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Abstract—Millimeter wave (mmWave) MIMO will likely use
hybrid analog and digital precoding, which uses a small number
of RF chains to avoid energy consumption associated with
mixed signal components like analog-to-digital components not to
mention baseband processing complexity. However, most hybrid
precoding techniques consider a fully-connected architecture
requiring a large number of phase shifters, which is also energy-
intensive. In this paper, we focus on the more energy-efficient
hybrid precoding with sub-connected architecture, and propose a
successive interference cancelation (SIC)-based hybrid precoding
with near-optimal performance and low complexity. Inspired
by the idea of SIC for multi-user signal detection, we first
propose to decompose the total achievable rate optimization
problem with non-convex constraints into a series of simple
sub-rate optimization problems, each of which only considers
one sub-antenna array. Then, we prove that maximizing the
achievable sub-rate of each sub-antenna array is equivalent to
simply seeking a precoding vector sufficiently close (in terms
of Euclidean distance) to the unconstrained optimal solution.
Finally, we propose a low-complexity algorithm to realize SIC-
based hybrid precoding, which can avoid the need for the singular
value decomposition (SVD) and matrix inversion. Complexity
evaluation shows that the complexity of SIC-based hybrid pre-
coding is only about 10% as complex as that of the recently
proposed spatially sparse precoding in typical mmWave MIMO
systems. Simulation results verify the near-optimal performance
of SIC-based hybrid precoding.

Index Terms—MIMO, mmWave communications, hybrid pre-
coding, energy-efficient, 5G.

I. I NTRODUCTION

T He integration of millimeter-wave (mmWave) and
multiple-input multiple-output (MIMO) can achieve or-

ders of magnitude increase in rates due to larger bandwidth and
greater spectral efficiency [1]. This makes mmWave MIMO as
a promising technique for future 5G wireless communication
systems [2]. On one hand, the decreased wavelength associated
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with high frequencies of mmWave enables a large antenna
array to be packed in small physical dimension [3]. On the
other hand, the large antenna array can provide sufficient
antenna gain to compensate for the severe attenuation of
mmWave signals due to path loss, oxygen absorption, and rain-
fall effect [4]. Additionally, the large antenna array can also
support the transmission of multiple data streams to improve
the spectral efficiency through the use of precoding [5].

For MIMO in conventional cellular frequency band (e.g.,
2-3 GHz), precoding is entirely realized in the digital domain
to cancel the interferences between different data streams.
Digital precoding requires an expensive radio frequency (RF)
chain (including digital-to-analog converter, up converter, etc.)
for every antenna. In mmWave MIMO system with a large
number of antennas, it will bring prohibitively high energy
consumption and hardware complexity. To solve this problem,
mmWave MIMO prefers the more energy-efficient hybrid ana-
log and digital precoding [3], which can significantly reduce
the number of required RF chains. Specifically, the transmitted
signals are first precoded by the digital precoding of a small
dimension to guarantee the performance, and then precoded
again by the analog precoding of a large dimension to save
the energy consumption and reduce the hardware complexity.

To realize the hybrid precoding in practice, two categories
of techniques have been proposed recently. The first category
is based on the spatially sparse precoding [6]–[8], which for-
mulates the achievable rate optimization problem as a sparse
approximation problem and solves it by orthogonal matching
pursuit (OMP) [9] to achieve the near-optimal performance.
The second category of hybrid precoding based on codebook
is proposed in [10]–[12], which involves an iterative searching
procedure among the predefined codebook to find the optimal
hybrid precoding matrix. These algorithms are all designedfor
the hybrid precoding with fully-connected architecture, where
each RF chain is connected to all BS antennas via phase
shifters. As the number of BS antennas is very large (e.g.,
256 as considered in [6]), the fully-connected architecture has
two possible limitations. First, it requires thousands of phase
shifters like the giant phased array radar to realize the analog
precoding [13], which leads to both high energy consumption
and hardware complexity. Second, each RF chain will drive
hundreds of BS antennas, which is also energy-intensive [13].
By contrast, the hybrid precoding with sub-connected archi-
tecture, where each RF chain is connected to only a subset
of BS antennas, can reduce the number of required phase
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shifters without obvious performance loss [3]. Therefore,the
sub-connected architecture is expected to be more energy-
efficient and implementation-practical for mmWave MIMO
systems. Unfortunately, the design of hybrid precoding with
sub-connected architecture is still an open problem [3], [14],
as the sub-connected architecture changes the constraintson
the original hybrid precoding problem.

In this paper, we propose a successive interference cancela-
tion (SIC)-based hybrid precoding with sub-connected archi-
tecture. The contributions of this paper can be summarized as
follows.

1) Inspired by the idea of SIC derived for multi-user signal
detection [15], we propose to decompose the total achievable
rate optimization problem with non-convex constraints into a
series of simple sub-rate optimization problems, each of which
only considers one sub-antenna array. Then, we can maximize
the achievable sub-rate of each sub-antenna array one by one
until the last sub-antenna array is considered.

2) We prove that maximizing the achievable sub-rate of each
sub-antenna array is equivalent to seeking a precoding vector
which has the smallest Euclidean distance to the unconstrained
optimal solution. Based on this fact, we can easily obtain the
optimal precoding vector for each sub-antenna array.

3) We further propose a low-complexity algorithm to realize
the SIC-based precoding, which avoids the need for singular
value decomposition (SVD) and matrix inversion. Complexity
evaluation shows that the complexity of SIC-based precoding
is only about 10% as complex as that of the spatially sparse
precoding [6] in typical mmWave MIMO systems, while it
can still achieve the near-optimal performance as verified by
simulation results.

