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Abstract

Wireless power transfer (WPT) prolongs the lifetime of wireless sensor network by providing

sustainable power supply to the distributed sensor nodes (SNs) via electromagnetic waves. To improve

the energy transfer efficiency in a large WPT system, this paper proposes an adaptively directional

WPT (AD-WPT) scheme, where the power beacons (PBs) adapt theenergy beamforming strategy to

SNs’ locations by concentrating the transmit power on the nearby SNs within the efficient charging

radius. With the aid of stochastic geometry, we derive the closed-form expressions of the distribution

metrics of the aggregate received power at a typical SN and further approximate the complementary

cumulative distribution function using Gamma distribution with second-order moment matching. To

design the charging radius for the optimal AD-WPT operation, we exploit the tradeoff between the

power intensity of the energy beams and the number of SNs to becharged. Depending on different

SN task requirements, the optimal AD-WPT can maximize the average received power or the active

probability of the SNs, respectively. It is shown that both the maximized average received power and the

maximized sensor active probability increase with the increased deployment density and transmit power

of the PBs, and decrease with the increased density of the SNsand the energy beamwidth. Finally, we

show that the optimal AD-WPT can significantly improve the energy transfer efficiency compared with

the traditional omnidirectional WPT.
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I. INTRODUCTION

Wireless sensor networks (WSNs) consist of small-size, low-power and distributed sensor

nodes (SNs) to monitor physical or environmental conditions [1]. WSNs are often required to

operate for long periods of time, but the network lifetime isconstrained by the limited battery

capacity and costly battery replacement at SNs. To extend the network lifetime, it is desirable

to recharge the SNs in an undisruptive and energy efficient way.

RF-enabled wireless power transfer (WPT) [2] provides a controllable and sustainable power

supply to sensor network by charging SNs via electromagnetic (EM) waves [3]–[5]. There are

mainly two types of WPT: omnidirectional WPT and directional WPT. For omnidirectional

WPT, the energy transmitter or so-called power beacon (PB) broadcasts the EM waves equally

in all directions regardless of the locations of the energy receivers. According to the law of

conservation of energy, the energy radiated in the direction of energy receivers accounts for only

a small fraction of the total radiated power. Since the EM waves fade rapidly over distance, it

may require excessively high transmit power to charge an energy receiver via omnidirectional

WPT, which may not be energy efficient. In contrast, for directional WPT with antenna arrays,

the PB concentrates the radiated energy in the directions ofthe energy receivers, i.e., via energy

beamforming, which enhances the power intensity in the intended directions. The energy transfer

efficiency is thus improved with the consequent reduction oftransmit power to reach the target

received power.

Most of the literature on directional WPT (see [2] and references therein) has focused on point-

to-point and point-to-multipoint transmissions. For a large-scale WSN, the SNs are often in large

quantities and are usually distributed with random locations. There are two main challenges in

the design of directional WPT for a large-scale network. On the PB-side, it is challenging to

adapt the energy beamforming strategy to the random locations of the SNs, e.g., to decide which

SNs to serve, how many beams to generate and the beamwidth of each beam, etc. On theSN-

side, it is difficult to analyze the aggregate received power froma large number of PBs in the

network, where the radiation directions and energy intensity may vary for each PB.

In this paper, we aim at tackling the above two challenges. The paper structure and main

contributions are given as follows.

• Energy-efficient AD-WPT scheme to power a large-scale sensor network: To address the

PB-side challenge, we propose an adaptively directional WPT (AD-WPT) scheme in a large-

scale sensor network in Section II, where the energy beamforming strategy of the PBs is

adaptive to the nearby SN locations that are within the energy-efficient charging radius. To

deal with the tradeoff between the power intensity of the energy beams and the number

of SNs served by each PB, we design the charging radius to achieve optimal AD-WPT
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for different performance targets, i.e., average power maximization or active probability

maximization.

• Analysis of harvested power using stochastic geometry: To address the SN-side challenge, in

Section III, we successfully derive the closed-form expressions of the distribution metrics,

e.g., Laplace transform, mean and variance, of the aggregate received power at a typical

SN from the large-scale PB network using the tools of stochastic geometry [6]–[8]. The

complementary cumulative distribution function (CCDF) ofthe received power is also

analyzed. As it is difficult to obtain the analytical CCDF expression, we further approximate

it using Gamma distribution with second-order moment matching.

• Optimal AD-WPT for average power maximization: In flexible-task WSN, the SNs operate

in a cooperative manner on power adaptive sensing tasks. To achieve the optimal AD-WPT,

we design the optimal charging radius to maximize the average received power of the

SNs in Section IV. We show that the maximized average received power increases with the

increased PB power and density, while it decreases with the increased energy beamwidth and

SN density. In addition, the optimal AD-WPT greatly improves the average received power

compared with the traditional omnidirectional WPT, especially when PB power/density is

high.

• Optimal AD-WPT for active probability maximization: In equal-task WSN, the SNs operate

in an independent manner on equal quantity of sensing tasks,where an SN is active if its

received power is larger than the operational power threshold. To achieve the optimal AD-

WPT, we design the optimal charging radius to maximize the active probability of the SNs

in Section V. It shows that the optimal AD-WPT can enhance thesensor active probability

compared with omnidirectional WPT, especially when the PB power/density is not high.

In Section VI, the numerical results are shown and discussed. Finally, conclusions are drawn in

Section VII.

A. Related Literature

Omnidirectional WPT has been studied recently in [9]–[12].In [9], a point-to-point omni-

directional WPT is investigated, where the receiver utilizes part of the harvested energy for

decoding the information in the received signal. In [10], the downlink energy transfer in a

broadcast network is studied for throughput maximization.In [11], a stochastic geometry based

model is considered for a cognitive radio network, where thesecondary transmitters harvest RF

energy from the nearby primary transmitters. [12] investigates the downlink energy transfer in

a large-scale wireless network by considering finite and infinite battery capacity.

The directional WPT has been addressed in [13]–[16]. In [13], energy beamforming is studied
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Fig. 1. System model of AD-WPT (illustrative example ofN = 4). The circular areas with radiusρ are the charging regions

of the PBs. The shaded sectors in the charging regions are theactive sectors of the PBs.

in a broadcast network where the transmitter steers the energy beams towards the receivers to

maximize their received power. In [14] and [15], energy beamforming is designed in a MIMO

broadcast network jointly with information beamforming, where the transmitter adjusts the beam

weights to maximize the received power and information rateat different receivers. In [16], each

mobile node in a cellular network is charged by its nearest PBvia energy beamforming. For

the simplicity of analysis, only the received power from thenearest PB is considered and the

received energy from all other PBs is omitted in [16].

To the best of our knowledge, this paper is the first study of directional WPT by using adaptive

energy beamforming for a large-scale network and the resulting aggregate received power from

all PBs with AD-WPT is rigorously characterized. With the proposed AD-WPT scheme, the

energy transfer efficiency in the large-scale network can begreatly enhanced compared with the

traditional omnidirectional WPT.

II. SYSTEM MODEL

We consider a wireless charging network as shown in Fig. 1, where a PB network wirelessly

charges an SN network via energy beamforming. Each PB radiates EM waves with wavelength

ν using transmit powerPp. The PBs and SNs follow two independent homogeneous Poisson

Point Processes (PPPs)Φp = {Xi} andΦs = {Yj} with densityλp andλs, respectively, where

Xi andYj represent the coordinates of the PBs and SNs inR
2 plane.

In the following, we first propose a power transfer scheme with adaptive energy beamforming

and then discuss the power intensity in the directions of theenergy beams.
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A. AD-WPT Scheme

Due to the fast attenuation of the radio power over the distance, it is more energy efficient

for the PBs to focus the energy to charge the nearby SNs. With antenna arrays, a PB is able to

form an energy beam in a certain direction or generate multiple beams simultaneously towards

different directions [17]. In this subsection, we propose an AD-WPT scheme where the PBs

adapt the beamforming strategy to the random locations of the SNs.

