
1

Privacy-aware Multipath Video Caching for
Content-Centric Networks

Qinghua Wu, Zhenyu Li, Gareth Tyson, Steve Uhlig, Mohamed Ali Kaafar, Gaogang Xie

Abstract—The prevalence of Internet video streaming chal-
lenges the design and operation of modern networks. Content
Centric Networking (CCN) has been proposed to address the
challenges through ubiquitous in-network caching. While the ex-
pected benefits include higher performance and lower bandwidth
consumption, CCN introduces new privacy issues at layer 3.
This is because adversaries could infer the content consumed by
others by checking cached data in routers. In this paper, we first
analyse the design space to improve both caching performance
and cache privacy for video delivery in CCN. In light of the
observation that these two metrics need to be balanced, we
propose CodingCache. It adopts network coding and random
forwarding to exploit the potentials of multipath routing in
CCN to improve both the diversity of cached content along
different paths and the anonymity set for consumers. We evaluate
CodingCache through extensive experiments based on a real-
world topology and a unique dataset of video access logs from
a large-scale commercial video service. Our results demonstrate
that, compared with existing CCN strategies, CodingCache is able
to increase the cache hit rate while also improve the use of caches
across the network, together with reasonable cache privacy.

Index Terms—Video Caching, Content Centric Networking,
Networking Coding, Caching Pravicy.

I. INTRODUCTION

Internet video services have become extremely popular in
recent years [1]. Competitive video providers therefore have
been striving to provide users with high-quality streaming (i.e.
low buffering ratio, high bitrate [2]), while Internet Service
Providers (ISPs) have been simultaneously trying to mitigate
the load on their networks.

An emerging technology promising to address these needs is
Content Centric Networking (CCN) [3], [4]. CCN is a network
architecture intended to facilitate large-scale content delivery
by shifting the communication paradigm from where to what.
CCN is built on named content. Content consumers issue
interest packets, that are forwarded hop-by-hop (at layer-3) to
sources based on the name of the requested content. Each CCN
router is capable of caching data packets, serving future re-
quests through its cache, rather than forwarding the requests to

This work is supported by the National Basic Research Program of China
No. 2012CB315801, the NSFC No. 61133015, 61272473, 61572475, the
National Hightech R&D Program of China No. 2015AA010201, and Youth
Innovation Promotion Association CAS. (Corresponding author: Zhenyu Li.)

This work is also sponsored by Huawei Innovation Research Program
(HIRP).

Q. Wu, Z. Li and G. Xie are with Institute of Computing Technol-
ogy, Chinese Academy of Sciences (ICT/CAS). E-mail: {wuqinghua, zyli,
xie}@ict.ac.cn

G. Tyson and S. Uhlig are with Queen Mary University of London, UK.
E-mail: {g.tyson, steve.uhlig}@qmul.ac.uk.

M. A. Kaafar is with NICTA and DATA61, Australia. E-mail:
dali.kaafar@nicta.com.au.

the origin of the data. The voluminous nature of video means
that this architecture is particularly well suited for serving such
content. Hence, video delivery could be a powerful usecase for
CCN’s approach of ubiquitous caching [5]. In fact, it has been
shown in [6], [7] that in-network caching could significantly
improve Internet video quality (e.g. reducing buffering ratio,
increase video throughput) by moving the video data closer to
consumers.

Despite the benefits of caching, there remain a number of
challenges. Of particular interest to us is the problem of user
privacy [8], [9]. By explicitly naming data it becomes possible
for third parties to potentially monitor user activity. For
example, if two users, Bob and Alice, share a wireless access
point and Alice obtains a cache hit at the first hop, she can infer
the content that has previously been requested by Bob. We find
this type of privacy intrusion particularly worrisome for video
content as there are many intuitive scenarios that are inherently
private in nature. Beyond this, video consumption patterns
can also be used to infer a wealth of personal information,
e.g. gender, age and relationship status [10], [11]. Hence,
we argue that privacy considerations should be explicitly
built into any future CCN deployment while, importantly,
not undermining the performance advantages gained through
ubiquitous caching. Failing to fulfill both requirements will be
unlikely to motivate deployment. Consequently, we ask how
can a privacy-aware caching algorithm be designed that also
achieves high performance in CCN for video delivery?

To answer this question, we begin by analysing the trade-
offs between caching performance and privacy in CCN, and
observe that these two metrics, indeed, need to be balanced.
On the one hand, improving privacy requires that routers along
different paths cache identical contents to hide user activity;
while, on the other hand, improving performance requires
caches along different paths to store a diversity of objects to
better utilise storage capacity. As a key contribution, we focus
on these questions in multipath environments.

In light of the above observation, we propose CodingCache,
aimed at running in conjunction with CCN [3], [4]. Coding-
Cache exploits multipath routing to increase the number of
potential users that an individual cache serves. Through this,
we obscure individuals’ activities by increasing the number of
potential users who may have left an object in the cache. Or,
from a user’s perspective, CodingCache increases the number
of routers that can potentially be responsible for the content
requests. We formally denote such routers as the anonymity
set for a user and use this metric to measure the privacy
throughout the paper. Although CodingCache could be used
for any content, we particularly focus on video delivery due

2

to its prominence and scale [1].
To enable high performance multipath routing, we use

Random Linear Network Coding (RLNC) [12] to encode
several video content chunks into one block. A coded block
could serve the requests for any of the original chunks that the
coded block is made of. In CodingCache, routers on different
paths between the server and the consumers cache linearly
independent coded chunks of the video content. In this way,
the diversity of cached content along different paths improves,
which can increase caching performance as well as obscure the
original requester.

