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Semi-dynamic Green Resource Management in
Downlink Heterogeneous Networks by Group

Sparse Power Control
Pan Cao, Member, IEEE, Wenjia Liu, John S. Thompson, Fellow, IEEE, Chenyang Yang, Senior Member, IEEE

and Eduard A. Jorswieck, Senior Member, IEEE

Abstract—This paper addresses an energy-saving problem
for the downlink of a cloud-assisted heterogeneous network
(HetNet) using a time-division duplex (TDD) model, which aims
to minimize the base stations (BSs) sum power consumption
while meeting the rate requirement of each user equipment (UE).
The basic idea of this work is to make use of the scalability
of system configurations such that green resource management
can be employed by flexibly switching off some unnecessary
hardware components, especially for off-peak traffic scenarios.
This motivates us to utilize a flexible BS power consumption
formulation to jointly model its signal processing and circuit
power, transmit power and backhaul transmission power. Instead
of using the integer variables {1, 0} to control the ”on/off” two
status of a BS in most previous work, we employ the group
sparsity of a transmit power vector to denote the activity of
each frequency carrier (FC) such that the signal processing
and circuit power can be scaled with the effective bandwidth,
thereby leading to multiple sleep modes for a BS in multi-
FC systems. Based on this BS power model and the group
sparsity concept, a simplified resource allocation scheme for joint
BS-UE association, FC assignment, downlink power allocation
and BS sleep modes determination is presented which is based
on the average channel statistics computed over the coherence
time of the large scale fading (LSF). This semi-dynamic green
resource management mechanism can be formulated as a NP-
hard optimization problem. In order to make it tractable,
the successive convex approximation (SCA)-based algorithm is
applied to efficiently find a stationary solution using a cloud-
based centralized optimization. Simulation results also verify the
effectiveness of the proposed mechanism under the developed BS
power consumption model.

Index Terms—Heterogeneous network, energy consumption
minimization, group sparsity, power control, green scheduling,
fractional frequency reuse, multiple base station sleeping modes,
successive convex approximation

I. INTRODUCTION

The definition of the next generation (5G) networks gives
the main focus on providing ubiquitous and high data rate
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services for massive devices [1]. Network densification and
offloading, increased bandwidth (e.g., by spectrum sharing
[2] and carrier aggregation [3]), and advanced multiple-input
and multiple-output (MIMO) techniques (e.g., scaling up the
number of antennas [4]) are recognized as the three key
technologies for future 5G networks to increase the spectral
efficiency [5]. By employing these concepts, future 5G net-
works are more likely to become increasingly dense, massive
and heterogeneous in order to target very high data rates
everywhere. However, like a double-edge sword, these dense,
massive and heterogeneous advances in return may result in
high energy consumption if proper green resource management
is not adopted, since high data rates provide the possibility to
transmit the same or even more information in a shorter time
and thus cells may be lightly loaded for much of time (off-
peak)1 [6]. Therefore, if a heterogeneous network (HetNet)2

is already planned or deployed in a typical area, a question
arises:
Q: How can we save the energy consumption of a HetNet

by efficient resource management when rate demands in
the network are low?

This question on green resource management has attracted
intensive research since last decade. According to the report
from Nokia Networks [7], base stations (BSs) consume over 80
percent of a cellular network’s energy consumption, and thus
this work focuses on the problem of energy saving for BSs in
the downlink of a HetNet. To reduce the energy consumption
of BSs, there are three main methods from the perspective
of resource management: 1) green scheduling (e.g., traffic-
offloading and flexible frequency reuse), 2) transmit power
allocation and 3) sleep mode for lightly loaded hardware com-
ponents. Following these three aspects, a brief, comprehensive,
yet non-exhaustive review of related work is given as follows.

A. Related Work

The general BS and user equipment (UE) association is a
popular way to improve the overall network performance by
scheduling the connections between BSs and UEs such that the

1In this work, both ”off-peak traffic” and ”partially loaded scenarios” refer
to the same status of a network whose throughput is smaller than its network
capacity, e.g., with less active users or lower rate targets.

2Hereafter, we use the general ”HetNet” to denote all the types of (single-
tier or multi-tier) multi-cell environment, because our proposed mechanism is
independent of the BSs’ tiers/density, and the number of BSs’ antennas.
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inter-BS interference can be properly managed, see [8], [9]
and the references therein for the HetNets. When the green
communications is the goal, an adaptive BS-UE association
can be used to reduce the network energy consumption by
power control. In [10], both the power allocation and BS
assignment in non-orthogonal downlink transmission code-
division multiple-access (CDMA) communication systems are
jointly studied, where each UE is allowed to connect to
more than one BS. The authors in [11] propose a joint BS
association and power control algorithm to simultaneously
maximize the system revenue and minimize the total transmit
power consumption such that each UE can be served by
the right BS. Two types of BS-UE association problems are
addressed in [12] by minimizing the total network power
consumption (global throughtput) and minimizing each UE’s
power consumption (UE equilibrium), respectively. In [13], BS
association and downlink beamforming are jointly optimized
by minimizing the sum power consumption while guaranteeing
a minimum signal-to-interference-and-noise-ratio (SINR) per
UE. Instead of studying the BS-UE association under universal
spectrum reuse, a joint design of flexible spectrum assignment
and BS-UE association might further improve the network
performance [14]. Another special case of spectrum reuse
is orthogonal frequency division multiple access (OFDMA),
which leads to a joint frequency subcarrier assignment and
BS-UE association problem. Some recent works on energy
efficiency maximization for the downlink multi-cell OFDMA
system have been addressed in [15]–[17] and the references
therein. In order to make flexible use of spectrum, frac-
tional/partial spectrum reuse among BSs is considered to
improve energy efficiency by flexibly improving the bandwidth
and also avoiding some significant inter-BS interference in
[18], [19].

In addition to the green scheduling and power allocation
in the above works, another important way to save network
energy consumption is to completely or partially turn off some
”free” BSs with no/low load, e.g., [20]–[28] and the references
therein. For instance, from the point of view of reducing
energy consumption, the authors in [27], [28] provide some
interesting performance analysis by optimizing the number
and density of active BSs according to the varying traffic
load in the network. In order to control the ”on/off” status
of a BS, the integer variables {1, 0} are usually introduced
and optimized, e.g., in [23]–[26] and in particular [25], [26]
also with the consideration of scheduling and transmit power
minimization. However, the ”on/off” two-status decision for a
whole BS might be crude and coarse, since this binary power
model implies that all the ”on” BSs consume the same constant
circuit power in spite of their different traffic loads, which is
not true in practical systems. In addition, it is not realistic
to switch off and wake up a whole BS in a very short time
(dynamically), and also a BS still needs to transmit and receive
some basic signals for detection and control even when no UEs
are connected. This motivates that hardware components of a
network should be as flexible and reconfigurable as possible,
since this hardware flexibility and scalability can be exploited
to further improve energy efficient/saving performance, by
reconfiguring the BS hardware components according to the

effectively used resources [21], [29], [30]. In particular, the
authors in [29] also suggest a modular hardware design
approach based on a multi-core microprocessor in order to
avoid the dependence of different hardware components on
each other and enable flexible reconfiguration. Thus, it is
possible to flexibly turn off or deactivate only unnecessary
hardware components to reduce the signal processing and
circuit power, e.g., the antenna muting/adaptation [31], [32]. In
the time domain, the discontinuous transmission (DTX) [33]
based on the varying channel quality is another example of
hardware inactivity, which is extended in [34] by combining
the scheduling and power control to minimize the BS energy
consumption.

However, most previous work has not considered jointly
solving green scheduling (BS-UE association and FC as-
signment), downlink power allocation and multiple BS sleep
modes, and the system configurations are not as flexible
and scalable as possible based on some of the following
assumptions: R1. both BSs and UEs are equipped with a single
antenna; R2. each BS is allowed to serve one UE at a time on
each FC; R3. each UE is allowed to be connected to only one
BS at a time; R4. each UE is allowed to operate on only one
FC at a time; R5. each FC is not allowed to be reused by two
or multiple UEs at a time; R6. simple transmit power control
for each UE on a FC is adopted, e.g., fixed power allocation or
fractional power control; R7. the ”on/off” two-status BS sleep
mode is used. In fact, these ”restricted” system assumptions
should be and can be relaxed due to recent hardware and signal
processing capabilities in order to further improve the green
performance.

