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Abstract—The cloud radio access network (Cloud-RAN) has
recently been proposed as one cost-effective and energyieent
technique for 5G wireless networks. By moving the signal
processing functionality to a single baseband unit (BBU) pal,
centralized signal processing and resource allocation arenabled
in Cloud-RAN, thereby providing the promise of improving
the energy efficiency via effective network adaptation and ri-
terference management. In this paper, we propose a holistic
sparse optimization framework to design green Cloud-RAN
by taking into consideration the power consumption of the
fronthaul links, multicast services, as well as user admissn
control. Specifically, we first identify the sparsity structures in
the solutions of both the network power minimization and use
admission control problems, which call for adaptive remoteradio
head (RRH) selection and user admission. However, finding th
optimal sparsity structures turns out to be NP-hard, with the
coupled challenges of thefp-norm based objective functions
and the nonconvex quadratic QoS constraints due to multicas
beamforming. In contrast to the previous works on convex but
non-smooth sparsity inducing approaches, e.g., the grouparse
beamforming algorithm based on the mixed¢;/¢2-norm relax-
ation [1], we adopt the nonconvex but smoothed,-minimization
(0 < p < 1) approach to promote sparsity in the multicast
setting, thereby enabling efficient algorithm design basedon
the principle of the majorization-minimization (MM) algor ithm
and the semidefinite relaxation (SDR) technique. In particlar,
an iterative reweighted+> algorithm is developed, which will
converge to a Karush-Kuhn-Tucker (KKT) point of the relaxed
smoothed ¢,-minimization problem from the SDR technique.
We illustrate the effectiveness of the proposed algorithmsvith
extensive simulations for network power minimization and wser
admission control in multicast Cloud-RAN.

Index Terms—5G networks, green communications, Cloud-
RAN, multicast beamforming, sparse optimization, semidefiite
relaxation, smoothed ¢,-minimization, and user admission con-
trol.

Manuscript received xxx; revised xxx; accepted xxx. Datgpoblication
xxx; date of current version xxx. This work is partially supfed by the
Hong Kong Research Grant Council under Grant No. 1620025tiohal
Basic Research Program of China (973 Program) No. 2013CERBENSFC
Excellent Young Investigator Award No. 61322111, OpenniRgsearch
Funding of State Key Lab of Networking and Switching Teclogyl National
Nature Science Foundation of China (NSFC) under Grant Né06249, and
Specialized Research Fund for the Doctoral Program of Hidfdcation
(SRFDP) under Grant No. 20130002120001.

Y. Shi is with the School of Information Science and Techgg|oShang-
haiTech University, Shanghai, China (e-mail: shiym@shaitgch.edu.cn).

J. Zhang and K. B. Letaief are with the Department of Eleétrcand
Computer Engineering, Hong Kong University of Science aedhfiology,
Hong Kong (e-mail:{eejzhang, eekhalé¢@ust.hk).

J. Cheng, B. Bai
Electronic Engineering, Tsinghua University, Beijing, i@h (e-mail:
cjk13@mails.tsinghual.edu.cfgebobai, wchef@tsinghua.edu.cn).

and W. Chen are with the Department of

I. INTRODUCTION

The great success of wireless industry is driving the pro-
posal of new services and innovative applications, sucmas |
ternet of Things (loT) and mobile Cyber-Physical applicas,
which yield an exponential growth of wireless traffic with
billions of connected devices. To handle the enormous raobil
data traffic, network densification and heterogeneity sttgpo
by various radio access technologies (e.g., massive MIMO
[2] and millimeter-wave communicationis|[3]) have become an
irreversible trend in 5G wireless networks [4]. Howeveisth
will have a profound impact and bring formidable challenges
to the design of 5G wireless communication systems in terms
of energy efficiency, capital expenditure (CAPEX), opergti
expenditure (OPEX), and interference management [5]. In
particular, the energy consumption will become prohileitjv
high in such dense wireless networks in the era of mobile data
deluge. Therefore, to accommodate the upcoming diversified
and high-volume data services in a cost-effective and grerg
efficient way, a paradigm shift is required in the design of 5G
wireless networks.

By leveraging the cloud computing technology [6], the
cloud radio access network (Cloud-RAN) [7].] [8] is a dis-
ruptive technology to address the key challenges of energy
efficiency in 5G wireless networks. Specifically, by moving
the baseband units (BBUs) into a single BBU pool (i.e., a
cloud data center) with shared computation resourcesglseal
and parallel signal processing, coordinated resourceatitm
and cooperative interference management algorithins19], [
can be enabled among a large number of radio access points,
thereby significantly improving the energy efficiency [A1]
and spectral efficiency [12]. As the conventional compastba
stations are replaced by low-cost and low-power remoteoradi
heads (RRHSs), which are connected to the BBU pool through
high-capacity and low-latency fronthaul links, Cloud-RAN
provides a cost-effective and energy-efficient way to dgnsi
the radio access networks [5].

While Cloud-RAN has a great potential to reduce the energy
consumption of each RRH, with additional fronthaul link
components and dense deployment of RRHs, new challenges
arise for designing green Cloud-RAN. In particular, instea
of only minimizing the total transmit power consumption via
coordinated beamformin@ [113], the network power consump-
tion consisting of the fronthaul link power consumption and
the RRH power consumption should be adopted as the perfor-
mance metric for designing green Cloud-RAN [1].][11],][14].
To minimize the network power consumption, a group sparse
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beamforming framework was proposed|in [1] to adaptively septimization problems in multicast Cloud-RAN, we need to
lect the active RRHs and the corresponding fronthaul liriks vaddress the following coupled challenges in a unified way:

controlling the group sparsity structures of the beamfagni , Nonconvex quadratic QoS constraints due to multicast
vectors. Such an idea of exploiting sparsity structureshan t transmission;

solutions has also demonstrated its effectiveness inrglvi , Combinatorial objective functions for RRH selection and
other mixed combinatorial optimization problems in Cloud- yser admission.

RAN, e.g., the data assignment problem![15] and the joiff harticular, we summarize the major contributions afot:
uplink and downlink network power minimization problem 1) A sparse optimization framework based on the
[11]. T . i
. . . norm minimization is proposed to design a multicast
Although network adaption by selecting the active RRHs green Cloud-RAN by apdagtive RRH sele?ction and user

provides a promising way to minimize the network power - ) . .
) L - o . admission via controlling the sparsity structures of the
consumption, it is critical to maximize the user capacity solutions

(i.e., the number of admitted users) when the network power . . : L
T o : . : . 2) To address the combinatorial challenges in the objective
minimization problem is infeasible[ [16],[ [17]/ [18]. This .
functions, we propose a nonconvex but smootligd

infeasibility issue may often occur in the scenarios with a Lo . :
large number of mobile devices requesting high data rates or minimization approach o induce the sparsity structures
in the solutions. The main advantage of this method is

some users with unfavorable channel conditions. Furthezmo : . .
o : : ) : o : that it helps develop the group sparse inducing penalty
exploiting the benefits of integrating diversified unicaptia . . . . -
) . . . with quadratic forms in the multicast beamforming vec-
multicast services [19] has been well recognized as a promis o S )
: : g, . tors. Therefore, the objective function in the resulting
ing way to improve the energy efficiency and user capacity, rouD sparse inducing optimization problem is compat-
and thus multicast beamforming should be incorporated in group sSp g op lon p . P
Cloud-RAN. From the system design perspective, to design ible with the nonconvex quadratic QoS constraints. The
' ’ SDR technique can then be adopted to solve the resulting

a green Cloud-RAN with multicast transmission, a holistic nonconvex quadratic aroun sparse inducing optimization
approach is needed to enable network adaptation for RRH problem q group sp gop

selection and user admission in a unified way. 3) To address the challenges of the nonconvex smoothed
Unfortunately, such design problems fall into the category L . 9 .
objective functions and the nonconvex quadratic QoS

of highly complicated mixed combinatorial optimizatioropr : . . .