It is worth pointing out that to the best of the authors’
knowledge, our work in this paper is the first one that considers
the hybrid precoding design with sub-connected architecture.

The rest of the paper is organized as follows. Section II
briefly introduces the system model of mmWave MIMO.
Section III specifies the proposed SIC-based hybrid precoding,
together with the complexity evaluation. The simulation results
of the achievable rate are shown in Section IV. Finally,
conclusions are drawn in Section V.

Notation: Lower-case and upper-case boldface letters denote
vectors and matrices, respectively;(·)T , (·)H , (·)−1, and
|·| denote the transpose, conjugate transpose, inversion, and
determinant of a matrix, respectively;‖·‖1 and ‖·‖2 denote
the l1- andl2-norm of a vector, respectively;‖·‖F denotes the
Frobenius norm of a matrix;Re{·} andIm{·} denote the real
part and imaginary part of a complex number, respectively;
E(·) denotes the expectation; Finally,IN is theN×N identity
matrix.

II. SYSTEM MODEL

Fig. 1 illustrates two typical architectures for hybrid pre-
coding in mmWave MIMO systems, i.e., the fully-connected
architecture as shown in Fig. 1 (a) and the sub-connected
architecture as shown in Fig. 1 (b). In both cases the BS has
NM antennas but onlyN RF chains. From Fig. 1, we observe
that the sub-connected architecture will likely be more energy-
efficient, since it only requiresNM phase shifters, while the

NM N

N

M

N

Fig. 1. Two typical architectures of the hybrid precoding inmmWave MIMO
systems: (a) Fully-connected architecture, where each RF chain is connected
to all BS antennas; (b) Sub-connected architecture, where each RF chain is
connected to only a subset of BS antennas.

fully-connected architecture requiresN2M phase shifters. To
fully achieve the spatial multiplexing gain, the BS usually
transmitsN independent data streams to users employingK
receive antennas [3].

In the sub-connected architecture as shown in Fig. 1
(b), N data streams in the baseband are precoded by
the digital precoderD. In cases where complexity is a
concern, D can be further specialized to be a diago-
nal matrix asD = diag [d1, d2, · · · , dN ], wheredn ∈ R for
n = 1, 2, · · · , N [3]. Then the role ofD essentially performs
some power allocation. After passing through the correspond-
ing RF chain, the digital-domain signal from each RF chain is
delivered to onlyM phase shifters [16] to perform the analog
precoding, which can be denoted by the analog weighting
vectorān ∈ CM×1, whose elements have the same amplitude
1/

√
M but different phases [16]. After the analog precoding,

each data stream is finally transmitted by a sub-antenna array
with only M antennas associated with the corresponding RF
chain. Then, the received signal vectory = [y1, y2, · · ·, yK ]T

at the user in a narrowband system1 can be presented as

y = ρHADs+ n = ρHPs+ n, (1)

whereρ is the average received power;H ∈ CK×NM denotes
the channel matrix,A is the NM ×N analog precoding
matrix comprisingN analog weighting vectors{ām}Nm=1 as

A =











ā1 0 . . . 0

0 ā2 0
...

. . .
...

0 0 . . . āN











NM×N

, (2)

1While mmWave systems are expected to be broadband as in priorwork [2],
the narrowband system can be regarded as a reasonable first step. The
extension to broadband system is an interesting topic of future work.
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s = [s1, s2, · · ·, sN ]T represents the transmitted signal vector
in the baseband, and usuallyE(ssH) = 1

N
IN is assumed

for the normalized signal power [6].P = AD presents the
hybrid precoding matrix of sizeNM ×N , which satisfies
‖P‖F ≤ N to meet the total transmit power constraint [6].
Finally, n = [n1, n2, · · ·, nN ]T is an additive white Gaussian
noise (AWGN) vector, whose entries follow the independent
and identical distribution (i.i.d.)CN (0, σ2).

It is known that mmWave channelH will not likely follow
the rich-scattering model assumed at low frequencies due to
the limited number of scatters in the mmWave prorogation
environment [2]. In this paper, we adopt the geometric Saleh-
Valenzuela channel model for mmWave communications,
which was also used in related work in [17] as

H = γ

L
∑

l=1

αlΛr (φ
r
l , θ

r
l ) Λt

(

φt
l , θ

t
l

)

fr (φ
r
l , θ

r
l ) f

H
t

(

φt
l , θ

t
l

)

,

(3)

whereγ =
√

NMK
L

is a normalization factor,L is the number
of effective channel paths corresponding to the limited number
of scatters, and we usually haveL ≤ N for mmWave commu-
nication systems.αl ∈ C is the gain of thelth path.φt

l (θtl )
andφr

l (θrl ) are the azimuth (elevation) angles of departure and
arrival (AoDs/AoAs), respectively.Λt (φ

t
l , θ

t
l ) andΛr (φ

r
l , θ

r
l )

denote the transmit and receive antenna array gain at a specific
AoD and AoA, respectively. For simplicity but without loss
of generality,Λt (φ

t
l , θ

t
l ) and Λr (φ

r
l , θ

r
l ) can be set as one

within the range of AoDs/AoAs [18]. Finally,ft (φt
l , θ

t
l ) and

fr (φ
r
l , θ

r
l ) are the antenna array response vectors depending

on the antenna array structures at the BS and the user, respec-
tively. For the uniform linear array (ULA) withU elements,
the array response vector can be presented as [13]