B. System Assumptions and Explanations
With the purpose of reducing BSs energy consumption,

we desire to flexibly and jointly implement green scheduling,
transmit power allocation and multiple sleep modes for BSs
in a HetNet based on the following system assumptions
A1. Multi-Antenna System: Each BS is equipped with multi-

ple or even a large scale antenna array. MIMO technology
is maturing and is being incorporated into emerging
wireless broadband standards like long-term evaluation
(LTE) [35]. Furthermore, the recent massive MIMO (with
large-scale antenna arrays) can increase the capacity 10
times or more and simultaneously improve the radiated
energy efficiency on the order of 100 times, and is
considered as an exciting 5G potential technology [36],
[37];

A2. Dual Multi-Connectivity/Access Enabled Operation:
Each BS can simultaneously serve more than one UEs on
each individual FC, since a multi-antenna BS can transmit
multiple data streams independently and simultaneously
to multiple users using multiple degrees of freedom (i.e.,
multi-user transmission) [4]. Meanwhile, each UE can be
simultaneously served by more than one BSs on each
individual FC. One example is the coordinated multi-
point (CoMP) transmission, which exploits the potential
interference links for desired data transmission and plays
an important role in interference-limited small cells to
enhance the effective strength of signals [38], [39];
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A3. Dual Multi-Carrier Enabled Operation: Each BS and
each UE can operate simultaneously on one or more
FCs. 3GPP Release 12 has already proposed the inter-site
carrier aggregation in the HetNet, for example, a device
can maintain parallel connections to a macro cell on some
of the low frequency bands and to a small cell at higher
frequency band [40];

A4. Spectrum Reuse or Not: Each FC is allowed to be reused
by any BS set and UE set. By allowing spectrum reuse, a
defined number of BSs or UEs are granted rights to use
the same spectrum. The shared license model provides 5G
systems and deployments with an important flexibility to
use spectrum that is under-utilized by other services or
fully utilized by other equipments which are located far
away to provide additional capacity [41];

A5. Frequency-Selective Fading Channel Model: The same
communication link on different FCs may experience
different channel qualities. This is generally true in re-
alistic wireless communication environment, since radio
transmissions on different FCs usually have different
wave propagation properties.

A6. Flexible Transmit Power Allocation: Flexible downlink
transmit power is allocated subject to the per-BS transmit
power budget. In this work, Nk linear power ampliers
are equipped at each BS k, since a linear amplifier is
effectively transparent to the carriers modulation and the
number of carriers and can linearly amplify all types of
signals, e.g., a multi-carrier signal where each carrier has
a constant, non-constant, or a mixture of both envelope
[42].

In contrast to the assumptions R1-R7, these general system
assumptions A1-A6 allow us to formulate a series of the
flexible scheduling and efficient resource management prob-
lems: such as P1. BS-UE association problem (BS-selection
and ”many-to-many” assignment), P2. BS/UE-FC assignment
problem (FC-selection and ”many-to-many” assignment), P3.
downlink transmit power allocation problem, P4. intra-carrier
interference management problem (a side-product of P1-P3),
and P5. flexible BS power model (multiple sleeping modes
enabled). In order to efficiently and jointly solve these resource
management problems, we assume that all BSs in the HetNet
are connected to and controlled by a central processor (CP)3

via a backhaul network (in fact, this work requires only a
low backhaul overhead) such that the high computation load
of BSs can be transferred to the supercomputer at the CP,
which avoids allocating an advanced processor to each BS (low
cost) and reduce inter-BS information-exchange overhead for
implementing an iterative coordinated algorithm (low over-
head). In particular, [43], [44] provide some suggestions on
architectures, flexible operation and centralized management
for a cloud-assisted HetNet.

3The CP could be either the central data center in the Cloud radio access
network (C-RAN) or a macro BS who has the capability to do central
optimization for the entire network.

C. Contributions

Consider a cloud-assisted HetNet with the assumptions A1-
A6. all the BSs, FCs, time blocks, transmit power can be
considered as the available radio frequency ”resources”, and
can form a ”pool” (i.e., through the supercomputer at the CP).
The output of a pre-defined centralized optimization of green
resource management will give the answer to Question Q.
Therefore, this work is aimed to design a flexible and efficient
green resource management mechanism. More precisely, the
main contributions along with the organization of this paper
are listed as follows.

• In Section II: We propose a semi-dynamic green resource
management mechanism, which is implemented in two
time scales: 1) The green scheduling, downlink trans-
mit power allocation and BS sleep modes are jointly
optimized and determined at the CP in a centralized
fashion only based on the large scale fading (LSF)
values, and thus these strategies are fixed while the LSF
values stay constant; 2) The low-complexity maximum
ratio transmission (MRT) beamforming is designed and
employed locally at each BS based on the instantaneous
small scale fading (SSF) coefficients. Compared with the
previous dynamic and long-term resource management
mechanisms, this semi-dynamic green resource manage-
ment scheme has the following advantages: 1) It is semi-
dynamic and also gains the benefit of varying LSF by
dynamically employing the MRT beamforming; 2) It has
a low computation and overhead demand for BSs in the
dynamic transmission, and transfers the LSF values based
optimization to the CP (the slowly-varying LSF values
based optimization is not as delay-sensitive as dynamic
transmission);

• In Section III: Since the BSs’ signal processing circuit
power is flexibly scaled by the effective bandwidth, some
unnecessary hardware components of the unassigned FCs
can be switched off to reduce the signal processing power
consumption rather than the whole BS. This leads to mul-
tiple signal processing power levels that can be adapted
flexibly to the varying traffic load. Inspired by [45], [46],
where the `0 norm of a beamforming vector is used
to dynamically denote the integer variables {1, 0}, we
employ group sparsity of a transmit power vector to semi-
dynamically denote the activity of a FC, and then use a
log-based expression to better approximate the `0 norm
than the mixed `1/`2 norm approximation in [45], [46].
Based on this idea, a flexible and scalable BS downlink
power consumption model is developed, which jointly
contains signal processing and circuit power, downlink
transmit power and backhaul transmission power. Fur-
thermore, this BS power consumption formulation is a
function of a single transmit power vector, and provides
the potential to jointly solve the above problems P1-P5;

• In Section IV, we derive a closed-form expression to
approximate the average achievable rate based on the
channel estimation for the time-division duplex (TDD)
model. Based on this average rate expression and the
flexible power model, we formulate a semi-dynamic BSs
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energy consumption minimization problem subject to
UEs’ rate constraints based on the slowly-varying LSF
values. Solving this optimization problem provides solu-
tions to the problems P1-P5. Since this big optimization
problem is shown to be a NP-hard problem, we apply a
successive convex approximation (SCA)-based algorithm
in Section V to solve it efficiently, and its convergence
to a stationary solution is proved.

Notations: |X | and |x| denote the number of the elements
of a set X and a vector x; X (i) denotes the i-th element
in the set X ; X1\X2 denotes the set X1 but excluding all the
elements in the set X2; diag[x] denotes a diagonal matrix with
the elements in x as its diagonal elements;

(
n
L

)
denotes the

number of n-combinations for a L-element set.

II. SYSTEM MODEL

Consider the downlink transmission in a cloud-assist Het-
Net, where K BSs communicate with L active single-antenna
UEs employing F orthogonal FCs, and all BSs are connected
to the CP via a backhaul network. Let K , {1, 2, · · · ,K},
L , {1, 2, · · · , L} and F , {1, 2, · · · , F} denote the
index set of the BSs, UEs and FCs, respectively. This setup
is denoted by K × L × F . Based on the general system
assumptions A1-A6 in Section I-B, we let Nk and Wf Hz
denote the number of antenna of BS k ∈ K and the bandwidth
of FC f ∈ F . Let pfk,` ≥ 0 denote the downlink transmit
power at BS k allocated for the transmission to UE ` ∈ L
on FC f ∈ F . The transmit power {pfk,`}`∈L,f∈F at each
BS k are allowed to be flexibly allocated to the LF channels
but subject to the per-BS transmit power budget PmaxBS,k, i.e.,∑L
`=1

∑F
f=1 p

f
k,` ≤ PmaxBS,k. To be clear, some abbreviations

and variables used in this paper are listed in Table I.

A. Channel Model

We assume that the channel on each FC is quasi-static
block-fading which is constant for a number of symbol in-
tervals4 [47]. Let hfk,` =

√
αfk,`h̃

f

k,` ∈ CNk×1 be the
instantaneous channel state information (CSI) from BS k ∈ K
to UE ` ∈ L on FC f ∈ F in a certain time slot, where αfk,`
denotes the LSF gain including path loss and shadowing, and
h̃
f

k,` denotes the corresponding SSF vector where each entry
is assumed to satisfy independent and identically distribution
(i.i.d.) with zero mean and unit covariance [4], [48]. The age
of LSF (A-LSF) is defined as the time duration over which the
LSF of a communication link is considered to be not varying.
The time duration over which the SSF stays constant is in
fact the coherence time. In many mobile radio situations, the
A-LSF is usually tens or hundreds of times longer than the
coherence time of the SSF [47]. Without loss of generality,
we assume β1,f and β2,f symbols can be transmitted during
an A-LSF and a coherence time on FC f .

4The symbol interval denotes the time consumed for a transmission of one
symbol.

