversion (with proportionality
coefficient ρ), to resolve the near-far effects that otherwise
would prevent communication [33]. Tools from stochastic
geometry and classical statistics are used to compute a new
lower bound of the average SE. This expression is then used
to define the EE metric by also using the power consumption
model developed in [22], which not only accounts for the
radiated power but also for the operating power consumption
required by (among others) analog transceiver chains, digital
processing, and backhaul infrastructure.

Within the above conditions, an EE maximization problem
is formulated under the assumption that a given average
SE target per UE must be met with equality, to guarantee
good service quality. This problem is solved analytically with
respect to the tuple θ = (β, λ, ρ,M,K) of optimization
variables. The resulting closed-form expressions provide valu-
able design insights on the interplay between the different
system parameters and the various components of the power
consumption model. We show analytically and numerically
that the radiated power is negligible in most practical cases
and that massive MIMO configured BSs appear naturally since
this technology can protect the desired signals from inter-cell
interference and share the circuit power between many UEs.

C. Outline and Notation
The remainder of this paper is organized as follows. Section

II introduces the system model for the network under inves-
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Fig. 1. Illustration of one realization of BS positions from the homogeneous
PPP Φλ and of UEs uniformly distributed in the corresponding Poisson-
Voronoi cells.

tigation, including hardware impairments at the UEs and CSI
estimation at the BSs. A new and tractable lower bound on the
average SE is derived in Section III. It is used in Section IV to
formulate the EE maximization problem and to obtain closed-
form expressions for the EE-maximizing pilot reuse factor, BS
density, and transmission power as well as the number of UEs
and antennas per BS. The theoretical analysis is corroborated
by numerical results in Section V while the major conclusions
and implications of this paper are drawn in Section VI.

The following notation is used throughout the paper. The
notation E{·} indicates the expectation with respect to a
random variable, whereas ‖ · ‖ and | · | stand for the Euclidean
norm and absolute value, respectively. We let IM denote
the M × M identity matrix, whereas we use CN (·, ·) to
denote a multi-variate circularly-symmetric complex Gaussian
distribution. We use C, Z+, and R to denote the sets of all
complex-valued numbers, all positive integers, and all real-
valued numbers, respectively. The Gamma function is denoted
by Γ(·).

II. SYSTEM MODEL

We consider the UL of a cellular network that is designed
to serve a dense heterogeneous distribution of UEs. This is
modeled using the stochastic geometry framework adopted in
[34] in which the BSs are distributed spatially in R2 according
to a homogeneous PPP Φλ of intensity λ (measured in BSs
per km2). More precisely, this means that in any area of
size A (measured in km2), the number of BSs is a Poisson
distributed stochastic variable with mean value λA. The BSs
are uniformly and independently distributed over the area.
Each of them is equipped with an array of M antennas and
serves K single-antenna UEs, which are selected at random
from a (potentially) very large set of UEs in the cell since we
treat K as an optimization variable. We assume that each UE
connects to its closest BS such that the coverage area of a BS is
its Poisson-Voronoi cell; see Fig. 1 for an illustration. The UEs
are assumed to be uniformly distributed in the Poisson-Voronoi
cell of their serving BS. Note that the geographic locations of
UEs and BSs are correlated under this model, such that small
cells serve more UEs per km2 than larger cells. We interpret
this as a judicious network deployment where the BSs are

matched to a heterogenous distribution of UEs.2

The translation invariance of PPPs allows us to perform
statistical performance analysis for a typical UE (located for
example in the origin), which is statistically representative for
any other UE in the network [35]. Assume that this typical
UE has the arbitrary index k and is connected to a BS that is
called the typical BS and is denoted as BS0 ∈ Φλ. Then, the
following basic properties hold (see for example [36]):

Lemma 1. The distance d00k from the typical UE to its serving
BS is Rayleigh distributed as d00k ∼ Rayleigh

(
1√
2πλ

)
. The

BSs of the other cells form a homogenous PPP Ψλ = Φλ \
{BS0} in R2 \ {x ∈ R2 : ‖x‖ < d00k}.

Using the notation introduced in Lemma 1, each interfering
BS, BSj ∈ Ψλ, is situated at the geographical position
determined by its spatial point BSj ∈ R2. Since in most cases
we are interested only in the index of the interfering BS, the
shorter notation j ∈ Ψλ is used henceforth for BSj ∈ Ψλ.

A. Channel Model and Power-Control Policy
We consider a UL transmission protocol where the time-

frequency resources are divided into blocks of Tc seconds and
Wc Hz. This leaves room for a total number of S = TcWc

transmission symbols for pilot signaling and data. The channel
response hljk ∈ CM between BSl and UE k in cell j is mod-
eled as block-fading such that hljk has a constant stochastic
realization within a block and takes independent realizations
across blocks. Since the number of BS antennas is treated
as an optimization variable in this work, we need a channel
model that is reasonable for both small and large arrays.
For this purpose, we make use of a Rayleigh fading model
as it well-matches non-line-of-sight measurements in both
cases [37]. Hence, we consider Rayleigh fading channels with
hljk ∼ CN (0, ω−1d−αljk IM ), where dljk is the propagation
distance (measured in km) and α > 2 is the pathloss exponent.
The parameter ω accounts for the pathloss at a reference
distance of 1 km and can thus be used to model distance-
independent propagation losses (such as wall penetration).

Power control is an essential mechanism in the UL of
any multi-user MIMO system; the finite dynamic range of
analog-to-digital converters at the BSs otherwise creates near-
far blockage where weak signals from distant UEs drown in
stronger signals from nearby UEs. Statistical channel inversion
is a convenient power-control policy [33], where UE i in cell
j uses the transmit power

pji = ρωdαjji (1)

with ρ ≥ 0 being a power-control coefficient to be designed.3

The average transmit power at UE i in cell j will then be

E{pji} = ρωE{dαjji} = ρω
Γ(α/2 + 1)

(πλ)α/2
(2)

2Alternatively, the UEs could have been distributed according to an inde-
pendent homogeneous PPP [30], leading to independent BS and UE locations.
This is less sensible since smaller cells would on average have fewer UEs
than larger cells, which contradicts the main principle of densifying networks
mainly at places with high user loads.

3We show later that the transmit power is low at EE-optimized operating
points. To simplify the notation, we have therefore not specified any maximal
transmit power constraints at the users.
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by using the distance distribution from Lemma 1. A key fea-
ture of the statistical power-control policy is that it provides the
same average effective channel gain of E

{
pji‖hjji‖2

}
= Mρ

to all UEs (irrespective of their locations) without requiring
any rapid feedback mechanism to provide UEs with instanta-
neous CSI. Note that this does not mean that the signal-to-
interference-plus-noise ratio (SINR) is the same for all UEs,
since the interference varies in the network.

B. Transceiver Hardware Impairments

Any practical wireless transceiver is affected by hardware
impairments; for example, unavoidable clock drifts in local os-
cillators, finite-precision digital-to-analog converters, amplifier
non-linearities, non-ideal analog filters, etc. Such impairments
can be partially mitigated by compensation algorithms [38],
but not fully removed. Although negligible at low signal-to-
noise ratios (SNRs), hardware impairments characterize the
maximal achievable SE at high SNRs [39]. The vast majority
of prior works on the design of energy-efficient networks
assumes ideal transceivers, although hardware impairments
might have a fundamental impact also on the EE. Motivated
by this fact, the distortion noise arising from hardware im-
pairments is included in the system under investigation. We
concentrate on UE impairments, which is expected to be
the dominating effect since small BS arrays can use high-
grade hardware and massive arrays are resilient to hardware
impairments [40].