We evaluate CodingCache using trace-driven simulations
based on two real-life datasets: (i) a unique dataset of video
request logs from one of the largest Internet video providers
in China, PPTV; and (ii) a large network topology of a
Chinese ISP (China Telecom [13]). The results show that
CodingCache achieves impressive performance in terms of
both performance and privacy. In particular, compared with the
native CCN caching strategy, CodingCache nearly doubles the
cache hit rate and makes use of all available next-hop routers
as the anonymity set. To summarize, we make the following
contributions on video delivery in CCN:

1) We explore the design space of CCN caching from
the perspective of balancing caching performance and
privacy, particularly for sensitive video content.

2) We detail the design of CodingCache, a multipath CCN
cache scheme that uses network coding to improve both
performance and cache privacy.

3) We evaluate the performance of CodingCache for video
delivery and compare it with existing schemes through
extensive trace-based experiments. We show the benefits
of CodingCache and highlight the potential of network
coding in CCN.

The remainder of this paper is organised as follows. In
Section II, we briefly describe the adversary model and survey
the related work. Section III explores the design space of
caching performance and cache privacy. Section IV presents
CodingCache and analyses its performance. In Section V,
we evaluate CodingCache through experiments. Section VI
concludes the work.

II. BACKGROUND

A. Adversary Model

Before continuing, it is important to formalise the adversary
model for attackers attempting to undermine user privacy.
We assume a single attacker, who wishes to discover if a
user (i.e. victim) has accessed a set of video objects. The
attacker attempts to attach themselves topologically near to
their victim; in the worst case, they would share the same
access router (e.g. WiFi in a cafe). The attacker has no
privileges beyond other users.

To perform an attack, the adversary sends interest requests
for videos they are curious about. By inspecting the hop
count (or timing information) on the returned data packet, the
attacker can check if a nearby cached copy was returned. The
closer the cache is, the smaller the possible set of consumers
who requested it. This can be used to infer if a nearby party

requested a specific video object. Note that this attack is not
possible in an IP architecture as it does not perform local
caching.

B. Related Work

1) Caching Performance: There has been a long-standing
interest in analysing CCN caching performance through both
analytical models [14], [15], [16], and simulations [17], [18].
These works show that caching performance is affected by
both caching decisions and forwarding strategy.

Existing studies on CCN caching primarily improve perfor-
mance by investigating caching decision strategies [19], [20],
[21], [22], [23], [18]. There are several decision strategies,
including the native CCN caching strategy (denoted as CEE,
Cache Everything Everywhere) [3], LCD (Leave Copy Down)
[19] and ProbCache [23]; these all decide which router(s)
cache the content along the transmission path. Other strategies
preferentially cache content on routers according to where
routers are located in the topology [20], [22], or the content
popularity [21]. The specific benefits for video distribution
have also been explored, e.g. [5], [6], [24], [25]. While these
works consider the performance issue of caches, most overlook
the privacy aspect.

Another trend is exploring the joint design of caching and
forwarding strategies. Both of these affect the cache perfor-
mance in CCN; further, they have an impact on each other
[26], [27]. Rossini et al. [17] evaluate multipath forwarding
strategies on caching performance. In [28], interest packets
are forwarded through routes with the highest priority among
the multiple available interfaces. This has been shown not
to result in considerable performance benefits when there are
multiple available paths [17]. Instead, it highlights that the key
to caching performance is to enlarge the diversity of cached
content and to dispatch requests correspondingly to exploit this
diversity. We exploit this observation to design CodingCache,
which precisely aims to improve the diversity of cached video
content.

2) Cache Privacy: Privacy in CCN is less well studied. A
few works have investigated cache privacy threats in CCN [8],
[9], [29], [30]. For example, Acs et al. [29] propose a random
delaying strategy to defend against timing attacks. Chaabane
et al. [9] adopt probabilistic caching [31] to undermine the
accuracy of privacy attacks. Compared to previous work that
improves cache privacy at the cost of performance, we aim to
improve the cache performance while preserving reasonable
levels of cache privacy. Unlike [9], we also aim to achieve
this without the need for explicit collaborative algorithms.

3) Network Coding: Network coding [12], [32] has been
used to improve network throughput and scalability. For ex-
ample, it has been used in wireless networks [33] and video
systems [34]. Montpetit et al. [35] also explore network coding
in the field of CCN to enhance retrieval performance. However,
they do not explore the potential of using network coding for
privacy enhancing purposes. A key contribution of our work is
expanding upon this initial work to highlight the great potential
of network coding in CCN.

3

Fig. 1: An example to show the trade-off between caching
performance and cache privacy. The content server provides
an object consisting of 2 chunks, K1 and K2. Consumers
U1, U2 and the attacker access the content through PoP1.
Consumer U3 is connected to the network through PoP2. Each
router on the path can only cache at most one chunk (i.e. cache
capacity C = 1). The request sequence is shown in the bottom
of the figure.

III. DESIGN SPACE OF CACHING PERFORMANCE AND
PRIVACY WITH MULTIPLE PATHS

CodingCache is specifically designed for operation in multi-
path environments. As such, we first analyse the design space
of caching performance and privacy when using multiple
paths between video servers and consumers. As of yet, this
is a poorly understood topic. As previously stated, caching
behaviour is determined by both caching and forwarding
strategies, which include whether to cache an object, which
object in the cache to replace, and to which next hop router
a request is forwarded to. Since our design and analysis are
not tied to a special caching strategy, we use the native CCN
caching strategy (i.e. CEE, Cache Everything Everywhere)
here for illustration.