TABLE I: Abbreviations and Variables

LSF, SSF Large scale fading, small scale fading
A-LSF The age of large scale fading during which LSF

values stay constant
τf The length of pilot sequence on FC f in channel

training
β1,f , β2,f No. of symbols transmitted in an A-LSF, and in a

coherence time
K,L,F The set of K BSs, the set of L UEs, the set of F

FCs
Uk,B` The set of UEs initially selected by BS k, the set

of BSs initially serving UE `

pfk,` Transmit power from BS k to UE ` on FC f

pf
BS,k Transmit power vector from BS k to all the UEs

in Uk on FC f
pBS,k Transmit power vector from BS k to all the UEs

in Uk on all the FCs
pFC,f Transmit power vector from all the BSs in K to all

the UEs in L on FC f
pUE,` Transmit power vector from all the BSs in B` to

UE ` on all the FCs
p Transmit power vector from all the BSs in K to

their UEs in {Uk}k∈K on all the FCs
PBS Sum BS power consumption in the downlink of a

HetNet
Rf

` Average rate of UE ` on FC f during an A-LSF
[bits/Hz/second]

R`(p) Average sum rate of UE ` on all the FCs during
an A-LSF [bits/second]

B. Green Resource Management Mechanism

In terms of resource management, dynamic design based
on instantaneous CSI significantly benefits channel gains by
adjusting strategies with the varying CSI but at the cost of
high complexity. In most practical mobile communication
scenarios, it is usually not allowed to design complicated in-
stantaneous transmission strategies (e.g., by the high overhead
required and high-complexity iterative algorithms) because of
the limited coherence time. In contrast, the long-term fixed
transmission strategies for a long time duration have a very
low complexity but usually result in a very inefficient usage
of the resources because of the mismatch between the fixed
strategies and the varying CSI. This motivates us to design a
semi-dynamic hybrid resource management mechanism:

M1. MRT Beamforming: During each coherence time, the
low-overhead and low-complexity MRT downlink beam-
forming scheme is used. Each BS can design the MRT
beamforming patterns for its serving UEs locally based
on only the instantaneous CSI of the desired links, which
has a low computation time (the remaining time can
be left for uplink/downlink transmission) and only low
backhaul overhead is needed by the coordinated BSs to
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adjust phases if coherent CoMP transmission is desired.5

One beamforming design is sufficient for each coherence
time of the SSF;

M2. Resource Management: During each A-LSF, green re-
source management problem is optimized at the CP based
on only the LSF values. The solution will suggest the
strategies for scheduling, transmit power allocation and
BS sleep modes, and these strategies are fixed for a whole
A-LSF. Only one implementation is needed for each A-
LSF.

In M1, no optimization but only the computation of the
simple MRT beamforming pattern is required. Thus, our main
focus will be on the optimization in M2, which only requires
that LSF values are available at the CP. Therefore, the basic
idea of this semi-dynamic green resource management mech-
anism is to design the low-complexity MRT beamforming
dynamically but use the fixed scheduling, power allocation
and BS sleep modes optimized in M2 during an A-LSF com-
putation hence we call it a semi-dynamic method. The main
advantage of this mechanism is to reduce the computation and
overhead requirement for BSs in the dynamic transmission
(short-delay and low-cost), and to transfer the optimization
based on the slowly-varying LSF values to the supercomputer
at the CP and this optimization is not as delay-sensitive as
dynamic transmission. The outline of how this mechanism is
implemented will be shown in Section V-E.

C. Channel Acquisition

In order to implement M1 and M2, the acquisition of SSF
and LSF are required, respectively. Some symbol intervals
within each coherence time might be taken for channel train-
ing, e.g., by pilot sequence transmission, and the remainder is
left for downlink data symbol transmission6.

In this work, TDD operation model is employed, because
the feedback phase under the frequency-division duplex (FDD)
operation can be eliminated by using channel reciprocity and
additionally the pilot overhead might be reduced for multi-
antenna systems, especially for massive MIMO [50]. In the
uplink channel training, all UEs transmit pilot sequences to
their associated BSs on the assigned FCs. Let √τfφf` with
||φf` || = 1 be the training vector with the length τf transmitted
from UE ` with the transmit power pfUE,` to its associated BS
k on an assigned FC f . Let UFC,f ⊆ L denote the set of

5This is also the motivation for us not to use joint precessing, which requires
the dynamic centralized beamforming design for the coordinated BSs and
thus causes high overhead (transmit/receive channel vectors and beamforming
vectors) and also high latency, but to use multiple signal enhancement in the
CoMP that only requires the inter-BS phase adjustment [49]. In principle,
some other beamforming schemes could be also employed here, such as zero-
forcing (ZF) and minimum mean sum error (MMSE) beamforming, if each
BS has an advanced processor to implement the Nk-dimension matrix inverse
calculations required by ZF and MMSE beamforming design because each
inverse calculation has a very high complexity of O(N3

k ) when Nk becomes
large.

6The uplink data transmission is not considered here in order to focus on
the downlink transmission, since the total network energy is mainly consumed
by BSs in the downlink transmission. Otherwise, it is equivalent to consider
the ”coherence time” used in this work to be a shorter one excluding the
uplink transmission time.

UEs who reuse FC f .7 Then, by employing minimum mean
square error (MMSE) estimation, the SSF from a typical UE
` ∈ UFC,f to its associated BS k on FC f can expressed as

Lemma 1 The MMSE estimate of the SSF h̃
f

k,` can be ex-
pressed as

h̃
f

k,` = ĥ
f

k,` + efk,`, (1)

where ĥ
f

k,` ∼ CN (0, δfk,`I) is independent of the estimation
error efk,` ∼ CN (0, (1− δfk,`)I) with

δfk,` ,
τfp

f
UE,`α

f
k,`

τfp
f
UE,`α

f
k,` +

∑
j∈U`

FC,f\{`}
τfα

f
k,jp

f
UE,j +Wfσ2

,

(2)

where Wfσ
2 denotes the thermal noise power linearly with

the operating bandwidth Wf . �

Proof: See Apendix A.

Remark 1 When no pilot sequence is reused (|UFC,f | =

1), the channel estimation quality in (2) becomes δfk,` =
τfp

f
UE,`α

f
k,`

τfp
f
UE,`α

f
k,`+Wfσ2

, and thus the channel estimation error

1 − δfk,` becomes negligible as δfk,` → 1 when τfp
f
UE,`α

f
k,`

is sufficiently large and Wf is not very large. Interestingly,
(2) also implies that pilot sequences can be reused on the
same FC without significant performance loss by those UEs
with small LSF gains or low uplink training power to the same
BS. �

In terms of the LSF values, they can be easily estimated
at BSs and then reported to the CP via a backhaul network,
and this procedure requires a very low overhead because LSF
values are scalers. Since the LSF values depend on the specific
locations of UEs in realistic communication environments, it is
possible to employ a LSF map-based method to estimate LSF
values at the CP directly instead of via backhaul transmission
[51].

Definition 1 A LSF map is defined as a set of LSF values
of dense sampling locations in a geographic area. A ”point”
on the LSF map contains KF -dimension LSF values of the
downlink channels from K BSs to the corresponding geo-
locations on F FCs, respectively. �

A LSF map can be generated offline by measuring the LSF
values of sampling locations in advance once the deployment
is given [52], and thus it can be used as a prior information
stored at the CP to implement the optimization in M2. For
example, combining a LSF map and current UEs’ locations
(maybe provided by GPS), the LSF values in next A-LSF can
be estimated based on UEs’ mobility prediction [53].

7In fact, the channel estimation is implemented based on the optimized
scheduling result in M2, i.e., the determined BS-UE association and FC
assignment. Thus, each UEs’ set UFC,f ,∀f ∈ F and their served BSs
are already known before dynamical channel estimation. Without loss of
generality, we assume UFC,f 6= ∅.
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D. Initial BS-UE Association

Let Ufk ⊆ L and Bf` ⊆ K denote the UEs set simultaneously
served by BS k ∈ K and the BSs set simultaneously serving
UE ` ∈ L, respectively, on FC f ∈ F . Note that some UEs in
Ufk might not be in the ”cell” of BS k because of the CoMP
transmission.

Lemma 2 For the setup K × L × F , there exist at most∑K
k=1

∑min(FNk,L)
n=1

(
n
L

)
possible solutions to the BS-UE as-

sociation problem in P1. �

Proof: In principle, it is possible for each BS k equipped
with Nk antennas to simultaneously and independently serve
up to Nk UEs on each FC f , and thus up to min(FNk, L)
UEs can be served by BS k if it serves different UEs set on
different FCs (i.e., Ufk ∩U

f
k = ∅,∀f 6= f ). Then, the proposed

result can be obtained by solving a combinatorial problem.
In order to remove unlikely solutions to reduce the com-

plexity, we propose an initial BS-UE association to shrink
the solutions set as follows. Each BS k with Nk antennas
initially selects Nk UEs with the strongest LSF gains on each
FC to form its initial set of UEs. Without loss of generality,
we assume Uk , U1

k = U2
k = · · · UFk and |Uk| ≤ Nk (the

inequality happens when L < Nk). After selecting UEs by
all BSs, each UE ` ∈ L might be simultaneously selected
by multiple BSs for a potential CoMP transmission. We let
B` , B1

` = B2
` = · · · BF` denote the initial BSs set consisting

of all the serving BSs who initially select UE `.

Remark 2 In general, it is reasonable to assume that each UE
` ∈ L is initially selected by at least one BS, i.e., |B`| ≥ 1. In
fact, it is rare that a UE cannot be initially selected by any
BS, since BSs are equipped with multiple antennas and the BSs
deployment is in practice based on UEs’ traffic load density. If
it really happens, it means that there exist more UEs than the
network capacity can support or the non-selected UEs suffer
from very bad channel conditions, and thus they should be
deactivated during the next A-LSF. �

After the initial BS-UE association, the number of feasible
solutions to Problem P1 is reduced to ΠL

`=1 (|B`|!), thereby
resulting in ΠL

`=1 (|B`|!× F !) feasible solutions to the FC
assignment problem P2. The power model in Section III will
be used to the algorithm in Section V of the paper to find a
good solution from these candidates.