. : . constraints, we propose an iterative reweightedl-
lems. The key observation to address this challenge is that orithm to solve the resulting nonconvex smootkied
the network power minimization and user admission control ?ninimization roblems basegd on the princiole cﬁ‘ the
can be achieved by adaptively selecting the active RRHs and MM al orithmpand the SDR techniaue pThis F;I orithm
admitting the mobile users (MUs) via controlling the spgrsi : 9 que. 9

is proven to converge to a KKT point of the relaxed

structures in the corresponding solutions. Specificatly tfie Y
L ; ; smoothed/,,-minimization problems over the convex
network power minimization problem, selecting active RRHs ) . :
constraint set using the SDR technique.

is equivalent to controlling the group sparsity structurehe . . X .
d . : 9 group sp Y . 4) Simulation results will demonstrate the effectiveness o
aggregative multicast beamforming vector [1]. That is,tlaél . L
the proposed algorithms to minimize the network power

beamforming coefficients of a particular RRH that is switthe LA L : .
minimization and maximize the user capacity, and their

off need to be set to zeros simultaneously. For the user erformance aains compared with the existing convex
admission control problem that is needed when the network P nance g P . 9
approximation approaches. In particular, the proposed

power minimization problem is infeasible, maximizing the . . : )
number of admitted users is equivalent to minimizing the allgonthms can achieve near-optimal performance in the
number of violated QoS constraints_[20]. Mathematically, simulated settings.
this is the same as minimizing the sparsity of the auxiliary
vector indicating the violations of the QoS constraintss@&h B. Related Works

on these observations, we will thus formulate both designSparse optimization by exploiting sparsity structureshef t
problems as sparse optimization problems based orf¢he solutions has been proven to be very powerful to solve variou
norm minimization in a unified framework, based on whichard optimization problems in machine learning, compuessi

efficient algorithms will be developed. sensing and high-dimensional statistiCs|[22]. This apgmoa
o has recently received enormous attentions in designing-wir
A. Contributions less networks, i.e., the group sparse beamforming approach

Based on the above discussions, we propose a spdmenetwork adaption[]1],[[11],[[23], and data assignment
optimization framework to design a multicast green Cloudn wireless backhaul networks [15], [24]. In particulargth
RAN as shown in Fig[d2, thereby enabling adaptive RREonvex relaxation approaches, e.g., theminimization [17],
selection and user admission. However, in contrast to tthe mixed?; /¢>-norm [1] and the mixed; /¢..-norm [25],
previous works on the multicast beamforming problem| [2Xjave become popular due to the computational efficiency as
with convex objectives but nonconvex QoS constraints aad tivell as performance guarantees in some scenarigs [26].
group sparse beamforming probleim [1] with convex QoS con-To further improve the performance, there has been a great
straints but nonconvex objective functions in unicast @louinterest in applying nonconvex approaches in sparse cgdimi
RAN, to design efficient algorithms for the resulting sparstion [27], [28], [29], [30] by enhancing sparsity. In padiar,



m Baseband Unit Pool m is equipped with V; antennas, as shown in Fig] 1. Let
3 A W L ={1,...,L} and NV = {1,...,K} denote the sets of
' all the RRHs and all the MUs, respectively. We assume
that the K MUs form M non-overlapping and non-empty
multicast groups, which are denoted{@s, Go, . .., Gas } with
U;G; =N andg; NG, = 0 with G,, as the set of MUs in the
m-th multicast group. Letm = {1, ..., M} be the set of all
the multicast groups. We consider the downlink transmigsio
and the centralized signal processing is performed at thd BB
pool [1], [7].
The propagation channel from ti¢h RRH to thek-th MU
is denoted a&y; € Ct,VEk, 1. Let vy, € C™ be the transmit
Fig. 1. The architecture of multicast Cloud-RAN, in whicl, the RRHs beamforming vector from théth RRH to MUs in multicast

are connected to a BBU pool through high-capacity and lderizy optical groupG,,. Then the transmit signal at tHeth RRH is given
fronthaul links. All the MUs in the same dashed circle form altmast group

and request the same message. To enable full cooperatiamgaatithe RRHSs, by
it is assumed that all the user data and channel state infiom¢CSI) are M

available at the BBU pool.
X = Z Vim5Sm, Vl € L, (1)

m=1

it is observed that the nonconvéy-minimization approach where s,, € C is the encoded information symbol for the
performs better than the traditional convéxminimization multicast groupm with E[|s,,|?] = 1. Assume that all the
especially when the underlying model is very spais€ [28RHs have their own transmit power constraints, which form
Motivated by this result, we adopt thg-minimization ap- the following feasible set of the beamforming vecteis,’s,
proach to closely approximate the resultidgnorm based

sparse optimization problems for multicast green CloudNRA V— {
Furthermore, to deal with the unique challenges with the

coupled nonconvex constraints and combinatorial objestiv . . .
thereby enabling efficient algorithm design, we will use Wherer: > 0is the maximum transmit power of ttigh RRH.
smoothed version of thé,-minimization approach to induce 1€ recéived signajy.,, € C at MU k in them-th multicast
the sparsity structures in the solutions. Note that thetiegis 9rOUP IS given by

work on the group sparse beamforming [1] can only handle

problems with a combinatorial objective and convex seconde L L

order cone QoS constraints in unicast Cloud-RAN, and thug/km = ZthVzmsm +Z Zh;'jmisi +ng, Yk € G, (3)
cannot be directly applied in the setting of multicast Cloud =1 i#m 1=1

RAN with nonconvex QoS constraints.

“9 & Mobile User

é Remote Radio Head

4= == Fronthaul Link

M
Vim € CN Y " lvim|l3 < PV € .c} . Q)

m=1

whereny, ~ CN(0,03) is the additive Gaussian noise at MU
o k. We assume that,,’s andn’s are mutually independent and
C. Organization all the users apply single user detection. Therefore, theasbi
The remainder of the paper is organized as follows. Se@~interference-plus-noise ratio (SINR) of MkJin multicast
tion [l presents the system model and problem formulationgroupm is given by
Section[l presents an algorithmic framework for network
power m|n|m|zat|o_n _ar_ld user adm!SS|or_1 control_ based on Dhm (V) = e =,k € G, (4)
the smoothed/,-minimization. The iterative reweightet3- Zi;ﬁm v; Orvi + 0y,
algorithm is developed in Section lIV. Simulation results
will be demonstrated in Sectidnl V. Finally, conclusions an

vi@kvm

here ®, = hyhi! € CN*N with N = Y3/ N, and

: - : = [ ht ... hHJH e CV as the channel vector
discussions are presented in Secfioh VI. ko= .[ k127 k200" kL -
P ‘ consisting of the channel coefficients from all the RRHs to MU
_1yH L H H 1H N i
Il. SYSTEM MODEL AND PROBLEM FORMULATION ky Vin = [Vim, Vi -, V] € CV is the beamforming

. . o vector consisting of the beamforming coefficients from lad t
In this section, we first introduce the system model of ﬂ}SRHs 0 them-th multicast group, aner — [¥,]L , € CMN
multicast Cloud-RAN. Then, the network power minimization group, = Vili=1

. : o o
problem is formulated. For the scenario when it is not fdasib'sj\g}ve aggregative beamformmg vector Wh— [Vimlm=1 €

o CMN as the beamforming vector consisting of all the beam-
to serve all the MUs, the user admission control problem

S . _ .
formulated. It will be revealed that both problems are s@aréormmg coefficients from thé-th RRH to all the multicast

optimization problems, for which unique challenges will b OUPS-
identified.
B. Network Power Minimization for Green Cloud-RAN