We consider three forwarding strategies for deciding which
path a request is forwarded along: (i) native CCN [28],
(ii) hash-based, and (iii) random. The native CCN forwarding
strategy exploits the interfaces with the highest priority, unless
the selected interfaces encounter congestion or failure. The
hash-based forwarding strategy deterministically selects the
interfaces according to the hash value of the interest name.
The random forwarding strategy selects one interface among
the available ones uniformly at random. In the following, we
use the example in Figure 1, as well as formal analysis, to
explore the caching performance and privacy under various
strategies. We later use this analysis to drive our own design
process.

A. Exploring Caching performance

Caching performance is measured by the cache hit rate and
the average transmission path length. Ideally, hit rates should
be kept high, and path lengths kept low. The fundamental idea
of improving performance when multiple paths are available is
to increase the diversity of the cached content along available
paths. Theoretically, doing this would improve both metrics.

We use the example in Figure 1 to explore the cache
performance. Table I lists each decision of the three forwarding
strategies (native, hash, random) as well as the corresponding
caching results. Both the native CCN strategy and random

TABLE I: Trade-off between caching performance and cache
privacy under various strategies.

Seq
Fwd

to

R1

Cache

R2

Cache

Cache

Hit?

Anonymity

Set size

1 R1 K1 NIL ×

(a) 2 R1 K2 NIL ×

native CCN 3 R1 K1 NIL ×

4 R1 K2 NIL ×

1 R1 K1 NIL ×

 (b) 2 R2 K1 K2 ×

hash strategy 3 R1 K1 K2 �

4 R2 K1 K2 �

1 R2 NIL K1 ×

(c) 2 R1 K2 K1 ×

random strategy 3 R1 K1 K1 ×

4 R2 K1 K2 ×

1

1

2

strategy achieve no cache hits. While the hash-based strategy
has with 1 cache hit, higher than that of the other two
strategies.

Next, we formally analyse the reasoning behind the perfor-
mance of the above three forwarding strategies. Assume that
there are n (n > 1) next-hop routers (namely R1, · · · , Rn) to
which PoP1 could forward interest packets. Each router has
cache capacity C. A video content chunk K will be cached
in Ri with probability g(pr, C), where request rate pr for an
object at a router is defined as the ratio of requests on this
content chunk to all requests received by that router. Function
g(·, ·) is an increasing function of the request rate and cache
capacity, as higher request rate or a larger cache capacity will
make the content more available.

Under the native forwarding strategy, suppose that a router
R1 has the highest priority in PoP1’s FIB and there is no
congestion between PoP1 and R1. All the requests will be
forwarded through R1 along a single path. The probability
that the content K is cached is G(pr, C), where pr is the
request rate of the content at PoP1.

With the hash strategy, the requests for content K is
deterministically forwarded to router Ri, therefore the request
ratio p′r of chunk K at Ri in hash forwarding is larger than pr
in native CCN forwarding, which implies that the probability
g(p′r, C) that the content chunk K is cached in Ri is larger
than g(pr, C). In other words, hash centralises all requests for
an object along a single path, increasing the probability of a
hit.

In random forwarding, requests for content K is forwarded
to router Ri with probability pi, where 1 ≤ i ≤ n. After a
random split across paths, the requests rate on each path still
follows the same distribution. For content K, the request rate
at router Ri is still pr. Therefore, content K will be cached
in routers R1, · · · , Rn with probability

∑n
i=1 pi · g(pr, C) =

g(pr, C), which is equal to that of native strategy.
In summary, we obtain the following observation about the

comparison of caching performance under the three strategies:
native = random < hash.

4

B. Exploring Cache privacy

The cache privacy issue in CCN lies in the capability of
an adversary to use the router’s cache to infer whether the
content has been recently fetched by another user (whether in
the vicinity of the adversary or not). For example, imagine
two users, Alice and Bob, share an access point; if Alice
generates a request for Content X , which is then returned
directly from the access point’s cache, Alice can infer that Bob
has also previously accessed X . Unfortunately, if we desire
high performance it becomes necessary to provide nearby
cached replicas to other legitimate users, which thus allows
this attack to take place.

Intuitively, privacy could be improved by routers on multiple
paths collaborating to create a distributed cache that serves
a bigger set of users. This could obscure whether the target
victim has requested the content, e.g. if a cache serves 1
million users, it is harder to attribute behaviour compared to a
cache serving 2 users. We thus use the size of the anonymity
set [36] to measure cache privacy, where the anonymity set for
a consumer at the l-th hop is the set of l-hop away routers that
could potentially serve a video request from the consumer.

For user U1 in Figure 1, the size of its anonymity set at the
first hop is 1, as there is only PoP1 that U1 could reach in 1
hop. If a request from U1 could reach either R1 or R2, then the
size of anonymity set at the second hop is 2. If a set of routers
serve a large number of users, it clearly makes it more difficult
to infer which one requested a given item of content. Our
foundation of strengthening cache privacy when multiple paths
are available is therefore to increase the number of caches
along different paths that could serve the same request. Again,
we use Figure 1 to explore the privacy attained by the different
strategies.

In the native CCN strategy, PoP1 and PoP2 preferentially
forward requests to router R1 and R3 respectively. They only
forward to other routers when there is congestion or failure in
the corresponding link. Therefore, when the content is returned
from routers with hop count 2, the attacker can determine that
the content is stored in R1; thus, the attacker could infer that
either user U1 or U2 has accessed the content. As shown in
Table I(a), the native CCN strategy achieves an anonymity set
of 1, as only a single router that is two hops away from the
consumers can serve the request.