III. BSS POWER CONSUMPTION MODEL

For the setup K×L×F after initial BS-UE association, the
downlink transmit power {pfk,`}k∈B`,`∈L,f∈F forms an irreg-
ular8 three-dimensional ”tensor” with the size of |B`|×L×F .
In particular, the status of a link from BS k to UE ` on FC
f can be implied by pfk,`. More precisely, the link is on if
pfk,` > 0. Otherwise, it is off. This motivates us to propose
a general BSs downlink energy consumption model based on
the transmit power control.

8The irregularity is because |B`| might be different for each UE `.

A. BSs Downlink Power Consumption Model

Before showing the BS power consumption model, we first
give some definitions.

Definition 2 We let

pfBS,k ,
[
pfk,Uk(1), p

f
k,Uk(2), · · · , p

f
k,Uk(|Uk|)

]T
∈ R|Uk|×1

+ ,

pBS,k ,
[
p1
BS,k,p

2
BS,k, · · · ,pFBS,k

]T ∈ R|Uk|F×1
+ ,

p , [pBS,1,pBS,2, · · · ,pBS,K ]T ∈ RF
∑K

k=1 |Uk|×1
+

denote the transmit power of BS k to all the UEs in Uk on
FC f , the transmit power of BS k to all the UEs in Uk on all
the FCs, and the transmit power at all the K BSs to their all
initially selected UEs on all the FCs, respectively. �

Let TBS,k and T fBS,k denote F |Uk| × F
∑K
k=1 |Uk| and

|Uk| × F
∑K
k=1 |Uk| selective matrices only consisting of

{0, 1} such that pBS,k = TBS,kp and pfBS,k = T fBS,kp,
respectively.

In the initial BS-UE association, each BS k is allowed
to connect to Nk UEs on all F FCs. However, this initial
maximum-connectivity rarely happens because it is usually
inefficient and unnecessary for a HetNet to meet the UEs’
transmission rate requirement, especially in off-peak traffic
scenarios. Therefore, many elements of pBS,k and p would
be zeros, which implies that these transmit power vectors have
the (group) sparse property.

Definition 3 A vector is group sparse if it has a grouping
of its components and the components within each group are
likely to be either all zeros or not. Let x , [xT1 ,x

T
2 , · · · ,xTG]T

be a M × 1 vector with G non-overlapping groups, where the
vector xg denotes the g-th group of the size Mg×1 satisfying∑G
g=1Mg = M . The weighted group sparsity of the vector x

is defined by

||x||G,Mg

0,w ,
G∑
g=1

wg · sign(||xg||0), (3)

where w , [w1, w2, · · · , wG] with wg as the weight of the
group xg and

sign(||xg||0) =

{
0 when xg = 0 (4a)
1 otherwise. (4b)

When w = 1, we use ||x||G,Mg

0 to denote the standard
unweighted group sparsity `0 norm. �

Inspired by this sparsity property, we propose to employ
the group sparsity of the transmit power vectors to denote
the activity of FCs. For example, ||p||K,F |Uk|0 can be used to
count the number of active BSs. Let PBS be the BSs sum
power consumption in the downlink of a HetNet. Then, PBS
can be modeled by transmit power vectors as follows.

Proposition 1 The BSs sum power consumption in the down-
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link of a HetNet can be modeled as

PBS ,
K∑
k=1

P sleep0k +

K∑
k=1

||pBS,k||
F,|Uk|
0,µk︸ ︷︷ ︸

circuit & signal processing power

+

F∑
f=1

(
1− τf

β2,f

) K∑
k=1

1

ηk
1TpfBS,k︸ ︷︷ ︸

downlink transmit power

+ Phaul
Rhaul
Cref︸ ︷︷ ︸

backhaul power

(5)

where P sleep0k denotes the basic static power consump-
tion to support the deep-sleep mode9, and µk ,
[P 1
sp,k, P

2
sp,k, · · · , PFsp,k] denotes the weights for the weighted

group sparsity where P fsp,k denotes the weight for the f -th
group of pBS,k and is expressed by [54]

P fsp,k = Nk
Wf

10 MHz
(P ′BB + P ′RF ), (6)

where P ′BB and P ′RF are some reference baseband and RF
related signal processing power consumption per 10 MHz
bandwidth; and ηk ∈ (0, 1) denotes the downlink power
amplifier (PA) efficiency ratio of BS k; and Phaul is the
reference backhaul power consumption for a backhaul col-
lection of wireless links of a reference capacity Cref (Cref =
100Mbit/s in [55]) and Rhaul is the average total backhaul
transmission rate. �

B. Explanation: Terms in Power Consumption Model

The proposed BS power consumption model in (5) is
explained term by term as follows:

1. Circuit & Signal Processing Power [54]: 1)∑K
k=1 P

sleep0
k denotes the very basic static power

consumption of all the BSs to support their deep-sleep
modes, where P sleep0k is power consumption when BS k is in
the deep-sleep mode, e.g., the power consumed by the DC-DC
power supply, mains supply and active cooling system. This
static power P sleep0k is usually different for different types of
BSs. 2)

∑K
k=1 ||pBS,k||

F,|Uk|
0,µk

denotes the power consumption
by the baseband (BB) interface and the signaling of RF
transceiver (RF-TRX) of all the BSs. The power consumption
of the BB interface is mainly contributed by carrier
aggregation, filtering, FFT/IFFT, modulation/demodulation,
signal detection, channel coding/decoding, and the RF-TRX
power consumption mainly depends on the bandwidth, the
number of antennas and the resolution of the analogue-to-
digital conversion.

Remark 3 We employ ||pBS,k||
F,|Uk|
0,µk

to count the number
of effective FCs assigned to BS k, which allows that each
BS to have maximum (F ! + 1)-level signal processing power
by turning off partial hardware components according to
different effective (assigned) bandwidth10. This term is load-
dependent. For example, if a BS is required to support higher

9The deep-sleep mode denotes the status of a BS without assigned FCs for
downlink data transmission when pBS,k = 0. of BS k

10From (6), it implies that the signal processing power for each FC is
different if all individual FCs have different bandwidth.

data rates of UEs, more FCs might be assigned at the cost
of higher signal processing power. Otherwise, a BS could
consume less power. Therefore, multi-level signal processing
power enables multiple sleep modes for a BS, which can be
determined by group sparsity power control based on UEs’
rate requirements. �

2. Downlink Transmit Power: A BS or UE can operate
simultaneously and in parallel on different FCs (similar to the
FDD mode). This parallel operation allows different length
of pilot sequences for channel training on different FCs. The
parameter 1− τf

β2,f
denotes the ratio of downlink transmission

time to the whole time period on a typical FC f . This term
computes the total downlink transmit power consumption by
all the BSs on all the FCs, while in fact, only the transmit
power of the assigned FCs are counted because {pfk,`} are
zeros for un-assigned FCs.

3. Backhaul Power: This term is to measure the power
consumption by the backhaul overhead, usually including the
exchange of the CSI, transmission data and the signaling
between coordinated BSs (e.g., in the iterative processing).
The backhaul power consumption highly depends on the
mechanism/algorithm itself. For instance, our proposed semi-
dynamic resource management mechanism has no need for the
backhaul communication during the channel training and only
a very low backhaul overhead required in the MRT beam-
forming pattern design if the coherent CoMP transmission
is employed. The main overhead is consumed by releasing
the downlink data from the core network to the active BSs.
Therefore, in our scenario the average total resulting backhaul
rate for each UE is approximately its average downlink data
rate11, thereby

Rhaul ≈
L∑
`=1

R`(p), (7)

where R`(p) is defined in bits/s as the average downlink trans-
mission rate for UE ` without consideration of the modulation.

The proposed BSs power consumption model in (5) is
expressed as a function of transmit power vector p. This
implies that a series of resource management problems, such
as the trade-offs between the BSs energy consumption and
downlink transmission rate and the problems P1-P4 in Section
I-B, can be jointly solved by optimizing a single variable p.

IV. DOWNLINK TRANSMISSION RATE AND PROBLEM
FORMULATION

In this work, we desire to minimize BSs sum power
consumption while each UE’s required downlink rate is guar-
anteed. The downlink rate of an individual UE is first derived
as follows.

A. Downlink Transmission Rate
Given an initial BS-UE association, the average transmis-

sion rate of each UE ` ∈ L during TLSF can be expressed

11In this setup, synchronization signaling, the inter-BS phase adjustment
in MRT beamforming design, and the power allocation result announcement
from the CP are also needed via backhaul links, which are not considered
herein because of their very low overhead.
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as

R`(p) =

F∑
f=1

(
1− τf

β2,f

)
WfR

f
` (8)

where 1 − τf
β2,f

denotes the downlink data transmission time

fraction in an A-LSF, and Rf` denotes the rate contribution
from B` to UE ` on FC f , i.e.12,

Rf` = Eh̃

{
log2

(
1 +

∑
k∈B`

|hf,Hk,` w
f
k,`|2

Wfσ2 + InterBS
f
` + IntraBS

f
`

)}
(9)

where

InterBS
f
` ,

∑
k∈K\B`

∑
j∈Uk

|hf,H
k,`
wf

k,j
|2 (10)

IntraBS
f
` ,

∑
k∈B`

∑
`∈Uk\{`}

|hf,Hk,` w
f
k,f |

2 (11)

denote the inter-BS and the intra-BS interference to UE ` on
FC f , respectively, and Eh̃{} denotes the expectation only
with respect to the SSF coefficients because the LSF values
stay constant within an A-LSF, and wf

k,` ∈ CNk×1 denotes
the instantaneous downlink beamforming designed based on
the estimated CSI at BS k for UE ` on FC f .