To decide which SNs to charge, we definecharging regionas a circular region centered at

each PB withcharging radiusρ, as shown in Fig. 1. Each charging region is divided intoN

equal sectorsC1, · · · , CN , whereN is usually a small positive integer due to physical constraint

of antenna design. We consider that a PB is aware of the existence of the SNs inside each of its

sectors, e.g., via the SN feedback over control channels. A sector is considered to be active if at

least one SN falls into this sector. DenoteM as the random number of active sectors of a PB,

e.g., PBi, where0 ≤M ≤ N . The adaptive beamforming strategy of PBi is given as follows.

• SN’s absence in charging region: If no sector of PBi is active (M = 0), PBi works as an

omnidirectional antenna that radiates energy equally in all directions (to help power SNs

outside the charging region).

• SN’s presence in charging region: If at least one sector of PBi is active (M ≥ 1), PBi

generatesM equal-power energy beams in the directions of theM active sectors.

We use equal power allocation among the energy beams of a PB for the ease of analysis. In

Section VI-C, we will show that equal power allocation is descent as compared with some other

unequal allocation choices.

From an SN’s point of view, the received power from the PBs is discussed as follows.

• Inside charging region (or within radiusρ): An SN can be intentionally and efficiently

charged by one or more PBs whose charging regions cover its location.

• Outside charging region (or beyond radiusρ): When an SN is located outside the charging

regions of the PBs, the SN still receives RF energy from the PBs if it is aligned with the

energy radiation directions of the PBs.

We further explain the proposed AD-WPT scheme with the example of N = 4 in Fig. 1. It

is observed that PB1 detects three nearby sensors, i.e., SN1, SN2 and SN3, which fall into three

out of four sectors of its charging region. As a result, PB1 adaptively generates three energy

beams in the directions of north-east, north-west and south-west to directionally charge the three

sensors. At the same time, PB2 detects three sensors, i.e., SN3, SN4 and SN5, which fall into

two sectors of its charging region, and thus two adaptive energy beams are generated towards

these SNs. In particular, notice that SN3, which is within the overlapping area of the charging

regions of PB1 and PB2, is thus intentionally charged by the two PBs at the same time. SN1 is
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intentionally charged by PB1 while it also receives energy from PB2 and PB3 since its location

is aligned with the south-west energy radiation directionsthe two PBs.

B. Antenna Gain under AD-WPT

When a PB is directional, the power intensity in the directions of energy beams improves

compared with the case when the PB is omnidirectional. The ratio of power intensity between

directional and omnidirectional antenna is defined as the gain of directional antennaG (G ≥ 1)

[17]. In the unintended directions of the directional PB, the power intensity is zero. In the

following, we evaluateG given thatM out of N sectors of the PB are active.

If none of the sectors of a PB is active (M = 0), as discussed, the PB behaves as an

omnidirectional antenna with the uniform gain in all directions, i.e.,

GM = 1, for M = 0. (1)

If M out ofN sectors of the PB are active (M ≥ 1), the PB formsM (M ≤ N) energy beams

with equal power in the direction of each beam.1 By the law of conservation of energy, the total

radiated power for directional and omnidirectional antenna is the same. Since the directional

antenna concentrates the energy from the directions ofN sectors intoM sectors, the power

intensity in the intended directions becomesN/M times of that of the omnidirectional antenna.

Therefore, givenM energy beams at the PB, the antenna gain in the direction of each energy

beam is approximated as

GM = N/M, for M = 1, · · · , N. (2)

From (1) and (2), we see that the proposed AD-WPT is equivalent to the omnidirectional WPT

with uniform gain whenM = 0 or M = N .

The antenna gains and number of energy beams of the PBs are related to the charging radius

ρ. As ρ → 0, no SN is inside the charging regions (M = 0) and all PBs radiate energy in

N directions with gainG0 = 1 as omnidirectional WPT. As the increase ofρ, more sectors

of the PB are likely to be activated due to the increased number of SNs inside the charging

region. The number of beams that most PB radiate with decreases fromN to 1 sharply and

then increases from1, 2, · · · , to N . The corresponding antenna gain increases fromG0 = 1 to

G1 = N and then decreases fromG1 = N , G2 = N
2

, · · · , to GN = 1. As ρ → ∞, AD-WPT

is again equivalent to omnidirectional WPT withGN = 1 in all N directions. As we can see,

there is a tradeoff between the antenna gainGM and the number of beams of the PBs. When

1For simplicity, we assume the side lobes are negligible and the radiated energy is uniformly distributed across each energy

beam.
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the PB concentrates energy on fewer beams, the power intensity of each beam increases but at

the cost of charging fewer SNs. To address the above tradeoff, the optimal charging radius is

crucial in the AD-WPT design and will be analyzed in Section IV and Section V for different

SN network requirements.

III. CHARACTERIZATION OF SNS’ RECEIVED POWER USING STOCHASTIC GEOMETRY

In this section, we first study the aggregate received power at a typical SN from all PBs and

then use stochastic geometry to analyze the distribution ofthe received power.

Consider a typical sensor node SN0 at the origin and an arbitrary PBi at locationXi. If PBi

radiates energy with gainGM (for M = 0, 1, · · · , N) towards SN0, the received power at SN0
from PBi is [18]

P i
s = PpGMσ [max (‖Xi‖/d0, 1)]

−α , (3)

wherePp is the transmit power of PBi, α is the path loss exponent,σ is a unitless constant

depending on the receiver energy convention efficiency, antenna characteristics and average

channel attenuation.2 The Euclidian distance between PBi and SN0 is represented by‖Xi‖,

and d0 is a reference distance for the antenna far field. The received power from each PB is

taken by averaging over the short-term fading. We adopt the non-singular path loss model [7]

to avoid [‖Xi‖/d0]
−α > 1 for ‖Xi‖ < d0. Without of the loss of generality, we used0 = 1

throughout the paper.

Equation (3) holds if PBi radiates energy with gainGM towards SN0, whereGM is given in

(1) or (2) depending on the numberM of active sectors of PBi. By considering all PBs in the

network, the aggregate received power at SN0 is

Ps =
∑

Xi∈Φp

P i
s1(SN0 receives energy from PBi with GM) . (4)

The indicator function equals one if both the following conditions are satisfied:

• Condition 1: PBi hasM active sectors;

• Condition 2: SN0 is in one of theM radiation directions of PBi given PBi hasM active

sectors.

We see that both conditions are related to the distance between SN0 and PBi. If SN0 is inside

the charging region of PBi, PBi generates at least one beam towards SN0 (M ≥ 1). If SN0 is

outside the charging region of PBi, SN0 may not be in the radiation direction of PBi andM

may vary from0 to N .

2For empirical approximation,σ is sometimes set to free-space path loss at distanced0 assuming omnidirectional antennas,

i.e., σ = 20 log10
ν

4πd0
dB [18], whereν is the wavelength of the radio waves.
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According to the distance between PBi and SN0, we classify the PBs into two groups:near

PBs with ‖Xi‖ ≤ ρ, and far PBs with ‖Xi‖ > ρ. We draw an equivalent charging region

centered at SN0 with radiusρ and denoteb(o, ρ) and b(o, ρ) as the regions inside and outside

this charging region, respectively. We define two indicatorfunctionsθMn andθMf to describe the

events that SN0 receives power from the PB withGM conditioned on this PB is a near PB or

far PB, respectively, i.e.,

θMn = 1 [SN0 receives energy from PBi with GM | ‖Xi‖ ≤ ρ] (5)

and

θMf = 1 [SN0 receives energy from PBi with GM | ‖Xi‖ > ρ] , (6)

where subscriptsn and f denote the near and far PBs and superscriptM denotes the number

of active sectors of the PB.

