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Abstract—The cloud radio access network (Cloud-RAN) has
recently been proposed as one cost-effective and energy-efficient
technique for 5G wireless networks. By moving the signal
processing functionality to a single baseband unit (BBU) pool,
centralized signal processing and resource allocation areenabled
in Cloud-RAN, thereby providing the promise of improving
the energy efficiency via effective network adaptation and in-
terference management. In this paper, we propose a holistic
sparse optimization framework to design green Cloud-RAN
by taking into consideration the power consumption of the
fronthaul links, multicast services, as well as user admission
control. Specifically, we first identify the sparsity structures in
the solutions of both the network power minimization and user
admission control problems, which call for adaptive remoteradio
head (RRH) selection and user admission. However, finding the
optimal sparsity structures turns out to be NP-hard, with the
coupled challenges of theℓ0-norm based objective functions
and the nonconvex quadratic QoS constraints due to multicast
beamforming. In contrast to the previous works on convex but
non-smooth sparsity inducing approaches, e.g., the group sparse
beamforming algorithm based on the mixedℓ1/ℓ2-norm relax-
ation [1], we adopt the nonconvex but smoothedℓp-minimization
(0 < p ≤ 1) approach to promote sparsity in the multicast
setting, thereby enabling efficient algorithm design basedon
the principle of the majorization-minimization (MM) algor ithm
and the semidefinite relaxation (SDR) technique. In particular,
an iterative reweighted-ℓ2 algorithm is developed, which will
converge to a Karush-Kuhn-Tucker (KKT) point of the relaxed
smoothed ℓp-minimization problem from the SDR technique.
We illustrate the effectiveness of the proposed algorithmswith
extensive simulations for network power minimization and user
admission control in multicast Cloud-RAN.

Index Terms—5G networks, green communications, Cloud-
RAN, multicast beamforming, sparse optimization, semidefinite
relaxation, smoothedℓp-minimization, and user admission con-
trol.
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I. I NTRODUCTION

The great success of wireless industry is driving the pro-
posal of new services and innovative applications, such as In-
ternet of Things (IoT) and mobile Cyber-Physical applications,
which yield an exponential growth of wireless traffic with
billions of connected devices. To handle the enormous mobile
data traffic, network densification and heterogeneity supported
by various radio access technologies (e.g., massive MIMO
[2] and millimeter-wave communications [3]) have become an
irreversible trend in 5G wireless networks [4]. However, this
will have a profound impact and bring formidable challenges
to the design of 5G wireless communication systems in terms
of energy efficiency, capital expenditure (CAPEX), operating
expenditure (OPEX), and interference management [5]. In
particular, the energy consumption will become prohibitively
high in such dense wireless networks in the era of mobile data
deluge. Therefore, to accommodate the upcoming diversified
and high-volume data services in a cost-effective and energy-
efficient way, a paradigm shift is required in the design of 5G
wireless networks.

By leveraging the cloud computing technology [6], the
cloud radio access network (Cloud-RAN) [7], [8] is a dis-
ruptive technology to address the key challenges of energy
efficiency in 5G wireless networks. Specifically, by moving
the baseband units (BBUs) into a single BBU pool (i.e., a
cloud data center) with shared computation resources, scalable
and parallel signal processing, coordinated resource allocation
and cooperative interference management algorithms [9], [10]
can be enabled among a large number of radio access points,
thereby significantly improving the energy efficiency [1], [11]
and spectral efficiency [12]. As the conventional compact base
stations are replaced by low-cost and low-power remote radio
heads (RRHs), which are connected to the BBU pool through
high-capacity and low-latency fronthaul links, Cloud-RAN
provides a cost-effective and energy-efficient way to densify
the radio access networks [5].

While Cloud-RAN has a great potential to reduce the energy
consumption of each RRH, with additional fronthaul link
components and dense deployment of RRHs, new challenges
arise for designing green Cloud-RAN. In particular, instead
of only minimizing the total transmit power consumption via
coordinated beamforming [13], the network power consump-
tion consisting of the fronthaul link power consumption and
the RRH power consumption should be adopted as the perfor-
mance metric for designing green Cloud-RAN [1], [11], [14].
To minimize the network power consumption, a group sparse
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beamforming framework was proposed in [1] to adaptively se-
lect the active RRHs and the corresponding fronthaul links via
controlling the group sparsity structures of the beamforming
vectors. Such an idea of exploiting sparsity structures in the
solutions has also demonstrated its effectiveness in solving
other mixed combinatorial optimization problems in Cloud-
RAN, e.g., the data assignment problem [15] and the joint
uplink and downlink network power minimization problem
[11].

Although network adaption by selecting the active RRHs
provides a promising way to minimize the network power
consumption, it is critical to maximize the user capacity
(i.e., the number of admitted users) when the network power
minimization problem is infeasible [16], [17], [18]. This
infeasibility issue may often occur in the scenarios with a
large number of mobile devices requesting high data rates or
some users with unfavorable channel conditions. Furthermore,
exploiting the benefits of integrating diversified unicast and
multicast services [19] has been well recognized as a promis-
ing way to improve the energy efficiency and user capacity,
and thus multicast beamforming should be incorporated in
Cloud-RAN. From the system design perspective, to design
a green Cloud-RAN with multicast transmission, a holistic
approach is needed to enable network adaptation for RRH
selection and user admission in a unified way.

Unfortunately, such design problems fall into the category
of highly complicated mixed combinatorial optimization prob-
lems. The key observation to address this challenge is that
the network power minimization and user admission control
can be achieved by adaptively selecting the active RRHs and
admitting the mobile users (MUs) via controlling the sparsity
structures in the corresponding solutions. Specifically, for the
network power minimization problem, selecting active RRHs
is equivalent to controlling the group sparsity structure in the
aggregative multicast beamforming vector [1]. That is, allthe
beamforming coefficients of a particular RRH that is switched
off need to be set to zeros simultaneously. For the user
admission control problem that is needed when the network
power minimization problem is infeasible, maximizing the
number of admitted users is equivalent to minimizing the
number of violated QoS constraints [20]. Mathematically,
this is the same as minimizing the sparsity of the auxiliary
vector indicating the violations of the QoS constraints. Based
on these observations, we will thus formulate both design
problems as sparse optimization problems based on theℓ0-
norm minimization in a unified framework, based on which
efficient algorithms will be developed.

A. Contributions

Based on the above discussions, we propose a sparse
optimization framework to design a multicast green Cloud-
RAN as shown in Fig. 2, thereby enabling adaptive RRH
selection and user admission. However, in contrast to the
previous works on the multicast beamforming problem [21]
with convex objectives but nonconvex QoS constraints and the
group sparse beamforming problem [1] with convex QoS con-
straints but nonconvex objective functions in unicast Cloud-
RAN, to design efficient algorithms for the resulting sparse

optimization problems in multicast Cloud-RAN, we need to
address the following coupled challenges in a unified way:

• Nonconvex quadratic QoS constraints due to multicast
transmission;

• Combinatorial objective functions for RRH selection and
user admission.

In particular, we summarize the major contributions as follows:
1) A sparse optimization framework based on theℓ0-

norm minimization is proposed to design a multicast
green Cloud-RAN by adaptive RRH selection and user
admission via controlling the sparsity structures of the
solutions.

2) To address the combinatorial challenges in the objective
functions, we propose a nonconvex but smoothedℓp-
minimization approach to induce the sparsity structures
in the solutions. The main advantage of this method is
that it helps develop the group sparse inducing penalty
with quadratic forms in the multicast beamforming vec-
tors. Therefore, the objective function in the resulting
group sparse inducing optimization problem is compat-
ible with the nonconvex quadratic QoS constraints. The
SDR technique can then be adopted to solve the resulting
nonconvex quadratic group sparse inducing optimization
problem.

3) To address the challenges of the nonconvex smoothed
objective functions and the nonconvex quadratic QoS
constraints, we propose an iterative reweighted-ℓ2 al-
gorithm to solve the resulting nonconvex smoothedℓp-
minimization problems based on the principle of the
MM algorithm and the SDR technique. This algorithm
is proven to converge to a KKT point of the relaxed
smoothedℓp-minimization problems over the convex
constraint set using the SDR technique.

4) Simulation results will demonstrate the effectiveness of
the proposed algorithms to minimize the network power
minimization and maximize the user capacity, and their
performance gains compared with the existing convex
approximation approaches. In particular, the proposed
algorithms can achieve near-optimal performance in the
simulated settings.