Lemma 3 By using the MRT beamforming wf
k,` =√

pfk,`

−→
ĥ fk,` where pfk,` is the fixed downlink transmit power

within TLSF and
−→
ĥ fk,` ,

ĥ
f
k,`

||ĥf
k,`||

, the average rate Rf` in (9)

is approximately expressed as

Rf` ≈ log2

(
1 +

∑
k∈B`

pfk,`α
f
k,`

(
δfk,`(Nk − 1) + 1

)
Wfσ2 + Eh̃{InterBS

f
`}+ Eh̃{IntraBS

f
`}

)
,

(12)

where

Eh̃{InterBS
f
`} ,

∑
k∈K\B`

∑
j∈Uk

pf
k,j
αf
k,`

(13)

Eh̃{IntraBS
f
`} ,

∑
k∈B`

∑
`∈Uk\{`}

pf
k,`
αfk,`, (14)

and δfk,` is defined in (2). �

Proof: See Appendix B.

Remark 4 The approximation is because Ex{log2(1 +
f1(x)
f2(x) )} ≈ log2(1 + Ex{f1(x)}

Ex{f2(x)} ) is used, which is widely used
and partially justified in the performance analysis for the
multi-antenna systems (e.g., [56]). In particular, simulations in
[57] imply this approximation has a high accuracy, especially
for large scale antenna arrays. �

12This rate expression is achieved by combining coherently all received
desired signals at symbol level, which requires phase synchronization among
the coordinated BSs.

B. Problem Formulation

A semi-dynamic green resource management problem of
BSs sum power minimization by group sparse power control
is formulated as follows

min
p≥0

PBS (15a)

s.t.

F∑
f=1

(
1− τf

β2,f

)
WfR

f
` ≥ γ`, ∀` ∈ L (15b)

1T (TBS,kp) ≤ PmaxBS,k, ∀k ∈ K (15c)

where the objective function PBS is shown in (5), and Rf`
in downlink transmission rate constraint (15b) is based on
(12), and the constraint (15c) denotes per-BS transmit power
constraint because of the hardware limits.

However, it is challenging to solve (15) directly. One reason
is that it is a well-known NP hard problem to minimize the
group sparsity (`0 norm) in (3). Another reason is that the term∑F
f=1

(
1− τf

β2,f

)
WfR

f
` with Rf` (12) in a coupled structure

with the transmit power is like the sum rate expression of
a single-input and single-output (SISO) interference network
and also leads to a NP-hard problem in optimization. The goal
of this work is to efficiently compute high-quality suboptimal
solutions of Problem (15) by the centralized computation at
the CP.

C. Problem Reformulation

In order to make the problem (15) tractable, it is a common
approach to relax a group sparsity `0-norm to a mixed `2/`1
norm. The weighted group sparsity of a vector x in (3) is
approximately expressed as ||x||G,|xg|

0,w ≈
∑G
g=1 wg||xg||2,

which is non-smooth but convex (its minimization is known
as a group Lasso problem). However, [58] and [59] provided a
comparison of serval non-convex approximations of `0 norm
and suggested that the following log-based approximation
usually has a better sparse recovery performance

||x||G,|xg|
0,w = lim

ε→0

G∑
g=1

wg
log(1 + ε−11Txg)

log(1 + ε−1)

≈
G∑
g=1

wg
log(1 + ε−11Txg)

log(1 + ε−1)
, (16)

where ε in (16) is set to be a very small constant. The following
simulations in this paper imply the choice of ε has a very low
impact on the performance.

Based on (16) and (7), BSs sum power consumption in (5)
approximately becomes

P̂BS =

K∑
k=1

P sleep0k +

K∑
k=1

F∑
f=1

P fsp,k
log(1 + ε−1tTk,fp)

log(1 + ε−1)

+

F∑
f=1

(
1− τf

β2,f

) K∑
k=1

1

ηk
tTk,fp+ Phaul

L∑
`=1

R`(p)

Cref
, (17)

where tk , T TBS,k1, tk,f , T
f,T
BS,k1 and R`(p) in (12).
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The average individual UE rate on FC f in (12) can be
rewritten in a vector-form as

Rf` = log2

1 +
αf,TB`,`

p

Wfσ2 +αf,TK,`p


= log2

(
Wfσ

2 +αf,TK,`p
)
− log2

(
Wfσ

2 +αf,TK,`p
)
, (18)

where αfB`,`
is a LF |B`| × 1 all-zeros vector except for the

corresponding positions of {αfk,`(δ
f
k,`(Nk−1) + 1)}k∈B`

, and
αfK,` is similarly defined. In (18), we define αfK,` , α

f
B`,`

+

αfK,`. Observe that Rf` in (18) is a difference of two concave
(DC) functions of p.

Based on the reformulation in (17) and in (18) of the rate
constraint and objective function, respectively, after moving
the constant terms in the objective function Problem (15)
becomes

min
p≥0

K∑
k=1

F∑
f=1

(
P fsp,k

log(ε+ tTk,fp)

log(ε+ 1)
+

(
1− τf

β2,f

)
tTk,fp

ηk

)
(19a)

s.t.

F∑
f=1

(
1− τf

β2,f

)
Wf

(
log2

(
Wfσ

2 +αf,TK,`p
)

− log2

(
Wfσ

2 +αf,TK,`p
))
≥ γ`, ∀` ∈ L (19b)

tTk p ≤ PmaxBS,k, ∀k ∈ K, (19c)

where the total backhaul power consumption term is omitted
in (19a), because the rate constraint (19b) will be optimally
achieved with ”equality”, i.e., R`(p) = γ` (constant term).
However, Problem (19) is still difficult to solve, since it is a
concave-minimization problem with DC constraints.

V. SCA-BASED ALGORITHMS AND SOLUTIONS

In this section, the SCA-based algorithm is applied to com-
pute the locally optimal solutions of the non-convex problem
(19). The basic idea of the SCA-based algorithm (in spirit of
[60], [61]) is to iteratively 1) construct a surrogate function
as an upper bound for each objective/constraint function at
the current solution and then 2) optimize the problem with
surrogate functions which yields the next estimation of the
variables.

A. Technical Preliminaries

Consider the following non-convex optimization problem:

min
x∈RM

y(x) (20a)

s.t. cj(x) ≤ 0, j = 1, · · · , J, x ∈ Ω, (20b)

where y, cj : RM → R are non-convex but smooth functions
with the form of

y(x) , y+(x)− y−(x), cj(x) , c+j (x)− c−j (x), ∀j (21)

where y+, y−, c+j , c
−
j : RM → R are continuous convex

functions, and Ω is a convex set in RM . We define X ,
{x ∈ Ω : cj(x) ≤ 0, j = 1, · · · , J}.

Problem (20) is a DC program with DC constraints (non-
convex in general). By the SCA, a common scheme to generate
a surrogate function is to linearize the non-convex functions
by using a first-order Taylor series. For example, either the
completely linearized (CL) function

yCL(x, z) = y(z) + (∇y(z))T (x− z) (22)

or the partially linearized (PL) function

yPL(x, z) = y+(x)−
(
y−(z) + (∇y−(z))T (x− z)

)
(23)

can be the surrogate function of y(x), which is tight at a
feasible point z, i.e.,

yCL(x, z), yPL(x, z)

{
= y(x) when x = z (24a)
≥ y(x) otherwise. (24b)

Similarly, cCLj (x) or cPLj (x) is assumed to be a surrogate
function of the DC constraint function cj(x),∀j. Then, the DC
program with DC constraints can be approximately formulated
as a sequence of convex optimization problems (in multiple
iterations), and each can be solved by using algorithms and
toolbox from convex optimization theory. Therefore, Problem
(20) can be suboptimally but efficiently solved by the follow-
ing Algorithm 1 and its variants.

Algorithm 1 SCA-based Algorithm to Solve DC Program (20)

Initialization: i = 0, x(0) ∈ X and εth.
repeat

Generate the surrogate functions yPL(x,x(i)) and
cPLj (x,x(i)) by following (22);
Solve the convex optimization problem

x(i+1) = arg min
x∈Ω,

cPL
j (x,x(i))≤0, j=1,··· ,J

yPL(x,x(i)); (25)

i← i+ 1.
until ||x(i) − x(i−1)|| ≤ εth;

Remark 5 In principle, both PL functions and the CL func-
tions (if they are feasible) can be flexibly used as the surrogate
functions of the non-convex objective and constraint functions,
which might lead to some variants of Algorithm 1. �

B. Solutions of BS Energy Consumption Minimization

By the above SCA-based algorithm, Problem (19) as a DC
program can be solved as follows.