We denotePs,n as the aggregate received power from the near PBs andPs,f as the aggregate

received power from the far PBs that radiate energy towards SN0. By summing them up, we

rewritePs as

Ps = Ps,n + Ps,f , (7)

where

Ps,n = Ppσ
∑

Xi∈Φp

⋂
b(o,ρ)

GMθ
M
n [max (‖Xi‖, 1)]

−α (8)

and

Ps,f = Ppσ
∑

Xi∈Φp

⋂
b(o,ρ)

GMθ
M
f [max (‖Xi‖, 1)]

−α . (9)

As a special case ofN = 1, all PBs are omnidirectional radiators with gain of1. The aggregate

received power at SN0 from all omnidirectional PBs is

P omni
s = Ppσ

∑

Xi∈Φp

[max (‖Xi‖, 1)]
−α . (10)

To fully characterize the received power distribution, we usually use Laplace transform, which

is however, difficult to be derived directly from (7). In the conditional events ofθMn and θMf ,

the gainGM of PBi is also related to the locations of other nearby SNs of PBi which are

unknown. Moreover, sinceGM vary for each PB, the PBs that radiate power withGM towards

SN0 can be regarded as a heterogeneous network for which the Laplace transform is hard to

characterize. In the following discussions, we use an alternative method by taking the privilege

of the independent thinning [8] of the network. For the near PBs and the far PBs, respectively, we



8

thin the heterogeneous network into multiple homogeneous networks with certain probabilities,

where in each homogeneous network the PBs radiate energy towards SN0 with the same gain

GM . We haveM = 1, · · · , N for the near PBs andM = 0, 1, · · · , N for the far PBs. After

analyzing the Laplace transform of the received power distribution in each homogeneous network,

we finally derive the distribution metrics of the aggregate received power from all PBs at SN0.

A. Power Reception Probability given PB Location

First, we derive the thinning probabilities of the near PBs and the far PBs. As discussed

previously, SN0 receives power from PBi with gainGM if both Conditions 1 and 2 are satisfied.

As for Condition 1, PBi transmits with gainGM if it hasM active sectors. We derive the active

probability of each sector as follows. As SNs follow PPP withdensityλs, the number of SNs

inside a charging region is a Poisson random variable with mean λsπρ2. When the charging

region is equally partitioned intoN sectors, the number of SNs inside one of theseN sectors

is also a Poisson random variable, denoted byl, with meanλsπρ2/N , and the probability mass

function is given by

Pr (l = κ) =
(λsπρ

2/N)
κ

κ!
exp

(

−λsπρ
2/N

)

, κ = 0, 1, · · · (11)

The probability that no SN is inside a sector is thus

p = Pr (l = 0) = exp
(

−λsπρ
2/N

)

. (12)

Therefore, the active probability of a sector is the probability that at least one SN is inside this

sector, which is given by

q = 1− p = 1− exp
(

−λsπρ
2/N

)

. (13)

DenoteηMn and ηMf as the conditional probabilities that SN0 receives energy from PBi with

antenna gainGM given PBi is a near PB and a far PB, respectively. Based onp, q, Conditions

1 and 2, we deriveηMn andηMf as follows.

1) Near PBs:If ‖Xi‖ ≤ ρ, PBi radiates energy in at least the direction towards SN0 (M ≥ 1).

Condition 2 is thus satisfied. Given PBi is a near PB, the conditional probability that PBi radiates

with gainGM is

ωM
n =

(

N − 1

M − 1

)

pN−MqM−1, (14)

which is the probability that the restM − 1 out of N − 1 sectors of PBi have SNs. Given PBi
is a near PB that radiates with gainGM , the conditional probability that SN0 receives energy

from PBi is

ϕM
n = 1. (15)
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SinceηMn = ϕM
n ω

M
n , we obtain the following lemma.

Lemma 1:Given PBi is a near PB, the conditional probability that SN0 receives energy from

PBi with gainGM is

ηMn =

(

N − 1

M − 1

)

pN−MqM−1, for M = 1, · · · , N. (16)

2) Far PBs: If ‖Xi‖ > ρ, PBi may not radiate energy towards SN0 (M = 0, · · · , N). SN0

receives energy PBi with GM if both Conditions 1 and 2 are satisfied. Given PBi is a far PB,

the conditional probability that PBi radiates with gainGM is

ωM
f =







pN , for M = 0 (17a)
(

N

M

)

pN−MqM , for M = 1, · · · , N. (17b)

Given PBi is a far PB that radiates with gainGM , the conditional probability that SN0 receives

energy from PBi is

ϕM
f =







1, for M = 0 (18a)
M

N
, for M = 1, · · · , N. (18b)

SinceηMf = ϕM
f ω

M
f , we obtain the following lemma.

Lemma 2:Given PBi is a far PB, the conditional probability that SN0 receives energy from

PBi with gainGM is

ηMf =







pN , for M = 0 (19a)
(

N − 1

M − 1

)

pN−MqM , for M = 1, · · · , N. (19b)

B. Characterization of Received Power via Laplace Transform

In this subsection, we derive the Laplace transform of the distribution ofPs to characterize

the received power at SN0.

Define ΦM
p as the set of PBs with gainGM and Φ

′

p as the set of PBs that radiate energy

towards SN0. The set of near PBs withinb(o, ρ) that radiate energy with gainGM towards SN0
is

ΦM
p,n = ΦM

p

⋂

Φ
′

p

⋂

b(o, ρ), for M = 1, · · · , N, (20)

which is obtained through the independent thinning [8] of near PBs with new densityλpηMn ,

where ηMn is given in Lemma 1. The near PBs can be regarded as a heterogeneous network

consisting of a group of homogeneous networks each with antenna gainGM and densityλpηMn .

Similarly, the set of far PBs withinb(o, ρ) that radiate energy with gainGM towards SN0 is

ΦM
p,f = ΦM

p

⋂

Φ
′

p

⋂

b(o, ρ), for M = 0, · · · , N, (21)
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which by the independent thinning of far PBs with new densityλpη
M
f , whereηMf is given in

Lemma 2. The far PBs that radiate power towards SN0 can be regarded as another heterogeneous

network consisting of a group of homogeneous networks each with gainGM and densityλpηMf .

Note that SN0 receives zero power from the far PBs that does not radiate energy towards SN0.

In the following, we derive the Laplace transform of the received power distribution in each

homogeneous network, and then derive that of the aggregate received power from all PBs.

We rewrite the aggregate received power at SN0 from all the near PBs and far PBs in (7) as

Ps = Ps,n + Ps,f =

N
∑

M=1

PM
s,n +

N
∑

M=0

PM
s,f , (22)

where

PM
s,n = Ppσ

∑

Xi∈ΦM
p,n

GM [max (‖Xi‖, 1)]
−α (23)

is the aggregate received power from the near PBs with gainGM and

PM
s,f = Ppσ

∑

Xi∈ΦM
p,f

GM [max (‖Xi‖, 1)]
−α (24)

is the aggregate received power from the far PBs with gainGM . Since we adopt the non-singular

path loss function[max (‖Xi‖, 1)]
−α, our analysis involves two cases:0 < ρ ≤ 1 and1 < ρ <∞.

Defineγ(s, x) =
∫ x

0
ts−1e−tdt as the lower incomplete gamma function. The Laplace transforms

of the distributions ofPM
s,n andPM

s,f are given as follows.

Lemma 3:The Laplace transform of the distribution of aggregate received power at the typical

SN0 from the near PBs with gainGM is

LPM
s,n
(s) =

{

LPM
s,n(1)

(s), for 0 < ρ ≤ 1 (25a)

LPM
s,n(2)

(s), for 1 < ρ <∞, (25b)

where

LPM
s,n(1)

(s) = exp

{

− λpπη
M
n

[

ρ2 − ρ2 exp (−sPpσGM)
]

}

(26)

and

LPM
s,n(2)

(s) = exp

{

− λpπη
M
n

{

ρ2 − ρ2 exp
(

−sPpσGMρ
−α
)

+ (sPpσGM)
2

α

[

γ

(

1−
2

α
, sPpσGM

)

− γ

(

1−
2

α
, sPpσGMρ

−α

)]}

}

. (27)

Proof: See Appendix A.
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Lemma 4:The Laplace transform of the distribution of aggregate received power at the typical

SN0 from the far PBs with gainGM is

LPM
s,f
(s) =

{

LPM
s,f

(1)(s), for 0 < ρ ≤ 1 (28a)

LPM
s,f

(2)(s), for 1 < ρ <∞, (28b)

where

LPM
s,f

(1)(s) = exp

{

λpπη
M
f

{

ρ2 − ρ2 exp (−sPpσGM)− (sPpσGM)
2

α γ

(

1−
2

α
, sPpσGM

)}

}

(29)

and

LPM
s,f

(2)(s) = exp

{

λpπη
M
f

{

ρ2 − ρ2 exp
(

−sPpσGMρ
−α
)

− (sPpσGM)
2

α γ

(

1−
2

α
, sPpσGMρ

−α

)}

}

. (30)

Proof: See Appendix B.