B. Related Works

Sparse optimization by exploiting sparsity structures of the
solutions has been proven to be very powerful to solve various
hard optimization problems in machine learning, compressive
sensing and high-dimensional statistics [22]. This approach
has recently received enormous attentions in designing wire-
less networks, i.e., the group sparse beamforming approach
for network adaption [1], [11], [23], and data assignment
in wireless backhaul networks [15], [24]. In particular, the
convex relaxation approaches, e.g., theℓ1-minimization [17],
the mixedℓ1/ℓ2-norm [1] and the mixedℓ1/ℓ∞-norm [25],
have become popular due to the computational efficiency as
well as performance guarantees in some scenarios [26].

To further improve the performance, there has been a great
interest in applying nonconvex approaches in sparse optimiza-
tion [27], [28], [29], [30] by enhancing sparsity. In particular,
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Fig. 1. The architecture of multicast Cloud-RAN, in which, all the RRHs
are connected to a BBU pool through high-capacity and low-latency optical
fronthaul links. All the MUs in the same dashed circle form a multicast group
and request the same message. To enable full cooperation among all the RRHs,
it is assumed that all the user data and channel state information (CSI) are
available at the BBU pool.

it is observed that the nonconvexℓp-minimization approach
performs better than the traditional convexℓ1-minimization
especially when the underlying model is very sparse [28].
Motivated by this result, we adopt theℓp-minimization ap-
proach to closely approximate the resultingℓ0-norm based
sparse optimization problems for multicast green Cloud-RAN.
Furthermore, to deal with the unique challenges with the
coupled nonconvex constraints and combinatorial objectives,
thereby enabling efficient algorithm design, we will use a
smoothed version of theℓp-minimization approach to induce
the sparsity structures in the solutions. Note that the existing
work on the group sparse beamforming [1] can only handle
problems with a combinatorial objective and convex seconder-
order cone QoS constraints in unicast Cloud-RAN, and thus
cannot be directly applied in the setting of multicast Cloud-
RAN with nonconvex QoS constraints.

C. Organization

The remainder of the paper is organized as follows. Sec-
tion II presents the system model and problem formulations.
Section III presents an algorithmic framework for network
power minimization and user admission control based on
the smoothedℓp-minimization. The iterative reweighted-ℓ2
algorithm is developed in Section IV. Simulation results
will be demonstrated in Section V. Finally, conclusions and
discussions are presented in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the system model of the
multicast Cloud-RAN. Then, the network power minimization
problem is formulated. For the scenario when it is not feasible
to serve all the MUs, the user admission control problem is
formulated. It will be revealed that both problems are sparse
optimization problems, for which unique challenges will be
identified.

A. System Model

We consider a multicast Cloud-RAN withL multi-antenna
RRHs andK single-antenna MUs, where thel-th RRH

is equipped withNl antennas, as shown in Fig. 1. Let
L = {1, . . . , L} and N = {1, . . . ,K} denote the sets of
all the RRHs and all the MUs, respectively. We assume
that theK MUs form M non-overlapping and non-empty
multicast groups, which are denoted as{G1,G2, . . . ,GM} with
∪iGi = N andGj ∩Gj = ∅ with Gm as the set of MUs in the
m-th multicast group. LetM = {1, . . . ,M} be the set of all
the multicast groups. We consider the downlink transmission,
and the centralized signal processing is performed at the BBU
pool [1], [7].

The propagation channel from thel-th RRH to thek-th MU
is denoted ashkl ∈ C

Nl , ∀k, l. Let vlm ∈ C
Nl be the transmit

beamforming vector from thel-th RRH to MUs in multicast
groupGm. Then the transmit signal at thel-th RRH is given
by

xl =

M
∑

m=1

vlmsm, ∀l ∈ L, (1)

where sm ∈ C is the encoded information symbol for the
multicast groupm with E[|sm|2] = 1. Assume that all the
RRHs have their own transmit power constraints, which form
the following feasible set of the beamforming vectorsvlm’s,

V =

{

vlm ∈ C
Nl :

M
∑

m=1

‖vlm‖22 ≤ Pl, ∀l ∈ L
}

, (2)

wherePl > 0 is the maximum transmit power of thel-th RRH.
The received signalykm ∈ C at MU k in them-th multicast

group is given by

ykm =

L
∑

l=1

hH

klvlmsm +
∑

i6=m

L
∑

l=1

hH

klvlisi + nk, ∀k ∈ Gm, (3)

wherenk ∼ CN (0, σ2
k) is the additive Gaussian noise at MU

k. We assume thatsm’s andnk’s are mutually independent and
all the users apply single user detection. Therefore, the signal-
to-interference-plus-noise ratio (SINR) of MUk in multicast
groupm is given by

Γk,m(v) =
vH

mΘkvm
∑

i6=m vH

i Θkvi + σ2
k

, ∀k ∈ Gm, (4)

where Θk = hkh
H

k ∈ C
N×N with N =

∑L
l=1 Nl and

hk = [hH

k1,h
H

k2, . . . ,h
H

kL]
H ∈ CN as the channel vector

consisting of the channel coefficients from all the RRHs to MU
k, vm = [vH

1m,vH

2m, . . . ,vH

Lm]H ∈ CN is the beamforming
vector consisting of the beamforming coefficients from all the
RRHs to them-th multicast group, andv = [ṽl]

L
l=1 ∈ CMN

is the aggregative beamforming vector withṽl = [vlm]Mm=1 ∈
CMNl as the beamforming vector consisting of all the beam-
forming coefficients from thel-th RRH to all the multicast
groups.

B. Network Power Minimization for Green Cloud-RAN

With densely deployed RRHs, it is critical to enable energy-
efficient transmission via centralized signal processing at the
BBU pool. Coordinated beamforming among RRHs will help
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reduce the transmit power. Due to the mobile data traffic
variations in temporal and spatial domains, it is also critical
to enable network adaptation to switch off some RRHs and
the corresponding fronthaul links to save power [1], [31].
Thus, we need to consider the network power consumption
when designing green Cloud-RAN, which is defined as the
following combinatorial composite function parameterized by
the beamforming coefficients [1],

p(v) = p1(v) + p2(v), (5)

with the total transmit power consumption, denoted asp1(v),
and the total relative fronthaul links power consumption,
denoted asp2(v), given as

p1(v) =

L
∑

l=1

M
∑

m=1

1

ηl
‖vlm‖22, (6)

and

p2(v) =

L
∑

l=1

P c
l I(Supp(v) ∩ Vl 6= ∅), (7)

respectively. Here,I(Supp(v) ∩ Vl 6= ∅) is an indicator
function that takes value zero ifSupp(v) ∩ Vl = ∅ (i.e.,
all the beamforming coefficients at thel-th RRH are zeros,
indicating that the corresponding RRH is switched off) and
one otherwise, whereVl is defined asVl := {M

∑L−1
l=1 Nl +

1, . . . ,M
∑L

l=1 Nl}, andSupp(v) is the support of the vector
v. In (6), ηl > 0 is the drain inefficiency coefficient of the
radio frequency power amplifier with the typical value as
25%, andP c

l ≥ 0 in (7) is the relative fronthaul link power
consumption [1], which is the static power saving when both
the RRH and the corresponding fronthaul link are switched off.
For the passive optical fronthaul network [32],P c

l is given
by (P rrh

a,l + P fn
a,l) − (P rrh

s,l + P fn
s,l) with P rrh

a,l (P rrh
s,l ) and P fn

a,l

(P fn
s,l) as the power consumptions for thel-th RRH and the

l-th fronthaul link in the active (sleep) mode, respectively. The
typical values areP rrh

a,l = 6.8W , P rrh
s,l = 4.3W , P fn

a,l = 3.85W ,
P fn
s,l = 0.75W andP c

l = 5.6W [1], [32]. Note that the energy
consumption of the optical fronthaul links should depend on
the receiving periods and data transmission [32], which is a
function of the beamforming vectors. Given the target SINR
requirements(γ1, γ2, . . . , γK) for all the MUs, to design a
multicast green Cloud-RAN, we propose to minimize the
network power consumption subject to the QoS constraints
and the RRH transmit power constraints. Specifically, we have
the following QoS constraints

Γk,m(v) ≥ γk, ∀k ∈ Gm,m ∈ M, (8)

which can be rewritten as the following quadratic constraints

Fk,m(v) = γk

(

∑

i6=m
vH

i Θkvi + σ2
k

)

− vH

mΘkvm ≤ 0, (9)

for anyk ∈ Gm andm ∈ M, which are nonconvex. Therefore,
the network power minimization problem can be formulated
as

minimize
v∈V

p1(v) + p2(v)

subject to Fk,m(v) ≤ 0, ∀k ∈ Gm,m ∈ M, (10)

which is highly intractable due to the nonconvex combinatorial
composite objective and the nonconvex quadratic QoS con-
straints (9). When there are some RRHs needed to be switched
off to minimize the network power consumption, the solution
of problem (10) has thegroup sparsity structure [1]. That is,
all the beamforming coefficients iñvl, which forms a group
at thel-th RRH, are set to be zeros simultaneously if thel-th
RRH needs to be switched off.