As shown in Table I(b), the hash strategy also yields an
anonymity set of size 1, i.e. equal to the native strategy.
Since the hash function is deterministic, the forwarding path
is set before the consumer sends the request. An adversary
can therefore know which router the request is forwarded to
by iteratively requesting chunks of the same content. Hash
achieves high performance, but poor privacy.

Finally, we inspect the random strategy. If the interest
packets for K1 and K2 are forwarded to routers randomly, any
chunk corresponding to the request from the attacker could be
cached in either R1 or R2. When the content is returned from
a router, the attacker cannot distinguish whether it’s from R1

or R2. Therefore, the attacker could not determine whether the
content is accessed by U1, U2 or U3. As shown in Table I(c),
the size of anonymity set under random forwarding strategy

1 2 … t t+1 …t+2 … 2t

segment segment

block block

chunk

Fig. 2: A segment contains t video content chunks, which are
encoded into blocks using RLNC.

Interest Content Name Interest Coding Field Nonce

Data Chunk Content Name Interest Coding Field Signature Data

The coefficients of

blocks consumer

has already got

Data Coding Field

The coefficients

used to encode the

data

Fig. 3: Coding fields in Interest and Data.

is increased to 2.
To summarize, in terms of privacy: native = hash <

random. In other words, an architecture optimized for per-
formance should use native or hash, whereas an architecture
optimized for privacy should used random. This creates a
direct conflict between these two goals that must be balanced.

IV. DESIGN OF CODINGCACHE

The previous section has shown that algorithms optimised
for privacy tend to reduce performance, and vice versa. As
such, it is necessary to design dedicated algorithms to achieve
these joint goals. We in this section detail the design of
CodingCache, a caching and forwarding mechanism to address
both performance and privacy needs. In essence, CodingCache
aims to obfuscate user requests by spreading them across
multiple distinct paths (using principles taken from network
coding). Through this, each router caches video content for a
much larger set of consumers, thereby dramatically increasing
the size of the anonymity sets.

A. Overview of CodingCache

To spread requests across multiple paths, we use principles
taken from network coding. Video content chunks are grouped
into segments as shown in Figure 2. The number of chunks
in a segment is t, which is a design parameter. Chunks in a
segment are encoded into one block through Random Linear
Network Coding (RLNC) [12], where a coded block has the
same size as a chunk. The coded block is the unit for data
reply and caching. Consumers get the original chunks in a
segment by decoding t linearly independent coded blocks.
Intuitively, a larger segment size will lead to better caching
performance, as it broadens the diversity of cached blocks
in the network. However, a larger segment size also requires
more coding information piggybacked in each interest packet,
as well as more time to obtain the original content chunks.
We will analyse the relationship between coding overhead
and segment size in Section IV-E and evaluate its impact on
caching performance in Section V.

CodingCache introduces coding fields into native CCN
interest and data packets, as shown in Figure 3. In both type

5

of packets, the interest coding field indicates the blocks the
consumer has already obtained within the same segment. Only
blocks that the user has not previously acquired are returned.
This field in the data packet is copied from the corresponding
interest packet. A data packet also has a data coding field,
which is the RLNC coefficients that are used to encode the
data. Note that a coded block is linearly independent of a
request if their coefficients are linearly independent. When
a request is matched with a linearly independent block in a
cache, it corresponds to a cache hit.

The video content server encodes the chunks of a segment
using RLNC. For a segment K that contains t chunks, the
coded block is B = a1K1 + · · ·+ aiKi + · · ·+ atKt, where
the addition and multiplication operations are over finite field,
and < a1 . . . ai . . . at > are the coefficients generated using
RLNC. The operations are processed on each q bits of the
chunk data, where q is the order of the finite field (set to
8 in this paper). Due to the randomization of RLNC, the
coefficients of two blocks corresponding to the same segment
are likely to be linearly independent.

B. CodingCache in action

Content servers, intermediate routers as well as consumers
are involved in implementing CodingCache. As changes in
these network components are required in deploying CCN
anyway, we believe that it would be perfectly feasible to
integrate network coding at this stage.

Content server: The process of video content servers
providing content is shown in Algorithm 1. When a video
content server receives an interest for any chunk of segment
K, it generates a vector of t random coefficients, which is
linearly independent of the ones in the interest coding field
(i.e. the ones the consumer has previously downloaded). It
then uses the generated coefficients to encode the t chunks of
K to a new block and forwards the block downstream.

Algorithm 1 Content server handling requests.
1: procedure SERVERPROCESS(req)
2: K, codings← unpack(req)
3: while true do
4:

−→
cf ← random()

5: if linear independent(codings,
−→
cf) = true then

6: break
7: end if
8: end while
9: block ←

∑t
i=1 cfiKi

10: forward back(block)
11: end procedure

For each segment, the video server prepares (upon content
creation) t random coefficients that are linearly independent,
and generates t corresponding blocks using these coefficients
before the interests arrives. When receiving an interest, the
server should select one block that is linearly independent of
those that the consumer already has. This reduces response
time.

Consumer: Consumers send interest packets to retrieve
chunks. Suppose a consumer requests the video chunk Ki of
segment K. The interest coding field of an interest packet is

filled with coefficients of all blocks the consumer has already
obtained corresponding to K.

The process of the consumer retrieving content is shown
in Algorithm 2. As the unit of data transfer is a segment, to
retrieve all the chunks of a segment K, the consumer needs to
express the interest t times, where t is the segment size. Each
time the consumer updates the coding field in the new interests
by appending the coefficients of the blocks the consumer
has already received. After obtaining t linearly independent
blocks, the consumer decodes them to get the original content.