Denote by sji ∈ C an arbitrary symbol transmitted by UE
i in cell j and assume that it is normalized to unit power
(i.e., E{|sji|2} = 1). Similar to [38], [39], [41], the hardware
impairments are modeled as a reduction of the desired signal
power by a factor of 1 − ε2, with 0 ≤ ε < 1, and by adding
Gaussian distortion noise that carries the removed power. More
precisely, sji is replaced with

√
1− ε2sji + eji, where eji ∼

CN (0, ε2) is the additive UL distortion noise caused at UE i
in cell j. In these circumstances, the received signal y0 ∈ CM
at BS0 takes the form

y0 =

K∑
i=1

√
p0i(

√
1− ε2s0i + e0i)h00i

+
∑
j∈Ψλ

K∑
i=1

√
pji(

√
1− ε2sji + eji)h0ji + n0

(3)

where n0 ∼ CN (0, σ2IM ) models receiver noise with vari-
ance σ2. The parameter ε is referred to as the level of impair-
ments and is tightly connected to the error vector magnitude
(EVM), which is a common quality measure of transceivers.4

The 3GPP LTE standards specify EVM requirements in the
range [0.05, 0.175], where higher-order modulations are sup-
ported if the EVM is below the lower part of this range [42].
Note that the ideal hardware case is obtained by simply setting
ε = 0.

4The EVM is usually defined as the ratio between average distortion
magnitude and signal magnitude, which becomes ε/

√
1− ε2 ≈ ε with our

notation.

C. Channel Acquisition

As it is known, coherent processing of the received signal
y0 requires knowledge of the UL channel vectors h00i for
i = 1, . . . ,K. For this purpose, we assume that B out of the S
symbols in each UL block are used for pilot transmission. This
means that in the whole network there exists B orthogonal
pilot symbols that are shared among the cells. We assume that
each BS picks K ≤ B pilot symbols uniformly at random
in each block, to avoid cumbersome pilot coordination. This
means that on average K/B of the cells reuse any given pilot
symbol. We call β = B

K ≥ 1 the pilot reuse factor such that
βK = B ≤ S. In this setting, the pilot symbol, sent by
the typical UE and received at the typical BS, is interfered
with by the subset of cells in which there is another UE (still
indexed by k without loss of generality) reusing the same pilot
symbol. This is modeled through a binary stochastic variable
χ0kj ∈ {0, 1}, where χ0kj = 1 means that UE k in cell j
uses the same pilot as the typical UE and thus causes pilot
contamination. This occurs with probability K/B. Similarly,
χ0kj = 0 means that there is currently no pilot contamination
from cell j, and it occurs with probability 1−K/B = 1−1/β.
Therefore, the typical UE k transmits a single pilot symbol
(e.g., s0k = 1) and BS0 receives the following signal:

z0k =
√
p0k(

√
1− ε2 + e0k)h00k

+
∑
j∈Ψλ

χ0kj
√
pjk(

√
1− ε2 + ejk)h0jk + n0.

(4)

We compute the minimum mean-squared error (MMSE) esti-
mate of h00k from the observation z0k.

Lemma 2. The MMSE estimate of the typical UE’s channel
to its serving BS0 is

ĥ00k =

√
1−ε2
ρωdα00k

1 +
∑
j∈Ψλ

χ0kj
dαjjk
dα0jk

+ σ2

ρ

z0k. (5)

The estimation error ∆h00k = h00k − ĥ00k is distributed as
∆h00k ∼ CN (0,C00k), where the estimation error covari-
ance matrix C00k ∈ CM×M is given by

C00k =
1

ωdα00k

1− 1− ε2

1 +
∑
j∈Ψλ

χ0kj
dαjjk
dα0jk

+ σ2

ρ

 IM . (6)

Proof: This follows from standard results on MMSE
estimation; see [43, Chapter 15.8].

III. AVERAGE SPECTRAL EFFICIENCY

We assume that MRC processing is used at the BSs for
data recovery, since MRC is computationally efficient and
performs well in both small cells (with K = 1) and massive
MIMO (with M � K). In particular, the symbol transmitted
by the typical UE is detected at BS0 by correlating the
received signal in (3) with the MMSE estimate ĥ00k; that is,
r0k = ν00kĥ

H

00ky0 is the received signal after MRC processing
with ν00k ∈ C being a scaling factor (see Appendix A).
Unfortunately, the ergodic capacity for a network (such as
the one under investigation) in which only imperfect CSI
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M(1− ε2)2(
K +

∑
j∈Ψλ

K∑
i=1

dαjji
dα0ji

+ σ2

ρ

)(
1 + 1

β

∑
l∈Ψλ

dαllk
dα0lk

+ σ2

ρ

)
+M(1− ε2)

(
1
β

∑
j∈Ψλ

(
dαjjk
dα0jk

)2

+ ε2

) (8)

M(1− ε2)2(
K + σ2

ρ

)(
1 + 2

β(α−2) + σ2

ρ

)
+ 2K
α−2

(
1 + σ2

ρ

)
+K

β

(
4

(α−2)2 + 1
α−1

)
+M(1− ε2)

(
1

β(α−1) +ε2
) (10)

is available at the receivers and the inter-cell interference is
modeled as a shot-noise process is not known yet [36]. Hence,
in this work the SE expression is obtained using classical
achievable lower bounds on the ergodic capacity that are
particularly common in the massive MIMO literature [10],
[12], [33]. The following result holds for any given realization
of Ψλ and the UE locations.

Lemma 3. With MRC processing and any given realization
of Ψλ and the UE locations, a lower bound on the ergodic
capacity [bit/symbol/user] of the typical UE is(

1− βK

S

)
log2(1 + SINR0k) (7)

where the pre-log factor
(
1− βK

S

)
accounts for pilot overhead

and SINR0k, in (8) at the top of the page, is the effective SINR.

Proof: The proof is given in Appendix A and proceeds
as follows. First, the lower-bounding approach from [44] and
[45] is used to obtain the mutual information in the presence
of imperfect CSI. Then, the statistical properties of the MMSE
estimator and power-control policy are exploited to compute
the average with respect to the channels in the presence of
pilot contamination.

The expression in Lemma 3 holds for any β ≥ 1 such that
βK ≤ S, since the pilot signals need to be contained in a
coherence block. Observe also that βK does not need to be
an integer since an arbitrary βK can be achieved by switching
(for appropriate fractions of time) between the closest smaller
integer, bβKc, and the closest larger integer, dβKe.

The average SE per UE can be obtained by taking the
expectation of (7) with respect to the PPP Ψλ and the UE
locations. This would require heavy numerical evaluations of
integrals. As a key contribution of this paper, in the following
we provide a tractable and tight lower bound on the average
SE.

Proposition 1. If MRC is employed, a lower bound on the UL
average SE [bit/symbol/user] is

SE =
(

1− βK

S

)
log2(1 + SINR) (9)

where SINR is given in (10) at the top of the page.

Proof: The proof is given in Appendix B and is based on
Jensen’s inequality, which leads to tractable expressions since
only moments of the terms in (8) need to be computed.

The tightness of the SE bound in Proposition 1 is demon-
strated later on by means of simulations (see Fig. 2). The
numerator of SINR in (10) scales with M due to the array

gain from coherent processing, but the hardware impairments
cause the multiplicative loss (1 − ε2)2. The last term in the
denominator scales with M and also with the sum of 1

β(α−1)

and ε2. The former term is called coherent pilot contamination
since it accounts for interference received from UEs that use
the same pilot symbol as the typical UE, while the latter is due
to the distortion noise emitted from the typical UE itself. Many
of the interference terms in (10) increase with K since having
more UEs lead to more transmit power per cell. Note that (10)
is independent of the BS density λ, due to the power-control
policy in (1). The average transmit power per UE in (2) is,
however, proportional to λ−α/2 so that less power is needed (to
sustain a fixed SNR per UE) as the network becomes denser.