fULA (φ) =
1√
U

[

1, ej
2π
λ

d sin(φ), · · ·, ej(U−1) 2π
λ

d sin(φ)
]T

,

(4)
whereλ denotes the wavelength of the signal, andd is the
antenna spacing. Note that here we abandon the subscripts
{t, r} in (3) and we also do not includeθ in (4) since the
ULA response vector is independent of the elevation angle.
Additionally, when we consider the uniform planar array
(UPA) with W1 andW2 elements (W1W2 = U ) on horizon
and vertical, respectively, the array response vector can be
given by [13]

fUPA (φ, θ) =
1√
U

[

1, · · · , ej 2π
λ

d(x sin(φ) sin(θ)+y cos(θ)),

· · ·, ej 2π
λ

d((W1−1) sin(φ) sin(θ)+(W2−1) cos(θ))
]T

,

(5)

where0 ≤ x ≤ (W1 − 1) and0 ≤ y ≤ (W2 − 1).

III. SIC-BASED HYBRID PRECODING FOR MMWAVE

MIMO SYSTEMS

In this section, we propose a low-complexity SIC-based
hybrid precoding to achieve the near-optimal performance.The
evaluation of computational complexity is also provided to
show its advantages over current solutions.

A. Structure of SIC-based hybrid precoding

The final aim of precoding is to maximize the total achiev-
able rateR of mmWave MIMO systems, which can be
expressed as [6]

R = log2

(∣

∣

∣
IN +

ρ

Nσ2
HPPHHH

∣

∣

∣

)

. (6)

According to the system model (1) in Section II,
since the hybrid precoding matrixP can be represented
asP = AD = diag {ā1, · · · , āN} · diag {d1, · · · , dN}, there
are three constraints for the design ofP.

Constraint 1: P should be a block diagonal matrix similar to
the form ofA as shown in (2), i.e.,P = diag {p̄1, · · · , p̄N},
where p̄n = dnān is the M × 1 non-zero vector of thenth
columnpn of P, i.e.,pn =

[

01×M(n−1), p̄n, 01×M(N−n)

]T
;

Constraint 2: The non-zero elements of each column ofP

should have the same amplitude, since the digital precoding
matrix D is a diagonal matrix, and the amplitude of non-zero
elements of the analog precoding matrixA is fixed to1/

√
M ;

Constraint 3: The Frobenius norm ofP should satisfy
‖P‖F ≤ N to meet the total transmit power constraint.

Unfortunately, these non-convex constraints onP make
maximizing the total achievable rate (6) very difficult to be
solved. However, based on the special block diagonal structure
of the hybrid precoding matrixP, we can observe that the
precoding on different sub-antenna arrays are independent.
This inspires us to decompose the total achievable rate (6)
into a series of sub-rate optimization problems, each of which
only considers one sub-antenna array.

In particular, we can divide the hybrid precoding matrix
P as P = [PN−1 pN ], wherepN is theN th column ofP,
andPN−1 is anNM × (N − 1) matrix containing the first
(N − 1) columns ofP. Then, the total achievable rateR in (6)
can be rewritten as

R = log2

(∣

∣

∣
IN +

ρ

Nσ2
HPPHHH

∣

∣

∣

)

= log2

(∣

∣

∣
IN +

ρ

Nσ2
H [PN−1 pN ] [PN−1 pN ]

H
HH

∣

∣

∣

)

= log2

(
∣

∣

∣
IN +

ρ

Nσ2
HPN−1P

H
N−1H

H

+
ρ

Nσ2
HpNpH

NHH
∣

∣

∣

)

(a)
= log2 (|TN−1|) + log2

(
∣

∣

∣
IN +

ρ

Nσ2
T−1

N−1HpNpH
NHH

∣

∣

∣

)

(b)
= log2 (|TN−1|) + log2

(

1+
ρ

Nσ2
pH
NHHT−1

N−1HpN

)

,

(7)

where (a) is obtained by defining the auxiliary ma-
trix TN−1 = IN + ρ

Nσ2HPN−1P
H
N−1H

H , and (b) is true
due to the fact that|I+XY| = |I+YX| by defining
X = T−1

N−1HpN andY = pH
NHH . Note that the second term

log2
(

1 + ρ
Nσ2p

H
NHHT−1

N−1HpN

)

on the right side of (7) is
the achievable sub-rate of theN th sub-antenna array, while
the first term log2 (|TN−1|) shares the same form as (6).
This observation implies that we can further decompose
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log2 (|TN−1|) using the similar method in (7) as

log2 (|TN−2|)+log2

(

1+
ρ

Nσ2
pH
N−1H

HT−1
N−2HpN−1

)

.

Then, afterN such decompositions, the total achievable rate
R in (6) can be presented as

R =

N
∑

n=1

log2

(

1 +
ρ

Nσ2
pH
n HHT−1

n−1Hpn

)

, (8)

where we haveTn = IN + ρ
Nσ2HPnP

H
n HH andT0 = IN .

From (8), we observe that the total achievable rate optimization
problem can be transformed into a series of sub-rate optimiza-
tion problems of sub-antenna arrays, which can be optimized
one by one. After that, inspired by the idea of SIC for multi-
user signal detection [15], we can optimize the achievable
sub-rate of the first sub-antenna array and update the matrix
T1. Then, the similar method can be utilized to optimize
the achievable sub-rate of the second sub-antenna array. Such
procedure will be executed until the last sub-antenna array
is considered. Fig. 2 shows the diagram of the proposed SIC-
based hybrid precoding. Next, we will discuss how to optimize
the achievable sub-rate of each sub-antenna array.