Algorithm 2 Process of consumer requesting content.
1: procedure CONSUMERPROCESS(K)
2: blocks← {}, codings← {}
3: for each i in range(1, t) do
4: req ← pack(K, codings)
5: B ← request block(req)
6: append(blocks,B)
7: append(codings,B.cf)
8: end for
9: decode(blocks)

10: end procedure

Intermediate router: Intermediate routers handle interest
forwarding and data caching. In what follows, we show how
the diversity of cached content is increased by coding and
how the increased diversity improves caching performance
and privacy. Note that both constitute our primary goals in
CodingCache.

Upon receiving an interest for a video chunk of a segment
K from a downstream router (i.e. a router that is closer to the
consumer), a router first checks whether a coded block of K
(that is linearly independent of the coefficients contained in
the interest) exists in its cache. If there is such a block, the
router responds with the coded block to the downstream node,
which means a cache hit. Otherwise, the router uniformly and
randomly forwards the interest to one of the upstream nodes
that will deterministically reach the content object. In other
words, we use the random strategy for interest forwarding,
which achieves good cache privacy (as shown in Section III).
However, we have also found that such a strategy negatively
impacts performance. We therefore use network coding to
address this limitation.

On receiving a coded data block response from its upstream
node, the router forwards the block to the downstream router
based on the PIT (Pending Interest Table) table as in native
CCN. The router might also cache the coded block according
to the router’s cache decision strategy (we later evaluate
several strategies). For a given segment K consisting of t
chunks, there might be more than one coded block in the
cache of a router. Let s represent the number of blocks that a
segment can have in a cache at most. Obviously, s is no greater
than t. A larger s results in a higher possibility of finding a
linearly independent block for the request. However, caching
more blocks of a segment consumes space in the cache, leaving
less space to blocks of other segments. We will study the
impact of s in Section V.

When a router receives a coded block of K, if the number
of cached blocks of K in its cache is less than s, then the
received block is added to the cache and an existing block in

6

for the segment other than K is ejected if the cache is full.
Otherwise, each of the cached blocks of K is recoded with the
received block in order to keep the information of the newly
received block. That said, for each cached block B of K, it is
replaced with a new block B

′
= cB+c1B1, where c and c1 are

non-zero random coefficients, B1 is the received block, and
the addition and multiplication operations are over finite field,
the same as the ones when encoding chunks into blocks. Note
that the received block is linearly independent of the cached
blocks, since otherwise the interest would be satisfied by the
cached blocks and not be further forwarded. The new block
B

′
is linearly independent of either B or B1. By recoding in

intermediate routers, the information of K contained by B1

is kept in the network (rather than dropped), and therefore
improved caching performance is achieved. For example, the
requests of any chunk in K from the consumers who obtained
B or B1 can still be satisfied with B

′
.

The recoding also improves the diversity of coded blocks
among a set of nodes. Let’s again use Figure 1 as an example.
Without recoding, PoP1 would cache a coded block that is
also cached in either R1 or R2. As such, a request that is not
satisfied by PoP1 might also not be satisfied by the two-hops
away routers. On the other hand, with recoding, PoP1 can
cache a recoded block of two blocks B1 and B2 belonging to
the same segment that are cached on R1 and R2 respectively.
As the recoded block is linearly independent of B1 and B2, a
request that cannot be satisfied by the PoP1 might be satisfied
by the two-hop away routers. It is worth noting that recoding
is an optional function, which might not be performed in some
routers (e.g. core routers).

Algorithm 3 Caching process of block B using recoding in
routers.
1: procedure RANDOMCODING(B)
2: if cache decision(B) = true then
3: check if ∃K in cache s.t. B ∈ K
4: if K ̸= ∅ then
5: for each B′ ∈ K do
6: B

′ ← random recode(B,B
′
)

7: end for
8: if sizeof(K) < s then
9: insert(B)

10: end if
11: else
12: insert(B)
13: end if
14: end if
15: end procedure

The procedure of caching a block using recoding is shown
in Algorithm 3. When a new block B is returned from an
upstream router, the cache decision function in Line 2 decides
whether or not to cache it. Available cache decision strate-
gies include the native CCN caching strategy CEE (Cache
Everything Everywhere), LCD (Leave Copy Down) [19] and
ProbCache [31]. If there are blocks in the cache that belong to
the same segment as B, each block in the segment is recoded
with B, using non-zero random coefficients. In Line 9, B is
inserted according to the replacement policy, if the number of
blocks has not reached the limit s, .

It is worth noting that CodingCache also obeys the one-

Fig. 4: The process of retrieving and caching data.
TABLE II: Caching performance and cache privacy of Cod-
ingCache.

Seq
Fwd

to

R1

Cache

R2

Cache

Cache

Hit?

Anonymity

Set size

1 R1 K1+2*K2 NIL ×

2 R2 K1+2*K2 3*K1+2*K2 ×

3 R2 K1+2*K2 3*K1+2*K2 �

4 R1 K1+2*K2 3*K1+2*K2 �

2

interest-one-chunk principle in CCN. Thus, even if there exist
multiple blocks that are linearly independent of the request,
router only returns one of them for each interest. Since
the strategies in CodingCache are orthogonal to the caching
decision and replacement policy, existing caching strategies
(e.g. LCD [19] or ProbCache [23]) can be easily coupled with
it to combine their respective benefits. Another advantage of
CodingCache is that the uniformly random forwarding strategy
leads to load balancing among the links attached to individual
routers. We evaluate such advantages in Section V.