Based on Lemma 3 and Lemma 4, we obtain the Laplace transform of the distribution ofPs in

the following proposition.

Proposition 1: The Laplace transform of the distribution of aggregate received power at the

typical SN0 from all PBs under AD-WPT is given by

LPs
(s) =



























N
∏

M=1

LPM
s,n(1)

(s)

N
∏

M=0

LPM
s,f

(1) (s) , for 0 < ρ ≤ 1 (31a)

N
∏

M=1

LPM
s,n(2)

(s)

N
∏

M=0

LPM
s,f

(2) (s) , for 1 < ρ <∞. (31b)

As a special case ofN = 1, the Laplace transform of the distribution of aggregate received

power at SN0 from all PBs in omnidirectional WPT is given by

LP omni
s

(s) = exp

{

− λpπ (sPpσ)
2

α γ

(

1−
2

α
, sPpσ

)

}

. (32)

Proof:

LPs
(s) = E [exp (−sPs)] = E [exp (−s (Ps,n + Ps,f))] = E [exp (−sPs,n)]E [exp (−sPs,f)]

= E

[

exp

(

−s

N
∑

M=1

PM
s,n

)]

E

[

exp

(

−s

N
∑

M=0

PM
s,f

)]

=

N
∏

M=1

LPM
s,n
(s)

N
∏

M=0

LPM
s,f
(s). (33)

SubstitutingLPM
s,n
(s) in Lemma 3 andLPM

s,f
(s) in Lemma 4 into (33), we obtain the Laplace

transform given in Proposition 1. It is noted thatLPs
(s) is continuous atρ = 1.
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C. Mean and Variance of Received Power

In this subsection, we derive the closed-form mean and variance of the received power at SN0

by taking the derivative of the Laplace transform in Proposition 1. These results will be useful

in the approximation of the CCDF of received power in the nextsubsection and the average

power maximization in Section IV.

The average received power at SN0 is given by

E[Ps] = −
d

ds
[log (LPs

(s))] |s=0. (34)

This is the expectation of the aggregate received power at SN0 from all PBs by taking over all

possible location realizations of the PBs in spatial domain. By further derivations, the results

are summarized in the following proposition.

Proposition 2: At the typical SN0, the average received power in AD-WPT is given by

E [Ps] =



























Ppλpσπ

[

ρ2
(

p− pN
)

1− p
+

α

α− 2

]

, for 0 < ρ ≤ 1 (35a)

Ppλpσπ

[

(α− 2ρ2−α)
(

1− pN
)

(α− 2) (1− p)
+

2ρ2−α

α− 2

]

, for 1 < ρ <∞, (35b)

wherep is given in (12) andE(Ps) is continuous atρ = 1. As a special case ofN = 1, the

average received power at SN0 in omnidirectional WPT is given by

E[P omni
s ] =

Ppλpσπα

α− 2
. (36)

Proof: See Appendix C. WithN = 1, both (35a) and (35b) equal (36) for allρ.

In Proposition 2, for any givenρ, E[Ps] is increasing with the increasedPp, λp and N and

is decreasing with the increasedλs. Moreover, for any given set of{Pp, λp, λs, N}, E[Ps] is

unimodal inρ, i.e., there exists a uniqueρ∗ that maximizesE[Ps], whereE[Ps] is monotonically

increasing forρ ≤ ρ∗ and is monotonically decreasing forρ ≥ ρ∗. In Section IV, we will analyze

the optimalρ∗ that maximizesE[Ps].

The comparison of the average received power between AD-WPTand omnidirectional WPT

is given in the following corollaries.

Corollary 1: For 0 < ρ < ∞, it follows thatE[Ps] > E[P omni
s ]. For ρ → 0 andρ → ∞, we

haveE[Ps] → E[P omni
s ].

Proof: See Appendix D.

From Corollary 1, we see that the average received power at SN0 from all PBs in AD-WPT is

higher than that in omnidirectional WPT. Next, we further discuss how the near PBs (‖Xi‖ ≤ ρ)

and far PBs (‖Xi‖ > ρ) influence the average received power. For comparison, we denote the
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aggregate received power from the PBs with‖Xi‖ ≤ ρ and‖Xi‖ > ρ in omnidirectional WPT

by P omni
s,n andP omni

s,f , respectively.

Corollary 2: The ratio of the average received power at SN0 from the near PBs in AD-WPT

and in omnidirectional WPT is given by

E[Ps,n]

E[P omni
s,n ]

=
1− pN

1− p
≥ 1 (37)

The ratio of the average received power at SN0 from the far PBs in AD-WPT and in omnidi-

rectional WPT is given by

E[Ps,f ]

E[P omni
s,f ]

= 1. (38)

Proof: The proof is similar to that of Proposition 2 and thus omitted.

In Corollary 2, we see that the average received power at SN0 from the near PBs and far PBs in

AD-WPT is greater than and equal to that in omnidirectional WPT as shown in (37) and (38),

respectively. The improvement of the average received power from all PBs at SN0 is thus due

to the adaptive energy beamforming of the near PBs.

By taking the second derivative of the Laplace transform in Proposition 1, we obtain the

variance of the received power at SN0, i.e.,

V[Ps] =
d2

ds2
[log (LPs

(s))] |s=0. (39)

By further derivations, we summarize the results in the following proposition.

Proposition 3: At the typical SN0, the variance of the received power in AD-WPT is given

by

V [Ps] =







































































λpP
2
pσ

2π

{

[

α

α− 1
− ρ2

]

pN +

[

(

q−1 − 1
)

ρ2 +
α

α− 1

]

×

N
∑

M=1

(

N

M

)2(
N − 1

M − 1

)

pN−MqM

}

, for 0 < ρ ≤ 1 (40a)

λpP
2
pσ

2π

{

ρ2−2α

α− 1
pN +

(

α− ρ2−2α

α− 1
q−1 +

ρ2−2α

α− 1

)

×
N
∑

M=1

(

N

M

)2(
N − 1

M − 1

)

pN−MqM

}

, for 1 < ρ <∞, (40b)

whereV(Ps) is continuous atρ = 1. As a special case ofN = 1, the variance of the received

power in omnidirectional WPT is

V[P omni
s ] =

λpP
2
p σ

2πα

α− 1
. (41)
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Fig. 2. CCDF of the received power at SN0 (Pp = 5 W, ρ = 2, λp = 0.1, λs = 0.2, ν = 0.1 m andα = 3).

Proof: See Appendix E. WithN = 1, both (40a) and (40b) equal (41) for allρ.

In Proposition 3,V[Ps] is unimodal inρ, i.e., V[Ps] is first increasing and then decreasing

with the increasedρ. Given anyρ, V[Ps] is increasing withPp, λp andN , and it is decreasing

with λs. We also compare the variance of the received power at SN0 between AD-WPT and

omnidirectional WPT in the following corollary.

Corollary 3: For ρ→ 0 andρ→ ∞, we haveV[Ps] → V[P omni
s ]. For 0 < ρ <∞, it follows

thatV[Ps] > V[P omni
s ].

Proof: The proof is similar to that of Corollary 1 and thus omitted.

From Corollary 3, we see that variance of received power in AD-WPT is higher than that in

omnidirectional WPT. Though AD-WPT improves the average received power compared with

omnidirectional WPT, it also causes more significant spatial power fluctuation.