IV. PROBLEM STATEMENT AND ENERGY EFFICIENCY
OPTIMIZATION

As described in Section I, we concentrate on the UL EE
defined as the benefit-cost ratio between the area spectral
efficiency (ASE) [bit/symbol/km2] and the area power con-
sumption (APC) [J/symbol/km2]. Using the novel and tight
lower bound from Proposition 1, in this work the ASE is
obtained as

ASE = λK SE. (11)

To specify the APC, we begin by observing that with the
adopted power-control policy the average radiated power per
UE is

S − (βK − 1)

S
E{pji} =

(
1− βK − 1

S

)
ρω

Γ(α/2 + 1)

(πλ)α/2
(12)

where we have used (2) and the fact that each user transmits
one pilot symbol and S − βK data symbols per block. Then,
we observe that the APC must account not only for the radiated
power, but also for the dissipation in analog hardware, digital
signal processing, backhaul signaling, and other overhead costs
(such as cooling and power supply losses). A detailed and
generic model that takes all these factors into account was
recently proposed in [23] and is such that (using the same
notation as in [23] for simplicity) the APC is computed as

APC = λ

((
1− βK − 1

S

)
ρω

η

Γ(α/2 + 1)

(πλ)α/2
K

+C0+C1K+D0M+D1MK

)
+A ·ASE (13)

where η ∈ (0, 1] is the linear power amplifier efficiency,
C0 models the static power consumption at a BS, and D0M
models the power consumption of the BS transceiver chains,
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which scales with the number of BS antennas. Moreover,
C1K + D1MK models the power consumed at the UEs and
also by the signal processing tasks at the BS, except for the
coding and decoding that are proportional to the number of
bits (with proportionality constant A). Notice that (13) has
an intuitive polynomial structure in M , K, and ρ. We refer
to [23] for further modeling details. The forthcoming analysis
holds for any positive values of the above parameters, but some
examples are later given in Table I.

The objective of this work is, for any given frame length
(S), propagation parameters (α, ω), and hardware character-
istics (η, ε,A, C0, C1,D0,D1), to find the tuple of parameters
θ = (β, ρ, λ,K,M) that solves the following constrained EE
maximization problem:

maximize
θ∈Θ

EE(θ) =
ASE(θ)

APC(θ)

subject to SINR = γ

(14)

where Θ is the feasible parameter set defined as

Θ = {θ : ρ ≥ 0, λ ≥ 0, β ≥ 1, (M,K) ∈ Z+,Kβ ≤ S}
(15)

with Kβ ≤ S being the upper limit on the pilot signaling
overhead. The parameter γ > 0 in (14) is used to impose
an average SE constraint of log2(1 + γ) [bit/symbol/user],
where the average is computed with respect to both BS and UE
locations. This constraint is needed to obtain a network with an
acceptable throughput, since unconstrained EE maximization
often leads operating points with very low SEs per UE; this
is later on illustrated in Fig. 2 where the EE increases as γ
decreases.

In the remainder of this section, we analyze the EE max-
imization problem in (14) to expose fundamental behaviors
and to develop an algorithm for solving it.

A. Feasibility

Due to the unavoidable inter-cell interference in cellular
networks, the optimization problem (14) is only feasible for
some values of γ. This feasible range is obtained as follows:

Lemma 4. The optimization problem (14) is feasible if

γ <
S(α− 1)(1− ε2)

1 + ε2S(α− 1)
. (16)

Proof: Observe that SINR in (10) is a monotonically
increasing function of M . Therefore, an upper limit can be
computed by letting M →∞. This yields

SINR
M→∞−−−−→ (1− ε2)2

(1− ε2)
(

1
β(α−1) + ε2

) , (17)

which is an increasing function of the optimization variable
β. Under the constraint βK ≤ S, the maximal value of β is
S and this value is obtained for K = 1. Putting all these facts
together and using simple algebra lead to (16).

The above lemma shows that the maximal SINR level is
limited only by the hardware impairments, through ε, and by
the severity of the pilot contamination, which is determined
by the pathloss exponent α and the coherence block length S.

These are the only limiting factors as M → ∞. Assume for
example that ε = 0.05 [39], [40] and consider the relatively
conservative propagation parameters α = 3 and S = 200. For
these numbers, the upper limit of the average SE per UE is
log2(1 + 199.5) ≈ 7.65, which is substantially higher than
the SE of contemporary systems [42]. This means that the
optimization problem (14) is feasible in most cases of practical
interest.

B. Optimal Pilot Reuse Factor β

We begin by deriving the optimal value of the pilot reuse
factor β when the other optimization variables are fixed.

Theorem 1. Consider any set of {ρ, λ,M,K} for which
the problem (14) is feasible. The SINR constraint in (14) is
satisfied by selecting

β? =
B1γ

M(1− ε2)2 −B2γ
(18)

where

B1 =

(
4K

(α− 2)2
+
K +M(1− ε2)

α− 1
+

2(K + σ2

ρ )

α− 2

)
(19)

B2 =

(
K +

σ2

ρ
+

2K

α− 2

)(
1 +

σ2

ρ

)
+ (1− ε2)ε2M.

(20)

Proof: By gathering the terms that contain β and using
(10), the SINR constraint can be rewritten as

γ =
M(1− ε2)2

B1/β +B2
(21)

with B1 and B2 given by (19) and (20). We then obtain (18)
by solving (21) for β.

The above theorem provides insights on how the EE-optimal
pilot reuse factor β? depends on the other system parameters.
Firstly, recall that increasing β translates into allocating a
larger portion of each UL block for pilot transmission, so
that each pilot symbol is on average only used in 1/β of the
cells in the network. This leads to higher channel estimation
accuracy and less coherent pilot contamination. Secondly, β?

is an increasing function of B1 and also of B2, since a larger
B2 makes the denominator smaller. Consequently, Theorem
1 shows that to guarantee a certain average SINR, β? must
increase with K. This is intuitive since more UEs per cell
means more inter-cell interference, which can be partially
suppressed by increasing the estimation accuracy and reducing
the pilot contamination; namely, using a larger β. Similarly,
β? decreases with ρ since higher transmit powers reduce
the detrimental impact of noise, leading to higher estimation
accuracy and to a more interference-limited regime. Moreover,
β? is a decreasing function of M since an improved array gain
makes the system less sensitive to interference and estimation
errors. Increasing the pathloss exponent α leads to a smaller β?

(since B1 and B2 are reduced), which is natural since inter-
cell interference decays more quickly. Thirdly, the fact that
β ≥ 1 implies that we can only achieve values of γ for which

B1γ
M(1−ε2)2−B2γ

≥ 1, otherwise even β = 1 would provide an
SINR higher than γ.
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EE(β?) =
K(1−K

S
B1γ

M(1−ε2)2−B2γ
) log2(1+γ)

(1+ 1
S−K

S
B1γ

M(1−ε2)2−B2γ
)Kρωη

Γ(α2 +1)

(πλ)α/2
+C0+C1K+D0M+D1MK+AK(1−K

S
B1γ

M(1−ε2)2−B2γ
) log2(1+γ)

(23)

EE∞ =
K(1− K

S
B̄1γ

M(1−ε2)2−B̄2γ
) log2(1 + γ)

C0 + C1K +D0M +D1MK +AK(1− K
S

B̄1γ
M(1−ε2)2−B̄2γ

) log2(1 + γ)
(25)

C. Optimal BS Density and Radiated Power

Next, we optimize the BS density and radiated power.
Plugging the optimal β? from Theorem 1 into (14), the EE
maximization problem reduces to

maximize
ρ,λ≥0, M,K∈Z+

EE(β?) (22)

subject to
B1γ

M(1− ε2)2 −B2γ
≥ 1

B1γ

M(1− ε2)2 −B2γ
≤ S

K

with EE(β?) given in (23) at the top of the page.
The optimal values for the BS density λ and the power-

control coefficient ρ are given in the following theorem.