N

N

NN

Fig. 2. Diagram of the proposed SIC-based hybrid precoding.

B. Solution to the sub-rate optimization problem

In this subsection, we focus on the sub-rate optimization
problem of thenth sub-antenna array, which can be directly
applied to other sub-antenna arrays. According to (8), the sub-
rate optimization problem of thenth sub-antenna array by
designing thenth precoding vectorpn can be stated as

popt
n = argmax

pn∈F
log2

(

1 +
ρ

Nσ2
pH
n Gn−1pn

)

, (9)

whereGn−1 is defined asGn−1 = HHT−1
n−1H, F is the set

of all feasible vectors satisfying the three constraints described
in Section III-A. Note that thenth precoding vectorpn

only hasM non-zero elements from the (M(n− 1) + 1)th
one to the (Mn)th one. Therefore, the sub-rate optimization
problem (9) can be equivalently written as

p̄opt
n = argmax

p̄n∈F̄
log2

(

1 +
ρ

Nσ2
p̄H
n Ḡn−1p̄n

)

, (10)

whereF̄ includes all possibleM × 1 vectors satisfyingCon-
straint 2 and Constraint 3, Ḡn−1 of size M ×M is the
corresponding sub-matrix ofGn−1 by only keeping the rows
and columns ofGn−1 from the (M(n− 1) + 1)th one to the
(Mn)th one, which can be presented as

Ḡn−1 = RGn−1R
H = RHHT−1

n−1HRH , (11)

whereR =
[

0M×M(n−1) IM 0M×M(N−n)

]

is the cor-
responding selection matrix.

Define the singular value decomposition (SVD) of the
Hermitian matrixḠn−1 as Ḡn−1 = VΣVH , whereΣ is an
M ×M diagonal matrix containing the singular values of
Ḡn−1 in a decreasing order, andV is an M ×M unitary
matrix. It is known that the optimal unconstrained precoding
vector of (10) is the first columnv1 of V, i.e., the first right
singular vector ofḠn−1 [6]. According to the constraints
mentioned in Section III-A, we cannot directly choosep̄opt

n

asv1 since the elements ofv1 do not obey the constraint of
same amplitude (i.e.,Constraint 2). To find a practical solution
to the sub-rate optimization problem (10), we need to further
convert (10) into another form, which is given by the following
Proposition 1.

Proposition 1. The optimization problem (10)

p̄opt
n = argmax

p̄n∈F̄
log2

(

1 +
ρ

Nσ2
p̄H
n Ḡn−1p̄n

)

is equivalent to the following problem

p̄opt
n = argmin

p̄n∈F̄
‖v1 − p̄n‖22 , (12)

wherev1 is the first right singular vector of̄Gn−1.

Proof: See Appendix A.
Proposition 1 indicates that we can find a feasible pre-

coding vectorp̄n, which is sufficiently close (in terms of
Euclidean distance) to the optimal but unpractical precoding
vectorv1, to maximize the achievable sub-rate of thenth sub-
antenna array. Sincēpn = dnān according to (1), the target
‖v1 − p̄n‖22 in (12) can be rewritten as

‖v1 − p̄n‖22
= (v1 − dnān)

H
(v1 − dnān)

= vH
1 v1 + d2nā

H
n ān − 2dnRe

(

vH
1 ān

)

(a)
= 1 + d2n − 2dnRe

(

vH
1 ān

)

=
(

dn − Re
(

vH
1 ān

))2
+
(

1−
[

Re
(

vH
1 ān

)]2
)

, (13)

where (a) is obtained based on the facts thatvH
1 v1 = 1 and

āHn ān = 1, sincev1 is the first column of the unitary matrix
V and each element of̄an has the same amplitude1/

√
M .

From (13), we observe that the distance between
p̄n and v1 consists of two parts. The first one is
(

dn − Re
(

vH
1 ān

))2
, which can be minimized to zero

by choosing dn = Re
(

vH
1 ān

)

. The second one is
(

1−
[

Re
(

vH
1 ān

)]2
)

, which can be minimized by

maximizing
∣

∣Re
(

vH
1 ān

)∣

∣. Note that both ān and v1

have a fixed power of one, i.e.,vH
1 v1 = 1 and āHn ān = 1.

Therefore, the optimal̄aoptn to maximize
∣

∣Re
(

vH
1 ān

)
∣

∣ is

āoptn =
1√
M

ejangle(v1), (14)

where angle(v1) denotes the phase vector ofv1, i.e., each
element ofāoptn shares the same phase as the corresponding
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element ofv1. Accordingly, the optimal choice ofdoptn is

doptn =Re
(

vH
1 ān

)

=
1√
M

Re
(

vH
1 ejangle(v1)

)

=
‖v1‖1√

M
.

(15)
Based on (14) and (15), the optimal solutionp̄opt

n to the opti-
mization problem (12) (or equivalently (10)) can be obtained
by

p̄opt
n = doptn āoptn =

1

M
‖v1‖1ejangle(v1). (16)

It is worth pointing out thatv1 is the first column of the uni-
tary matrixV, each elementvi of v1 (for i = 1, · · · ,M ) has
the amplitude less than one. Therefore, we have‖p̄opt

n ‖22 ≤ 1.
Note that for all sub-antenna arrays, the optimal solution
p̄opt
n for n = 1, 2, · · · , N have a similar form. Thus, we can

conclude that
∥

∥Popt
∥

∥

2

F
=
∥

∥diag
{

p̄
opt
1 , · · · , p̄opt

N

}
∥

∥

2

F
≤ N, (17)

which demonstrates that the total transmit power constraint
(Constraint 3) is satisfied.