Therefore, inspired by the fact that the solution of prob-
lem (10) has the group sparsity structure in the aggregative
beamforming vectorv, the weighted mixedℓ1/ℓ2-norm was
proposed in [1] to relax the combinatorial composite function
as the tightest convex surrogate to induce the group sparsity
structure in the solutionv to guide the RRH selection, defined
as

J (v) =
L
∑

l=1

ρl‖ṽl‖2, (11)

whereρl > 0 is the weight for the beamforming coefficients
group ṽl at RRH l.

To handle the nonconvex QoS constraints in (9), we pro-
pose to lift the problem to higher dimensions with variables
Qm = vmvH

m ∈ CN×N , ∀m, which will help to apply the
semidefinite relaxation (SDR) technique. However, we cannot
extract the variablesQm’s from the non-smooth mixedℓ1/ℓ2-
norm (11). Therefore, this convex relaxation approach cannot
be directly applied to solve the network power minimization
problem in multicast Cloud-RAN. Instead, to leverage the SDR
technique, we need to develop a new group sparsity inducing
approach with quadratic forms of the beamforming vectors,
which will be presented in Section III and form one major
contribution of this paper.

C. User Admission Control

With QoS constraints for potentially a large number of MUs
in the serving area, it may happen that the network power
minimization problem (10) is infeasible from time to time. In
such scenarios, the design problem will be to maximize the
user capacity (i.e., the maximum number of MUs that can be
supported) via user admission control [16], [17], while serving
these MUs with the minimum transmit power. While this
aspect is ignored in [1], it is critical for practical applications.
Mathematically, by adding auxiliary variablesxk ’s to the right-
hand side of the corresponding inequalities in (9), to maximize
the number of admitted MUs is equivalent to minimize the
number of non-zeroxk ’s [20, Section 11.4]. Therefore, the
user admission control problem can be formulated as the
following sparsity minimization problem,

minimize
v∈V,x∈R

K
+

‖x‖0

subject to Fk,m(v) ≤ xk, ∀k ∈ Gm,m ∈ M, (12)

where RK
+ represents theK-dimensional nonnegative real

vector. Once the admitted MUs are determined, coordinated
beamforming can then be applied to minimize the total trans-
mit power. The solutionx = [xk] of problem (12) has the
individual sparsity structure, i.e.,xk = 0 indicates that the
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k-th MU can be admitted. Therefore, the sparsity level will be
increased if more MUs can be admitted.

Observing that both the sparse optimization problems (10)
and (12) possess the same structure with nonconvex quadratic
constraints and combinatorial objectives, in this paper, we will
propose a unified way to handle them based on a smoothed
ℓp-minimization approach.

D. Problem Analysis

In this subsection, we analyze the unique challenges of
the network power minimization problem (10) and the user
admission control problem (12) in the context of multicast
Cloud-RAN. In particular, the differences from the previous
works [1], [11] will be highlighted.

1) Nonconvex Quadratic Constraints: The physical-layer
multicast beamforming problem [21] yields nonconvex
quadratic QoS constraints (9), while only unicast serviceswere
considered in [1], [11]. The SDR technique [33] proves to
be an effective way to obtain good approximate solutions to
these problems by lifting the quadratic constraints into higher
dimensions, which will also be adopted in this paper.

2) Combinatorial Objective Functions: Although the SDR
technique provides an efficient way to convexify the non-
convex quadratic QoS constraints in problems (10) and (12),
the inherent combinatorial objective functions still makethe
resulting problems highly intractable. While theℓ1-norm can
be adopted to relax theℓ0-norm in problem (12) after SDR,
which is also known as the sum-of-infeasibilities relaxation in
optimization theory [17], [20], the convex relaxation approach
based on the non-smooth mixedℓ1/ℓ2-norm [1] cannot be
applied to problem (10), as we cannot extract the variables
Qm’s after SDR.

Therefore, in this paper, we propose a new powerful ap-
proach to induce the sparsity structures in the solutions for
both problems (10) and (12), which is based on a smoothed
ℓp-norm [27]. The main advantage of this method is that it can
help develop group sparsity inducing penalties with quadratic
forms in the beamforming vectors, thereby leveraging the SDR
technique to relax the nonconvex quadratic QoS constraints
for problem (10). Furthermore, by adjusting the parameterp,
this approach has the potential to yield a better approximation
for the originalℓ0-norm based objectives, thereby providing
improved solutions for problems (10) and (12). The smoothed
ℓp-minimization framework will be presented in Section III,
while the iterative reweighted-ℓ2 algorithm will be developed
in Section IV to solve the smoothedℓp-minimization problem.

III. A S MOOTHED ℓp-M INIMIZATION FRAMEWORK FOR

NETWORK POWER M INIMIZATION WITH USERADMISSION

CONTROL

In this section, we first present the smoothedℓp-
minimization method as a unified way to induce sparsity
structures in the solutions of problems (10) and (12), thereby
providing guidelines for RRH selection and user admission.
After obtaining the active RRHs and admitted MUs by
performing the corresponding selection procedure, we will

minimize the total transmit power consumption for the size-
reduced network. The algorithmic advantages and performance
improvement of the proposed smoothedℓp-minimization based
framework will be revealed in the sequel.

A. Smoothed ℓp-Minimization for Sparsity Inducing

To promote sparse solutions, instead of applying the con-
vex ℓ1-minimization approach, we adopt a nonconvexℓp-
minimization (0 < p ≤ 1) approach to seek a tighter
approximation of theℓ0-norm in the objective functions in
problems (10) and (12) [27]. This is motivated by the fact that
theℓ0-norm‖z‖0 is the limit asp→ 0 of ‖z‖pp in the sense of
‖z‖0 = limp→0 ‖z‖pp = limp→0

∑ |zi|p. We thus adopt‖x‖pp
as the optimization objective function to seek sparser solutions.
Furthermore, to enable efficient algorithm design as well as
induce the quadratic forms in the resulting approximation
problems, we instead adopt the following smoothed version
of ‖z‖pp to induce sparsity:

fp(z; ǫ) :=

m
∑

i=1

(z2i + ǫ2)p/2, (13)

for z ∈ R
m and some small fixed regularizing parameter

ǫ > 0. Based on the smoothedℓp-norm (13), we will present
the algorithmic advantages of the smoothedℓp-minimization
approach in Section IV.

1) Smoothed ℓp-Minimization for Group Sparsity Inducing:
For network power minimization, to seek quadratic forms of
beamforming vectors in the objective functions to leveragethe
SDR technique for the non-convex quadratic QoS constraints,
we adopt the smoothedℓp-normfp(z; ǫ) (13) to induce group
sparsity in the aggregative beamforming vectorv for problem
(10), resulting the following optimization problem:

minimize
v∈V

L
∑

l=1

ρl(‖ṽl‖22 + ǫ2)p/2

subject to Fk,m(v) ≤ 0, ∀k ∈ Gm,m ∈ M. (14)

The induced (approximated) group sparse beamformers will
guide the RRH selection. The resulting problem (14) thus
becomes a quadratic optimization problem and enjoys the
algorithmic advantages.

2) Smoothed ℓp-Minimization for User Admission Control:
For user admission control, we adopt the smoothedℓp-norm
(13) to approximate the objective function in problem (12),
yielding the following optimization problem:

minimize
v∈V,x∈R

K
+

K
∑

k=1

(x2
k + ǫ2)p/2

subject to Fk,m(v) ≤ xk, ∀k ∈ Gm,m ∈ M. (15)

This will help to induce individual sparsity in the auxiliary
variablesx, thereby guiding the user admission.