Theorem 2. Define ρ = λρ̃ for ρ̃ > 0 and consider any set
of {ρ̃,M,K} for which the problem (22) is feasible. Then,
EE(β?) is a monotonically increasing function of λ and is
maximized as λ → ∞. The average transmit power per UE
in (2) will then go to zero.

Proof: The objective function EE(β?) in (23) is a mono-
tonically increasing function of λ since the transmit power
term decreases with λ proportionally to ρ/λα/2 = ρ̃/λα/2−1.
The EE is also an increasing function of the factor (1−
K
S

B1γ
M(1−ε2)2−B2γ

) and this expression also increases with λ
since B1 and B2 are decreasing with ρ = λρ̃. Therefore,
EE(β?) is maximized as λ→∞.

This theorem proves that from an EE perspective it is
preferable to have as high BS density as possible. This might
be unexpected since smaller cells lead to more interfering
UEs in the vicinity of each cell, but this issue is resolved
by the assumed power-control policy that gradually reduces
the transmit power as the BS density increases. The main
consequence of letting λ grow large is thus that the transmit
power becomes negligible as compared to the circuit power in
each cell.

Clearly, an infinitely high BS density is infeasible in prac-
tice. However, the numerical results in Section V show that
the asymptotic limit is almost achieved already at the modest
density of λ = 10 BS/km2. There are two factors that restrain
the practical BS density: 1) the dimensionality of the BS
equipment that limits the inter-BS distances; and 2) the UE
density that limits the number of BSs that can serve K UEs
each. In ultra-dense networks, only a subset of all BSs are
turned on at a given point in time; load balancing can be
used to make sure that each active BS serves the most energy-
efficient number of UEs, while the remaining ones are placed
in sleep mode. This is further analyzed in Section V-C.

D. Optimal Number of Antennas and UEs per BS

By using Theorem 2, the EE maximization problem in (22)
further reduces to

maximize
M,K∈Z+

EE∞ (24)

subject to
B̄1γ

M(1− ε2)2 − B̄2γ
≥ 1

B̄1γ

M(1− ε2)2 − B̄2γ
≤ S

K

where EE∞ is given in (25) at the top of the page and we
have defined

B̄1 = K

(
4

(α− 2)2
+

1

α− 1
+

2

α− 2

)
+
M(1− ε2)

α− 1
,

(26)

B̄2 = K

(
1 +

2

α− 2

)
+ (1− ε2)ε2M. (27)

To find the optimal values for M and K, an integer-relaxed
version of (24) is first considered where M and K can be any
positive scalars. The integer-valued solutions are then extracted
from the relaxed problem. For analytic tractability, we replace
M with c̄ = M/K, which is the number of BS antennas per
UE. For a given c̄, the EE-maximizing value of K is found as
follows.

Theorem 3. Consider the optimization problem (24) where
M and K are relaxed to be real-valued variables. For any
fixed c̄ = M/K > 0 such that the relaxed problem is feasible
for some K, the EE is maximized by

K? =

√
(GC0)

2
+ C0D1c̄+ C0G (C1 +D0c̄)−GC0
D1c̄+G (C1 +D0c̄)

(28)

where

G =
1

S

(
4γ

(α−2)2 + γ
α−1 + 2γ

α−2

)
+ γ(1−ε2)

α−1 c̄

(1− ε2) (1− (1 + γ)ε2) c̄−
(

1 + 2
α−2

)
γ
. (29)

Proof: If c̄ is given, then we want to maximize (using the
notation of the theorem and R = log2(1 + γ))

K(1−KG)R
C0 + (C1 +D0c̄)K +D1c̄K2 +AK(1−KG)R . (30)

It is straightforward to show that (30) is a quasi-concave
function of K (e.g., using the approach in the proof of Lemma
3 in [23]). The maximizing value K? is thus obtained by
taking the first derivative of (30) and equating to zero. This
leads to the expression in (28). The first constraint in (24)
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c̄? =
a1 + a3 +

√
a1a3 + a2

1 + a1a2a4
a5

+ a0a3a4
a5
− a0a1a4

a5
− a20a3a4

a2a5
+ a0a1a3

a2
+

a0a23
a2

a2 − a0
(31)

is independent of K and thus fulfilled if the problem was
feasible. The solution also satisfies the second constraint,
namely K ≤ 1/G, since the EE in (30) is negative for
K > 1/G and thus is not maximized in thus range (and the
zero objective function for K = 0 would then be higher).

Similarly, if K is fixed, then the EE-maximizing value of c̄
is obtained as follows.

Theorem 4. Consider the optimization problem (24) where
c̄ = M/K and K are relaxed to be real-valued variables. For
any fixed K > 0 such that the relaxed problem is feasible,
the EE is maximized by c̄? in (31), at the top of the page,
if this solution satisfies the first inequality constraint in (24).
Otherwise, the EE is maximized by

c̄? =
γ
(

1 + 4
(α−2)2 + 1

α−1 + 4
α−2

)
(1− ε2) (1− (1 + γ)ε2)− γ(1−ε2)

α−1

. (32)

The following parameters are used in (31) and (32):

a0 =
γK(1− ε2)

S(α− 1)
(33)

a1 =
K

S

(
4γ

(α− 2)2
+

γ

α− 1
+

2γ

α− 2

)
(34)

a2 = (1− ε2)
(
1− (1 + γ)ε2

)
(35)

a3 =

(
1 +

2

α− 2

)
γ (36)

a4 = C0 + C1K (37)

a5 = D0K +D1K
2. (38)

Proof: Using the notation introduced in the theorem, the
objective function in (24) reduces to

K(1− a0c̄+a1
a2c̄−a3 ) log2(1 + γ)

a4 + a5c̄+AK(1− a0c̄+a1
a2c̄−a3 ) log2(1 + γ)

(39)

which can be easily shown to be a quasi-concave function of
c̄. The maximizing value c̄? is thus obtained by taking the first
derivative of (39) and equating to zero. This yields the solution
in (31). Note that c̄? needs to satisfy the first constraint in (24).
If this is not the case with (31), then the EE is monotonically
increasing for all feasible c̄ and the largest value is obtained
when there is equality in the first constraint, which occurs at
the value in (32). Finally, we notice that c̄? satisfies the second
constraint in (24) automatically because the maximum cannot
give a negative EE.

The above two theorems show how K and c̄ (and also M =
c̄K) are related at the EE-optimal points. It turns out that
K? decreases with c̄, proportionally to

√
1/c̄ when c̄ grows

large. Similarly, M? = c̄?K is found to increase with K.
The intuition is that more BS antennas should be deployed to
control the interference when more UEs are served. In addition
to this, the results of Theorems 3 and 4 reveal how the power

consumption coefficients impact K? and M?, respectively. In
particular, from (28) it is found that K? increases with the
static power consumption C0, while it decreases with C1, D0,
and D1 that are the terms of the APC that increase with K
and M . Similarly, M? increases with C0 and C1, but decreases
with D0 and D1. The simple intuition behind these scaling
behaviors is that more hardware should be turned on (i.e., BS
antennas and UEs) only if the increase in circuit power has a
marginal effect on the total APC. Similarly, with a larger static
consumption we can afford to turn on more BS antennas and
UEs since the relative power cost is lower.

Using Theorems 3 and 4, we can devise an alternating
optimization algorithm to solve the integer-relaxed EE maxi-
mization problem:

1) Find a feasible starting point (M,K) to (24);
2) Optimize K for a fixed M using Theorem 3;
3) Optimize M for a fixed K using Theorem 4;
4) Repeat 2)–3) until convergence is achieved.
This algorithm converges since the EE has a finite upper

bound and the EE increases monotonically in each iteration.
In fact, it converges to the global optimum of the relaxed
problem.