At a feasible point q, the surrogate functions of the concave
objective function (19a) and the DC rate expression in (19b)
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can be expressed by

P̂SBS(p, q) ,
K∑
k=1

F∑
f=1

P fsp,k
log(ε+ 1)

tTk,fp

ε+ tTk,fq

+

F∑
f=1

(
1− τf

β2,f

) K∑
k=1

1

ηk
tTk,fp, (26)

RS` (p, q) ,
F∑
f=1

(1− τf
β2,f

)Wf

(
log2

Wfσ
2 +αf,TK,`p

Wfσ2 +αf,TK,`q


− 1

log(2)
·
αf,TK,`(p− q)

Wfσ2 +αf,TK,`q

)
, (27)

based on (22) and (23), respectively, and after omitting
constant terms. In particular, the derivation of (27) from
(19b) is also based on log(x1) − log(x2) = log(x1

x2
) and

∇p log2(Wfσ
2 +αf,TK,`p) = 1

log(2) ·
αf

K,`

Wfσ2+αf,T

K,`
q

.

After selecting a feasible initial point p(0), Problem (19)
can be sub-optimally solved by the following Algorithm 2.

Algorithm 2 SCA-based Algorithm to Solve Problem (19)

Initialization: i = 0, a feasible p(0) and εth.
repeat

Solve the convex optimization problem

p(i+1) = arg min
p≥0, tTk p≤P

max
BS,k, ∀k∈K

RS
` (p,p(i))≥γ`, ∀`∈L

P̂SBS(p,p(i)); (28)

i← i+ 1.
until ||p(i) − p(i−1)||2 ≤ εth;

In Algorithm 2, (28) is a convex optimization problem with
a linear objective function and convex constraints, which can
be optimally solved by the convex optimization methods.

Remark 6 The surrogate function RS` (p,p(i)) in (27) is an
upper bound of the real rate function R`(p), but in each iter-
ation it is always achieved that RS` (p?,p(i)) = γ`,∀` where
p? is the optimal solution to (28) because of RS` (p?,p(i)) =
R`(p

?,p(i)) = γ`,∀` (implied by (24a)). This makes that each
UE rate requirement can be finally guaranteed. �

Proposition 2 The SCA-based algorithm in Algorithm 2 al-
ways converges to a KKT stationary solution of Problem
(19). �

Proof: See Appendix C.
Therefore, a local-optimal solution p to Problem (19) can

be obtained by Algorithm 2, which is not guaranteed to
be globally optimal. Then, this solution obtained at the CP
determines the strategies for the problems P1-P4 in Section
I-B.

C. Two-stage SCA-based Algorithm and its Complexity Anal-
ysis

In order to analyze the complexity of Algorithm 2, we
need to analyze the complexity of the optimization in (28).

Problem (28) is a convex optimization problem with log-
based functions in the constraints because of RS` (p?,p(i)) –
it can be directly solved by the recent CVX toolbox [62].
However, since a log function cannot be simply supported by
the symmetric primal/dual solvers within CVX, the principle
of the recent CVX solver is to construct a successive approxi-
mation heuristic that allows the symmetric primal/dual solvers
to support log functions [63]. This motivates us to apply the
SCA-based algorithm to solve Problem (28) as follows.

In the i-th iteration of Algorithm 2, the surrogate function of
the function (27) in Problem (28) at a point s can be generated
as

RSS` (p,p(i), s) ,(g`(p
(i), s))Tp+ v`,1(p(i), s)

+ v`,2(p(i), s),∀` ∈ L (29)

where v`,1(p(i), s), v`,2(p(i), s) and g`(p
(i), s) are defined as

v`,1(p(i), s) ,
F∑
f=1

(
1− τf

β2,f

)
Wf×

log2

 Wfσ
2 +αf,TK,`s

Wfσ2 +αf,TK,`p
(i)

 , (30)

v`,2(p(i), s) ,
F∑
f=1

(
1− τf

β2,f

)
Wf

log(2)
× αf,TK,`p

(i)

Wfσ2 +αf,TK,`p
(i)
−

αf,TK,`s

Wfσ2 +αf,TK,`s

 , (31)

g`(p
(i), s) ,

F∑
f=1

(
1− τf

β2,f

)
Wf

log(2)
× αfK,`

Wfσ2 +αf,TK,`p
(i)
−

αfK,`

Wfσ2 +αf,TK,`s

 . (32)

This derivation is based on (22) only for the log-term, and in
(27) log2(Wfσ

2 +αf,TK,`p) is upper bounded by log2(Wfσ
2 +

αf,TK,`s) + 1
log(2)

αf,T
K,`(p−s)

Wfσ2+αf,T
K,`s

.
When a SCA-based algorithm is employed to solve Problem

(28), in each iteration the following linear optimization is
required to be solved

min
p≥0

r(p(i))Tp (33a)

s.t. g`(p
(i), s)Tp+ v`,1(p(i), s) + v`,2(p(i), s) ≥ γ`,

∀` ∈ L (33b)

tTk p ≤ PmaxBS,k, ∀k ∈ K, (33c)

where r(p(i)) ,
∑K
k=1

∑F
f=1

P f
sp,k

log(ε+1)
tk,f

ε+tTk,fp
(i) +∑F

f=1

(
1− τf

β2,f

)∑K
k=1

1
ηk
tk,f . Problem (33) can be

further formulated as a standard linear program as

min
p≥0

(r(p(i)))Tp (34a)

s.t. R(p(i), s)p ≤ b(p(i), s) (34b)
p ≥ 0 (34c)
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where R(p(i), s) and b(p(i), s) are defined as

R(p(i), s) ,
[
− (g1(p(i), s))T ; · · · ;−(gL(p(i), s))T ;

tT1 ; · · · ; tTK
]

(35)

b(p(i), s) ,
[
v1,1(p(i), s) + v1,2(p(i), s)− γ1, · · · ,

vL,1(p(i), s) + vL,2(p(i), s)− γL, PmaxBS,1, · · · , PmaxBS,K

]T
.
(36)

Then, Problem (19) can be solved by the following two-
stage SCA-based algorithm

Algorithm 3 Two-stage SCA-based Algorithm to Solve Prob-
lem (19)
Initialization: i = 0, a feasible p(0,0) and εth.
repeat

Initialization: j = 0, p(i,0) and ε′th.
repeat

p(i,j) = arg min
p≥0,

R(p(i,0),p(i,j))p≤b(p(i,0),p(i,j))

(r(q(i,0)))Tp;

(37)

j ← j + 1.
until ||p(i,j) − p(i,j−1)||2 ≤ ε′th;
i← i+ 1;
pi,0 ← p(i−1,j).

until ||p(i,j) − p(i−1,j)||2 ≤ εth;

Lemma 4 The two-stage SCA-based Algorithm 3 achieves the
same solution to the single-stage SCA-based Algorithm 2. �

Proof: Based on Proposition 2, it can be similarly proved
that the inner SCA-based algorithm in Algorithm 3 can achieve
a KKT stationary solution of Problem (28). Since Problem
(28) is a strictly convex optimization, its has a unique KKT
stationary solution (optimal solution), which can be achieved
by the inner SCA-based algorithm. Therefore, this lemma
holds.

In the following, the complexity of Algorithm 3 (equivalent
to that of Algorithm 2) is derived.

Proposition 3 The number of operations to implement two-
stage SCA-based algorithm 3 is of order

Nout
iterN

in
iterO

((
F

K∑
k=1

|Uk|

)3.5(
(L+K)F

K∑
k=1

|Uk|

+ F

K∑
k=1

|Uk|+ (L+K)

)
ζ

)
(38)

where Nout
iter and N in

iter denote the average number of iterations
of the outer SCA-based algorithm and the inner SCA-based
algorithm in Algorithm [64], respectively, and ζ denotes
the number of bits used to represent each real value of
R(p(i,0),p(i,j)), b(p(i,0),p(i,j)) and r(q). �

Proof: By using the two-stage SCA-based algorithm, the
implementation of Algorithm 3 becomes an iterative optimiza-
tion of standard linear programs. Based on Khachiyan’s worst-

case polynomial bound for the complexity of a standard linear
programming [64], the complexity of (38) can be derived.

Remark 7 From (38), the complexity of Algorithm 3 roughly

scales as (L+K)
(
F
∑K
k=1 |Uk|

)4.5

which is upper bounded

by (L + K)
(
F
∑K
k=1Nk

)4.5

because of |Uk| ≤ Nk. Thus,
the number of FCs and the total number of BS antennas have
a significant impact on the complexity. We stress that one
implementation of Algorithm 3 at the CP is sufficient for a
whole A-LSF time period. �

D. Performance Analysis

We compare our proposed algorithm based on the flexible
assumptions A2-A4 in Section I-B with some baselines that
study the same BSs power minimization problem with the
proposed BS power model but based on the assumptions R2-
R5 in Section I-A in a theoretical way.

Proposition 4 Based on the flexible system assumptions A2-
A4 in Section I-B, our proposed green resource management
mechanism always outperforms those baselines which are
based on the assumptions R2-R5 in Section I-A. �

Proof: Similar to Definition 2, we let pUE,` ∈ RF |B`|×1,
pfUE,` ∈ R|B`|×1, and pFC,f ∈ RL|B`|×1 denote the power of
the BSs set B` to UE ` on all FCs, the power of the BSs set
B` to UE ` on FC f , and the power of all the BSs to all the
UEs on FC f , respectively. The ”restricted” assumptions R2-
R5 can be equivalently formulated to the following theoretical
constraints

Assumption R2 ⇔ ||pfBS,k||0 ≤ 1,∀k ∈ K,∀f ∈ F , (39)

Assumption R3 ⇔ ||pUE,`||
|B`|,F
0 = 1, ∀` ∈ L, (40)

Assumption R4 ⇔ ||pUE,`||
F,|B`|
0 = 1, ∀k ∈ K, (41)

Assumption R5 ⇔ ||pFC,f ||
L,|B`|
0 ≤ 1, ∀f ∈ F , (42)

respectively. Therefore, for example, one baseline with as-
sumption R2 can be formulated to the optimization problem
(15) but with an extra constraint (39). In optimization, more
constraints used for the same objective optimization problem
will degrade the performance (or have the same performance
when this extra constraint is inactive), since the feasible
solution set is shrunk. In this work, these constraints (39)-(42)
have been, in fact, relaxed by the general assumptions A2-A4
as shown in Problem (15) , and thus its outperformance is
verified.