A. System Model With densely deployed RRHs, it is critical to enable energy-
We consider a multicast Cloud-RAN with multi-antenna efficient transmission via centralized signal processintha
RRHs and K single-antenna MUs, where theth RRH BBU pool. Coordinated beamforming among RRHs will help



reduce the transmit power. Due to the mobile data traffichich is highly intractable due to the nonconvex combinator
variations in temporal and spatial domains, it is also @lti composite objective and the nonconvex quadratic QoS con-
to enable network adaptation to switch off some RRHs armstraints[(®). When there are some RRHs needed to be switched
the corresponding fronthaul links to save power [1].][31pff to minimize the network power consumption, the solution
Thus, we need to consider the network power consumptiofiproblem [I0) has thgroup sparsity structure [[1]. That is,
when designing green Cloud-RAN, which is defined as ttal the beamforming coefficients if;, which forms a group
following combinatorial composite function parametedz®y at thel/-th RRH, are set to be zeros simultaneously if tith

the beamforming coefficientsI[1], RRH needs to be switched off.
B 5 Therefore, inspired by the fact that the solution of prob-
p(v) = p1(v) +p2(v), ®) lem (10) has the group sparsity structure in the aggregative

with the total transmit power consumption, denotegpasr), beamforming vectow, the weighted mixed; //;-norm was
and the total relative fronthaul links power consumptiorRroposed inl[1] to relax the combinatorial composite fumicti

denoted a,(v), given as as the tightest convex surrogate to induce the group sparsit
Lo structure in the solutionr to guide the RRH selection, defined
1 as
nv)=> " EHvlmHgv (6) 5
=1 m=1 N
and T =" o2, (11)
=1
L
- c wherep; > 0 is the weight for the beamforming coefficients
pa(v) = ; PEI(Supp(v) NV #0), ™ Groupe at RRHL

) ) o To handle the nonconvex QoS constraints[ih (9), we pro-
respectively. HereI(Supp(v) NV, # 0) is an indicator pose 1o [ift the problem to higher dimensions with variables
function that takes value zero Bupp(v) NV, = 0 (i.e., Q= Vvt € CVXN i, which will help to apply the
all the beamforming coefficients at thieth RRH are zeros, semjgefinite relaxation (SDR) technique. However, we canno
indicating that the corresponding RRH is switched off) angyract the variable®,,'s from the non-smooth mixeé /-
one otherW|Lse, wher®) is defined as; := {M 3 ", Ni+ norm [I3). Therefore, this convex relaxation approach oann
L,...,M3% -, N;}, andSupp(v) is the support of the vector pe directly applied to solve the network power minimization
v. In @), m > 0 is the drain inefficiency coefficient of the problem in multicast Cloud-RAN. Instead, to leverage thd&SD
radio frequency power amplifier with the typical value agechnique, we need to develop a new group sparsity inducing
25%, and P > 0 in (@) is the relative fronthaul link power gpproach with quadratic forms of the beamforming vectors,

consumption([1], which is the static power saving when bothhich will be presented in Sectidnill and form one major
the RRH and the corresponding fronthaul link are switchéd ot ontribution of this paper.

For the passive optical fronthaul network [32; is given
by (P + PI") — (P + PI) with P (P) and PI
(P™) as the power consumptions for tii¢h RRH and the : : _
I-th fronthaul link in the active (sleep) mode, respectiv@lye  With QoS constraints for potentially a large number of MUs
typical values are’™ = 6.8W, P = 4.3W, P, = 3.85W, |n.the_servmg area, it may happen that the_ network power
Psfr:l = 0.75W and P¢ = 5.6W [1], [32]. Note that the energy m|n|m|zat|on_ problem[f(IQ) is infeasible from time to Flnjel. I
consumption of the optical fronthaul links should depend on  Such scenarios, the deS|gn_ problem will be to maximize the
the receiving periods and data transmission [32], which is a USer capacity (i.e., the maximum number of MUs t_hat_ can be
function of the beamforming vectors. Given the target SINR Supported) via user admission contiol|[16]./[17], whilevieg
requirements(y1, 72, . .., vx) for all the MUs, to design a these MUs with j[he minimum transmit power. Whllle this
multicast green Cloud-RAN, we propose to minimize th@SPectis |gnored in [1]., it is cr_l'qcal for_pracucal appitcpns.
network power consumption subject to the QoS constrairffathematically, by adding auxiliary variables's to the right-
and the RRH transmit power constraints. Specifically, weshapand side of the corresponding inequalitied in (9), to mazem

C. User Admission Control

the following QoS constraints the number of admitted MUs is equivalent to minimize the
number of non-zerac,’s [20, Section 11.4]. Therefore, the
Tim (V) > v, VEk € Grym € M, (8) user admission control problem can be formulated as the

which can be rewritten as the following quadratic constﬁainfouo"\"ng sparsity minimization problem,

Fim) = (X, v1Owvi +0) VO 0,09) sepeze o

foranyk € G,, andm € M, which are nonconvex. Therefore, subject 10 Fim(v) < 2k, Yk € Grn,m e M, (12)

the network power minimization problem can be formulateghere Rff represents the-dimensional nonnegative real
as vector. Once the admitted MUs are determined, coordinated
beamforming can then be applied to minimize the total trans-
mit power. The solutionk = [z] of problem [I2) has the
subject to Fy, ,(v) <0,Vk € G, m € M, (10) individual sparsity structure, i.e.;zy = 0 indicates that the

minimize p1(v) + pa(v)
ve



k-th MU can be admitted. Therefore, the sparsity level will bminimize the total transmit power consumption for the size-

increased if more MUs can be admitted. reduced network. The algorithmic advantages and perfocenan
Observing that both the sparse optimization probldmé (1@)provement of the proposed smoothigeminimization based

and [12) possess the same structure with nonconvex quadriitimework will be revealed in the sequel.

constraints and combinatorial objectives, in this paperwaill

propose a unified way to handle them based on a smoothedg qthed ¢

¢, -minimization approach »-Minimization for Sparsity Inducing
» .

To promote sparse solutions, instead of applying the con-

vex ¢;-minimization approach, we adopt a nonconvgx
D. Problem Analysis minimization (0 < p < 1) approach to seek a tighter

In this subsection, we analyze the unique challenges ¥pProximation of thefo-norm in the objective functions in
the network power minimization probleri{10) and the us@oblems[(ID) and (12) [27]. This is motivated by the fact tha
admission control probleni{L2) in the context of multicadh®fo-norm||z|jo is the limit asp — 0 of ||z} in the sense of

Cloud-RAN. In particular, the differences from the prexdoullZllo = Timp—o || = limy, 0 3 |2i[”. We thus adopfx||]
works [1], [13] will be highlighted. as the optimization objective function to seek sparsert&ois.