Although the resulting optimization problems (14) and
(15) are still nonconvex, they can readily be solved by the
SDR technique and the MM algorithm. Specifically, we will
demonstrate that the nonconvex quadratic QoS constraints can
be convexified by the SDR technique in the next subsection.
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The resulting convex constrained smoothedℓp-minimization
problem will be solved by the MM algorithm, yielding an
iterative reweighted-ℓ2 algorithm, as will be presented in
Section IV.

B. SDR for Nonconvex Quadratic Constraints

In this part, we will demonstrate how to apply the SDR
technique to resolve the challenge of the nonconvex quadratic
QoS constraints in both problems (14) and (15). Specifically,
let Qm = vH

mvm ∈ CN×N with rank(Qm) = 1, ∀m ∈ M.
Therefore, the QoS constraint (9) can be rewritten as

Lk,m(Q) ≤ 0, ∀k ∈ Gm,m ∈M, (16)

with Lk,m(Q) given by

Lk,m(Q) = γk





∑

i6=m

Tr(ΘkQi) + σ2
k



− Tr(ΘkQm), (17)

whereQ = [Qm]Mm=1 and allQm’s are rank-one constrained.
The per-RRH transmit power constraints (2) can be rewritten
as

Q =

{

Qm ∈ C
N :

M
∑

m=1

Tr(ClmQm) ≤ Pl, ∀l ∈ L
}

, (18)

where Clm ∈ Rn×n is a block diagonal matrix with the
identity matrix INl

as thel-th main diagonal block square
matrix and zeros elsewhere.

Therefore, by dropping the rank-one constraints for all the
matricesQm’s based on the principle of the SDR technique,
problem (14) can be relaxed as

P : minimize
Q∈Q

L
∑

l=1

ρl

(

M
∑

m=1

Tr(ClmQm) + ǫ2

)p/2

subject to Lk,m(Q) ≤ 0, ∀k ∈ Gm,

Qm � 0, ∀m ∈M. (19)

Similarly, by dropping the rank-one constraints of all the
matricesQm’s, problem (15) can be relaxed as

D : minimize
Q∈Q,x∈R

K
+

K
∑

k=1

(x2
k + ǫ2)p/2

subject to Lk,m(Q) ≤ xk, ∀k ∈ Gm,

Qm � 0, ∀m ∈ M. (20)

Although problemsP and D are still nonconvex due to
the nonconvex objective functions, the resulting smoothedℓp-
minimization problems preserve the algorithmic advantages,
as will be presented in Section IV. In particular, an iterative
reweighted-ℓ2 algorithm will be developed in Section IV based
on the principle of the MM algorithm to find a stationary point
to the non-convex smoothedℓp-minimization problemsP and
D .

Smoothed     Minimization for Group Sparsity 

Inducing in the Beamforming Vector     

infeasible 

   RRH Selection 

by Solving 

Transmit Power 

Minimization 

Smoothed     Minimization for Individual 

Sparsity Inducing in Variables 

User Admission 

by Solving  
Transmit Power 

Minimization 

User Admission Control (Algorithm 2) 

Network Power Minimization (Algorithm 1) 

(Algorithm 3) 

(Algorithm 3 ) 

    

Fig. 2. Sparse optimization for network power minimizationand user
admission control in multicast Cloud-RAN.

C. A Sparse Optimization Framework for Network Power
Minimization with User Admission Control

Denote the solutions of problemsP andD asQ⋆ andx⋆,
respectively. Based on these induced (approximated) sparse
solutions, we propose a sparse optimization framework for
network power minimization and user admission control in
multicast Cloud-RAN. The main idea is illustrated in Fig. 2
and details will be explained in the following. In particular,
Algorithm 3 will be developed in Section IV, which yields a
KKT point for problemsP andD .

1) Network Power Minimization: If problemP is feasible,
once obtaining its solutionQ⋆, we can extract the group
sparsity structure information in the beamforming vectorv

based on the relation:‖ṽl‖2 =
√

∑M
m=1 Tr(ClmQm), which

will be zero if all the beamforming coefficients iñvl are zeros
simultaneously. By further incorporating system parameters to
improve the performance [1], we adopt the following RRH
ordering criteria to determine the priorities of the RRHs
that should be switched off to minimize the network power
consumption,

θl =

√

ηlκl

P c
l

(

∑M

m=1
Tr(ClmQ⋆

m)

)1/2

, ∀l ∈ L, (21)

whereκl =
∑K

k=1 ‖hkl‖22 is the channel gain from thel-th
RRH to all the MUs. The RRHs with a smaller parameter
θl will have a higher priority to be switched off. Intuitively,
the RRH with a lower channel power gainκl, lower drain
inefficiency efficiencyηl, lower beamforming gain‖ṽl‖2, and
higher relative fronthaul link power consumptionP c

l , should
have a higher priority to be switched off.

In this paper, we adopt a simple RRH selection procedure,
i.e., the bi-section method, to switch off RRHs. This method
was shown to provide good performance in [1]. Specifically,
based on the RRH ordering rule in (21), we sort the coefficients
in the ascending order:θπ1 ≤ θπ2 ≤ · · · ≤ θπL

to determine
the active RRHs. LetJ0 be the maximum number of RRHs
that can be switched off such that the remaining RRHs can
support the QoS requirements for all the MUs. To findJ0, in
each bi-section search iteration, we need to solve the following
size-reduced convex feasibility problems based on the SDR
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technique,

F (A[i]) : find Q
[i]
1 , . . . ,Q

[i]
M

subject to Lk,m({Q[i]
m}m∈M) ≤ 0, ∀k ∈ Gm,

Q[i]
m � 0,Q[i]

m ∈ Q[i], ∀m ∈M, (22)

where Q
[i]
m ∈ C

(
∑

l∈A[i] Nl)×(
∑

l∈A[i] Nl) with A[i] =
{πi+1, . . . , πL} as the active RRH set,Q[i] represents the
per-RRH transmit power constraints for the active RRHs in
A[i] and the QoS constraints are obtained after omitting the
channel coefficients corresponding to the left-out RRHs. If
problemF (A[i]) is feasible, it implies that a feasible solution
exists toF (A[J]) for all J < i. Likewise, if problemF (A[i])
is infeasible, it implies that no feasible solution exists for
any J > i. Therefore, determining the largestJ = J0 that
results in a feasible solution to problemF (A[J]) can be
accomplished by solving no more than(1 + ⌈log(1 + L)⌉)
such feasibility problems (22) via bi-section search [20].
Specifically, the set{0, 1, . . . , L} is guaranteed to containJ0,
i.e., J0 ∈ {0, 1, . . . , L} at each step. In each iteration, the set
is divided in two sets, i.e., bisected, so the length of the set
afterk iterations is2−k(L+1) with (L+1) as the length of the
initial set. It follows that exactly(1+⌈log2(1+L)⌉) iterations
are required before the bi-section algorithm terminates. This
procedure mainly reduces the relative fronthaul link power
consumption by switching off RRHs and the corresponding
fronthaul links.

Finally, denote the set of active RRHs asA⋆ =
{πJ0+1, . . . , πL}. To further reduce the network power con-
sumption, we need to solve the following size-reduced transmit
power minimization problem with|A⋆| RRHs and|N | MUs
based on the SDR technique,

PTP(A⋆,N ) : minimize
Q[J0]∈Q[J0]

∑

l∈A⋆

M
∑

m=1

1

ηl
Tr(ClmQ[J0]

m )

subject to Lk,m(Q[J0]) ≤ 0, ∀k ∈ Gm,

Q[J0]
m � 0, ∀m ∈M, (23)

which is a semidefinite programming (SDP) problem and can
be solved in polynomial time using the interior-point method.

The algorithm for solving the network power minimization
problem is presented in Algorithm 1.

2) User Admission Control: When problemP is infeasi-
ble, we need to perform user admission control to maximize
the user capacity. Specifically, letx⋆ be the solution to the
individual sparsity inducing optimization problemD . Observe
that xk represents the gap between the target SINR and the
achievable SINR for MUk. We thus propose to admit the MUs
with the smallestxi’s [17], [18]. We order the coefficients
in the descending order:xπ1 ≥ xπ2 ≥ · · · ≥ xN . The bi-
section search procedure will be adopted to find the maximum
number of admitted MUs. LetN0 be the minimum number of
MUs to be removed such that all the RRHs can support the
QoS requirements for all the remaining MUs. To determine the
value ofN0, a sequence of the following convex sized-reduced

Algorithm 1: Network Power Minimization
Step 0: Solve the group sparse inducing optimization
problemP (19) using Algorithm 3 in Section IV.