After we have acquired̄popt
n for the nth sub-antenna

array, the matricesTn = IN + ρ
Nσ2HPnP

H
n HH (8) and

Ḡn = RHHT−1
n HRH (11) can be updated. Then, the

method described above for thenth sub-antenna array can
be reused again to optimize the achievable sub-rate of the
(n+ 1)th sub-antenna array. To sum up, solving the sub-rate
optimization problem of thenth sub-antenna array consists of
the following three steps.

Step 1: Execute the SVD of̄Gn−1 to obtainv1;

Step 2: Let p̄opt
n = 1

M
‖v1‖1ejangle(v1) as the optimal solution

to the currentnth sub-antenna array;

Step 3: Update matricesTn = IN + ρ
Nσ2HPnP

H
n HH and

Ḡn = RHHT−1
n HRH for the next (n+ 1)th sub-antenna

array.

Note that although we can obtain the optimal solutionp̄opt
n

by the method above, we need to compute the SVD ofḠn−1

(Step 1) and the matrixḠn (Step 3) involving the matrix
inversion of large size, which leads to high computational
complexity as well as high hardware complexity. To this end,
next we will propose a low-complexity algorithm to obtain
p̄opt
n to avoid the complicated SVD and matrix inversion.

C. Low-complexity algorithm to obtain the optimal solution

We start by considering how to avoid the SVD involving
high computational complexity as well as a large number of
divisions, which are difficult to be implemented in hardware.
We can observe fromStep 1that the SVD ofḠn−1 does not
need to be computed to acquireΣ and V, as only the first
columnv1 of V is enough to obtain̄popt

n . This observation
inspires us to exploit the simple power iteration algorithm[19],
which is used to compute the largest eigenvalue and the
corresponding eigenvector of a diagonalizable matrix. Since
Ḡn−1 is a Hermitian matrix, it follows that: 1)̄Gn−1 is also
a diagonalizable matrix; 2) The singular values (right singular
vectors) ofḠn−1 are same as the eigenvalues (eigenvectors).
Therefore, the power iteration algorithm can be also utilized to

Input : (1) Ḡn−1;
(2) Initial solutionu(0);
(3) Maximum number of iterationS

for 1 ≤ s ≤ S
1) z(s) = Ḡn−1u

(s−1)

2) m(s) = argmax
z
(s)
i

∣

∣

∣
z
(s)
i

∣

∣

∣

3) if 1 ≤ s ≤ 2
n(s) = m(s)

else
n(s) =

m(s)m(s−2)−(m(s−1))
2

m(s)−2m(s−1)+m(s−2)

end if
4) u(s) = z

(s)

n(s)

end for
Output : (1) The largest singular valueΣ1 = n(S)

(2) The first singular vectorv1 = u
(S)

‖u(S)‖
2

Algorithm 1: Power iteration algorithm

computev1 as well as the largest singular valueΣ1 of Ḡn−1

with low complexity.
More specifically, as shown by the pseudo-code inAlgo-

rithm 1 , the power iteration algorithm starts with an initial
solutionu(0) ∈ CM×1, which is usually set as[1, 1, · · · , 1]T
without loss of generality [19]. In each iteration, it first com-
putes the auxiliary vectorz(s) = Ḡn−1u

(s−1) (s is the number
of iterations) and then extracts the element ofz(s) having
the largest amplitude asm(s). After that, u(s) is updated
as u(s) = z

(s)

m(s) for the next iteration. The power iteration
algorithm will stop until the number of iterations reaches the
predefined numberS. Finally, m(S) and u(S)/

∥

∥u(S)
∥

∥

2
will

be output as the largest singular valueΣ1 and the first right
singular vectorv1 of Ḡn−1, respectively.

According to [19], we know that

m(s) = Σ1

[

1 +O
((

Σ2

Σ1

)s)]

, (18)

where Σ2 is the second largest singular value of̄Gn−1.
From (18), we can conclude thatm(s) will converges toΣ1

as long asΣ1 6= Σ2. Similarly, whenΣ1 6= Σ2, u(s)/
∥

∥u(s)
∥

∥

2
will also converge tov1, i.e.,

lim
s→∞

m(s) = Σ1, lim
s→∞

u(s)

∥

∥u(s)
∥

∥

2

= v1. (19)

Although the power iteration algorithm is convergent, its
convergence rate may be slow ifΣ1 ≈ Σ2 based on (18).
To solve this problem, we propose to utilize the Aitken
acceleration method [20] to further increase the convergence
rate of the power iteration algorithm. Specifically, we can
compute

{

n(s) = m(s), for 1 ≤ s ≤ 2,

n(s) =
m(s)m(s−2)−(m(s−1))2

m(s)−2m(s−1)+m(s−2) , for 2 < s ≤ S.
(20)

Then, u(s) and Σ1 will be correspondingly changed to
u(s) = z

(s)

n(s) andΣ1 = n(S), respectively.
Next, we will focus on how to reduce the complex-

ity to compute the matricesTn = IN + ρ
Nσ2HPnP

H
n HH
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and Ḡn = RHHT−1
n HRH , which involve the complicated

matrix-to-matrix multiplication and matrix inversion of large
size. In particular, with some standard mathematical manipu-
lations, the computation of̄Gn can be significantly simplified
as shown by the followingProposition 2.

Proposition 2. The matrix Ḡn = RHHT−1
n HRH , where

Tn = IN + ρ
Nσ2HPnP

H
n HH , can be simplified as

Ḡn ≈ Ḡn−1 −
ρ

Nσ2Σ
2
1v1v

H
1

1 + ρ
Nσ2Σ1

, (21)

whereΣ1 andv1 are the largest singular value and first right
singular vector ofḠn−1, respectively.