Furthermore, to enable efficient algorithm design as well as

multicast beamforming problem[ [21] yields nonconvei{'duce the qugdratic forms in the re§ulting approximatipn
quadratic QoS constrainfs (9), while 6n|y unicast servicese problems, we instead e}dopt the following smoothed version
considered in[[1],[[11]. The SDR technique [33] proves t8f II; to induce sparsity:

1) Nonconvex Quadratic Constraints. The physical-layer

be an effective way to obtain good approximate solutions to m
these problems by lifting the quadratic constraints inghler fo(zs€) = Z(zf + e2)P/?, (13)
dimensions, which will also be adopted in this paper. i=1

2) Combinatorial Objective Functions: Although the SDR for z ¢ R™ and some small fixed regularizing parameter
technique provides an efficient way to convexify the non-> (. Based on the smoothe-norm [I3), we will present
convex quadratic QoS constraints in probleins (10) (12)e algorithmic advantages of the smoothgeminimization
the inherent combinatorial objective functions still make approach in Section IV.
resulting problems highly intractable. While tiig-norm can 1) Smoothed ¢,,-Minimization for Group Sparsity Inducing:
be adopted to relax thé&-norm in problem[(1R) after SDR, For network power minimization, to seek quadratic forms of
which is also known as the sum-of-infeasibilities relasatin beamforming vectors in the objective functions to |e\/erﬂ{g£
optimization theory([1[7],[[20], the convex relaxation apapch SDR technique for the non-convex quadratic QoS constraints
based on the non-smooth mixeg//z-norm [1] cannot be we adopt the smoothefd-norm £, (z; ¢) (I3) to induce group
applied to problem[(10), as we cannot extract the variablggarsity in the aggregative beamforming veatdior problem
Q..’s after SDR. (10), resulting the following optimization problem:

Therefore, in this paper, we propose a new powerful ap-
proach to induce the sparsity structures in the solutioms fo P - N2, 2\p/2
both problems[{10) and (1L2), which is based on a smoothed minenize ;pl(Hle? +<)
¢,-norm [27]. The main advantage of this method is that it can subject to F ., (v) < 0,Vk € Grp,m e M. (14)
help develop group sparsity inducing penalties with quiécira ’ -
forms in the beamforming vectors, thereby leveraging th&SDrhe induced (approximated) group sparse beamformers will
technique to relax the nonconvex quadratic QoS constraigiside the RRH selection. The resulting problem] (14) thus
for problem [I0). Furthermore, by adjusting the paramgter becomes a quadratic optimization problem and enjoys the
this approach has the potential to yield a better approxamat algorithmic advantages.
for the original{,-norm based objectives, thereby providing 2) Smoothed ¢,-Minimization for User Admission Control:
improved solutions for problems{[10) aid(12). The smooth&wr user admission control, we adopt the smoothgedorm
¢,-minimization framework will be presented in Section I11,{I3) to approximate the objective function in probleml(12),
while the iterative reweighted; algorithm will be developed yielding the following optimization problem:

L

in Sectior 1V to solve the smoothég-minimization problem. %
minimize > (@R + ey
[1l. A SMOOTHED £,-MINIMIZATION FRAMEWORK FOR VEV’IXER+ k=1
NETWORK POWER MINIMIZATION WITH USERADMISSION subject to Fj, ;. (v) < @, Vk € Gpym € M. (15)

CONTROL This will help to induce individual sparsity in the auxiliar

In this section, we first present the smoothég- variablesx, thereby guiding the user admission.
minimization method as a unified way to induce sparsity Although the resulting optimization problemg_114) and
structures in the solutions of problenis](10) aind (12), tnere(@I5) are still nonconvex, they can readily be solved by the
providing guidelines for RRH selection and user admissioBDR technique and the MM algorithm. Specifically, we will
After obtaining the active RRHs and admitted MUs bylemonstrate that the nonconvex quadratic QoS constraints ¢
performing the corresponding selection procedure, we wile convexified by the SDR technique in the next subsection.



The resulting convex constrained smoothgeminimization Network Power Minimization (Algorttn

. . . . [ 1
prOblem WI” be SOIVed by the MM algorlthm; yleldlng an Smoothed L, Minimization for Group Sparsity Q* RRH Selection A* Transmit Power
H H H H H H by Solvi Minimization
iterative reweighted- algorithm, as will be presented in A }—> P N
S* Transmit Power}

infeasible

Inducing in the Beamforming Vector V. [——>|
X 2 (Algorithm 3)
Section V.
User Admission
by Solving Minimization
Z (st Prp(L,S*)
. . L )
In this part, we will demonstrate how to apply the SDR e A o o)
. . ser mission Contro. gorithm
technique to resolve the challenge of the nonconvex quadrat
QoS constraints in both problenis {14) ahd] (15). Specificalty. 2. sparse optimization for network power minimizatiand user
let Q,, = Vr'j«LVm € CNXN with rank(Q,,) = 1,Vm € M. admission control in multicast Cloud-RAN.
Therefore, the QoS constraimfl (9) can be rewritten as

Sparsity Inducing in Variables x —>

B. SDR for Nonconvex Quadratic Constraints .
9 (Algorithm 3)

[ Smoothed L, Minimization for Individual } <+

Lim(Q) <0,k € Gym € M, (16) . A sparse Optimization Framework for Network Power

with Ly ,(Q) given by Minimization with User Admission Control

Denote the solutions of problem® and ¥ asQ* andx*,
Ly _ Tr(©,Qi) + 02 | — Tr(©:Q,), (17 respgctlvely. Based on these mduce_d _(ap_proxmated) spars
b (Q) =7 ;ﬂ H(©1Qi) + i H(©1Qm). (17) solutions, we propose a sparse optimization framework for
network power minimization and user admission control in
whereQ = [Q,.]M_, and allQ,,,’s are rank-one constrained. Multicast Cloud-RAN. The main idea is illustrated in Hg. 2
The per-RRH transmit power constrairi (2) can be rewrittéfd details will be explained in the following. In particyla
as Algorithm 3 will be developed in Sectidn ]V, which yields a
KKT point for problemss” and 2.

M L . . .
_ eCN. Tr(Cin Q) < PLVI €LY, (18 1) Network Power Minimization: If problem &7 is feasible,
Q {Q Z (Cim Q) < P } (18) once obtaining its solutioQ*, we can extract the group

sparsity structure information in the beamforming vector

yvher_e Cim € R™ ™ is a block Qiagpnal matrix with the phased on the relationv;||» = \/Z%ZlTr(szQm), which
identity matrix Iy, as thel-th main diagonal block squareyi|| pe zero if all the beamforming coefficients ih are zeros

matrix and zeros eIsev_vhere. _ simultaneously. By further incorporating system paramsetie
Therefore, by dropping the rank-one constraints for all theprove the performancél[1], we adopt the following RRH
matricesQ,,’s based on the principle of the SDR techniqueyrdering criteria to determine the priorities of the RRHs

problem [[14) can be relaxed as that should be switched off to minimize the network power

m=1

consumption,
L M /2
2 : minimize Tr(Crn Q) + €
QeQ ;pl (n; r( mQ ) ¢ ) ) M 1/2
subject t0 L, (Q) < 0,Vk € Gy, 0= pr ( - Tf(ClQO)) viel, (21)
Q.. = 0,Vm € M. (19)
_ K 2 i i
Similarly, by dropping the rank-one constraints of all th g?_:etgl zﬁ %gzl\lﬂ&};’” HTQh(IeS IéhR?tha?t%e;gsagal;lrgf]p;ﬁixeter
matricesQ,’s, problem [(I5) can be relaxed as 6, will have a higher priority to be switched off. Intuitively,
K the RRH with a lower channel power gait), lower drain
2 : minimize (22 + €2)P/? inefficiency efficiencyy;, lower beamforming gaitjv,||2, and
QeQxeRY [T higher relative fronthaul link power consumptidef, should
subject to Ly, (Q) < xg, VEk € Gy, have a higher priority to be switched off.
Q= 0,Vm e M. (20) In this paper, we adopt a simple RRH selection procedure,

i.e., the bi-section method, to switch off RRHs. This method

Although problems%” and & are still nonconvex due to was shown to provide good performancelinh [1]. Specifically,
the nonconvex objective functions, the resulting smoothed based on the RRH ordering rule [n.{21), we sort the coeffisient
minimization problems preserve the algorithmic advandagen the ascending ordef.,, < 6., < --- < 6., to determine
as will be presented in SectignllV. In particular, an itemati the active RRHs. Let/, be the maximum number of RRHs
reweightedé, algorithm will be developed in SectignllV basedhat can be switched off such that the remaining RRHs can
on the principle of the MM algorithm to find a stationary poinsupport the QoS requirements for all the MUs. To fifd in
to the non-convex smoothég-minimization problems? and each bi-section search iteration, we need to solve thewWolp
2. size-reduced convex feasibility problems based on the SDR



technique, Algorithm 1: Network Power Minimization
Step 0: Solve the group sparse inducing optimization

F (Al find Q[f], . 5@ problem Z (@19) using Algorithm 3 in Sectiop 1V.
subject t0 L., ({Q} e ) < 0,Vk € G, 1) If it is infeasible,go to Algorithm 2 for user
Qm - O,Qgﬁ € 0 vm e M, (22) admission control.