1) If it is infeasible,go to Algorithm 2 for user
admission control.

2) If it is feasible, obtain the solutionsQ⋆
m’s, calculate

the ordering criterion (21), and sort them in the
ascending order:θπ1 ≤ · · · ≤ θπL

, go to Step 1.
Step 1: Initialize Jlow = 0, Jup = L, i = 0.
Step 2: Repeat

1) Seti← ⌊Jlow+Jup

2 ⌋.
2) Solve problemF (A[i]) (22): if it is infeasible, set

Jup = i; otherwise, setJlow = i.

Step 3: Until Jup− Jlow = 1, obtainJ0 = Jlow and obtain
the optimal active RRH setA⋆ = {πJ0+1, . . . , πL}.
Step 4: Solve problemPTP(A⋆,N ) (23) to obtain the
multicast beamforming vectors for the active RRHs.
End

feasibility problems need to be solved,

F (S [i]) : find {Qm}m∈M[i]

subject to Lk,m({Qm}m∈M[i]) ≤ 0, ∀k ∈ Gm,

Qm � 0,Qm ∈ Q[i], ∀m ∈ M[i], (24)

where S [i] = {πi+1, . . . , πK} denotes the set of admitted
MUs, M[i] = {m : Gm ∩ S [i] 6= ∅} is the set of multicast
groups, andQ[i] represents the per-RRH transmit power con-
straints with the served multicast groupsM[i]. In this way,
the QoS constraints of the admitted MUs will be satisfied.

Finally, letS = {πN0+1, . . . , πK} be the admitted MUs. We
need to solve the same type of size-reduced transmit power
minimization problem (23) with|L| RRHs and|S⋆| MUs to
find the multicast transmit beamforming vectors for all the
admitted MUs. We denote this problem asPTP(L,S⋆).

The proposed user admission control algorithm is presented
in Algorithm 2.

Algorithm 2: User Admission Control
Step 0: Solve the individual sparse inducing optimization
problemD (20) using Algorithm 3 in Section IV. Obtain
the solutionx⋆ and sort the entries in the descending
order:xπ1 ≥ · · · ≥ xN , go to Step 1.
Step 1: Initialize Nlow = 0, Nup = K, i = 0.
Step 2: Repeat

1) Seti←
⌊

Nlow+Nup

2

⌋

.

2) Solve problemF (S [i]) (24): if it is feasible, set
Nup = i; otherwise, setNlow = i.

Step 3: Until Nup−Nlow = 1, obtainN0 = Nup and
obtain the admitted MU setS⋆ = {πN0+1, . . . , πK}.
Step 4: Solve problemPTP(L,S⋆) (23) to obtain the
multicast beamforming vectors for the admitted MUs.
End
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Remark 1 (Rank-One Approximation After SDR): The so-
lutions for the SDR based optimization problemsP, D ,
F (A[i]), F (S [i]) and PTP(A,S) may not be rank-one. If
the rank-one solutions are failed to be obtained, the Gaussian
randomization method [33] will be employed to obtain the
feasible rank-one approximate solution. Specifically, thecan-
didate multicast beamforming vectors are generated from the
solution of the SDR problems, and one is picked yielding a
feasible solution to the original problem with the minimum
value of the objective function. The feasibility for the original
problem is guaranteed by solving a sequence of multigroup
multicast power control problems with the fixed beamforming
directions via linear programming [33]. Please refer to [33,
Section IV] for more details on the Gaussian randomization
method and we adopt this method in our simulations to find
approximate rank-one feasible solutions. While the optimality
of this randomization method for general problems remains
unknown, it has been widely applied and shown to provide
good performance [21], [25].

3) Complexity Analysis and Discussions: To implement
Algorithm 1 and Algorithm 2, a sequence of SDP optimization
or feasibility problems (e.g.,P, D , F (A[i]), F (S [i]) and
PTP(A,S)) need to be solved. In particular, to find the active
RRH setA⋆ and admitted MU setS⋆, we need to solve
no more than(1 + ⌈log(1 + L)⌉) and (1 + ⌈log(1 + K)⌉)
SDP feasibility problemsF (A[i]) andF (S [i]), respectively.
In addition, to solve the SDP problemPTP(L,N ) (23) with
M matrix optimization variables of sizeN ×N and(K +L)
linear constraints, the interior-point method [20] will take
O(
√
MN log(1/ǫ)) iterations and costO(M3N6 + (K +

L)MN2) floating point operations to achieve an optimal
solution with accuracyǫ > 0. Therefore, this makes the
proposed network power minimization and user admission
algorithms difficult to scale to large problem sizes with a large
number of RRHs and/or MUs. To further improve the com-
putational efficiency of the proposed SDP based algorithms,
one promising approach is to apply the alternating direction
method of multipliers (ADMM) algorithm [34] by leveraging
parallelism in the cloud computing environment in the BBU
pool [12]. This is, however, an on-going research topic, and
we will leave it as our future work.

IV. I TERATIVE REWEIGHTED-ℓ2 ALGORITHM FOR

SMOOTHED ℓp-M INIMIZATION

In this section, we first develop an iterative reweighted-
ℓ2 algorithm to solve a general non-convex smoothedℓp-
minimization problem based on the principle of the MM
algorithm. We then present how to apply this algorithm to
solve the problemsP and D to induce sparsity structures
in the solutions, thereby guiding the RRH selection and user
admission.

A. Iterative Reweighted-ℓ2 Algorithm

Consider the following smoothedℓp-minimization problem,

Psm(ǫ) : minimize
z∈C

fp(z; ǫ) :=

m
∑

i=1

(z2i + ǫ2)p/2, (25)

whereC is an arbitrary convex set,z ∈ Rm andǫ > 0 is some
fixed regularizing parameter. In the following, we first prove
that the optimal solution of the smoothedℓp-minimization
problemPsm(ǫ) is also optimal for the original non-smooth
ℓp-minimization problem (i.e.,Psm(0)) when ǫ is small. We
then demonstrate the algorithmic advantages of the smoothness
in the procedure of developing the iterative reweighted-ℓ2
algorithm.

1) Optimality of Smoothing the ℓp-Norm: The set of KKT
points of problemPsm(ǫ) is given as

Ω(ǫ) = {z ∈ C : 0 ∈ ∇zfp(z; ǫ) +NC(z)}, (26)

whereNC(z) is the normal cone of a convex setC at point
z consisting of the outward normals to all hyperplanes that
supportC at z, i.e.,

NC(z) := {s : 〈s,x− z〉 ≤ 0, ∀x ∈ C}. (27)

Define the deviation of a given setZ1 from another setZ2 as
[35],

D(Z1,Z2) = sup
z1∈Z1

(

inf
z2∈Z2

‖z1 − z2‖
)

. (28)

We then have the following theorem on the relationship
between the smoothedℓp-minimization problemPsm(ǫ) and
the original non-smoothℓp-minimization problemPsm(0).

Theorem 1: Let Ωǫ be the set of KKT points of problem
Psm(ǫ). Then, we have

lim
ǫց0

D(Ω(ǫ),Ω(0)) = 0. (29)

Proof: Please refer to Appendix A for details.
This theorem indicates that any limit of the sequence of

KKT points of problemPsm(ǫ) is a KKT pair of problem
Psm(0) when ǫ is small enough. That is, at least a local
optimal solution can be achieved. In the sequel, we will focus
on finding a KKT point of problemPsm(ǫ) with a small
ǫ, yielding good approximations to the KKT points of the
ℓp-minimization problemPsm(0) to induce sparsity in the
solutions.

2) The MM Algorithm for the Smoothed ℓp-Minimization:
With the established asymptotic optimality, we then leverage
the principle of the MM algorithm to solve problem (25).
Basically, this algorithm generates the iterates{zn}∞n=1 by
successively minimizing upper boundsQ(z; z[n]) of the ob-
jective function fp(z; ǫ). The quality of the upper bounds
will control the convergence (rate) and optimality of the
resulting algorithms. Inspired by the results in the expectation-
maximization (EM) algorithm [36], [37], we adopt the up-
per bounds in the following proposition to approximate the
smoothedℓp-norm.