E. Implementation

The implementation of the proposed semi-dynamic green
resource management mechanism during each A-LSF in a
could-assisted HetNet is summarized as follows.
• Step 1 (LSF Acquisition): At the beginning of an A-LSF,

the CP collects the predicted LSF values of the network;
• Step 2 (Green Resource Management): Based on the

LSF values, the CP solves Problem (19) by Algorithm 2.
According to the group sparse vector p that is obtained,
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the BS-UE association, FC assignment, downlink transmit
power allocation and Bss sleep modes can be jointly
determined, and these strategies are fixed during the
whole A-LSF;

• Step 3a (CSI Estimation): At the beginning of each
coherence time, each UE transmits the uplink training
sequences to its associated BSs on the assigned FCs under
TDD model, based on which each BS estimates its local
CSI of its serving UEs;

• Step 3b (MRT Beamforming Design): Each BS locally
designs the MRT beamforming vectors for its serving
UEs on the assigned FC based on the estimated CSI in
Step 3a and the transmit power vector p in Step 2;

• Step 3c (Downlink Transmission): Each BS transmits
the desired data symbols to its serving UEs by the same
MRT beamforming vectors and the fixed power allocation
determined in Step 2 until the end of the coherence time;

• Step 4: Repeat Step 3a to Step 3c until the end of the
A-LSF.

VI. NUMERICAL RESULTS

In this section, the performance of the proposed algorithm is
evaluated on a 3-macro cell two-tier HetNet. Each macro cell
is a regular hexagon with a radius of 250 meters and a single
macro BS located at the center, where the same number of
pico BSs and UEs are randomly deployed within each macro
cell with the simulation parameters in Table II.

As shown in Section V-D, we have already proved that our
proposed algorithm always outperforms the baselines based on
the restricted BS-UE association and BS/UE-FC assignment
assumption R2-R5 in Section I-A, and thus the focus herein
is on three other baselines:
• L2,1 Approx: It denotes the performance of the same opti-

mization by Algorithm 2 but using the `1/`2 mixed norm
to approximate the `0 norm instead of (16). This baseline
is to show the impact of the `0 norm approximation;

• Min. T-Power: This baseline is determined by minimizing
only the sum downlink transmit power of BSs and no BS
sleep modes are adopted. BSs are always on with full
signal processing and circuit power, since no hardwares
is switched off. The basic BS power and backhaul power
are also considered in the computation of BSs sum power
consumption according to (5);

• On/off only BS: This baseline is determined by minimiz-
ing only the number of active BSs, where each BS has
binary choices: deep sleep or with full signal processing
and circuit power. The basic BS circuit power and back-
haul power are also considered in the computation of BSs
sum power consumption according to (5).

A. Deterministic Numerical Examples

We first evaluate the performance of Algorithm 2 within
an A-LSF time period, where the UEs’ locations can be
considered to be fixed because the LSF is not varying during
each LSF time period. We assume 5 pico BSs per macro cell.
The partially loaded scenario is considered, where 6 UEs are
located within each macro cell and each UE has a 12 Mbits/s

TABLE II: HetNet system parameters

Pilot length Total No. of UEs FCs f1 = 783 − 803
MHz, f2 = 1900−
1920 MHz

P f
sp,k Reference [54] P sleep0

k 75 × Nk Watt
(macro), 4.3 × Nk

Watt (pico)
σ2 -174 dBm/Hz Pmax

BS,k 40 Watt (macro), 1
Watt (pico)

Path Loss Reference [65] ηk 35% (macro), 25%
(pico)
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Fig. 1: A numerical example of Algorithm 2 with a per UE rate
requirement 12 Mbits/s:. Each macro-BS and pico BS possess
16 and 4 antennas, respectively.

data rate requirement. As shown in Table II, a total 40 MHz
spectrum of {f1, f2} is available.

A result example for Algorithm 2 is shown in Fig. 1, where
the BS-UE association, FC assignment and BSs status are
clearly illustrated. We observe that all macro BSs are in deep-
sleep mode as well as some pico BSs because of the off-peak
traffic load. Another interesting observation is that all UEs
except for only two UEs prefer to reuse the FC f1 = 783−803
MHz which has lower path loss, where the assignment of f1

and f2 are denoted by the ”solid lines” and ”dashed lines”,
respectively.

In Fig. 2 the convergence behavior of Algorithm 2 is shown,
where we set the parameter ε for the `0 norm approximation
in (16) as ε ∈ {10−1, 10−3, 10−5, 10−7}, where for each ε, 10
random initializations are used. It is shown in Fig. 2 that the
used `0 norm approximation in (16) is robust to the choice
of ε and different initializations might lead to different KKT
stationary solutions with similar convergence rate.

B. Average Performance Evaluation

The average performance of the proposed algorithm is
evaluated by 100 Monte Carlo simulations, where the locations
of the UEs are randomly generated within each macro cell.

The average energy consumption for 5 pico cells in each
macro cell with respect to the per-UE rate requirement is
shown in Fig. 3. Observe that the energy consumption is
increasing with the UE’s rate requirement and our algorithm
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Fig. 2: Convergence performance of Algorithm 2 with a per
UE rate requirement 2 Mbits/s: Each macro BS and pico BS
possess 8 and 4 antennas, respectively.
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Fig. 3: Average total BS power consumption performance vs.
UE rate: 5 pico cells and 6 UEs in each macro cell and each
macro-BS and pico BS possess 8 and 4 antennas, respectively.

can achieve a more than 60% and 10% energy reduction
compared with the ”Min. T-Power” and the ”On/off only BS”,
respectively, since the ”Min. T-Power” does not adopt the BS
sleep modes and ”On/off only BS” cannot flexibly switch off
hardware of the assigned FCs. This implies that our proposed
flexible BS power model provides more degrees of freedom
for increased energy saving. In addition, the log-based ap-
proximation slightly outperforms the `1/`2 mixed norm based
approximation. Another energy consumption comparison for
10 pico cells in each macro cell with respect to the per-UE
rate requirement is shown in Fig. 4. A more than 60% and 10%
energy reduction compared with the ”Min. T-Power” and the
”On/off only BS” can be still achieved in the denser networks,
respectively, while the performance gap between the proposed
and L2,1 Approx becomes small as the number of pico BSs
increases.

In order to provide sufficient evaluations of the proposed
algorithm, different system scenarios are simulated. In Fig. 5,
the average BSs sum power consumption is compared in a
very low traffic load secario, where only two UEs are located
within a macro cell. Observe that the power consumption
by ”Min. T-Power” is about three times larger than the
proposed. The gap between the proposed and the other two
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Fig. 4: Average total BS power consumption performance vs.
UE rate: 10 pico cells and 6 UEs in each macro cell and each
macro-BS and pico BS possess 8 and 4 antennas, respectively.
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baselines becomes smaller in the very low traffic load scenario.
In particular, the proposed and ”L2,1 Approx” achieve the
same performance. Both Fig. 4 and Fig. 5 imply that the
performance by ”L2,1 Approx” becomes approaching to the
proposed when a network has a relatively small traffic load
compared with its own capacity.

In Fig. 6, we illustrate the average total energy consumption
versus with the number of pico-BS antennas for the per-UE
rate requirement of 12 Mbits/s. The power consumption is
increasing with the number of pico-BS antennas, since both the
basic and signal processing circuit power are linearly increased
with the number of BS antennas. This result still verifies the
effectiveness of the proposed with different number of pico-BS
antennas.