2) If it is feasible, obtain the solutionQ},’s, calculate
the ordering criterion[{21), and sort them in the
ascending ordefd,, <---<#6,,,9o to Step 1

Step 1:Initialize Jiow =0, Juyp= L, i = 0.

where Qm c (C(ZZE.A“] NL)X(ZleA[i] Ny) with A[’L] _
{mi41,...,71} as the active RRH setQl! represents the
per-RRH transmit power constraints for the active RRHSs in Step 2- Repeat
Al and the QoS constraints are obtained after omitting the> P - , P ot

channel coefficients corresponding to the left-out RRHSs. If 1) Seti  [=5=2]. _ - )
problem.Z (Al) is feasible, it implies that a feasible solution ~ 2) Solve 'problem?(A[Z]) (22): if it is infeasible, set
exists to.7 (AlY]) for all J < i. Likewise, if problem# (Ali]) Jup = 1; otherwise, setliow = i.

is infeasible, it implies that no feasible solution exists f Step 3:Until Jyp — Jiow = 1, obtainJy = Jiow and obtain
any J > i. Therefore, determining the largest= J, that  the optimal active RRH sett* = {7,11,...,7L}.
results in a feasible solution to proble (A”!) can be  Step 4:Solve problemZrp(A*, N) (23) to obtain the
accomplished by solving no more thdh + [log(1 + L)]) multicast beamforming vectors for the active RRHSs.
such feasibility problems[(22) via bi-section search][20]. End

Specifically, the sef0,1,..., L} is guaranteed to contaif,

i.e., Jo € {0,1,..., L} at each step. In each iteration, the set

is divided in two sets, i.e., bisected, so the length of the sRasibility problems need to be solved,

afterk iterations i2~*(L+1) with (L+1) as the length of the

initial set. It follows that exactly 1+ [log,(1+L)]) iterations F(8M) :find {Qum} e

are required before the bi-section algorithm terminatehis T subject t0 Ly 1 ({Qm }memti) < 0,Vk € Gy,

procedure mainly reduces the relative fronthaul link power (4] [4]

consumption by switching off RRHs and the corresponding Qn 2 0,Qn € Q7 ¥m € MY, (24)

fronthaul links. where S! = {r;,1,...,7x} denotes the set of admitted
Finally, denote the set of active RRHs ad* = MUs, Ml = {m : G, NS # @} is the set of multicast

{7jy+1,...,m}. To further reduce the network power congroups, andQ!”! represents the per-RRH transmit power con-

sumption, we need to solve the following size-reduced trans straints with the served multicast groupd(’. In this way,

power minimization problem with.4*| RRHs andA| MUs the QoS constraints of the admitted MUs will be satisfied.

based on the SDR technique, Finally, letS = {7n,+1, - .., 7K } be the admitted MUs. We
need to solve the same type of size-reduced transmit power

Mo minimization problem[(23) witH£| RRHs and|S*| MUs to
Pe(A*, N) : minimize > =T (Cr QL) find the multicast transmit beamforming vectors for all the
QieleQtiol =7 i T admitted MUs. We denote this problem &&p(L, S*).
subject to Ly ,,(Ql) < 0,Vk € G, The proposed user admission control algorithm is presented

Q) = 0,vm € M, (23) in Algorithm[2.

which is a semidefinite programming (SDP) problem and cadlgorithm 2: User Admission Control
be solved in polynomial time using the interior-point metho  Step 0: Solve the individual sparse inducing optimization
The algorithm for solving the network power minimization problem2 (20) using Algorithm 3 in Sectiop_[V. Obtain
problem is presented in Algorithid 1. the solutionx* and sort the entries in the descending
2) User Admission Control: When problem# is infeasi- ~ Orderas, >--- >y, go to Step 1
ble, we need to perform user admission control to maximize Step 1:Initialize Ny = 0, Nyp = K, i = 0.
the user capacity. Specifically, lat* be the solution to the Ste€P 2:Repeat

individual sparsity inducing optimization problef. Observe 1) Seti + {M .
that z;, represents the gap between the target SINR and the 2) Solve problemZ (Sl @3): if it is feasible, set
achievable SINR for MUW:. We thus propose to admit the MUs Nyp = i; otherwise, selVipy = .

with the smallestz;'s [17], [18]. We order the coefficients

; ) . Step 3: Until Nyp — Niow = 1, obtain Ny = Ny, and
in the descending order:;, > z,, > --- > zn. The bi- P up — £ low 0 up

. . . . obtain the admitted MU se$* = {wn,+1,..., 7K }-
section search procedure will be adopted to find the maX|mumStep 4: Solve problemZrp(£, S*) (23) to obtain the

number of admitted MUs. LeV, be the minimum number of . . .

MUs to be removed such that all the RRHs can support themuItlcast beamforming vectors for the admitted MUs.
QoS requirements for all the remaining MUs. To determine thre
value of Ny, a sequence of the following convex sized-reduced




Remark 1 (Rank-One Approximation After SDR): The so- whereC is an arbitrary convex set, € R” ande > 0 is some
lutions for the SDR based optimization problendg8, 2, fixed regularizing parameter. In the following, we first peov
F(Al), Z(S) and Z1p(A,S) may not be rank-one. If that the optimal solution of the smootheg-minimization
the rank-one solutions are failed to be obtained, the Gamssproblem Zs(¢) is also optimal for the original non-smooth
randomization method_[33] will be employed to obtain thé,-minimization problem (i.e.Zsn(0)) whene is small. We
feasible rank-one approximate solution. Specifically, ¢taa- then demonstrate the algorithmic advantages of the smesshn
didate multicast beamforming vectors are generated fram tim the procedure of developing the iterative reweighted-
solution of the SDR problems, and one is picked yielding @gorithm.
feasible solution to the original problem with the minimum 1) Optimality of Smoothing the £,-Norm: The set of KKT
value of the objective function. The feasibility for thegirial points of problemZsm(¢) is given as
problem is guaranteed by solving a sequence of multigroup _ . .
multicast power control problems with the fixed beamforming Ue) =1z €C:0€Vafy(zie) + Ne(2)}, (26)
directions via linear programming [33]. Please refer[to} [33vhere V¢ (z) is the normal cone of a convex sétat point
Section 1V] for more details on the Gaussian randomizatign consisting of the outward normals to all hyperplanes that
method and we adopt this method in our simulations to firfpportC at z, i.e.,
approximate rank-one feasible solutions. While the opliitpna Ne(z) == {s:(s,x—2) <0,Vx € C}. (27)
of this randomization method for general problems remains o ) B
unknown, it has been widely applied and shown to provid%ef'”e the deviation of a given s& from another se; as
good performance [21]| [25]. [35],

3) Complexity Analysis and Discussions. To implement
Algorithm[J and Algorithni R, a sequence of SDP optimization
or feasibility problems (e.g.2, 2, #(All), Z(Sl1) and
Z1p(A, S)) need to be solved. In particular, to find the activ
RRH set A* and admitted MU setS*, we need to solve - T

' the original non-smootli,-minimization problem%Z,,(0).
no more than(1 + [log(1 + L)]) and (1 + [log(1 + K)I) Theogr]em 1: Let Q. be the set of KK1Ff points osfmp()rc)nblem
SDP feasibility problems7 (Al') and .7 (S!"), respectively. , (€). Then, we have
In addition, to solve the SDP proble®p(£, N) (Z3) with =~ ™ ’
M matrix optimization variables of siz& x N and (K + L) lim D($2(e), €2(0)) =0. (29)
linear constraints, the interior-point method [[20] willkéa