Proposition 1: Given the iteratez[n] at then-th iteration,
an upper bound for the objective function of the smoothed
ℓp-norm fp(z; ǫ) can be constructed as follows,

Q(z;ω[n]) :=

m
∑

i=1

ω
[n]
i z2i , (30)

where

ω
[n]
i =

p

2

[

(

z
[n]
i

)2

+ ǫ2
]

p

2−1

, ∀i = 1, . . . ,m. (31)
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From the weights given in (31), it is clear that, by adding the
regularizer parameterǫ > 0, we can avoid yielding infinite
values when somezi’s become zeros in the iterations.

Proof: Define the approximation error as

fp(z; ǫ)−Q(z;ω[n]) =

m
∑

i=1

[κ(z2i )− κ′((z
[n]
i )2)z2i ], (32)

whereκ(s) = (s+ ǫ2)p/2 with s ≥ 0. The sound property of
theQ-function (30) is that the approximation error (32) attains
its maximum atz = z

[n]. In particular, we only need to prove
that the functiong(s) = κ(s) − κ′(s[n])s with s ≥ 0 attains
the maximum ats = s[n]. This is true based on the facts that
g′(s[n]) = 0 andκ(s) is strictly concave.

Let z[n+1] be the minimizer of the upper bound function
Q(z;ω[n]) at then-th iteration, i.e.,

z
[n+1] := argmin

z∈C
Q(z;ω[n]). (33)

Based on Proposition 1 and (33), we have

fp(z
[n+1]; ǫ) = Q(z[n+1];ω[n]) + fp(z

[n+1]; ǫ)

−Q(z[n+1];ω[n])

≤ Q(z[n+1];ω[n]) + fp(z
[n]; ǫ)−Q(z[n];ω[n])

≤ Q(z[n];ω[n]) + fp(z
[n]; ǫ)−Q(z[n];ω[n])

= fp(z
[n]; ǫ), (34)

where the first inequality is based on the fact that function
(fp(z; ǫ)−Q(z;ω[n])) attains its maximum atz = z

[n], and
the second inequality follows from (33). Therefore, minimiz-
ing the upper bound, i.e., theQ-function in (30), can reduce
the objective functionfp(z; ǫ) successively.

Remark 2: In the context of the EM algorithm [38] for
computing the maximum likelihood estimator of latent variable
models, the functions−fp(z; ǫ) and −Q(z;ω[n]) can be
regarded as the log-likelihood and comparison functions (i.e.,
the lower bound of the log-likelihood), respectively [36].

The MM algorithm for the smoothedℓp-minimization prob-
lem is presented in Algorithm 3.

Algorithm 3: Iterative Reweighted-ℓ2 Algorithm

input : Initialize ω
[0] = (1, . . . , 1); I (the maximum

number of iterations)
Repeat

1) Solve problem

z
[n+1] := argmin

z∈C

m
∑

i=1

ω
[n]
i z2i . (35)

If it is feasible,go to 2); otherwise,stop and return
output 2.

2) Update the weights as

ω
[n+1]
i =

p

2

[

(

z
[n+1]
i

)2

+ ǫ2
]

p
2−1

, ∀i = 1, . . . ,m. (36)

Until convergence or attain the maximum iterations and
returnoutput 1.
output 1: z⋆; output 2: Infeasible.

The convergence of the iterates{z[n]}∞n=1 (35) is presented
in the following theorem.

Theorem 2: Let {z[n]}∞n=1 be the sequence generated by
the iterative reweighted-ℓ2 algorithm (35). Then, every limit
point z̄ of {z[n]}∞n=1 has the following properties

1) z̄ is a KKT point of problemPsm(ǫ) (25);
2) fp(z

[n]; ǫ) converges monotonically tofp(z⋆; ǫ) for
some KKT pointz⋆.

Proof: Please refer to Appendix B for details.
As noted in [39], without the convexity offp(z; ǫ), the KKT

point may be a local minimum or other point (e.g., a saddle
point). We also refer to these points as stationary points [39,
Page 194].

Remark 3: The algorithm consisting of the iterate (35)
accompanied with weights (36) is known as theiterative
reweighted least squares [29], [38], [40] in the fields of statis-
tics, machine learning and compressive sensing. In particular,
with a simple constraintC, the iterates often yield closed-
forms with better computational efficiency. For instance, for
the noiseless compressive sensing problem [29], the iterates
have closed-form solutions [29, (1.9)]. Therefore, this method
has a higher computational efficiency compared with the con-
ventional ℓ1-minimization approach for compressive sensing
[26], wherein a linear programming problem needs to be
solved via algorithms such as interior-point or barrier methods.
Furthermore, empirically, it was observed that the iterative
reweighted least squares method can improve the signal re-
covery capability by enhancing the sparsity for compressive
sensing over theℓ1-minimization method [29], [40].

In contrast to the existing works on the iterative reweighted
least squares methods, we provide a new perspective to
develop the iterative reweighted-ℓ2 algorithm to solve the
smoothedℓp-minimization problem with convergence guaran-
tees based on the principle of the MM algorithm. Furthermore,
the main motivation and advantages for developing the iterates
(35) is to induce the quadratic forms in the objective function
in problem P (19) to make it compliant with the SDR
technique, thereby inducing the group sparsity structure in the
multicast beamforming vectors via convex programming.

Remark 4: The advantages of the iterative reweighted-ℓ2
algorithm include the capability of enhancing the sparsity,
as well as inducing the quadratic forms for the multicast
beamforming vectors by inducing the quadratic formulations
(35). Note that the reweightedℓ1-minimization algorithm in
[30] can also induce the quadratic forms in the beamforming
vectors ṽl’s by rewriting the indicator function (7) as the
ℓ0-norm of the squaredℓ2-norm of the vectorsṽl’s, i.e.,
‖ṽl‖22. Furthermore, the key ideas of the convergence proof
of the iterative reweighted-ℓ2 algorithm (i.e., Algorithm 3),
by leveraging the EM theory to establish upper bounds in
the iterates of the MM algorithm, should be useful for other
iterative algorithms, e.g., [41].

B. Sparsity Inducing for RRH Selection and User Admission

In this subsection, we demonstrate how to apply the devel-
oped iterative reweighted-ℓ2 algorithm to solve the nonconvex
sparse optimization problemsP andD for RRH selection and
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3. Convergence of the iterative reweighted-

A. Convergence of the Iterative Reweighted-

a network with = 6 2 multicast groups with 2 single-antenna MUs in each group.

are spatially uncorrelated. For each MU , we set lk = 1 = 2 lk = 0

= 2 lk = 0 = 2. All the sets ’s are uniformly drawn from the RRH set

, . . . , L = Ω 3 illustrates the convergence of the iterative reweighted-

we set = 1. The three different channel realizations are generated uniformly and independently. For each

we simulate Algorithm 3 with the fixed initial point as [0] = (1, . . . , 1)

initial point [0]. The random initialization instances for the three channel realizations are given as

[0]
ch1 = [0

[0]
ch2 = [0

[0]
ch3 = [0 , respectively. In particular, this figure shows that the se-

of the objective functions converges monotonically, which confirms the convergence results in Theorem

2. In addition, it illustrates the robustness of the convergence of the reweighted-

it also demonstrates the fast convergence rate of the proposed

in the simulated setting. Empirically, the iterative reweighted- verges in 20 iterations on

average in all the simulated channels in this paper.

Fig. 3. Convergence of the iterative reweighted-ℓ2 algorithm for the smoothed
ℓp-minimization problemP with different channel realizations and initial
points.

user admission, respectively. In this way, we can find a KKT
point for the nonconvex smoothedℓp-minimization problems
P andD with convex constraints. Specifically, letΩ := {Q ∈
Q : Lk,m(Q) ≤ 0,Qm � 0, ∀k ∈ Gm,m ∈ M} be the
set of constraints in problemP. The iterative reweighted-ℓ2
algorithm for problemP generates a sequence{Q[n]}∞n=1 as
follows:

P
[n]
SDP : minimize

Q∈Ω

L
∑

l=1

ω
[n]
l

(

M
∑

m=1

Tr(ClmQm)

)

, (37)

with the weights as

ω
[n]
l =

ρlp

2

[

∑M

m=1
Tr
(

ClmQ[n]
m

)

+ ǫ2
]

p

2−1

, ∀l ∈ L.(38)

Applying Algorithm 3 to problemD is straightforward.