D. Characterization of Received Power via CCDF

In this subsection, we analyze the CCDFFs of the received power at the typical SN0, which

is the probability thatPs takes on a value greater than or equal to the thresholdP th
s , i.e.,

Fs = Pr
(

Ps ≥ P th
s

)

=

∫ ∞

P th
s

f(Ps)dPs, (42)

where f(Ps) is the probability density function (PDF) ofPs and can be calculated from the

inverse Laplace transform ofLPs
(s) in Proposition 1, i.e.,

f(Ps) = L−1
Ps
(s). (43)
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In most cases, the direct derivation of the PDF from the inverse Laplace transform is very

challenging, if not possible, especially for the non-singular path loss model. In our problem, the

new parameterρ adds more difficulty to the derivation. Even for omnidirectional transmission,

the closed-form PDF only exists for special choices of parameters, e.g.,α = 4 and singular path

loss model [7]. Studies have been shown that Gamma distribution gives a good fit to the power

distribution for the homogeneous PPP [19] and heterogeneous PPP [20] with non-singular path

loss. In this work, we approximate the received power distribution by Gamma distribution with

second-order moment matching method, i.e., by matching themean and variance of the two

distributions, where the mean and variance ofPs are given in Proposition 2 and Proposition 3,

respectively. Denote the Gamma function byΓ(k) =
∫∞

0
xk−1e−tdt. The approximation of the

CCDF ofPs is given in the following proposition.

Proposition 4: At the typical SN0, the approximated CCDF of the received power using

Gamma distribution with second-order matching is expressed as

F̃s = 1−
γ
(

k, P
th
s

θ

)

Γ (k)
, (44)

wherek = [E[Ps]]
2

V[Ps]
and θ = V[Ps]

E[Ps]
are the shape parameter and scale parameter of the Gamma

distribution, respectively.

Fig. 2 shows a good match between the simulation results ofFs and its approximatioñFs. In

some scenarios, an SN is active if the received power is beyond the constant operational power

thresholdP th
s . Then, the CCDF ofPs can be regarded as the active probability of the SNs. It can

be proved that̃Fs in (44) is increasing inE[Ps] and decreasing inV[Ps]. The increased average

received power and power fluctuation may improve or reduce the sensor active probability,

respectively. As shown in Proposition 2 and 3, bothE[Ps] and V[Ps] first increase and then

decrease with the increasedρ. We will further discuss the above tradeoff and derive the optimal

ρ∗ that maximizes the sensor active probability in Section V. For omnidirectional WPT, the

CCDF of received powerF omni
s and its approximatioñF omni

s can be obtained by substituting

(10) into (42) and by substituting (36) and (41) into (44), respectively.

Corollary 4: F̃s increases with the increasedPp and/orλp.

Proof: It can be proved thatθ andk are linear increasing withPp andλp, respectively. As

Pp increases,θ increases andk remains a constant. SincẽFs is an increasing function ofθ, it

also increases with the increased ofPp. Similarly, asλp increases,k increases andθ remains a

constant. SincẽFs is an increasing functions ofk, it also increases with the increasedλp.

Corollary 4 shows that increasing the PB density or power improves the sensor active probability.
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Fig. 3. Average received power versus charging radius (Pp = 10 W, ν = 0.1 m, α = 3, λp = 0.1 andN = 4).

IV. M AXIMIZATION OF AVERAGE RECEIVED POWER IN AD-WPT

In flexible-task WSN applications, each SN is assigned with flexible sensing tasks depending

on the received energy, i.e., the SNs with high received power may handle more tasks than the

low-power SNs for the benefit of the whole network. For example, the high-power SNs in a

hierarchical network may work as cluster-heads [1] that collect data from the low-power SNs

and coordinate sensing tasks among the SNs. The low-power SNs can also offload part of the

computational processing tasks to the high-power SNs whichhave abundant resource [21]. To

achieve energy efficient AD-WPT in flexible-task WSN, it is important to maximize the total

received power over all SNs, which is equivalent to maximizing the average received power at

the typical SN0. In this section, we design the optimal charging radiusρ∗ for maximizingE[Ps]

in Proposition 2.

In Fig. 3, we plot the average received powerE[Ps] in AD-WPT, which outperforms the

average received powerE[P omni
s ] in omnidirectional WPT for allρ > 0. Moreover,E[Ps] first

increases and then decreases with the increasedρ and there exists an optimalρ∗ that maximizes

E[Ps]. These results match well with Proposition 2 and Corollary 1and are explained as follows.

The received power at SN0 from PBi depends on whether PBi radiates power towards SN0 and

the intensity of the radiated energy, which can be viewed as the power opportunity and power

intensity of the PB, respectively. Both the power opportunity and power intensity are related

to the number of beams of PBi and the distance‖Xi‖ between PBi and SN0. We discuss the

average received power at SN0 from the near PBs (‖Xi‖ ≤ ρ) and far PBs (‖Xi‖ > ρ) as follows.
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• Near PBs: The average received power from the near PBs in AD-WPT is higher than that in

omnidirectional WPT (see (37) in Corollary 2). When the number of beams from a near PB

decreases, the power intensity of this near PB increases (see (2)), and the power opportunity

that the near PB radiates power towards SN0 is with probability1 since the near PB forms

at least one beam towards SN0.

• Far PBs: The average received power from the far PBs in AD-WPT is the same as that

in omnidirectional WPT (see (38) in Corollary 2). When the number of beams of a far

PB decreases, the power intensity of this far increases (see(1) and (2)), but the power

opportunity that SN0 receives energy from this far PBs decreases (see (18a) and (18b)),

and vice versa. From the average perspective, the effects ofpower intensity and power

opportunity of the far PBs cancel with each other.

From the above discussions,E[Ps] outperformsE[P omni
s ] mainly because of the high power

intensity from the near PBs. We discussE[Ps] as follows.

• As ρ→ 0, no SN is in the charging regions.E[Ps] is equivalent toE[P omni
s ] since all PBs

radiate power inN directions.

• As ρ increases, a small number of SNs are included in the chargingregions and the PBs that

are close to SN0 become near PBs. When most PBs concentrate the transmit power from N

beams into1 beam, the power intensity is greatly enhanced compared withomnidirectional

WPT. E[Ps] increases with the increasedρ due to the increased number of the near PBs

and increased power intensity of the PBs.

• As ρ further increases, more sectors of the PBs are likely to be activated due to the increased

number of SNs in the charging regions. When the number of beams of most PBs increases

from 1, 2, · · · , to N , the power intensity for each beam decreases. There is a tradeoff

between the further increased number of the near PBs and the decreased power intensity.

E[Ps] thus increases and then decreases with the increasedρ.

• As ρ → ∞, all SNs are in the charging regions and AD-WPT is again equivalent to

omnidirectional WPT.

In the following, we study the optimal charging radiusρ∗ that maximizesE[Ps] in Proposition

2, i.e.,

P1 : E[Ps]
∗ = max

0<ρ<∞
E[Ps]. (45)

In Fig. 3, for omnidirectional WPT,E[P omni
s ] is regardless ofλs which matches with (36). It

is because each PB radiates energy in all directions withoutcatering to the locations or density

of the SNs. For AD-WPT,E[Ps] decreases with the increasedλs. With the increased number of

SNs in the charging regions, PBs are more likely to radiate with more beams and less power
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intensity, which thus reduces the average received power atSN0. In the following, we discuss

the optimalρ∗ for different λs under AD-WPT.

Case 1: Low SN Density Regime. When the SN network density is low, e.g.,λs = 0.2 in Fig.