/ i i 3 N6

?)(MA]\%\)] lz(g);lti/:é) r;t)eirrwatltlggtser:trilgnsotf)@éﬁ/r[]iejvve ;n([(()p;malk This t.heorem indicates that any limit of t_he sequence of
solution with accuracye > 0. Therefore, this makes the KT points of p_roblem.@sm(e) IS a KKT. pair of problem
proposed network power minimization and user admissiogr?sm(o) when e is small enough. That is, at least a local

algorithms difficult to scale to large problem sizes with @& optlr_nal_solutlon can b_e achieved. In the seque_l, we will focu
number of RRHs and/or MUs. To further improve the com2" finding a KKT point of problemZsm(c) with a small
yielding good approximations to the KKT points of the

putational efficiency of the proposed SDP based algorithms,” """ i blemZ-(0) to ind itv in th
one promising approach is to apply the alternating directi sz())_lgltliglnrglza ion problem #sm(0) to induce sparsity in the

method of multipliers (ADMM) algorithm[[34] by leveraging 2) The MM Algorithm for the Smoothed £, -Minimization:
» :

parallelism in the cloud computing environment in the BBUY, . . ) o
i L . : ith the established asymptotic optimality, we then legera
pool [12]. This is, however, an on-going research topic, an . )
. ) e principle of the MM algorithm to solve problerh {25).
we will leave it as our future work. ; ! . .
Basically, this algorithm generates the iterafes,}°2 ; by
successively minimizing upper boundX z; zI") of the ob-
IV. I TERATIVE REWEIGHTED-/; ALGORITHM FOR jective function f,(z;¢). The quality of the upper bounds
SMOOTHED £,,-MINIMIZATION will control the convergence (rate) and optimality of the
In this section, we first develop an iterative reweightedesulting algorithms. Inspired by the results in the exatioh-
¢, algorithm to solve a general non-convex smootlgd maximization (EM) algorithm[[36],[[37], we adopt the up-
minimization problem based on the principle of the MMper bounds in the following proposition to approximate the
algorithm. We then present how to apply this algorithm temoothed/,-norm.
solve the problems? and 2 to induce sparsity structures Proposition 1: Given the iteratez[”! at then-th iteration,
in the solutions, thereby guiding the RRH selection and usan upper bound for the objective function of the smoothed

D(Z4,22) = sup ( inf ||z1 — 22|) . (28)
21€2, \#2€22

We then have the following theorem on the relationship
Between the smootheg)-minimization problemZsm(e) and

Proof: Please refer to Appendix]A for details. ]

admission. ¢,-norm f,(z; €) can be constructed as follows,
A. lterative Reweighted-¢, Algorithm Qz;w!™) = sz[n]zf ; (30)
i=1

Consider the following smootheg}-minimization problem, where

m

e 2
Puke): minimize fy(zi0) = S GEHEPE @)l 22 ] imm @D

=1



From the weights given ifi(31), it is clear that, by adding the The convergence of the iteratés(®}>2 , (35) is presented
regularizer parameter > 0, we can avoid yielding infinite in the following theorem.

values when some;’s become zeros in the iterations. Theorem 2: Let {z["1}>° | be the sequence generated by
Proof: Define the approximation error as the iterative reweighted, algorithm [35). Then, every limit
m point z of {z["}> | has the following properties
folzi€) = Qz;wl™) = > [k(z]) — K((zI")2)22], (32) 1) zis a KKT point of problemZPgy(e) @5);
i=1 2) f,(z[";¢) converges monotonically tgf,(z*;¢) for

wherer(s) = (s + €2)P/2 with s > 0. The sound property of some KKT pointz*.

the Q-function [30) is that the approximation errbr32) attains  Proof: Please refer to AppendixIB for details. u

its maximum atz = z["l. In particular, we only need to prove As noted in[[39], without the convexity of, (z; €), the KKT
that the functiong(s) = s(s) — &/(s[")s with s > 0 attains point may be a local minimum or other point (e.g., a saddle
the maximum at = s["). This is true based on the facts thaPoint). We also refer to these points as stationary poir [3

¢'(s") = 0 and (s) is strictly concave. m Page 194].
Let z[**1 be the minimizer of the upper bound function Remark 3: The algorithm consisting of the iteraté [35)
Q(z;w!™) at then-th iteration, i.e., accompanied with weightd (B6) is known as therative
reweighted least squares [29], [38], [40Q] in the fields of statis-
2t = argmin Q(z;w!™). (33) tics, machine learning and compressive sensing. In péaticu
. with a simple constrainC, the iterates often yield closed-
Based on Propositidni 1 and (33), we have forms with better computational efficiency. For instanaa, f
LT e) = QY W) 4 £, (20U ) the noiseless compressive sensing problem [29], the é®rat

(n41].  [n] have closed-form solutions [R9, (1.9)]. Therefore, thighod
—QETT W™ has a high i ici i .
gher computational efficiency compared with the con
< Q" W) + £, (2" €) — Q21" W) yentional ¢, -minimization approach for compressive sensing
< Q(zM; w4 £,z €) — Q(2IM; win) [26], wherein a linear programming problem needs to be
_ fp(z[n] e), (34) solved via algorithms such as interior-point or barrier moefs.
Furthermore, empirically, it was observed that the iteeti
where the first inequality is based on the fact that functiaeweighted least squares method can improve the signal re-
(fo(z;€) — Q(z;w™)) attains its maximum at = z[", and covery capability by enhancing the sparsity for compressiv
the second inequality follows froni (B3). Therefore, mirnimi sensing over thé,-minimization method[[29],[140].
ing the upper bound, i.e., th@-function in [30), can reduce In contrast to the existing works on the iterative reweighte
the objective functiory,(z;¢) successively. least squares methods, we provide a new perspective to
Remark 2: In the context of the EM algorithm_[88] for develop the iterative reweighted- algorithm to solve the
computing the maximum likelihood estimator of latent vale&a smoothed,,-minimization problem with convergence guaran-
models, the functions-f,(z;¢) and —Q(z;w!™) can be tees based on the principle of the MM algorithm. Furthermore
regarded as the log-likelihood and comparison functioms, (i the main motivation and advantages for developing thetésra
the lower bound of the log-likelihood), respectively [36].  (35) is to induce the quadratic forms in the objective fumati
The MM algorithm for the smoothef),-minimization prob- in problem &2 (I9) to make it compliant with the SDR

lem is presented in Algorithinl 3. technique, thereby inducing the group sparsity structurtbe
multicast beamforming vectors via convex programming.
Algorithm 3: Iterative Reweighted- Algorithm Remark 4. The advantages of the iterative reweightigd-
out. Inital o — (1 DI (th - algorithm include the capability of enhancing the spaysity
input. nitializ€ w = (1,..., 1) I (the maximum as well as inducing the quadratic forms for the multicast
number of iterations) . : : : .
Repeat beamforming vectors by inducing the quadratic formulation

(359). Note that the reweighte€i-minimization algorithm in

1) Solve problem [30] can also induce the quadratic forms in the beamforming

(1] LN~ (0] 2 vectorsv;’s by rewriting the indicator function[{7) as the

z = afgfglgglz% Zi (35)  f5-norm of the squared,-norm of the vectorsv;'s, i.e.,
=1 |v:]|3. Furthermore, the key ideas of the convergence proof

If it is feasible,go to 2); otherwise stop and return of the iterative reweighted, algorithm (i.e., Algorithm[B),
output 2. by leveraging the EM theory to establish upper bounds in
2) Update the weights as the iterates of the MM algorithm, should be useful for other

9 21 iterative algorithms, e.g.| [41].
wl["H] = g [(zl[nﬂ]) + 62:| ,Vi=1,...,m. (36)

B. Sparsity Inducing for RRH Selection and User Admission

In this subsection, we demonstrate how to apply the devel-
oped iterative reweighteé; algorithm to solve the nonconvex
sparse optimization problem#® and 2 for RRH selection and

Until convergence or attain the maximum iterations and
returnoutput 1.
output 1: z*; output 2: Infeasible.
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Fig. 3. Convergence of the iterative reweightedalgorithm for the smoothed Fig- 4. Average network power consumption versus targetRSiMth
£,-minimization problem£ with different channel realizations and initial different algorithms.
points.