V. SIMULATION RESULTS

In this section, we will simulate the proposed algorithms
based on the iterative reweighted-ℓ2 algorithm (IR2A) for
network power minimization and user admission control in
multicast Cloud-RAN. We set the parameters as follows:
Pl = 1W, ∀l; P c

l = [5.6+l−1]W, ∀l; ηl = 1/4, ∀l; σk = 1, ∀k.
Denote the channel propagation from thel-th RRH and thek-
th MU as hkl = Dklgkl with Dkl as the large-scale fading
coefficients andgkl ∈ CN (0, I) as the small-scale fading
coefficients. We setǫ = 10−3 in the iterative reweighted-
ℓ2 algorithm and the algorithm will terminate if either the
number of iterations exceeds 30 or the difference between the
objective values of consecutive iterations is less than10−3.
The pre-determined number of randomization is set to be 50
in the Gaussian randomization method.

A. Convergence of the Iterative Reweighted-ℓ2 Algorithm

Consider a network withL = 6 2-antenna RRHs and 2
multicast groups with 2 single-antenna MUs in each group.
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B. Network Power Minimization

a network with = 12 5 multicast groups with 2 single-antenna MUs in each

For each MU , we set lk = 1 = 4 lk

= 4 lk = 0 = 4. All the sets ’s are uniformly drawn from

, . . . , L = Ω. The proposed iterative reweighted- is compared with

reweighted /ℓ in which, the objective function in problem is replaced by

=1
max max max , n i, j as the i, j in . And the RRHs with

Fig. 4. Average network power consumption versus target SINR with
different algorithms.

The channels are spatially uncorrelated. For each MUk, we
set Dlk = 1, ∀l ∈ Ω1 with |Ω1| = 2; Dlk = 0.7, ∀l ∈ Ω2

with |Ω2| = 2; Dlk = 0.5, ∀l ∈ Ω3 with |Ω3| = 2. All
the setsΩi’s are uniformly drawn from the RRH setL =
{1, . . . , L} with ∪Ωi = Ω. Fig. 3 illustrates the convergence
of the iterative reweighted-ℓ2 algorithm for the smoothedℓp-
minimization problemP with different initial points and
different channel realizations. Specifically, we setp = 1. The
three different channel realizations are generated uniformly
and independently. For each channel realization, we simulate
Algorithm 3 with the fixed initial point asω[0] = (1, . . . , 1)
and randomly generated initial pointω[0]. The random initial-
ization instances for the three channel realizations are given
as ω

[0]
ch1 = [0.1389, 0.2028, 0.1987, 0.6038, 0.2722, 0.1988],

ω
[0]
ch2 = [0.5657, 0.7165, 0.5113, 0.7764, 0.4893, 0.1859],

ω
[0]
ch3 = [0.4093, 0.4635, 0.6109, 0.0712, 0.3143, 0.6084], re-

spectively. In particular, this figure shows that the sequence
of the objective functions converges monotonically, which
confirms the convergence results in Theorem 2. In addition, it
illustrates the robustness of the convergence of the reweighted-
ℓ2 algorithm with different initial points and different problem
parameters. Furthermore, it also demonstrates the fast conver-
gence rate of the proposed algorithm in the simulated setting.
Empirically, the iterative reweighted-ℓ2 algorithm converges in
20 iterations on average in all the simulated channels in this
paper.

B. Network Power Minimization

Consider a network withL = 12 2-antenna RRHs and 5
multicast groups with 2 single-antenna MUs in each group.
The channels are spatially uncorrelated. For each MUk, we
setDlk = 1, ∀l ∈ Ω1 with |Ω1| = 4; Dlk = 0.7, ∀l ∈ Ω2 with
|Ω2| = 4; Dlk = 0.5, ∀l ∈ Ω3 with |Ω3| = 4. All the setsΩi’s
are uniformly drawn from the RRH setL = {1, . . . , L} with
∪Ωi = Ω. The proposed iterative reweighted-ℓ2 algorithm is
compared with the reweightedℓ1/ℓ∞-norm based algorithm
[25], in which, the objective function in problemP is
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TABLE I
THE AVERAGE NUMBER OF ACTIVE RRHS WITH DIFFERENT

ALGORITHMS

Target SINR [dB] 0 2 4 6 8

Coordinated Beamforming 12.00 12.00 12.00 12.00 12.00

ℓ1/ℓ∞-Norm Algorithm 4.39 5.43 6.70 8.35 10.35

IR2A with p = 1 4.74 5.43 6.65 8.22 10.13

IR2A with p = 0.5 4.61 5.30 6.65 8.22 10.17

Exhaustive Search 4.43 5.30 6.39 8.04 10.09

TABLE II
THE AVERAGE RELATIVE FRONTHAUL L INKS POWER CONSUMPTION

WITH DIFFERENTALGORITHMS

Target SINR [dB] 0 2 4 6 8

Coordinated Beamforming 102.0 102.0 102.0 102.0 102.0

ℓ1/ℓ∞-Norm Algorithm 30.65 40.52 53.74 69.70 87.48

IR2A with p = 1 24.57 29.91 40.26 56.30 78.04

IR2A with p = 0.5 24.13 29.39 40.43 56.30 78.87

Exhaustive Search 22.96 29.65 39.00 54.78 77.22

TABLE III
THE AVERAGE TOTAL TRANSMIT POWER CONSUMPTION WITH

DIFFERENTALGORITHMS

Target SINR [dB] 0 2 4 6 8

Coordinated Beamforming 4.26 7.07 11.74 19.42 32.24

ℓ1/ℓ∞-Norm Algorithm 12.45 16.53 21.49 28.20 37.46

IR2A with p = 1 11.69 17.05 21.94 27.46 37.10

IR2A with p = 0.5 11.97 17.36 21.79 27.46 36.85

Exhaustive Search 12.59 16.91 22.62 28.33 37.53

replaced by
∑L

l1=1

∑L
l2
maxm maxnl1

maxnl2
|Qm(nl1 , nl2)|

with Qm(i, j) as the(i, j)-th entry inQm. And the RRHs with
smaller beamforming beamforming coefficients (measured by
ℓ∞-norm) have higher priorities to be switched off. Fig. 4
demonstrates the average network power consumption with
different target SINRs using different algorithms. Each point of
the simulation results is averaged over 50 randomly generated
channel realizations for which problemP is feasible. From
this figure, we can see that the proposed iterative reweighted-
ℓ2 algorithm can achieve near-optimal performance compared
with the exhaustive search algorithm (i.e., solving problem
(10) with convexified QoS constraints based on the SDR
technique). It yields lower network power consumption com-
pared with the existingℓ1/ℓ∞-norm based algorithm [25],
while the coordinated multicast beamforming algorithm [13],
[21] with all the RRHs active has the highest network power
consumption. Note that the number of SDP problemsF (A[i])
(22) needed to be solved growslogarithmically with L for
the proposed network power minimization algorithm and the
previousℓ1/ℓ∞-norm based algorithm [25]. But the number of
SDP problems (22) to be solved for exhaustive search grows
exponentially withL. Although the coordinated beamform-
ing algorithm has the lowest computational complexity by
only solving the total transmit power minimization problem
PTP(L,N ) (23) with all the RRHs active, it yields the highest
network power consumption. Our proposed algorithm thus
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at the RRHs are set to be zeros simultaneously. It also shows that

ve reweighted- of enhancing sparsity, thereby switching off more

/ℓ except for very low SNR. Table II shows that the proposed

ve reweighted- ve much lower fronthaul network power consumption and attain similar

values with exhaustive search. With all the RRHs being active, the coordinated multicast beamforming algorithm

power consumption and the lowest transmit power consumption as shown

in Table II and Table III, respectively. This indicates that it is critical to take the relative fronthaul link power

a green Cloud-RAN. exhaustive search may yield

power consumption in some scenarios as shown in Table III, overall it achieves the lowest network

power consumption as much lower relative fronthaul network power consumption can be attained as indicated in

Table II. Furthermore, we can see that, in the simulated settings, different values of in the proposed iterative

reweighted- ve near-optimal performance compared with the

exhaustive search.

Fig. 5. Average number of admitted MUs versus target SINR with different
algorithms.

achieves a good trade-off between computational complexity
and performance.