3, we have∂E[Ps]
∂ρ

|ρ=1 > 0. Since (35b) is unimodal inρ and (35a) is an increasing function

of ρ, the optimal charging radiusρ∗ ∈ (1,∞) is the stationary point of (35b). Taking the first

derivative of (35b) with respect toρ, we have

∂ [E[Ps]|1<ρ<∞]

∂ρ
= 2Ppλpπσ

[

ρ1−α
(

p− pN
)

1− p
+
λsπp

Nρ (α− 2ρ2−α)

(α− 2)(1− p)

−
λsπρp (α− 2ρ2−α)

(

1− pN
)

(1− p)2(α− 2)N

]

. (46)

The optimal charging radiusρ∗ is the unique solution of∂E[Ps]|ρ≥1

∂ρ
= 0. Though ρ∗ is not

analytically tractable, we can search it numerically usingone-dimensional searching method.

Case 2: Medium SN Density Regime. When the SN network has a medium density, e.g.,λs = 0.8

in Fig. 3, we have∂E[Ps]
∂ρ

|ρ=1 = 0. In this case, (35a) is an increasing function ofρ and (35b) is

a decreasing function ofρ. The optimal charging region radius is at the point ofρ∗ = 1.

Case 3: High SN Density Regime. When the SN network has a high density, e.g.,λs = 1.6 in

Fig. 3, we have∂E[Ps]
∂ρ

|ρ=1 < 0. In this case, (35a) is unimodal inρ and (35b) is a decreasing

function of ρ. The optimal charging radiusρ∗ ∈ (0, 1) is the stationary point of (35a). Taking

the first derivative of (35a), we have

∂ [E[Ps]|0<ρ≤1]

∂ρ
= 2Ppλpπσ

[

λsπρ
3p(pN − p)

N(1− p)2
+
ρ(p− pN ) + λsπρ

3p
(

pN−1 − 1
N

)

1− p

]

. (47)

The optimal charging radiusρ∗ is the unique solution to
∂[E[Ps]|0<ρ≤1]

∂ρ
= 0. Similar to Case 1,ρ∗

is not analytically tractable but can be searched numerically.

It can be proved that
∂[E[Ps]|0<ρ≤1]

∂ρ
and ∂[E[Ps]|1<ρ<∞]

∂ρ
are of the same sign at the point ofρ = 1.

The procedure of obtaining the optimalρ∗ is summarized in Algorithm 1. More numerical results

will be shown in Section VI-A.

V. M AXIMIZATION OF SENSORACTIVE PROBABILITY IN AD-WPT

In the previous section, we discussed the optimal AD-WPT design in flexible-task WSN

scenario where the energy consumption levels or tasks vary for different SNs. In some other

scenarios, e.g., environmental measurement [22] and surveillance monitoring [23] systems, the

sensing information from each SN is equally important and mutually irreplaceable. For example,

in a forest fire detection systems [1], SNs are randomly deployed in a forest collecting temperature

and humidity data independently. In these scenarios, the SNs are assigned with equal sensing
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Algorithm 1 Solving the optimal charging radius in P1:

1: CalculateD1(ρ) =
∂[E[Ps]|0<ρ≤1]

∂ρ
andD2(ρ) =

∂[E[Ps]|1<ρ<∞]

∂ρ

2: if eitherD1 (ρ = 1) < 0 or D2 (ρ = 1) < 0 then

3: ρ∗ is the solution toD1(ρ) = 0

4: else if eitherD1 (ρ = 1) = 0 or D2 (ρ = 1) = 0 then

5: ρ∗ = 1

6: else if eitherD1 (ρ = 1) > 0 or D2 (ρ = 1) > 0 then

7: ρ∗ is the solution toD2(ρ) = 0

8: end if

tasks with a minimum operational power requirement [24], i.e., an SN is active if the received

power is beyond the target energy threshold. To achieve higher sensing diversity, it is important to

allow more SNs operating with sufficient power. In this section, we analyze the optimal charging

radiusρ∗ in AD-WPT to maximize the active probabilityFs of the SNs.

As discussed in Section IV, the decreased number of beams at the PBs improves the radiated

power intensity, which enhances the average received powerat SN0 in AD-WPT compared with

omnidirectional WPT. However, the decreased number of beams may not enhance the sensor

active probabilityFs due to the interplay between the power intensity and power opportunity.

• Near PBs: The near PBs help improve the sensor active probability in AD-WPT compared

with that in omnidirectional WPT. Since the near PBs always radiate energy towards SN0
with probability 1 (see (15)) and antenna gain greater than1 (see (2)), the received power

from the near PBs in AD-WPT is higher than that in omnidirectional WPT. With the de-

creased number of beams from the near PBs, the power intensity increases, which increases

the received power from the near PBs and may improve the sensor active probability in

AD-WPT.

• Far PBs: The far PBs can reduce the sensor active probability in AD-WPT compared with

that in omnidirectional WPT. Since the far PBs may not radiate energy towards SN0, the

received power from a far PB in AD-WPT is higher than that in omnidirectional WPT or

zero if SN0 is inside or outside the beamforming directions of the PB, respectively. With the

decreased number of beams from the far PBs, the power intensity of the far PBs increases

(see (1) and (2)), but the power opportunity to receive energy from the far PBs at SN0
decreases (see (18a) and (18b)). Since SN0 has a higher chance to fall outside the radiation

directions of the far PBs, the received power from the far PBsis more likely to decrease,

which may reduce the sensor active probability in AD-WPT.
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As ρ increases from0 to ∞, the number of beams of most PBs decreases fromN to 1, and

then increases from1, 2, · · · , to N . With fewer beams, the increased power intensity of the

near PBs and decreased power opportunity of the far PBs have positive and negative impacts on

the sensor active probabilityFs, respectively. Whether the near PBs or the far PBs dominateFs

depends on the PB power/density and radiusρ. If the PB power/density is low orρ is large, the

near PBs dominateFs due to the severe power attenuation of the far PBs, and vice versa.

In the following, we analyze the optimal charging radiusρ∗ that maximizes the sensor active

probabilityFs at the typical SN0, i.e.,

P2 : F ∗
s = max

0<ρ<∞
Fs. (48)

The simulation results of the sensor active probabilitiesFs in AD-WPT andF omni
s in omnidi-

rectional WPT are plotted againstρ with variousPp in Fig. 4. As shown in Corollary 4, the

sensor active probability increases with increased PB power Pp or PB densityλp. We discuss

Fs by considering different power regimes of the PBs.

Case 1: Low PB power/density regime. When the PBs have low powerPp and/or densityλp,

e.g.,Pp = 1 W in Fig. 4, the near PBs dominateFs and we haveFs > F omni
s . Fs increases and

then decreases withρ mainly due to the decreased and increased power intensity ofthe PBs,

respectively. There exists an optimalρ∗ (e.g.,ρ = 1.5) that maximizesFs.

Case 2: Medium PB power/density regime. When the PBs have medium powerPp and/or density

λp, e.g.,Pp = 3 W in Fig. 4, the far PBs dominateFs for small ρ with Fs ≤ F omni
s , and the
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near PBs dominateFs for large ρ with Fs > F omni
s , respectively. There exists an optimalρ∗

(e.g.,ρ = 2.25) that maximizesFs in the region ofFs > F omni
s .

Case 3: High PB power/density regime. When the PBs have high powerPp and/or density

λp, e.g.,Pp = 10 W in Fig. 4, we haveFs < F omni
s . Due to the high PB power, the sensor

active probabilityF omni
s for omnidirectional WPT is high. For AD-WPT,Fs decreases and then

increases withρ mainly due to the decreased and increased power opportunityof the far PBs,

respectively. Asρ → 0 or ρ → ∞, we haveFs → F omni
s . The optimalρ∗ is approaching0 or

∞ as in omnidirectional WPT.