The channels are spatially uncorrelated. For each Mwve
user admission, respectively. In this way, we can find a KK3et Dy, = 1,VI € Qq with |Qq] = 2; Dy = 0.7,VI € Qs
point for the nonconvex smooth&g-minimization problems with |Q| = 2; Dy, = 0.5Vl € Q3 with |Q3] = 2. All
2 and 2 with convex constraints. Specifically, I8t:= {Q € the setsQ;’s are uniformly drawn from the RRH sef =
Q: Linm(Q) <0,Q = 0,Vk € G,m € M} be the {1,...,L} with UQ, = Q. Fig.[3 illustrates the convergence
set of constraints in problen?. The iterative reweighted, of the iterative reweighted, algorithm for the smoothed,-
algorithm for problemZ? generates a sequenf®!”}>° , as minimization problemZ? with different initial points and
follows: different channel realizations. Specifically, we pet 1. The

L M three different channel realizations are generated umifor
2" minimize S W™ Tr(CpnQm) |, (37) and independently. For each channel realization, we sieula
PP Qe l; : (Z (St )> 57 Algorithm [3 with the fixed initial point asol® = (1,...,1)
with the weights as _and_ ran_domly generated initial poiat®!. The r_ano!om initial-_
ization instances for the three channel realizations arengi
M as w', = [0.1389,0.2028,0.1987,0.6038,0.2722, 0.1988),

1
(nl _ PP m) 4 2|
W' = [Zm_lﬁ(clQO) +6} Vi€ L.(38) w%]z —  [0.5657,0.7165,0.5113,0.7764, 0.4893, 0.1859],
0 J—

Applying Algorithm(3 to problem is straightforward, ~ @es = [0-4093,0.4635,0.6109,0.0712,0.3143,0.6084], re-

spectively. In particular, this figure shows that the segeen

of the objective functions converges monotonically, which

confirms the convergence results in Theofém 2. In additton, i
In this section, we will simulate the proposed algorithmiustrates the robustness of the convergence of the réesig

based on the iterative reweightég-algorithm (IR2A) for ¢, algorithm with different initial points and different prtetm

network power minimization and user admission control ifarameters. Furthermore, it also demonstrates the fagecon

multicast Cloud-RAN. We set the parameters as followgence rate of the proposed algorithm in the simulated sgttin

P =1W\VI; PP = [5.6+1-1]W,Vl;n = 1/4,V1; 01, = 1,Vk.  Empirically, the iterative reweightef} algorithm converges in

Denote the channel propagation from thih RRH and thek- 20 iterations on average in all the simulated channels i thi

th MU ashy; = Dygr with Dy, as the large-scale fadingpaper_

coefficients andgy; € CN(0,I) as the small-scale fading

coefficie_nts. We set = 10.—3 in the itere_ltive rgwe_ighted— B. Network Power Minimization

{5 algorithm and the algorithm will terminate if either the ) ]

number of iterations exceeds 30 or the difference between th Consider a network with, = 12 2-antenna RRHs and 5

objective values of consecutive iterations is less than3. Multicast groups with 2 single-antenna MUs in each group.

The pre-determined number of randomization is set to be 30€ channels are spatially uncorrelated. For each Muke

in the Gaussian randomization method. setDy, = 1,VI € y with [, | = 4; Dy, = 0.7, V1 € Q5 with

|Q2] = 4; Dy, = 0.5,V € Q3 with Q3] = 4. All the setsQ;’s

] ] ] are uniformly drawn from the RRH sét = {1,..., L} with

A. Convergence of the Iterative Reweighted-¢, Algorithm U, = Q. The proposed iterative reweightégl-algorithm is
Consider a network with, = 6 2-antenna RRHs and 2compared with the reweightefl //..-norm based algorithm

multicast groups with 2 single-antenna MUs in each grouf25], in which, the objective function in problens? is

m=1

V. SIMULATION RESULTS
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TABLE |

THE AVERAGE NUMBER OF ACTIVE RRHS WITH DIFFERENT 7 —— Exhaustive Search
ALGORITHMS —8— IR2A with p = 1
—o— IR2A with p = 0.5
Target SINR [dB] 0 2 4 6 8 6 MDR

Coordinated Beamforming 12.00 | 12.00 | 12.00 | 12.00 | 12.00
£1/€so-Norm Algorithm 439 | 543 | 6.70 | 835 | 10.35

IR2A with p =1 4.74 5.43 6.65 8.22 10.13

IR2A with p = 0.5 4.61 5.30 6.65 8.22 10.17

Exhaustive Search 4.43 5.30 6.39 8.04 | 10.09 4
TABLE I

THE AVERAGE RELATIVE FRONTHAUL LINKS POWER CONSUMPTION
WITH DIFFERENTALGORITHMS

Average Number of Admitted MUs

Target SINR [dB] 0 2 4 6 8 2
Coordinated Beamforming 102.0 | 102.0 | 102.0 | 102.0 | 102.0
£1/€so-Norm Algorithm 30.65 | 40.52 | 53.74 | 69.70 | 87.48

4 5 6 7 8 9 10
Target SINR [dB]

IR2A with p = 1 24.57 | 29.91 | 40.26 | 56.30 | 78.04
IR2A with p = 0.5 24.13 | 29.39 | 40.43 | 56.30 | 78.87 Fig. 5. Average number of admitted MUs versus target SINR wifferent
Exhaustive Search 22.96 | 29.65 | 39.00 | 54.78 | 77.22  @algorithms.
TABLE Il ) ) _
THE AVERAGE TOTAL TRANSMIT POWER CONSUMPTION WITH achieves a good trade-off between computational complexit
DIFFERENTALGORITHMS and performance_
Tables[EI show the corresponding average number of

Target SINR [dB] 0 2 4 6 8

active RRHs, average fronthaul network power consumption
and average total transmit power consumption, respegtivel
Specifically, Tablé]l confirms the existence of the group spar

Coordinated Beamforming 4.26 7.07 | 11.74| 19.42 | 32.24
¢1/€so-Norm Algorithm 12.45| 16.53 | 21.49 | 28.20 | 37.46

IR2A Wfth p=1 1169 1705 21.94) 27.46 | 37.10 sity pattern in the aggregative multicast beamforming mect
IR2A with p = 0.5 1197] 17.36 | 21.79| 2746 | 36.85  That js, the switched off RRHs indicate that all the beam-
Exhaustive Search 1259 | 16.91 | 22.62 | 28.33 | 37.53

forming coefficients at the RRHs are set to be zeros simulta-
neously. It also shows that the proposed iterative reweisht

¢ algorithm has the capability of enhancing sparsity, thereb
replaced by>>)’ _; 3" max,, max,, max,, |Qm(n,,m,)| switching off more RRHs compared with th /(..-norm
with Q,,, (7, j) as the(i, j)-th entry inQ,,,. And the RRHs with based algorithm except for very low SNR. Talle Il shows
smaller beamforming beamforming coefficients (measured that the proposed iterative reweightégalgorithm can achieve
{~-norm) have higher priorities to be switched off. Fig. 4nuch lower fronthaul network power consumption and attain
demonstrates the average network power consumption waimilar values with exhaustive search. With all the RRHs
different target SINRs using different algorithms. Eacimpof  being active, the coordinated multicast beamforming atligor

the simulation results is averaged over 50 randomly gee@rayields the highest fronthaul network power consumption and
channel realizations for which proble® is feasible. From the lowest transmit power consumption as shown in Table Il
this figure, we can see that the proposed iterative rewadghtand Table[Tll, respectively. This indicates that it is «ati