Corollary 1. The integer-relaxed version of the EE max-
imization problem (24) is quasi-concave. Hence, the alter-
nating algorithm converges to the global optimal solution
(K??,M??) ∈ R2 to the integer-relaxed version of the
problem.

Proof: The alternating optimization algorithm is guar-
anteed to converge to a local maximum according to [46,
Proposition 4]. Suppose that there are multiple local maxima;
for example, (M1,K1) and (M2,K2). By setting M =
M2−M1

K2−K1
K + K2M1−K1M2

K2−K1
and varying K, we can search on

the line between these local maxima. For this choice of M ,
it is straightforward to show that the EE is a quasi-concave
function of K. Hence, only one of the points can be a true
local maximum, which is a contradiction to the existence of
multiple local maxima; thus, the algorithm converges to the
only local/global optimum of the problem.

The real-valued solution (K??,M??) obtained from the
alternating optimization algorithm is a good starting point
for finding the integer-valued global optimum to (24). In
particular, the quasi-concavity implies that the integer-solution
is contained in a convex level set around (K??,M??). In
many cases, it is one of the four integer points obtained by
respectively taking the floor and ceiling of K?? and M??. In
general, the global optimum is obtained by searching through
all integers in the vicinity of the real-valued solution, keeping
in mind that the EE is quasi-concave in all directions.

To summarize, the original problem formulation in (14) has
been solved through the following steps: i) by selecting β to
satisfy the SINR constraint; ii) by letting λ→∞ (which also
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TABLE I
SIMULATION PARAMETERS

System Parameter Symbol Value Hardware Parameter Symbol Value
Coherence block length S 400 Coding/decoding/backhaul A 1.15 · 10−9 [J/bit]

Pathloss exponent α 3.76 Static power consumption C0 10 W · τ [J/symbol]

Propagation loss at 1 km ω 130 dB Circuit power per active user C1 0.1 W · τ [J/symbol]

Power amplifier efficiency η 0.39 Circuit power per BS antenna D0 0.2 W · τ [J/symbol]

Level of hardware impairments ε 0.05 Signal processing coefficient D1 1.56 · 10−10 [J/symbol]

Symbol time τ 1
2·107 [s/symbol] Noise variance σ2 10−20 [J/symbol]

makes ρ→ 0); iii) by devising an alternating optimization al-
gorithm that provides the real-valued M and K that maximize
the EE; iv) finally, by searching through the integer points in
the vicinity of the real-valued solution, and capitalizing on
the quasi-concavity. In the process of solving (14), Theorems
1–4 have also exposed the fundamental interplay among the
optimization variables and how they depend on the hardware
characteristics and propagation parameters.

V. NUMERICAL EXAMPLES

Numerical results are used in this section to validate the
average SE expression provided in Proposition 1 and the
fundamental results established in Section IV. The results
are obtained for the parameter setting summarized in Table
I, where we assume for instance a coherence block length
of S = 400 (e.g., Tc = 4 ms and Wc = 100 kHz) and a
bandwidth of 20 MHz (giving the symbol time 1/(2 · 107) s).
The hardware parameters are inspired by a variety of prior
works; for example, [23] and references therein. The simula-
tions were performed using Matlab and the code is available
for download at https://github.com/emilbjornson/maximal-EE,
which enables reproducibility as well as simple testing of other
parameter values.

A. Optimizing the Energy Efficiency

We begin by recalling that Theorem 2 proves that the EE
maximization problem in (14) is solved when the BS density
is infinitely large; that is, λ→∞. We now illustrate how large
λ needs to be for applying this asymptotic result in practice.
To this end, Fig. 2 shows the EE as a function of λ, and
the other optimization variables are optimized numerically for
each given value of λ. Three different SINR constraints are
considered in Fig. 2: γ ∈ {1, 3, 7} which corresponds to the
average SEs log2(1+γ) ∈ {1, 2, 3}. In all three cases, the EE
is computed using both the lower bound on the average SE in
Proposition 1 and an upper bound obtained by averaging over
the instantaneous SE derived in Lemma 3 using Monte Carlo
simulations.5

Several important observations can be made from the results
presented in Fig. 2. Firstly, there is only a small gap (that
reduces as γ takes larger values) between the lower and upper
bounds, and the curves behave exactly the same for any value
of γ. This validates the accuracy of the SE expression provided

5This is an upper bound since we only consider an average of 1000 closest
interfering BSs, while the exact result requires an infinite number of interferers
in R2.
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Fig. 2. Energy efficiency (in Mbit/J) as a function of the BS density
in BS/km2, for different SINR constraints. Results are obtained by both
computing upper bounds from Monte-Carlo simulations and using the closed-
form lower bound from Proposition1.

in Proposition 1. Secondly, the EE can be greatly improved
by increasing the BS density, meaning that small cells are a
promising solution for maximal EE deployment. However, the
gain from increasing the BS density saturates in the interval
from λ = 10 to λ = 100 BS/km2, which roughly corresponds
to an average inter-BS distance of 100–315 meters. This is
not small compared to contemporary urban deployments. In
other words, EE maximization based on letting λ → ∞ is
expected to give representative results in most practical dense
deployments. Thirdly, we note that the EE decreases as γ
increases, which is why it is important to specify a target
SINR; otherwise the EE maximizing operating point might
be very spectrally inefficient and therefore useless from a
practical user service perspective.

We proceed by further studying the impact of varying M
and K. To this end, we let λ→∞ as prescribed by Theorem
2 and fix the SINR constraint at γ = 3 or, equivalently, the
average SE per data symbol at log2(1 + γ) = 2. Fig. 3 shows
the EE lower bound as a function of M and K when β is
optimized according to (18). The global EE maximum gives an
EE of 10.156 Mbit/J and is achieved by (M?,K?) = (91, 10)
using the pilot reuse factor β? = 7.08. Interestingly, this is
a configuration that falls within the class of massive MIMO
setups [10], [11], [14]. The intuition behind this result is
that the strong inter-cell interference in dense deployments
is efficiently mitigated by MRC when the BSs are equipped
with many antennas and also by using a substantial pilot reuse
factor (to protect against channel estimation errors and pilot
contamination).

https://github.com/emilbjornson/maximal-EE


10

0
5

10
15

0

50

100
0

2

4

6

8

10

12

Number of UEs (K)

Number of
BS antennas (M)

E
ne

rg
y 

ef
fic

ie
nc

y 
[M

bi
t/J

ou
le

]

Global Optimum:
M = 91, K = 10

EE = 10.16 Mbit/J

Alternating 
optimization

Fig. 3. Energy efficiency (in Mbit/J) for γ = 3. The global optimum is
star-marked, while the convergence of the alternating algorithm from Section
IV-D is indicated with circles.

(31%)

 (3%)

 
(56%)

(9%)
(1%)

AASE
D1MK

D0M

C1K

C0

Fig. 4. Relative size of each term in the APC of (13) at the global optimum
from Fig. 3.

The results obtained with the alternating optimization al-
gorithm from Section IV-D are also shown in Fig. 3. The
initialization point was set to (M,K) = (20, 1). As seen, the
algorithm converges after three iterations to the real-valued
solution (M??,K??) = (91.6, 10.1) with an EE of 10.157
Mbit/J. This real-valued operating point gives only a 0.009%
higher EE than the integer-valued solution, thus showing that
the EE performance is quite flat around the global optimum.