Proof: See Appendix B.
Proposition 2 implies that we can simply exploitΣ1 and

v1 that have been obtained byAlgorithm 1 as described
above to updatēGn, which only involves one vector-to-vector
multiplication instead of the complicated matrix-to-matrix
multiplication and matrix inversion. Note that the evaluation of
computational complexity will be discussed in detail in Section
III-E.

D. Summary of the proposed SIC-based hybrid precoding

Based on the discussion so far, the pseudo-code of the
proposed SIC-based hybrid precoding can be summarized in
Algorithm 2 , which can be explained as follows. The proposed
SIC-based hybrid precoding starts by computing the largest
singular valueΣ1 and first right singular vectorv1 of Ḡn−1,
which is achieved byAlgorithm 1 . After that, according to
Section III-B, the optimal precoding vector for thenth sub-
antenna array can be obtained by utilizingv1. Finally, based
on Proposition 2, Ḡn can be updated with low complexity
for the next iteration. This procedure will be executed until
the last (N th) sub-antenna array is considered. Finally, after
N iterations, the optimal digital, analog, and hybrid precoding
matrix D, A, andP can be obtained, respectively.

Input : Ḡ0

for 1 ≤ n ≤ N
1) Computev1 andΣ1 of Ḡn−1 by Algorithm 1
2) āoptn = 1√

M
ejangle(v1), doptn =

‖v1‖1√
M

,

p̄opt
n = 1

M
‖v1‖1ejangle(v1) (14)-(16)

3) Ḡn=Ḡn−1−
ρ

Nσ2 Σ2
1v1v

H
1

1+ ρ

Nσ2 Σ1
(Proposition 2)

end for
Output : (1) D = diag

{

dopt1 , · · · , doptN

}

(2) A = diag
{

ā
opt
1 , · · · , āoptN

}

(3) P = AD

Algorithm 2: SIC-based hybrid precoding

It is worth pointing out that the idea of SIC-based hybrid
precoding can be also extended to the combining at the user
following the similar logic in [6]. When the number of RF
chains at the BS is smaller than that at the user, we first
compute the optimal hybrid precoding matrixP according to
Algorithm 2 , where we assume that the combining matrix
Q = I. Then, given the effective channel matrixHP, we

can similarly obtain the optimal hybrid combining matrixQ
by referring to Algorithm 2 , where the inputḠ0 and the
optimal unconstrained solutionv1 should be correspondingly
replaced. Conversely, when the number of RF chains at the
BS is larger than that at the user, we can assumeP = I and
obtain the optimal hybrid combining matrixQ. After that,
the optimal precoding matrixP can be acquired given the
effective channel matrixQH. Additionally, to further improve
the performance, we can combine the above method with
the “Ping-pong” algorithm [16], which involves an iteration
procedure between the BS and the user, to jointly explore the
optimal hybrid precoding and combining matrices pair. Further
discussion about hybrid combining will be left for our future
work.

E. Complexity evaluation

In this subsection, we provide the complexity evaluation
of the proposed SIC-based hybrid precoding in terms of the
required numbers of complex multiplications and divisions.
From Algorithm 2 , we can observe that the complexity of
SIC-based hybrid precoding comes from the following four
parts:

1) The first one originates from the computation of
Ḡ0 = RHHHRH according to (11). Note thatR is a selec-
tion matrix andH has the sizeK ×NM . Therefore, this part
involvesKM2 times of multiplications without any division.

2) The second one is from executingAlgorithm 1 . It can be
observed that in each iteration we need to compute a matrix-
to-vector multiplicationz(s) = Ḡn−1u

(s−1) together with the
Aitken acceleration method (20). Therefore, we totally require
S
(

M2 + 2
)

− 4 and (2S − 2) times of multiplications and
divisions, respectively.

3) The third one stems from acquiring the optimal solution
p̄opt
n in step 2 ofAlgorithm 2 . We can find that this part

is quite simple, which only needs 2 times of multiplications
without any division, sincev1 has been obtained and1√

M
is

a fixed constant.
4) The last one comes from the update ofḠn. According to

Proposition 2, we know that this part mainly involves a outer
productv1v

H
1 . Thus, it requiresM2 times of multiplications

with only one division.
To sum up, the proposed SIC-based hybrid precoding ap-

proximately requiresM2 (NS +K) times of multiplications
and 2NS times of divisions. It is worth pointing out that
the recently proposed spatially sparse precoding [6] requires
O
(

N4M +N2L2 +N2M2L
)

times of multiplications and
O
(

2N3
)

times of divisions, whereL is the number of
effective channel paths as defined in (3). Considering the
typical mmWave MIMO system withN = 8, M = 8, K = 16,
L = 3 [6], we can observe that the complexity of SIC-based
hybrid precoding is about4× 103 times of multiplications and
102 times of divisions, where we setS = 5 that is enough to
guarantee the performance as will be verified in Section IV.
By contrast, the complexity of the spatially sparse precoding
is about5× 104 times of multiplications and103 times of
divisions. Therefore, the proposed SIC-based hybrid precoding
enjoys much lower complexity, which is only about 10% as
complex as that of the spatially sparse precoding.
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Fig. 3. Achievable rate comparison for anNM ×K = 64× 16 (N = 8)
mmWave MIMO system.