VII. CONCLUSIONS

In this paper, motivated by the high demand for energy sav-
ing in a cloud-assisted HetNet with off-peak traffic loads, we
propose a semi-dynamic green resource management mecha-
nism to minimize BSs energy consumption and also to satisfy
each UE’s rate requirement. This mechanism fits well with
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Fig. 6: Average total BS power consumption performance vs.
No. of pico-BS antennas: Per-UE rate requirement 12 Mbits/s,
5 pico cells and 6 UEs in each macro cell and each macro-BS
possess 16 antennas, respectively.

the architecture of the cloud-assisted HetNet, since BSs have
a low requirement for computation and signalling transmission
by locally employing the low-complexity MRT beamforming
in dynamic downlink transmission. The computationally de-
manding optimization will be performed on a slower time scale
relating to changes in large scale fading coefficients. In this
approach, in order to benefit from the reconfiguration of a
system, a flexible BS power consumption model is developed
to support scalability, i.e., some unnecessary hardware compo-
nents could be switched off to reduce the energy consumption.
Furthermore, this power model is formulated as a function of
a transmit power vector and reflects the power consumption
of signal processing and circuits, downlink transmission and
backhaul transmission. Based on this power model, a large
scale fading based optimization problem is formulated and
solved by the CP in a centralized fashion. The solution is used
to determine the energy-saving strategies for scheduling, trans-
mit power allocation and BSs sleep modes, which are fixed for
the coherence time of the large scale fading. In addition, the
green resource management mechanism proposed in this work
serves as a general framework for BSs energy minimization,
and much previous related work can be considered as special
cases. Simulation results indicate that the proposed algorithm
is capable of reducing BSs power consumption by more than
60% compared with some previous approaches.
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APPENDIX A
PROOF OF LEMMA 1

Proof: For the UE set UFC,f , a τf × |UFC,f | pilot
sequence matrix is needed for channel training from UFC,f

to their associated BSs

Φf = [φfUFC,f (1); · · · ;φfUFC,f (|UFC,f |)]. (43)

If τf ≥ |UFC,f |, we can generate the pairwise orthogonal
pilot sequences {φf` }`∈UFC,f

. Otherwise, pilot reuse among
the UEs in UFC,f is needed and pilot contamination exists. To
consider both cases, we generally denote by UmFC,f ⊂ UFC,f
the set of UEs who use the same pilot sequence φfUFC,f (m) in

Φf . If |UmFC,f | = 1, it means no reuse of φfUFC,f (m). Other-

wise, |UmFC,f | UEs reuse the same pilot sequence φfUFC,f (m).

By transmitting √τfψf` from UE ` ∈ UFC,f with the uplink

power
√
pfUE,UFC,f (`), the τf length column vector received

at the m-th antenna at BS k on FC f is

yfkm =
√
τf

∑
`∈UFC,f

√
pfUE,UFC,f (`)h

f
km,`ψ

f
` + zfk,m (44)

where hfkm,` ∈ C denotes the channel coefficient from UE ` to
the m-th antenna of BS k on FC f . Then, the signal received
at the BS k can be expressed as

Y f
k = [yfk1,y

f
k2, · · · ,y

f
kNk

] ∈ Cτf×Nk (45a)

=
√
τfP

1
2

UFC,f
ΦfHf

k +Zfk (45b)

=
√
τfP

1
2

UFC,f
ΦfAf

kH̃
f

k +Zfk (45c)

where

P UFC,f
= diag

[
pfUE,UFC,f (1), · · · , p

f
UE,UFC,f (|UFC,f |)

]
H̃

f

k = [h̃
f,T

k,UFC,f(1)
; · · · ; h̃

f,T

k,UFC,f (|UFC,f |)]

Af
k = diag

[√
αfk,UFC,f (1), · · · ,

√
αfk,UFC,f (|UFC,f |)

]
Zfk = [zfk,1, z

f
k,2, · · · , z

f
k,Nk

] ∈ Cτ×Nk ,

where zfk,n ∈ Cτf×1,∀n ∈ {1, · · · , Nk} denotes the noise
vector at n-th antenna of BS k in uplink training phase on FC
f . We assume that zfk,n ∼ CN (0,Wfσ

2I),∀n.

Following the standard MMSE estimation in [66, Chapter
15.8], the MMSE estimate of the channel from a typical UE
` ∈ UFC,f to its associated BS k on FC f is

√
αfk,`ĥ

f

k,`, where

ĥ
f

k,` =

√
τfα

f
k,`p

f
UE,`φ

f,H
` Y f

k

τfα
f
k,`p

f
UE,` +

∑
j∈U`

FC,f\{`}
τfα

f
k,jp

f
UE,j +Wfσ2

.

(46)

Then, the result in Lemma 1 is concluded.

APPENDIX B
PROOF OF LEMMA 3

Proof: With the MRT beamforming wf
k,` =√

pfk,`

−→
ĥ fk,`,∀k, `, f , (9) becomes



15

Rf` = Eh̃


log2


1 +

∑
k∈B`

pfk,`α
f
k,`|h̃

f,H

k,`

−→
ĥ fk,`|2

Wfσ
2+

∑
k∈K\B`

∑
j∈U

k

pf
k,j
αf

k,`
|h̃f,H

k,`

−→
ĥ f

k,j
|2

+
∑

k∈B`

∑
`∈Uk\{`}

pf
k,`
αf

k,`|h̃
f,H
k,` (t)ĥ

f

k,`
(t)|2




(47)

≈ log2


1 +

∑
k∈B`

pfk,`α
f
k,`Eh̃{|h̃

f,H

k,`

−→
ĥ fk,`|2}

Wfσ
2+

∑
k∈K\B`

∑
j∈U

k

pf
k,j
αf

k,`
Eh̃{|h̃

f,H

k,`

−→
ĥ f

k,j
|2}

+
∑

k∈B`

∑
`∈Uk\{`}

pf
k,`
αf

k,`Eh̃{|h̃
f,H
k,` (t)ĥ

f

k,`
(t)|2}


(48)

where (48) is derived based on the approximation Ex{log2(1+
f1(x)
f2(x) )} ≈ log2(1 + Ex{f1(x)}

Ex{f2(x)} ). Based on (48), Lemma 3 is
derived according to the following results:

Eh̃{|h̃
f

k,`

−→
ĥ fk,`|

2} = E{|
(
ĥ
f

k,` + efk,`

)H −→
ĥ fk,`|

2} (49)

= E{|ĥ
f,H

k,`

−→
ĥ fk,`|

2}+ E{|ef,Hk,`
−→
ĥ fk,`|

2} (50)

= E{||ĥ
f

k,`||2}+
−→
ĥ f,Hk,` E{e

f
k,`e

f,H
k,` }
−→
ĥ fk,` (51)

= δfk,`Nk + (1− δfk,`), ∀k ∈ B` (52)

where (49) is based on the estimated channel model in (1), and
(50) is based on the fact E{ĥ

f,H

k,`

−→
ĥ fk,`

−→
ĥ f,Hk,` e

f
k,`} = 0 because

efk,` is zero-mean Gaussian and is independent of ĥ
f

k,`, and
(52) is based on the derived result in (1).

The average inter-BS interference terms in the denominator
of (48) are derived to

Eh̃

{
|h̃
f,H

k,`

−→
ĥ f
k,j
|2
}

=
−→
ĥ f,H
k,j

Eh̃{h̃
f

k,`h̃
f,H

k,` }
−→
ĥ f
k,j

= 1,

∀j ∈ Uk, k ∈ K\{B`} (53)

Eh̃

{
|h̃
m,H

k,`

−→
ĥm
k,`
|2
}

= 1, ∀` ∈ Uk\{`}, k ∈ B` (54)

where (53) is because h̃
f

k,` is unit-variance Gaussian and is

independent of
−→
ĥ f
k,`
,∀` 6= `.

APPENDIX C
PROOF OF PROPOSITION 2

Proof: The proof of Proposition 2 has two aspects: 1) the
convergence of Algorithm 2 and 2) the solutions of Algorithm
2.

1) Convergence: The convergence of the algorithm is im-
plied by the fact that the iterative sequence {P̂BS(p(i))}+∞i=1

is monotonically decreasing. At the i-th iteration, we have

P̂BS(p(i+1))
(a)
= P̂BS(p(i+1),p(i+1))

(b)

≤ P̂BS(p(i+1),p(i))
(55)

(c)

≤ P̂BS(p(i),p(i))
(d)
= P̂BS(p(i)), (56)

where both the equalities (a) and (d) are based on (24a),
and the inequalities (b) and (c) are based on (24b) and the
convex optimization of (28) (optimal updating). Considering
that the constraints form a closed set, there exists a cluster
point of the sequence {P̂BS(p(i))}+∞i=1 . Let p , limi→+∞ p

(i)

be the cluster point solution returned by Algorithm 2 with a
sufficiently small εth.

2) KKT Solutions: We will show the cluster point solution
p is a KKT stationary point of the original problem (19).
Considering the properties of the cluster point, we have
p(i) = p(i+1) = p with i→ +∞ for the optimization of (28).
Therefore, given p(i) = p, the optimal solution p(i+1) = p of
(28) should satisfy the following KKT conditions

K∑
k=1

F∑
f=1

P fsp,k
tTk,f

ε+ tTk,fp
+

K∑
k=1

θkt
T
BS,k

ηk

+

L∑
`=1

ζ`

F∑
f=1

(
1− τf

β2,f

)
Wf

log(2)
× αf,TK,`

Wfσ2 +αf,TK,`p
−

αf,TK,`

Wfσ2 +αf,TK,`p

 = 0 (57a)

0 ≤ ζ` ⊥

(
F∑
f=1

(
1− τf

β2,f

)
Wf

log(2)
× αf,TK,`

Wfσ2 +αf,TK,`p
−

αf,TK,`

Wfσ2 +αf,TK,`p

−R`) ≥ 0,∀`

(57b)

0 ≤ θk ⊥
(
PmaxBS,k − tTBS,kp

)
≥ 0,∀k (57c)

p ≥ 0 (57d)

where ζ`,∀` ∈ L and θk,∀k ∈ K are the Lagrangian multipli-
ers. Observe that the KKT conditions (57a)-(57d) are exactly
same as the KKT conditions of Problem (19). Therefore,
it implies that p with the associated Lagrangian multipliers
{ζ`, θk} is a KKT stationary solution to the original problem
(19).
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