To study the global optimum even further, the pie diagram in
Fig. 4 shows the relative size of each term in the APC of (13)
(the transmit power is not shown since it takes negligible val-
ues). The dominating terms are the static power consumption
C0 and the consumption D0M of the BS transceiver chains.
These seem to be the main factors to improve in order to make
the hardware more energy-efficient. Observe that the above
results might be different for other values of C0, C1, D0, and
D1.
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Fig. 5. Energy efficiency (in Mbit/J) as a function of the level of transceiver
hardware impairments, ε, for different SINR constraints.

B. Impact of Transceiver Hardware Impairments

Next, we consider the saturation regime where λ→∞ and
exemplify the impact of transceiver hardware impairments on
the EE. Fig. 5 shows the EE as a function of ε, the level of
hardware impairments. As expected, the EE decreases with ε
since the desired signal power in (10) decays as (1−ε2)2. The
loss is marginal for γ = 1, but it can be relatively large when
γ increases. This is in line with the previous results in [39],
wherein it is shown that hardware impairments greatly affect
the channel capacity in the high SNR regime (i.e., for large
γ) while their impact is negligible in the low SNR regime.
The results of Fig. 5 indicate that for the investigated network
the EE loss due to hardware impairments is negligible for
ε ≤ 0.1 when γ ∈ {1, 3}. Since these values correspond to
the operating points that give the highest EE (see Fig. 2),
we may conclude that modest levels of hardware impairments
have a negligible impact on networks designed for high EE.

C. EE Maximization for a Given UE Density

So far, the BSs have been deployed to match an unlimited
heterogeneous UE distribution. In particular, we have assumed
that each BS serves K UEs such that a BS density of λ
BS/km2 corresponds to an average of Kλ UEs per km2.
Hence, as the BS density grows large we also let the average
UE density grow large. To validate the plausibility of this
model, suppose that we instead deploy the BSs to match a
fixed average UE density of µ UE/km2. Mathematically, this
amounts to solving (14) with the additional constraint

µ = Kλ. (40)

We will study how such an extra constraint affects the results,
taking into account that future average UE densities from µ =
102 UE/km2 (in rural areas) to µ = 105 UE/km2 (in shopping
malls) have been predicted in the METIS project [47].

Fig. 6 shows the EE has a function of the UE density µ
for the average SINR level γ = 3, while Fig. 7 shows the
corresponding BS density. The design parameters M , K, β,
λ, and ρ are optimized numerically according to (14), with
the additional constraint (40). Two reference cases are also
considered: single-user single-input multiple-output (SIMO)
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Fig. 6. Energy efficiency (in Mbit/J) vs. the UE density µ. The EE is
optimized according to (14) with the extra constraint µ = Kλ, or only with
respect to (λ, β, ρ) for given M and K.
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Fig. 7. Optimized BS density (in BS/km2) vs. the UE density (in UE/km2).
The system is optimized in the same way as in Fig. 6.

transmission with (M,K) = (10, 1); and massive multi-user
MIMO transmission with (M,K) = (91, 10), which was
shown in Fig. 3 to be optimal as λ → ∞. Clearly, only β,
λ, and ρ are optimized in the two reference cases.

Several important observations can be made from the results
presented in Figs. 6 and 7. Firstly, the EE level becomes
independent of the UE density when µ is large enough; the
saturation occurs for µ ≥ 100 in the optimal and the fixed
massive MIMO cases, while it occurs for µ ≥ 2 in the single-
user SIMO case. The future UE density range µ ∈ [102, 105]
predicted in [47] is fully covered in these saturation regimes.
In all practical relevant cases we can, according to Fig. 7,
simply scale the BS density linearly with the UE density,
while using the same number of BS antennas and UEs per
BS. Similarly, one can turn on and off BSs to account for
variations in the UE load. Secondly, the fixed massive MIMO
configuration (M,K) = (91, 10) achieves the maximal EE in
the saturation regime, while it is inefficient as compared to
single-user MISO for low UE densities (e.g., for µ ≤ 8). In
contrast, single-user SIMO transmission performs reasonably
well at low UE densities, but saturates earlier and at an
EE level that is 3.14× lower than the maximal EE. More
importantly, Fig. 7 shows that the single-user case requires a
10× higher BS density in the saturation regime, which might

greatly reduce the deployment cost.

In summary, the transmission power appears to be negli-
gible, as compared to the circuit power, for networks that
can handle future UE densities. By adding massive multi-user
MIMO capability to the BSs, the EE can be increased by a few
hundred percentages, and the even more substantial benefit is
that it can reduce the BS density with an order of magnitude;
this is likely to be a key property to achieve a cost and energy
efficient network densification.

VI. CONCLUSION

Network densification is the key for achieving high EE in
cellular networks, and can be realized by either having many
BSs or many antennas per BS. In order to find the optimal
densified network configuration, we formulated an UL EE
maximization problem under the assumption of a stochastic
BS deployment based on Poisson point processes. By deriving
a new lower bound on the average SE in the network and
using a state-of-the-art power consumption model, the EE
expression became tractable and was maximized analytically
with respect to the density of BSs, the transmit power levels,
the number of BS antennas and users per cell, and the pilot
reuse factor. The closed-form expressions provided general
guidelines on the optimal operating regimes and exposed
the fundamental interplay among the optimization variables,
hardware characteristics, and propagation environment. The
analysis focused on the UL, but similar results are expected
in the DL due to the UL/DL duality concept.

The analysis shows that reducing the cell size is undoubtable
the way towards high EE, but the positive effect of increasing
the BS density saturates when the circuit power dominates over
the transmission power. A further leap in EE can typically be
achieved by adding extra BS antennas to multiplex several
UEs per cell; the numerical examples resulted in an EE
maximum with 91 BS antennas and 10 UEs, which is a
massive MIMO setup. The EE gains come from suppressing
intra-cell interference and by sharing the circuit power costs
among multiple UEs. We stress that a hundred antennas can
be deployed also at a small-size BS, since we consider simple
dipoles and possibly higher frequencies than in contemporary
networks. Moreover, the analysis shows that a large pilot reuse
factor can protect against inter-cell interference and can be
tailored to guarantee a certain average SE.

While this paper focused on the ratio between spectral
efficiency and energy costs, it is straightforward to also in-
clude the deployment cost, site renting, and other economical
factors; the annual depreciation expense can be turned into an
energy-equivalent form (by multiplying with the energy cost
in J/Euro) and incorporated in the coefficients C0, C1, and D0

in (13). This is likely to mainly increase the constant term C0,
thus pushing the optimal operating point towards having fewer
BSs, with more antennas and UEs per cell.



12

E{SINR−1
0k }

=

E

{(
K +

∑
j∈Ψλ

K∑
i=1

dαjji
dα0ji

+ σ2

ρ

)(
1 + 1

β

∑
l∈Ψλ

dαllk
dα0lk

+ σ2

ρ

)}
+M(1− ε2)

(
E

{
1
β

∑
j∈Ψλ

(
dαjjk
dα0jk

)2
}

+ ε2

)
M(1− ε2)2

=
1

M(1− ε2)2

((
K +

σ2

ρ

)(
1 +

σ2

ρ

)
+ E

∑
j∈Ψλ

K∑
i=1

dαjji
dα0ji


(

1 +
σ2

ρ

)
+

(
K +

σ2

ρ

)
E
{

1

β

∑
l∈Ψλ

dαllk
dα0lk

}

+ E
{

1

β

(∑
j∈Ψλ

K∑
i=1

dαjji
dα0ji

)(∑
l∈Ψλ

dαllk
dα0lk

)}
+M(1− ε2)E

{
1

β

∑
j∈Ψλ

(
dαjjk
dα0jk

)2}
+M(1− ε2)ε2

)
. (51)

APPENDIX A: PROOF OF LEMMA 3
Let v00k = ν00kĥ00k denote the MRC detector. Then, the

received signal is given by

vH

00ky0 =

K∑
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√
p0i(

√
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H

00kh00i

+
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H
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=
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p0ke0kv

H

00kh00k

+
√
p0k

√
1− ε2s0k (vH
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√
pji(

√
1− ε2sji + eji)v

H

00kh0ji + vH

00kn0.