Tables I-III show the corresponding average number of
active RRHs, average fronthaul network power consumption
and average total transmit power consumption, respectively.
Specifically, Table I confirms the existence of the group spar-
sity pattern in the aggregative multicast beamforming vector.
That is, the switched off RRHs indicate that all the beam-
forming coefficients at the RRHs are set to be zeros simulta-
neously. It also shows that the proposed iterative reweighted-
ℓ2 algorithm has the capability of enhancing sparsity, thereby
switching off more RRHs compared with theℓ1/ℓ∞-norm
based algorithm except for very low SNR. Table II shows
that the proposed iterative reweighted-ℓ2 algorithm can achieve
much lower fronthaul network power consumption and attain
similar values with exhaustive search. With all the RRHs
being active, the coordinated multicast beamforming algorithm
yields the highest fronthaul network power consumption and
the lowest transmit power consumption as shown in Table II
and Table III, respectively. This indicates that it is critical
to take the relative fronthaul link power consumption into
consideration when designing a green Cloud-RAN. Although
the exhaustive search may yield higher transmit power con-
sumption in some scenarios as shown in Table III, overall
it achieves the lowest network power consumption as much
lower relative fronthaul network power consumption can be
attained as indicated in Table II. Furthermore, we can see that,
in the simulated settings, different values ofp in the proposed
iterative reweighted-ℓ2 algorithm yield similar performance,
while all achieve near-optimal performance compared with the
exhaustive search.

C. User Admission Control

Consider a network withL = 6 2-antenna RRHs and 4
multicast groups with 2 single-antenna MUs in each group.
The channel model is the same as Section V-A. The proposed
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iterative reweighted-ℓ2 algorithm based user admission control
algorithm is compared with the existing convex relaxation
approach (i.e.. the multicast membership deflation by relax-
ation (MDR) [16]) and the exhaustive search. The simulation
results are illustrated in Fig.5 for the average number of
admitted MUs. Each point of the simulation results is averaged
over 200 randomly generated channel realizations for which
problemP is infeasible. From Fig. 5, we can see that the
proposed iterative reweighted-ℓ2 algorithm outperforms the
existing MDR approach [16]. In particular, the performanceof
the iterative reweighted-ℓ2 algorithm is almost the same with
different values ofp and achieves near-optimal performance
compared to the exhaustive search via solving problem (12)
with convexified QoS constraints based on the SDR technique.
Although all the simulated results demonstrate that the perfor-
mances are robust to the parameterp, it is very interesting
to theoretically identify the typical scenarios, where smaller
values ofp will yield much better performances.

VI. CONCLUSIONS ANDFUTURE WORKS

This paper developed a sparse optimization framework for
network power minimization and user admission in green
Cloud-RAN with multicast beamforming. A smoothedℓp-
minimization method was proposed to induce the sparsity
structures in the solutions, thereby guiding the RRH selection
and user admission. This approach has the advantages in terms
of promoting sparsity and assisting algorithmic design by
introducing the quadratic forms in the group sparse inducing
penalty. In particular, by leveraging the MM algorithm and
the SDR technique, we developed an iterative reweighted-ℓ2
algorithm with convergence and optimality guarantees (i.e.,
KKT points) to solve the resulting smoothedℓp-minimization
problemsP andD with convex constraints. The effectiveness
of the proposed algorithms was demonstrated via simulations
for network power minimization and user admission control.

Several future directions are listed as follows:

• Although the proposed methods only need to solve a se-
quence of convex optimization problems, the complexity
of solving the large-scale SDP problem using the interior-
point method is prohibitively high. One promising option
is to use the first-order method (e.g., the operator splitting
method [42], [12]) by leveraging the parallel computing
platform in the BBU pool [5], [43], which will require
further investigation.

• It is desirable to establish the optimality and perform
probabilistic analysis for the iterative reweighted-ℓ2 al-
gorithm in the context of inducing group sparsity in
the multicast beamforming vectors. However, with the
complicated constraints set, this becomes much more
challenging compared with the compressive sensing prob-
lems with simple constraints (e.g., affine constraints) [29].
It is also interesting to apply this algorithm to solve other
mixed combinatorial optimization problems in wireless
networks, e.g., wireless caching problems [44].

• It is interesting to apply the proposed smoothedℓp-
minimization approach with the iterative reweighted-ℓ2
algorithm in the scenarios with CSI uncertainty. The only

requirement is that the resulting non-convex constraints
due to the CSI uncertainty can be convexified [45], [46].
It is also interesting but challenging to characterize the
performance degradations due to CSI acquisition errors
in multicast Cloud-RANs [47], [48].

APPENDIX A
PROOF OFTHEOREM 1

We first need to prove that

lim sup
ǫց0

Ω(ǫ) ⊂ Ω(0), (39)

wherelim supǫց0 Ω(ǫ) is defined as [49, Page 152]

lim sup
ǫց0

Ω(ǫ) :=
⋃

ǫ[n]ց0

lim sup
n→∞

Ω(ǫ[n])

= {z̄|∃ǫ[n] ց 0, ∃z[n] → z̄}, (40)

wherez[n] ∈ Ω(ǫ[n]). Therefore, for anȳz ∈ lim supǫց0 Ω(ǫ),
there existsz[n] ∈ Ω(ǫ[n]) such thatz[n] → z̄ andǫ[n] ց 0. To
prove (39), we only need to prove thatz̄ ∈ Ω(0). Specifically,
z
[n] ∈ Ω(ǫ[n]) indicates that

0 ∈ ∇zfp(z
[n]; ǫ[n]) +NC(z

[n]). (41)

As fp(z; ǫ) is continuously differentiable in bothz andǫ, we
have

lim
n→∞

∇zfp(z
[n]; ǫ[n]) = lim

z
[n]→z̄

lim
ǫ[n]ց0

∇zfp(z
[n]; ǫ[n])

= ∇zfp(z̄; 0). (42)

Furthermore, based on results for the limits of normal vectors
in [49, Proposition 6.6], we have

lim sup
z
[n]→z̄

NC(z
[n]) = NC(z̄). (43)

Specifically, if z[n] → z̄, s[n] ∈ NC(z
[n]) ands[n] → s, then

s ∈ NC(z̄). That is, the set{(z, s)|s ∈ NC(z)} is closed
relative toC×Rm. Based on (42) and (43) and takingn→∞
in (41), we thus prove (39). Based on [50, Theorem 4], we
complete the proof for (29).

APPENDIX B
CONVERGENCE OF THEITERATIVE REWEIGHTED-ℓ2

ALGORITHM

1) We will show that any convergent subsequence
{z[nk]}∞k=1 of {z[n]}∞n=1 satisfies the definition of the KKT
points of problemPsm(ǫ) (26). Specifically, letz[nk] → z̄ be
one such convergent subsequence with

lim
k→∞

z
[nk+1] = lim

k→∞
z
[nk] = z̄. (44)

As

z
[nk+1] := argmin

z∈C
Q(z;ω[nk]), (45)

which is a convex optimization problem, the KKT condition
holds atz[nk+1], i.e.,

0 ∈ ∇zQ(z[nk+1];ω[nk]) +NC(z
[nk+1]). (46)
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Based on [49, Proposition 6.6] and (44), we have

lim sup
z
[nk+1]→z̄

NC(z
[nk+1]) = NC(z̄). (47)

Furthermore, based on (44), we also have

lim
k→∞

∇zQ(z[nk+1];ω[nk]) = lim
k→∞

2

m
∑

i=1

ω[nk]znk+1
i

= lim
k→∞

m
∑

i=1

pz[nk+1]

[

(

z
[nk]
i

)2

+ ǫ2
]1− p

2

= ∇zfp(z̄; ǫ). (48)

Therefore, takingk →∞ in (46), we have

0 ∈ ∇zQ(z̄; ω̄) +NC(z̄), (49)

which indicates that̄z is a KKT point of problemPsm(ǫ). We
thus complete the proof.

2) As fp(z; ǫ) is continuous andC is compact, we have
the fact that the limit of the sequencefp(z[n]; ǫ) is finite.
Furthermore, we havefp(z[n+1]; ǫ) ≤ fp(z

[n]; ǫ) according
to (34). Based on the results in 1), we complete the proof.
Note that a similar result was presented in [37] by leveraging
the results in the EM algorithm theory.
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