IV. SIMULATION RESULTS

In this section, we provide the simulation results of the
achievable rate to evaluate the performance of the proposed
SIC-based hybrid precoding. We compare the performance
of SIC-based hybrid precoding with the recently proposed
spatially sparse precoding [6] and the optimal unconstrained
precoding based on the SVD of the channel matrix, which
are both with fully-connected architecture. Additionally, we
also include the conventional analog precoding and the optimal
unconstrained precoding (i.e.,p̄opt

n = v1) which are both with
sub-connected architecture [21] as benchmarks for compari-
son.

The simulation parameters are described as follows.
We generate the channel matrix according to the channel
model [17] described in Section II. The number of effec-
tive channel paths isL = 3. The carrier frequency is set as
28GHz [10]. Both the transmit and receive antenna arrays are
ULAs with antenna spacingd = λ/2. Since the BS usually
employs the directional antennas to eliminate interference and
increase antenna gain [2], the AoDs are assumed to follow the
uniform distribution within

[

−π
6 ,

π
6

]

. Meanwhile, due to the
random position of users, we assume that the AoAs follow the
uniform distribution within [−π, π], which means the omni-
directional antennas are adopted by users. Furthermore, weset
the maximum number of iterationsS = 5 to run Algorithm
2. Finally, the signal-to-noise ratio (SNR) is defined asρ

σ2 .
Fig. 3 shows the achievable rate comparison in mmWave

MIMO system, whereNM ×K = 64× 16 and the number
of RF chains isN = 8. We can observe from Fig. 3 that
the proposed SIC-based hybrid precoding outperforms the
conventional analog precoding with sub-connected architecture
in whole simulated SNR range. Meanwhile, Fig. 3 also verifies
the near-optimal performance of SIC-based hybrid precoding,
since it can achieve about 99% of the rate achieved by the
optimal unconstrained precoding with sub-connected architec-
ture.

Fig. 4 compares the achievable rate in mmWave MIMO
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Fig. 4. Achievable rate comparison for anNM ×K = 128 × 32 (N = 16)
mmWave MIMO system.

system withNM ×K = 128× 32 and N = 16, where we
can observe similar trends as those from Fig. 3. More impor-
tantly, Fig. 3 and Fig. 4 show that the performance of SIC-
based hybrid precoding is also close to the spatially sparse
precoding and the optimal unconstrained precoding with fully-
connected architecture. For example, when SNR = 0 dB, our
method can achieve more than 90% of the rate achieved by
the near-optimal spatially sparse precoding in both simulated
mmWave MIMO configurations. Considering the low energy
consumption and computational complexity of the proposed
SIC-based hybrid precoding as analyzed before, we can further
conclude that SIC-based hybrid precoding can achieve much
better trade-off among the performance, energy consumption,
and computational complexity.

Fig. 5 provides a achievable rate comparison in mmWave
MIMO systems against the numbers of BS and user antennas,
whereNM = K and the number of RF chains is fixed to
N = 8. We can find that the performance of the proposed
SIC-based hybrid precoding can be improved by increasing the
number of BS and user antennas, which involves much lower
energy consumption than increasing the number of energy-
intensive RF chains [13].

Fig. 6 shows the achievable rate comparison against the
numbers of user antennasK, whereNM = 64 andN = 8.
We can imply from Fig. 6 that the performance loss of SIC-
based hybrid precoding due to the sub-connected architecture
can be compensated by increasing the number of user antennas
K. For example, the achievable rate of SIC-based hybrid
precoding whenK = 30 is the same as that of the spa-
tially sparse precoding whenK = 20. Note that in this case,
the required number of phase shifters of SIC-based hybrid
precoding isNM = 64 and each RF chain only needs to
drive 8 BS antennas, while for the spatially sparse precoding,
the number of required phase shifters isN2M = 512 and
each RF chain has to drive 64 BS antennas. By contrast,
the cost of increasing the number of user antennasK will
be negligible since the power consumption of user antenna
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Fig. 6. Achievable rate comparison against the number of user antennasK,
whereNM = 64 andN = 8.

is usually small [13]. Therefore, we can conclude that the
proposed SIC-based hybrid precoding is more energy-efficient
and implementation-practical.

V. CONCLUSIONS

In this paper, we proposed a SIC-based hybrid precoding
with sub-connected architecture for mmWave MIMO systems.
We first showed that the total achievable rate optimization
problem with non-convex constraints can be decomposed into
a series of sub-rate optimization problems, each of which
only considers one sub-antenna array. Then, we proved that
the sub-rate optimization problem of each sub-antenna array
can be solved by simply seeking a precoding vector suffi-
ciently close to the unconstrained optimal solution. Finally,
a low-complexity algorithm was proposed to realize SIC-
based precoding without the complicated SVD and matrix

inversion. Complexity evaluation showed that the complexity
of the proposed SIC-based hybrid precoding is only about
10% as complex as that ot the recently proposed spatially
sparse precoding with fully-connected architecture in typical
mmWave MIMO system. Simulation results verified the near-
optimal performance of SIC-based hybrid precoding, and
implied that the performance loss induced by sub-connected
architecture can be compensated by increasing the number of
antennas. This may be a reasonable tradeoff versus increasing
the number of phase shifters as required in the fully-connected
architecture. Our further work will focus on the limited feed-
back scenario, where the channel state information may be not
perfect and the angles of phase shifters are quantified.