¢ algorithm can achieve near-optimal performance compared take the relative fronthaul link power consumption into
with the exhaustive search algorithm (i.e., solving probleconsideration when designing a green Cloud-RAN. Although
(I0) with convexified QoS constraints based on the SDiRe exhaustive search may yield higher transmit power con-
technique). It yields lower network power consumption consumption in some scenarios as shown in Tdble Ill, overall
pared with the existing/;/¢~-norm based algorithm [25], it achieves the lowest network power consumption as much
while the coordinated multicast beamforming algoritim][13lower relative fronthaul network power consumption can be
[21] with all the RRHs active has the highest network powerttained as indicated in Tallé Il. Furthermore, we can sag th
consumption. Note that the number of SDP problefisd(!l) in the simulated settings, different valuesoin the proposed
(22) needed to be solved grovisgarithmically with L for iterative reweighted» algorithm yield similar performance,
the proposed network power minimization algorithm and theghile all achieve near-optimal performance compared vtiéh t
previous?; /¢~.-norm based algorithm [25]. But the number oexhaustive search.

SDP problems[{22) to be solved for exhaustive search grows

exponentially with L. Although the coordinated beamform- .

ing algorithm has the lowest computational complexity bg' User Admission Control

only solving the total transmit power minimization problem Consider a network with, = 6 2-antenna RRHs and 4
Pe(L,N) (23) with all the RRHSs active, it yields the highesimulticast groups with 2 single-antenna MUs in each group.
network power consumption. Our proposed algorithm thdshe channel model is the same as Sedfionl V-A. The proposed
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iterative reweighted- algorithm based user admission control  requirement is that the resulting non-convex constraints
algorithm is compared with the existing convex relaxation due to the CSI uncertainty can be convexified [45], [46].

approach (i.e.. the multicast membership deflation by relax It is also interesting but challenging to characterize the
ation (MDR) [16]) and the exhaustive search. The simulation performance degradations due to CSI acquisition errors
results are illustrated in FId.5 for the average number of in multicast Cloud-RANSs[[47],[148].

admitted MUs. Each point of the simulation results is avedag

over 200 randomly generated channel realizations for which APPENDIX A

problem & is infeasible. From Figl]5, we can see that the PROOF OFTHEOREMI

proposed iterative reweighted- algorithm outperforms the
existing MDR approach [16]. In particular, the performan€e
the iterative reweighted, algorithm is almost the same with limsup Q(e) € Q(0), (39)
different values ofp and achieves near-optimal performance Y

compared to the exhaustive search via solving probleth (12herelim supo 2(e) is defined as’[49, Page 152]
with convexified QoS constraints based on the SDR technique. )

We first need to prove that

Although all the simulated results demonstrate that théoper limsup Q(e) := | limsup (™)
mances are robust to the parameterit is very interesting N0 g "7
to theoretically identify the typical scenarios, where Bera _ {2|36W \, 0,3z z) (40)

values ofp will yield much better performances.
wherez[" € Q(e["). Therefore, for ang € limsup,_, Q(e),
V]. CONCLUSIONS AND EUTURE WORKS there existz[" € Q(el™) such that["l — z ande™ N\ 0. To

) o prove [39), we only need to prove thatc Q(0). Specifically,
This paper developed a sparse optimization framework fgr.] o Q(el") indicates that

network power minimization and user admission in green

Cloud-RAN with multicast beamforming. A smoothef}- 0 € Vafo(zl"; ™) + N (217). (41)

minimization method was proposed to induce the sparsi . . : . .

structures in the solutions, thereby guiding the RRH siect 'LXQ' Ip(2;¢) is continuously differentiable in botl ande, we
o ) .. have

and user admission. This approach has the advantages is term

of promoting sparsity and assisting algorithmic design by 1im szp(z["];e["]) = lim lim szp(z[”};e[”})

introducing the quadratic forms in the group sparse indycin "~ zlnl =z elr\o

penalty. In particular, by leveraging the MM algorithm and = V2 /fp(2;0). (42)

the SDR technique, we developed an iterative reweighﬁed-F

algorithm with convergence and optimality guarantees, (i.

KKT points) to solve the resulting smoothég-minimization

urthermore, based on results for the limits of normal vescto
n [49, Proposition 6.6], we have

problemsZ andZ with convex constraints. The effectiveness lim sup Ne (2") = N (2). (43)

of the proposed algorithms was demonstrated via simukation zlrl—z

for network power minimization and user admission controlgpecifically, if z[") — z, sl"l € Ne(2") andsl?) — s, then
Several future directions are listed as follows: s € Ne(z). That is, the set{(z,s)|s € Ng(2)} is closed

« Although the proposed methods only need to solve a selative toC x R™. Based onl(42) and (#3) and taking— oo
guence of convex optimization problems, the complexiiy (1), we thus prove[ (39). Based dn [50, Theorem 4], we
of solving the large-scale SDP problem using the interiocomplete the proof fof (29).
point method is prohibitively high. One promising option

is to use the first-order method (e.g., the operator siittin APPENDIX B
method [42], [12]) by leveraging the parallel computing  CoNVERGENCE OF THEITERATIVE REWEIGHTED-/;
platform in the BBU pool[[5], [[4B], which will require ALGORITHM

further investigation.

« It is desirable to establish the optimality and perfor
probabilistic analysis for the iterative reweightédal-
gorithm in the context of inducing group sparsity i
the multicast beamforming vectors. However, with th
complicated constraints set, this becomes much more lim 2zt = 1im 2] = . (44)
challenging compared with the compressive sensing prob- k=00 ko0
lems with simple constraints (e.g., affine constraints]).[29As
Itis also interesting to apply this algorithm to solve other
mixed combinatorial optimization problems in wireless
nero_rks, €.g., wireless caching problems [44]. which is a convex optimization problem, the KKT condition

« It is interesting to apply the proposed smoothggd holds atzlm+1 je..
minimization approach with the iterative reweightéd-
algorithm in the scenarios with CSI uncertainty. The only 0 € V. Q(zlmH1: wlrely 4 N (zIne+1l), (46)

1) We will show that any convergent subsequence
r?z[”k]},;“;l of {z["}2 | satisfies the definition of the KKT
Joints of problemZsm(e) (26). Specifically, letz["x] — z be
gne such convergent subsequence with

z[nk+1] = argmin Q(zyw[nk])v (45)
zeC



Based on[[49, Proposition 6.6] arild (44), we have [14]
limsup Ne (2 FU) = AL (2). (47)
zlne+1l 53 [15]
Furthermore, based oh (44), we also have
m [16]
lim V,Q(zm+1 wlrel)y = Jim 2 wlnelymett
k—o0 k—o0 Py
- [n&+1] 17
= lim Y — _
ko0 £ w2, o 1-3
[(z ) e ] [18]
= V. fp(Z;€). (48)
Therefore, takings — oo in (48), we have 9]
0€ V.Q(2;w) + Ne(2), (49) 20

which indicates that is a KKT point of problem%sn(¢). We [21]
thus complete the proof.

2) As fy(z;¢€) is continuous and’ is compact, we have
the fact that the limit of the sequengg(z"l;e) is finite.
Furthermore, we have,(zI""1;¢) < f,(z[";¢) according
to (34). Based on the results in 1), we complete the prod#3]
Note that a similar result was presented(in| [37] by leveragin
the results in the EM algorithm theory.
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