(41)
The ergodic capacity of this channel is defined as the maximal
mutual information, which unfortunately cannot be computed
exactly under imperfect CSI. However, we can compute a
rigorous lower bound using the well-established bounding
technique from [44] and [45]. More precisely, the first term
in (41) is treated as the only desired signal while the other
terms are uncorrelated with the first one and treated as worst-
case Gaussian noise in the detection (a worst-case assumption).
This leads to the mutual information log2(1+SINR0k) where
SINR0k is the ratio between the desired power and the “noise”
power:

SINR0k = p0k(1− ε2)|E{vH

00kh00k}|2/(
p0k(1− ε2)

(
E{|vH

00kh00k|2} − |E{vH
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+ p0kε
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00kh0ji|2}+ E{|vH

00kn0|2}
)

(42)

where we have used the fact that E{|
√

1− ε2sji + eji|2} =
1 − ε2 + ε2 = 1. To proceed further with the computation of
the expectations in (42), we define

τ0k = 1 +
∑
l∈Ψλ

χ0kl
dαllk
dα0lk

+
σ2

ρ
(43)

and notice that the MMSE estimate of h0jk (for j = 0 or
j ∈ Ψλ such that χ0kj = 1) takes the form

ĥ0jk =
1
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whereas the independent estimation error is distributed as

∆h0jk ∼ CN
(
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1

ωdα0jk
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)
. (45)

For normalization purposes, the scaling factor ν00k is selected
as

ν00k = τ0k

√
ωdα00k

(1− ε2)ρM
. (46)

Therefore, we have that
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2
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(47)

which follows by using (46) and the orthogonality principle of
MMSE estimators as well as the adopted power-control policy
in (1). Since the noise is independent of the channels, we also
have

E{|vH

00kn0|2} = σ2E{ν2
00k‖ĥ00k‖2} =

σ2

ρ
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=
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.

(48)

Next, we consider the terms in (42) that are affected by pilot
contamination. For convenience, we let χ0k0 = 1 since the
typical UE uses the same pilot as itself. Then, for all users
i in cells j that are not causing pilot contamination (i.e., for
i 6= k or for i = k and χ0kj 6= 1), we have

pjiE{|vH

00kh0ji|2} =
ρωdαjji
ωdα0ji

E{ν2
00k‖ĥ00k‖2}

=
dαjji
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E{τ0k} =
dαjji
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(
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1
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∑
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dαllk
dα0lk

+
σ2

ρ

) (49)
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where we have taken into account that ĥ00k is independent
of h0ji and the last equality follows from averaging over the
stochastic pilot selection (with E{χ0kl} = 1/β by design).

For all users i in cells j such that i = k and χ0kj = 1,
the channel estimate ĥ00k is correlated with h0ji due to pilot
contamination and thus we obtain

pjkE{|vH

00kh0jk|2} (50)
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(51)

where the first equality follows from the expansion h0jk =

ĥ0jk + ∆h0jk and the fact that ĥ0jk =

√
dαjjkd

α
00k

d2α0jk
ĥ00k. The

second equality follows from using [48, Lemma 2] and (46),
whereas the third equality simplifies the expression taking into
account that E{χ0kl} = 1/β. Since the second term in (50) is
equal to (49), it follows that it is only the first term in (50) that
comes from pilot contamination and its probability to appear
is E{χ0kl} = 1/β. Plugging (47)–(50) into (42) the result in
the lemma follows.

APPENDIX B: PROOF OF PROPOSITION 1

The goal is to compute a tractable lower bound on the
average SE (1− B

S )E{log2(1+SINR0k)}, where the expecta-
tion is taken with respect to the PPP and UE locations. To
this end, the Jensen’s inequality is applied as E{log2(1 +

1
SINR−1

0k

)} ≥ log2(1 + 1
E{SINR−1

0k }
) to move the expectation

inside the logarithm. The expectation of the inverse SINR is
then expanded as in (51) at the top of the page.

To proceed further, we focus on the BSs in a circular area of
finite radius r and consider wrap around in the radial domain
to keep the translation invariance. Note that by letting r →∞
a PPP in the whole of R2 is obtained, and there is no bias since
the intra-cell distances are assumed to be distributed exactly as
in R2. The reason for doing this is that the average number of
interfering BSs in the limited circular area is finite and given
by π(r2 − E{d2

00k}) = π(r2 − 1
πλ ), where we have used the

fact that d00k ∼ Rayleigh
(

1√
2πλ

)
(see Lemma 1) to obtain

E{dν00k} =
Γ(ν/2 + 1)

(πλ)ν/2
(52)

for any ν > −2. Two of the expectations in (51) contain
summations over the PPP Ψλ, but with different powers of

the terms. To compute both, we let κ = 1 or κ = 2 and notice
that

E
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(53)

where (a) follows from computing the average number of BSs
in the circular area and by letting j be an arbitrary BS index
in Ψλ and k be an arbitrary UE index (since each term in
the sum has the same marginal distribution). Next, (b) divides
the expectation into one conditional expectation where djjk
is given and one outer expectation with respect to djjk. Step
(c) and (d) compute the inner expectation by utilizing that
the BSs of other cells are uniformly distributed in the circle
of radius r at distances larger than djjk. The limit r →∞ in
(e) is taken both inside and outside the expectation, which is
allowed since the dominated convergence theorem is satisfied.6

The final expression is obtained by computing E{d2
jjk} as

in (52) and exploiting the typicality, which implies that djjk
and d00k have the same marginal distribution. Using similar
techniques as in (53) yields

E

∑
j∈Ψλ

K∑
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dαjji
dα0ji

 = K
2
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. (54)

The only remaining term in (51) is
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(55)

where the equality follows from computing the expectations
separately over sets that contain different BS indices. The
first term in (55) is computed as

6The dominated convergence theorem can be applied since |dαjjk/d
α
0jk| ≤

1.
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(56)

by first computing the expectation with respect to the number
of terms in the PPP for a finite radius r and exploiting that
j 6= l. By letting r → ∞ we arrived at an expression that is
basically twice the expression previously given in (53). The
second term in (55) is bounded as
K∑
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where (a) computes the expectation with respect to the number
of terms in the PPP for a finite r, (b) follows from Hölder’s
inequality, and (c) exploits that the two expectations are equal.
At this point, the expression is basically the same as the
second expression in (53), thus (d) follows from the same
steps as those taken in (53). Plugging (56) and (57) into (55)
we eventually obtain
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1
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(58)

We have now computed all the expectations in (51), exactly or
as upper bounds. Using all these expressions eventually lead
to the achievable lower bound in (10).
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Wong, V. Öwall, O. Edfors, and F. Tufvesson, “A flexible 100-antenna
testbed for massive MIMO,” in Proc. of IEEE Globecom Workshop -
Massive MIMO: From Theory to Practice, 2014.

[15] D. Feng, C. Jiang, G. Lim, L. J. Cimini, G. Feng, and G. Y. Li, “A
survey of energy-efficient wireless communications,” IEEE Commun.
Surveys Tutorials, vol. 15, no. 1, pp. 167 – 178, 2013.

[16] G. Y. Li, Z. Xu, C. Xiong, C. Yang, S. Zhang, Y. Chen, and S. Xu,
“Energy-efficient wireless communications: tutorial, survey, and open
issues,” IEEE Wireless Commun., vol. 18, no. 6, pp. 28 – 35, 2011.