APPENDIX A
PROOF OFPROPOSITION1

Define the target of the optimization problem (10) as

Rn = log2

(

1 +
ρ

Nσ2
p̄H
n Ḡn−1p̄n

)

, (22)

and the SVD ofḠn−1 as Ḡn−1 = VΣVH . Then, by sepa-
rating the matricesΣ andV into two parts:

Σ =

[

Σ1 0
0 Σ2

]

, V = [v1 V2] , (23)

Rn in (22) can be rewritten as

Rn = log2

(

1 +
ρ

Nσ2
p̄H
n Ḡn−1p̄n

)

= log2

(

1 +
ρ

Nσ2
p̄H
n VΣVH p̄n

)

= log2

(

1 +
ρ

Nσ2

×p̄H
n [v1 V2]

[

Σ1 0
0 Σ2

]

[v1 V2]
H
p̄n

)

= log2

(

1 +
ρ

Nσ2
p̄H
n v1Σ1v

H
1 p̄n

+
ρ

Nσ2
p̄H
n V2Σ2V

H
2 p̄n

)

. (24)

Since we aim to find a vector̄pn sufficiently “close” tov1,
it is reasonable to assume thatp̄n is approximately orthogonal
to the matrixV2, i.e., p̄H

n V2 ≈ 0 [6]. Then, (24) can be
simplified as

Rn ≈ log2

(

1 +
ρΣ1

Nσ2
p̄H
n v1v

H
1 p̄n

)

(a)
= log2

(

1 +
ρΣ1

Nσ2

)

+ log2

(

1−
(

1 +
ρΣ1

Nσ2

)−1
ρΣ1

Nσ2

(

1−p̄H
n v1v

H
1 p̄n

)

)

(b)≈ log2

(

1 +
ρΣ1

Nσ2

)

+ log2
(

p̄H
n v1v

H
1 p̄n

)

(25)

where (a) is obtained by using the formula

I+XY = (I+X)
(

I− (I+X)−1
X (I−Y)

)

[6], where
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we defineX = ρΣ1

Nσ2 and Y = p̄H
n v1v

H
1 p̄n; (b) is valid by

employing the high SNR approximation [22], i.e.,
(

1 +
ρΣ1

Nσ2

)−1
ρΣ1

Nσ2
≈ 1. (26)

From (25), we can observe that maximizingRn is equivalent
to maximizingp̄H

n v1v
H
1 p̄n =

∥

∥p̄H
n v1

∥

∥

2

2
, the square of inner

product between two vectors̄pn and v1. Note thatv1 is a
fixed vector. Therefore, exploring a vectorp̄n, which has the
largest projection onv1, will lead to the smallest Euclidean
distance tov1 as well. Based on this fact, we can conclude that
the optimization problem (10) is equivalent to the following
problem

p̄opt
n = argmin

p̄n∈F̄
‖v1 − p̄n‖22 . (27)

APPENDIX B
PROOF OFPROPOSITION2

We first consider the matrixTn = IN + ρ
Nσ2HPnP

H
n HH ,

which should be inversed to computēGn (11). By partitioning
Pn asPn = [Pn−1 pn], Tn can be rewritten as

Tn = IN +
ρ

Nσ2
HPnP

H
n HH

= IN +
ρ

Nσ2
H [Pn−1 pn] [Pn−1 pn]

H
HH

= IN +
ρ

Nσ2
HPn−1P

H
n−1H

H +
ρ

Nσ2
Hpnp

H
n HH

= Tn−1 +
ρ

Nσ2
Hpnp

H
n HH . (28)

Then, by utilizing the Sherman-Morrison formula [19, Eq
2.1.4]

(

A+ uvT
)−1

= A−1 − A−1uvTA−1

1 + vTA−1u
, (29)

T−1
n can be presented as

T−1
n =

(

Tn−1 +
ρ

Nσ2
Hpnp

H
n HH

)−1

= T−1
n−1 −

ρ
Nσ2T

−1
n−1Hpnp

H
n HHT−1

n−1

1 + ρ
Nσ2pH

n HHT−1
n−1Hpn

. (30)

Substituting (30) intoGn = HHT−1
n H, we have

Gn = HHT−1
n H

= HH

(

T−1
n−1 −

ρ
σ2T

−1
n−1Hpnp

H
n HHT−1

n−1

1 + ρ
σ2pH

n HHT−1
n−1Hpn

)

H

= Gn−1 −
ρ
σ2Gn−1pnp

H
n Gn−1

1 + ρ
σ2pH

n Gn−1pn

. (31)

Then, according to (11),̄Gn can be obtained by

Ḡn = RGnR
H

= R

(

Gn−1 −
ρ

Nσ2Gn−1pnp
H
n Gn−1

1 + ρ
Nσ2pH

n Gn−1pn

)

RH

= Ḡn−1 −
ρ

Nσ2 Ḡn−1p̄np̄
H
n Ḡn−1

1 + ρ
Nσ2 p̄H

n Ḡn−1p̄n

. (32)

Note that in Section III-B, we have obtained the optimal
solutionp̄opt

n which is sufficiently close tov1. Thus, (32) can
be well approximated by replacinḡpn with v1 as

Ḡn = Ḡn−1 −
ρ

Nσ2 Ḡn−1p̄np̄
H
n Ḡn−1

1 + ρ
Nσ2 p̄H

n Ḡn−1p̄n

≈ Ḡn−1 −
ρ

Nσ2 Ḡn−1v1v
H
1 Ḡn−1

1 + ρ
Nσ2v

H
1 Ḡn−1v1

(a)
= Ḡn−1 −

ρ
Nσ2Σ

2
1v1v

H
1

1 + ρ
Nσ2Σ1

, (33)

where (a) is true due to fact thatvH
1 Ḡn−1 = Σ1v

H
1 , since

Ḡn−1 is an Hermitian matrix.
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