C. An example of CodingCache

We illustrate the process of retrieving and caching video
content with CodingCache in Figure 4. In this scenario,
consumer U1 has already obtained block 3K1 + 2K2. He
therefore generates an interest with [3, 2] in the interest coding
field, which is forwarded to router R2. Since the cached block
in R2 is linearly dependent with the request, R2 forwards
the request to the next-hop router R4 As R4 stores a linearly
independent block K1 + 2K2, it returns the block to the
downstream router R2, which decides whether to cache the
block according to the caching policy. If the decision is to
cache the block, since K1 + 2K2 and 3K1 + 2K2 are in the
same segment and linearly independent, router R2 recodes
them with random coefficients to get a new block, named
5K1 + 6K2, and stores the new block. Finally, U2 receives
all the necessary blocks, and decodes them with Gauss-Jordan
elimination to get the original chunks K1 and K2.

Table II lists the cache hits and the size of the anonymity set
of CodingCache by taking the request sequence in Figure 1
as an example. CodingCache achieves 2 cache hits and has
anonymity set of size 2. Compared with the strategies listed
in Table I, CodingCache improves both caching performance
and cache privacy.

Table I and Table II also show the effect of network coding
in improving the diversity of cached contents. Let’s suppose
that PoP1 in Figure 1 is allowed to cache at most 1 chunk.
Regardless of the used forwarding strategy, the cached chunk

7

in PoP1 is the same as the one in either R1 or R2. Thus, there
are at most 2 distinct chunks in the three routers (PoP1, R1

and R2). On the other hand, with network coding, there could
be 3 linearly independent blocks cached in the three routers.
Therefore, although the number of user-level objects remains
the same, the diversity of network-level chunks increases.

D. Performance Analysis of CodingCache

Caching Performance: We illustrate through Theorem 1
that the caching performance of CodingCache is maximised
by uniformly random forwarding under the following assump-
tions: (i) there are more than one next-hop router by which a
consumer or caching router can forward the request; (ii) the
next-hop routers have the same caching capacity, and require
the same number of hops to reach the content server.

Theorem 1. In CodingCache, the cache hit rate is maximised
if uniformly random forwarding strategy is adopted.

Proof: We define the request rate of a chunk at a node
(e.g. intermediate router, consumer) as the ratio of requests for
the chunk to all the requests that appear in this node. Requests
from a node are randomly forwarded to next-hop routers (that
each deterministically will reach the video server). Thanks
to random forwarding, for content chunks with request rate
r, next-hop routers still have the same request rate of those
chunks.

Consider a segment K consisting of t chunks. The probabil-
ity that the coded block of the segment is cached on a router
depends on: (1) the distribution d of the request rates for the
content, (2) the request rate r of the chunks, (3) the cache
capacity C of that router, and (4) the number of chunks t to
be requested in a segment. Therefore, the blocks are cached
with probability h = f(d, r, C, t).

In a network of caching routers, when the i-th hop routers
do not cache linearly independent blocks of the request, they
forward the request to the (i+1)-th hop routers. Let ti denote
the number of blocks (ti ≤ t) that are requested at i-th
hop routers. In other words, ti+1 represents the number of
cache misses of the segment K at the i-th hop routers, and
t1 = t. The expected number of blocks cached in the i-th
hop routers is thus hi × ti. Given ni i-th hop routers, let
pi,j (1 ≤ j ≤ ni) denote the probability that a request for
any of the ti chunks is forwarded to router Ri,j . Given ti
requests, the expected number of cache hits for segment K in
router Ri,j is min(hi × ti, pi × ti), which means it is limited
by both the number of blocks cached on the router and the
number of requests forwarded to that router. Thus the expected
number of cache hits for the ti requests at the i-th hop routers
is

∑ni

j=1 min(hi × ti, pi × ti). The cache hit rate of the ti
requests is

∑ni

j=1 min(hi, pi).
Thanks to the recoding in intermediate routers, different

routers will encode the incoming blocks with random coef-
ficients, and thus cache different blocks. In total, the cache hit
rate of the t chunks in routers of any hop is

1−
m∏
i=1

(1−
ni∑
j=1

min(hi, pi,j)) ,

where m is the number of hops that consumer requires to
reach content server.

The overall cache hit rate will be maximised when the hit
rate in routers at any hop is maximised.

ni∑
j=1

min(hi, pi,j)

=

ni∑
j=1

hi + pi,j − |hi − pi,j |
2

≤nihi + 1

2
− |nihi − 1|

2
.

The equality holds if all (hi − pi,j) (1 ≤ j ≤ ni) have the
same sign as (nihi − 1), which can be satisfied by setting all
pi,j’s to the same value, 1/ni.

From Theorem 1, when routers forward requests following a
uniform random selection of the interfaces, CodingCache will
maximise its caching performance. In fact, random forwarding
in CodingCache has two essential effects: (i) exploiting the
diversity of cached contents for better caching performance;
(ii) better protecting cache privacy by enlarging anonymity set.
We will analyse these two benefits of random forwarding in
Section V.

In summary, the best caching performance is achieved by
both network coding and uniform multipath forwarding, which
therefore exploit all cache capacity in the network.

Cache Privacy: With random coding and a uniform random
forwarding, linearly independent blocks for a given segment
would be cached on routers along multiple paths. Through this,
CodingCache implicitly collaborates across multiple routers to
create a distributed cache that serves a larger set of users. The
caching of a coded block in a router can be caused by the
request from any user in the set. This increases the difficulty
of an adversary attributing a content item to a given user.