[17] G. Miao, “Energy-efficient uplink multi-user MIMO,” IEEE Trans.
Wireless Commun., vol. 12, no. 5, pp. 2302–2313, 2013.

[18] Y. Hu, B. Ji, Y. Huang, F. Yu, and L. Yang, “Energy-efficiency resource
allocation of very large multi-user MIMO systems,” Wireless Netw.,
2014.

[19] D. Ha, K. Lee, and J. Kang, “Energy efficiency analysis with circuit
power consumption in massive MIMO systems,” in Proc. IEEE
Int. Symp. Personal, Indoor and Mobile Radio Commun. (PIMRC), 2013.

[20] H. Yang and T. L. Marzetta, “Total energy efficiency of cellular large
scale antenna system multiple access mobile networks,” in Proc. IEEE
Online GreenComm, 2013.

[21] S. Mohammed, “Impact of transceiver power consumption on the energy
efficiency of zero-forcing detector in massive MIMO systems,” IEEE
Trans. Commun., vol. 62, no. 11, pp. 3874–3890, 2014.

[22] E. Björnson, L. Sanguinetti, J. Hoydis, and M. Debbah, “Designing
multi-user MIMO for energy efficiency: When is massive MIMO the
answer?,” in Proc. IEEE Wireless Commun. and Networking Conf.
(WCNC), 2014.

[23] E. Björnson, L. Sanguinetti, J. Hoydis, and M. Debbah, “Optimal design
of energy-efficient multi-user MIMO systems: Is massive MIMO the
answer?,” IEEE Trans. Wireless Commun., vol. 14, no. 6, pp. 3059–
3075, 2015.

[24] E. Kurniawan and A. Goldsmith, “Optimizing cellular network architec-
tures to minimize energy consumption,” in Proc. of IEEE International
Conference on Communications (ICC), 2012, pp. 4771–4775.

[25] W. Liu, S. Han, C. Yang, and C. Sun, “Massive MIMO or small cell
network: Who is more energy efficient?,” in Proc. of IEEE Wireless
Communications and Networking Conference Workshops (WCNCW),
2013, pp. 24–29.

[26] A.D. Wyner, “Shannon-theoretic approach to a Gaussian cellular
multiple-access channel,” IEEE Trans. Inf. Theory, vol. 40, no. 6, pp.
1713–1727, 1994.

[27] J. Xu, J. Zhang, and J. G. Andrews, “On the accuracy of the Wyner
model in cellular networks,” IEEE Trans. Wireless Commun., vol. 10,
no. 9, pp. 3098–3109, 2011.



15

[28] M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse, and
M. Franceschetti, “Stochastic geometry and random graphs for
the analysis and design of wireless networks,” IEEE J. Sel. Areas
Commun., vol. 27, no. 7, pp. 1029–1046, 2009.

[29] D. Cao, S. Zhou, and Z. Niu, “Optimal base station density for energy-
efficient heterogeneous cellular networks,” in Proc. IEEE ICC, 2012,
pp. 4379–4383.

[30] C. Li, J. Zhang, and K.B. Letaief, “Throughput and energy efficiency
analysis of small cell networks with multi-antenna base stations,” IEEE
Trans. Wireless Commun., vol. 13, no. 5, pp. 2505–2517, 2014.

[31] Y. S. Soh, T. Q. S. Quek, M. Kountouris, and H. Shin, “Energy efficient
heterogeneous cellular networks,” IEEE J. Sel. Areas Commun., vol. 31,
no. 5, pp. 840–850, 2013.

[32] W. Nie, F. Zheng, X. Wang, S. Jin, and W. Zhang, “Energy effi-
ciency of cross-tier base station cooperation in heterogeneous cellular
networks,” IEEE Trans. Wireless Commun., Submitted, Available:
http://arxiv.org/abs/1406.1867.

[33] E. Björnson, E.G. Larsson, and M. Debbah, “Massive MIMO for
maximal spectral efficiency: How many users and pilots should be
allocated?,” IEEE Trans. Wireless Commun., To appear, Available:
http://arxiv.org/abs/1412.7102.

[34] J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach to
coverage and rate in cellular networks,” IEEE Trans. Commun., vol. 59,
no. 11, pp. 3122–3134, 2011.

[35] F. Baccelli and B. Blaszczyszyn, “Stochastic geometry and wireless
networks: Volume I Theory,” Foundations and Trends in Networking,
vol. 3, no. 3-4, pp. 249–449, 2008.

[36] S. Weber and J. G. Andrews, “Transmission capacity of wireless
networks,” Foundations and Trends in Networking, vol. 5, no. 2-3, pp.
109–281, 2010.

[37] X. Gao, O. Edfors, F. Rusek, and F. Tufvesson, “Massive MIMO
performance evaluation based on measured propagation data,” IEEE
Trans. Wireless Commun., vol. 14, no. 7, pp. 3899–3911, 2015.

[38] M. Wenk, MIMO-OFDM Testbed: Challenges, Implementations, and
Measurement Results, Series in microelectronics. Hartung-Gorre, 2010.

[39] E. Björnson, P. Zetterberg, M. Bengtsson, and B. Ottersten, “Capacity
limits and multiplexing gains of MIMO channels with transceiver
impairments,” IEEE Commun. Lett., vol. 17, no. 1, pp. 91–94, 2013.

[40] E. Björnson, J. Hoydis, M. Kountouris, and M. Debbah, “Massive
MIMO systems with non-ideal hardware: Energy efficiency, estimation,
and capacity limits,” IEEE Trans. Inf. Theory, vol. 60, no. 11, pp. 7112–
7139, 2014.

[41] W. Zhang, “A general framework for transmission with transceiver
distortion and some applications,” IEEE Trans. Commun., vol. 60, no.
2, pp. 384–399, 2012.

[42] H. Holma and A. Toskala, LTE for UMTS: Evolution to LTE-Advanced,
Wiley, 2nd edition edition, 2011.

[43] S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory, Prentice Hall, 1993.

[44] J. Jose, A. Ashikhmin, T. L. Marzetta, and S. Vishwanath, “Pilot
contamination and precoding in multi-cell TDD systems,” IEEE Trans.
Commun., vol. 10, no. 8, pp. 2640–2651, 2011.

[45] M. Medard, “The effect upon channel capacity in wireless communica-
tions of perfect and imperfect knowledge of the channel,” IEEE Trans.
Inf. Theory, vol. 46, no. 3, pp. 933–946, 2000.

[46] L. Grippo and M. Sciandrone, “On the convergence of the block
nonlinear Gauss-Seidel method under convex constraints,” Operations
Research Letters, vol. 26, pp. 127–136, 2000.

[47] M. Fallgren, B. Timus, et al., D1.1: Scenarios, requirements and KPIs
for 5G mobile and wireless system, ICT-317669-METIS, 2013.

[48] E. Björnson, M. Matthaiou, and M. Debbah, “Massive MIMO with non-
ideal arbitrary arrays: Hardware scaling laws and circuit-aware design,”
IEEE Trans. Wireless Commun., vol. 14, no. 8, pp. 4353–4368, 2015.


	I Introduction
	I-A Related Works
	I-B Major Contributions
	I-C Outline and Notation

	II System Model
	II-A Channel Model and Power-Control Policy
	II-B Transceiver Hardware Impairments
	II-C Channel Acquisition

	III Average Spectral Efficiency
	IV Problem Statement and Energy Efficiency Optimization
	IV-A Feasibility
	IV-B Optimal Pilot Reuse Factor 
	IV-C Optimal BS Density and Radiated Power
	IV-D Optimal Number of Antennas and UEs per BS

	V Numerical Examples
	V-A Optimizing the Energy Efficiency
	V-B Impact of Transceiver Hardware Impairments
	V-C EE Maximization for a Given UE Density

	VI Conclusion
	References