From the above discussions, we see that the maximized sensoractive probability in AD-WPT

with the proper selection of charging radiusρ∗ is larger than or at least equivalent to that in

omnidirectional WPT. As discussed in Section III-D,Fs is not analytically tractable but can be

well approximated using Gamma distribution. In the following, we analyze the optimal charging

radiusρ̃∗ that maximizes the approximation of sensor active probability F̃s in Proposition 4, i.e.,

P3 : F̃ ∗
s = max

0<ρ<∞
F̃s. (49)

To solve the one-dimensional problem in P3, the optimal radius is one of the stationary points

of F̃s. Taking the derivative of̃Fs with respect toρ yields

∂F̃s

∂ρ
= −

(

P th
s

θ

)k−1

e−
Pth
s
θ P th

s

[

∂E[Ps]
∂ρ

V[Ps] + E[Ps]
∂V[Ps]
∂ρ

]

[V[Ps]]
2 Γ (k)

−

[

∂[E[Ps]]
2

∂ρ
V[Ps] + [E[Ps]]

2 ∂V[Ps]
∂ρ

]

∫

Pth
s
θ

0
tk−1e−t ln(t)dt

[V[Ps]]
2 Γ (k)

+
γ
(

k, P
th
s

θ

) [

∂[E[Ps]]
2

∂ρ
V[Ps] + [E[Ps]]

2 ∂V[Ps]
∂ρ

]

∫∞

0
tk−1e−t ln(t)dt

[V[Ps]]
2 [Γ (k)]2

, (50)

where∂E[Ps]/∂ρ is given in Section IV and∂V[Ps]/∂ρ can be obtained via similar approaches.

The number of stationary points of̃Fs is less than or equal to two since∂F̃s/∂ρ = 0 has at most

two solutions forρ ∈ (0,∞). The procedure to obtain the optimal radius for P3 is summarized

in Algorithm 2.

VI. NUMERICAL RESULTS

In this section, we present the simulation results of the maximized average received power

for flexible-task WSN and the maximized sensor active probability for equal-task WSN under

the proposed AD-WPT scheme, respectively. The performanceof omnidirectional WPT scheme

is used as a comparison benchmark. Throughout this section,we setσ = −41.9842 dB, where

the wavelength isν = 0.1 m and reference distance isd0 = 1 m.
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Algorithm 2 Solving the optimal charging radius in P3:

1: Find J as the number of stationary points ofF̃s for ρ ∈ (0,∞) and calculate∂F̃s

∂ρ
|ρ=0+

2: if J = 1 and ∂F̃s

∂ρ
|ρ=0+ < 0 (as in Case 1)then

3: ρ̃∗ is the single stationary point of̃Fs

4: else if J = 2 and ∂F̃s

∂ρ
|ρ=0+ > 0 (as in Case 2)then

5: ρ̃∗ is the stationary point of̃Fs with larger value ofρ

6: else if J = 1 and ∂F̃s

∂ρ
|ρ=0+ > 0 (as in Case 3)then

7: ρ̃∗ is approaching0 or ∞

8: end if
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Fig. 5. (a) Optimal charging radiusρ∗ for average power maximization versusN (λp = 0.1, λs = 0.2 and α = 3). (b)

Maximized average received powerE[Ps]
∗ versusN (λp = 0.1, λs = 0.2 andα = 3).

A. Maximized Average Received Power for Flexible-task WSN

Fig. 5 (a) and Fig. 5 (b) show that both the maximized average received powerE[Ps]
∗ and the

corresponding optimal charging radiusρ∗ increase with the increased number of PB sectorsN .

As N increases, the PBs are able to form narrower energy beams with higher power intensity

towards the intended SNs. As a result, the coverage of PBs in AD-WPT extends and it is

more beneficial to use a larger charging radiusρ∗ as shown in Fig. 5 (a) to serve more SNs

efficiently. With the decreased beamwidth, the power intensity of the near PBs increases, which

thus improvesE[Ps]
∗ as shown in Fig. 5 (b). This is similar to the effect of decreasing the

number of beams of the PBs as discussed in Section IV.
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Fig. 6. (a) Optimal charging radiusρ∗ for average power maximization versusλs (λp = 0.1, α = 3 and N = 4). (b)

Maximized average received powerE[Ps]
∗ versusλs (λp = 0.1, α = 3 andN = 4).

Fig. 6 (a) and Fig. 6 (b) illustrate that the maximized average received powerE[Ps]
∗ and

the corresponding optimal charging radiusρ∗ decrease with the increased SN densityλs. As

λs increases, more sectors of PBs are activated. The PBs form more energy beams with lower

power intensity towards the intended SNs. As a result, the PBs shrink the charging radius in

AD-WPT as shown in Fig. 6 (a) to serve fewer SNs efficiently. InFig. 6 (b),E[Ps]
∗ decreases

with the increasedλs due to the decreased power intensity of the near PBs.

From Fig. 5 (a) to Fig. 6 (b), we observe thatE[Ps]
∗ increases linearly with the increased PB

powerPp, but ρ∗ is regardless ofPp. It can also be deduced that increasingλp has a similar

impact onE[Ps]
∗ as increasingPp. Moreover, whenPp is relatively high (e.g.,Pp = 8 W),

increasingN or decreasingλs causes more significant improvement ofE[Ps]
∗ as shown in Fig.

5 (b) and Fig. 6 (b), respectively.

B. Maximized Sensor Active Probability for Equal-task WSN

In Fig. 7 (a), the maximized sensor active probabilityF ∗
s increases with the increasedN . As

discussed in section V, the improvement of the sensor activeprobability in AD-WPT compared

with omnidirectional WPT is mainly due to the high power intensity of the near PBs. AsN

increases, the beamwidth of the PBs decreases, which improves the power intensity and thus

improvesF ∗
s . Fig. 7 (b) shows the maximized sensor active probabilityF ∗

s decreases with the

increasedλs. As λs increases, the near PBs are likely to form more beams with lower power

intensity, which therefore reducesF ∗
s . Furthermore, we notice that increasingN or decreasing
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Fig. 7. (a) Maximized sensor active probabilityF ∗
s versusN (λp = 0.1, λs = 0.2, P th

s = 0.1 mW andα = 3). (b) Maximized

sensor active probabilityF ∗
s versusλs (λp = 0.1, N = 4, P th

s = 0.1 mW andα = 3).

λs causes more significant improvement ofF ∗
s for relative smallPp (e.g., Pp = 2 W). The

improvement is less significant for relatively large PB power (e.g.,Pp = 8 W) since the sensor

active probability in omnidirectional WPT is already high and may not be much improved by

AD-WPT.

C. Comparison with Other Power Allocation Schemes

For the AD-WPT scheme in Section II-A, we adopt uniform powerallocation for the PBs,

i.e., uniformly allocating the PB power among all active sectors that have at least one SN. If

the exact number of SNs in each sector is known, the PBs may adopt unequal power allocation

schemes which allocate the PB power according to the number of SNs in each sector. In this

subsection, we mainly discuss two other power allocation schemes: greedy scheme and robust

scheme. In greedy scheme, each PB allocates all power to the sector that has the largest number

of SNs and no power to all other sectors. It can be easily shownthat this scheme provides the

maximum sum received power of all SNs in the charging region of a PB. In robust scheme,

each PB allocates power proportionally to the number of SNs in each sector.

In Fig. 8 (a) and Fig. 8 (b), we compare the maximized average received power and the

maximized sensor active probability for the three power allocation schemes, respectively. Fig. 8

(a) shows that the maximized average received power for the three schemes is similar with very

minor gaps. Greedy scheme performs the best and robust scheme slightly outperforms uniform

scheme in terms of average received power. In Fig. 8 (b), we see that the maximized sensor
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Fig. 8. (a) Comparison of the maximized average received power for the three power allocation schemes (λp = 0.1, λs = 0.2,

N = 4 andα = 3). (b) Comparison of maximized sensor active probability for the three power allocation schemes (λp = 0.1,

λs = 0.2, P th
s = 0.1 mW, N = 4 andα = 3).

active probability of robust scheme is the highest, which slightly outperforms that of uniform

scheme. The sensor active probability of greedy scheme is the lowest.

To sum up, greedy scheme shows the highest average received power but at the cost of lowest

sensor active probability. It is because the single beam strategy in greedy scheme improves the

power intensity but also reduces the power opportunity towards SN0. Moreover, robust scheme

outperforms uniform scheme in both average power and activeprobability of the SNs, but the

improvement is insignificant. For greedy and robust schemes, the exact number of SNs in each

sector is required and the derivation of the distribution ofthe received power in a heterogeneous

network is more complicated than uniform scheme since the gain of the PB becomes a continuous

instead of discrete variable. For uniform scheme, each PB needs only the information of the

existence of SNs in each sector. It provides acceptable average power and active probability

with less implementation complexity.