E. Implementation Issues

CodingCache requires the nodes to perform coding, recod-
ing or decoding blocks. The time complexity of encoding,
recoding, and decoding (either at content servers, routers or
consumers) is linear with the video chunk size. For example,
decoding using Gauss-Jordan elimination has a time complex-
ity of O(t2L), where L is the chunk size. Since t is often small,
the time complexity induced by these operations primarily
depends on the chunk size.

Another concern is the time taken by routers to check
whether the coded blocks in its cache are linearly independent
of the interest. Note that at most (t − 1) coefficients are
appended to an interest. One possible approach to achieve
this is to use SVD (Singular Value Decomposition), which
has a time complexity of O(t3). Given a small value of t and
a hardware-based acceleration of the SVD computation [37],
the time taken by routers is reasonably low. We also note that
network coding has been used in the past to improve P2P Live
video streaming latency [34]. This supports CodingCache’s
ability to support video delivery in the real world, if and when
a large-scale CCN deployment is achieved.

8

CodingCache encodes the t chunks in a segment into blocks.
Chunks in a segment have to be requested one by one, as
the router can only distinguish them according to the coding
information appended in the interests. To enable multiple
content chunks being requested simultaneously, consumers
in CodingCache can pipeline multiple chunks from different
segments simultaneously.

V. PERFORMANCE EVALUATION

A. Experimental methodology

To explore the behaviour of CodingCache, we perform an
extensive set of simulations using ndnSIM [38]. To ensure
realistic results, we utilise two large-scale datasets to model
both topology and video request patterns. The topology is
modelled using traces taken from China Telecom, which detail
the connectivity between cities in China [13]. The network
graph is made of 321 nodes, 1507 links, has a diameter of
6 hops, an average path length of 2.84 hops, a maximum
degree of 97, and an average degree of 9.39. We recreate this
topology in ndnSim, and replay real video request traces over
it. These are extracted from a unique dataset [39] provided
by PPTV, a major Chinese VoD provider. The logs consist of
nearly 140 million video access requests. Each entry contains
the name and size (in bytes) of the requested video, and the
IP address that originated the request. We use a Chinese IP
geolocation database, QQwry1, to map each IP address to
the city it belongs to. Using this information, we embed the
consumers in the simulated topology with all users in each
city behind the corresponding city gateway in the topology.
In our experiments, we follow the PPTV Content Distribution
Network (CDN) configuration, and use at most 4 video servers
in each simulation. 2 are placed in the cities with the largest
number of requests (as is typical in CDN deployments), and
the other 2 are located in cities with a smaller number of
requests but a greater degree of connections.

A video object is divided into equal-sized chunks. A request
for a video from the logs is simulated with q interest packets,
where q is the number of chunks of that video. The default
chunk size is 100KB, and varies between the default value
and 0.8MB in our experiments. A segment has 4 chunks by
default (i.e., t = 4), and this value could vary from 2 to 16.

The ratio r of the per router cache size to the total video
size is crucial for CCN caching performance, and varies in the
literature, ranging from 10−5 [17], 10−3 [40] to a maximum
of 2% in [27]. We set this ratio to 10−4 as a default value and
vary it from 10−5 to 10−3 to explore its impact. The maximum
number of coded blocks of a segment cached in a single cache
s varies between 1 and t. We particularly focus on the cases
where s = 1 and s = t.

Last, we explore a variety of cache decision, replacement,
and cache allocation policies. In the experiments, we use
LRU (Least Recently Used) as the default cache replacement
policy, and use CEE (Cache Everything Everywhere) and LCD
(Leave Copy Down) [19] as cache decision policies, as they
are the popular policies widely used in CCN. CEE caches

1http://www.cz88.net/

TABLE III: Experiment parameters.

Parameter Default
Value Candidate Values

Caching decision CEE LCD
Replacement policy LRU LFU
Cache allocation HM BC, ClC, DC
Number of next-hop routers No Limit 1, 2, · · · , 5
Number of content servers 1 2, 3, 4

Chunk size 100KB (2 ∼ 8)· 100KB
Cache size over total content
size (r) 10−4 (2−3 ∼ 24)·10−4

Segment size (t) 4 2, 6, 8, · · · , 16
Max number of coded blocks
of a segment in cache (s) N/A 1, 2, · · · , t

every object in every router along its transmission path, and is
the default caching decision in CCN. LCD [19] moves the
cached chunks one hop closer to the consumer with each
successive request. By default, all caching routers are equipped
with the same caching capacity (noted as HM, Homogeneous).
Other caching allocation policies could be utilised, such as
Betweenness Centrality (BC), Closeness Centrality (ClC) and
Degree Centrality (DC) [22]. The main parameters and their
default values are listed in Table III. We vary these parameters
to evaluate their impact on CodingCache, the native CCN
strategy (noted as CCN), hash strategy (Hash), and random
strategy (Rand). Note that the goal of CodingCache is both
high performance and privacy.

B. Caching performance

We first evaluate the caching performance using two widely
used metrics: the cache hit rate and the average transmission
path (in hops). Here, we use the performance of native CCN
with default settings as the baseline (noted as Baseline), and
evaluate other strategies by the ratio of their value to Baseline.