VII. CONCLUSIONS

In this paper, we proposed an AD-WPT scheme in a large-scale sensor network, where the PBs

charge the SNs by adapting the energy beamforming strategies to the nearby SN locations. By

using stochastic geometry, we derived the closed-form expressions of the distribution metrics,

i.e., Laplace transform, mean and variance, of the aggregate received power at a typical SN.

The approximation of the CCDF of received power is obtained using Gamma distribution with
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second-order moment matching. For flexible-task and equal-task WSN, the optimal radii in

AD-WPT were designed to maximize the average received powerand maximize the sensor

active probability, respectively. The results show that the maximized average received power and

maximized sensor active probability increase with the increased density and power of the PBs,

while they decrease with the increased density of the SNs andenergy beamwidth. Moreover, the

optimal AD-WPT is more energy efficient than omnidirectional WPT by achieving equivalent

average received power or sensor active probability with less transmit power consumptions.

APPENDIX

A. Proof of Lemma 3

Taking the Laplace transform of (23), we have

LPM
s,n
(s) = E

[

exp
(

−sPM
s,n

)]

= E



exp



−sPpσ
∑

Xi∈ΦM
p,n

GM [max (‖Xi‖, 1)]
−α









= E





∏

Xi∈ΦM
p,n

exp
[

−sPpσGM [max (‖Xi‖, 1)]
−α
]





= exp

[

−λpη
M
n

∫ 2π

0

∫ ρ

0

[

1− exp
[

−sPpσGM [max (r, 1)]−α
]]

rdψdr

]

. (51)

The last step is obtained by applying probability generating functional (PGFL) [6, Proposition

2.12], wherer andψ denote the radial coordinate and angular coordinate in polar coordinate

system. For0 < ρ ≤ 1, (51) is further derived as

LPM
s,n
(s) = exp

[

−2πλpη
M
n

∫ ρ

0

[1− exp (−sPpσGM)] rdr

]

. (52)

For 1 < ρ <∞, (51) is further derived as

LPM
s,n
(s) = exp

[

−2πλpη
M
n

[
∫ 1

0

[1− exp (−sPpσGM)] rdr

]

−

∫ ρ

1

[

1− exp
(

−sPpσGMr
−α
)]

rdr

]]

. (53)

From (52) and (53), we can easily obtain (26) and (27) in Lemma3, respectively.

B. Proof of Lemma 4

Taking the Laplace transform of (24), we have

LPM
s,f
(s) = E

[

exp
(

−sPM
s,f

)]

= exp

{

− λpη
M
f

∫ 2π

0

∫ ∞

ρ

[

1− exp
[

−sPpσGM [max (r, 1)]−α
]]

rdψdr

}

. (54)
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For 0 < ρ ≤ 1, (54) is derived as

LPM
s,f
(s) = exp

{

− 2πλpη
M
f

∫ 1

ρ

[1− exp (−sPpσGM)] rdr

− 2πλpη
M
f

∫ ∞

1

[

1− exp
(

−sPpσGMr
−α
)]

rdr

}

. (55)

For 1 < ρ <∞, (54) is derived as

LPM
s,f
(s) = exp

{

− 2πλpη
M
f

∫ ∞

ρ

[

1− exp
(

−sPpσGMr
−α
)]

rdr

}

. (56)

From (55) and (56), we can easily obtain (29) and (30) in Lemma4, respectively.

C. Proof of Proposition 2

In this appendix, we deriveE(Ps) in Proposition 2.

1) 0 < ρ ≤ 1: Taking the first derivative of the Laplace transform in Proposition 1 for

0 < ρ ≤ 1, we have

E[Ps]|0<ρ≤1 = −
d

ds
[log (LPs

(s)|0<ρ≤1)] |s=0

= −λpπρ
2

N
∑

M=1

ηMn
d

ds
[exp (−sPpσGM)] |s=0 + λpπρ

2

N
∑

M=0

ηMf
d

ds
[exp (−sPpσGM)] |s=0

+ λpπ

N
∑

M=0

ηMf
d

ds

[

(sPpσGM)
2

α γ

(

1−
2

α
, sPpσGM

)]

|s=0. (57)

By further derivation, we have
d

ds
[exp (−PpσGMs)] |s=0 = −PpσGM (58)

and

lim
s→0

d

ds

[

(PpσGMs)
2

α γ

(

1−
2

α
, PpσGMs

)]

=
PpσGMα

α− 2
. (59)

Substituting (58) and (59) into (57) yields

E[Ps]|0<ρ≤1 = λpPpπσ

[

ρ2

(

N
∑

M=1

ηMn GM −
N
∑

M=0

ηMf GM

)

+
α

α− 2

N
∑

M=0

ηMf GM

]

. (60)

We further obtain
N
∑

M=1

ηMn GM =
1− pN

1− p
(61)

and
N
∑

M=0

ηMf GM = (p+ q)M = 1. (62)

Substituting (61) and (62) back into (60), we obtain (35a) inProposition 2.
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2) 1 < ρ < ∞: Taking the first derivative of the Laplace transform in Proposition 1 for

1 < ρ <∞, we have

E[Ps]|1<ρ<∞ = −
d

ds
[log (LPs

(s)|1<ρ<∞)] |s=0

= Ppλpπσ

[

α

α− 2

N
∑

M=1

ηMn GM +
2ρ2−α

α− 2

(

N
∑

M=0

ηMf GM −

N
∑

M=1

ηMn GM

)]

. (63)

Substituting (61) and (62) into (63), we obtain (35b) in Proposition 2.

D. Proof of Corollary 1

We compare (36) with (35a) and (35b), respectively. Firstly, (35a) is compared with (36).

E [Ps] |0<ρ≤1 − E
[

P omni
s

]

= Ppλpπσρ
2 p− pN

1− p
, (64)

where p was given in (12). Forρ → 0, it has p → 1 and E [Ps] |0<ρ≤1 → E [P omni
s ]. For

0 < ρ ≤ 1, it haspN < p < 1 which leads toE [Ps] |0<ρ≤1 > E [P omni
s ].

Secondly, (35b) is compared with (36).

E [Ps] |1<ρ<∞ − E
(

P omni
s

)

= Ppλpπσ
α− 2ρ2−α

α− 2

p− pN

1− p
. (65)

For ρ → ∞, it hasp → 0 andE [Ps] |1<ρ<∞ → E [P omni
s ]. For 1 < ρ < ∞, it haspN < p < 1.

Sinceα > 2, we further haveρ2−α < 1 andα > 2ρ2−α. Then, it is proved thatE [Ps] |1<ρ<∞ >

E [P omni
s ].

E. Proof of Proposition 3

Taking the second derivative of the Laplace transform in Proposition 1, we have

V[Ps]|0<ρ≤1 =
d2

ds
[log (LPs

(s)|0<ρ≤1)] |s=0

= λpπρ
2

N
∑

M=1

ηMn
d2

ds2
[exp (−sPpσGM)] |s=0 − λpπρ

2
N
∑

M=0

ηMf
d2

ds2
[exp (−sPpσGM)] |s=0

− λpπ
N
∑

M=0

ηMf
d2

ds2

[

(sPpσGM)
2

α γ

(

1−
2

α
, sPpσGM

)]

|s=0. (66)

By further derivation, we have

d2

ds2
[exp (−PpσGMs)] |s=0 = (PpσGM)2 (67)

and

lim
s→0

d2

ds2

[

(PpσGMs)
2

α γ

(

1−
2

α
, PpσGMs

)]

= −
α

α − 1
(PpσGM)2 . (68)

Substituting (67) and (68) into (66) yields (40a). Similarly, we can obtainV[Ps]|1<ρ<∞ in (40b).
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