1) Cache hit rate: Figure 5a shows the hit rates of CCN,
Hash, Rand and CodingCache (denoted as CC for short)
relative to the Baseline. Higher values indicate superior per-
formance. As expected, the hit rates of CCN and Rand are
lowest. Hash gets a better cache hit rate as it increases the
locality of video requests (because it forwards requests for the
same videos along a single deterministic path). On the other
hand, CC achieves the highest cache hit rate, as it exploits
random recoding to increase the diversity of cached videos,
and utilises random forwarding to obtain the whole content
from implicitly collaborative routers.

Interestingly, we observe that the cache hit rate of CC with
s = 1 is slightly better than that with s = t, where s is
the maximum number of coded blocks of a segment that can
be cached by a single router. This results from the network
topology characteristics. In the network, the average number of
next-hop routers is around 5. In CC, requests are forwarded
randomly to the available next-hop routers and recoding is
used in intermediate routers. As such, for a segment, its
corresponding blocks cached in the next-hop routers are likely
to be linearly independent. Given that only t = 4 linearly
independent blocks are required to obtain the original chunks,

9

CCN Hash Rand CC(s=t) CC(s=1)

H
it
 r

a
te

/B
a

s
e

lin
e

0

0.5

1

1.5

2

2.5

3

CEE+LRU

LCD+LRU

CEE+LFU

LCD+LFU

(a) Hit rate
CCN Hash Rand CC(s=t) CC(s=1)

a
v
g

 #
(h

o
p

s
)/

B
a

s
e

lin
e

0

0.2

0.4

0.6

0.8

1

1.2 CEE+LRU

LCD+LRU

CEE+LFU

LCD+LFU

(b) Avg. path length

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

Hop

P
e
rc

e
n
ta

g
e
 o

f
H

it
s
 (

%
)

CCN

Hash

Rand

CC(s=t)

CC(s=1)

(c) Cache hit distr.

Fig. 5: Caching performance evaluation

letting each router cache one block of each segment (i.e.,
s = 1) is sufficient to recover this segment. Increasing s in
this case does not improve the hit rate but results in redundant
caching.

It is also worth noting that performance varies across the
different caching decision and replacement strategies used by
CC. We observe that LCD outperforms CCN’s default caching
decision, improving the ratio of hit rate from 2.1 to 2.9 when
using CC. As expected, LFU leads to better cache hit rates
than LRU, mainly because LFU allows more popular videos
to stay in caches for a longer time. Irrespective of the caching
decision or replacement policy adopted, CC achieves the best
cache hit rate among these strategies.

2) Average transmission path length: Figure 5b shows the
average transmission path lengths compared to the Baseline
(in hops). We observe that the average number of hops to
retrieve video chunks with CC is nearly the same as with
hash-based forwarding. This is because cache hits with hash-
based forwarding occur closer to the consumer compared to
CC. CCN and Rand have the longest average transmission
path, due to their poor overall cache hit rate.

To better understand where cache hits occur in the topology,
we break down the hits according to the distance of the hit
from the consumer, as shown in Figure 5c. CCN and Rand
have a similar cache hit distribution, with 60% of their hits at
the first hop (the access router). CC with s = t has a similar hit
rate distribution to Hash, with fewer hits at the first hop than
CCN. Hits at the first hop imply a low latency, but also a poor
utilisation of the cache space further into the topology, which
can yield a low global cache hit rate (as shown in Figure 5a).
We also observe that CC with s = 1 has a totally different
cache hit distribution: it has only 20.4% of its hits at the first
hop, and 43.5% at the 2nd hop. The reason for this behaviour
is that at hop 1, each segment can have at most 1 block in the
cache with CC. Requests for the t chunks result in only one
cache hit at hop 1, regardless of video popularity. However,
for routers further into the topology (e.g. 2 or more hops away
from the consumer), the requests can be forwarded to multiple
routers. The recoding at intermediate routers increases the
diversity of cached blocks among these routers. The random
forwarding distributes requests to the routers uniformly, which
brings more benefits from linearly independent blocks along
multiple paths.

C. Effects of design parameters on caching performance

We next evaluate the factors that affect the caching per-
formance. Major factors include the cache capacity C, cache
allocation policy, the number of available next-hop routers, and
the segment size t. Again, we use the performance of native
CCN with default settings as the Baseline, and evaluate the
factors by the ratio of their values to Baseline.

First, we evaluate the impact of the cache size of individual
routers. As expected, the hit rate of all strategies increase
steadily as cache capacity grows. As r (the ratio of cache
size to total video size) increases from about 10−5 to 10−3,
Hash provides the least gain with an increase by a factor of
13. Other schemes see increases by about 18 to 20 times.

Figure 6a shows the impact of cache allocation policy on the
cache hit rate. We investigate three different cache allocation
policies: Betweenness Centrality (BC), Closeness Centrality
(ClC), and Degree Centrality (DC) [22]. From Figure 6a,
different cache allocation policies result in significantly dis-
tinctive caching performance. The BC cache allocation leads
to the highest caching performance. The performance gaps
among different strategies are also very small. In contrast,
ClC or DC result in lower caching performance but slight
larger performance gaps among caching strategies. Neverthe-
less, CodingCache outperforms others, no matter which cache
allocation policy is used . Figure 6b shows the impact of
the number of next-hop routers on the cache hit rate. Among
the considered strategies, CC with s = 1 obtains the highest
cache hit rate. The reason is that the routers along a path
store identical video chunks in CCN, while in CC the caches
are different thanks to random recoding. As the number of
next-hop routers increases, the hit rates in CCN and Rand
do not vary much, confirming our analysis in Section III.
As expected, the hit rates of Hash and CC increase with the
number of next-hop routers. Hash utilises the multiple paths
to request different chunks, which enhances the cache hit rate
by increasing the locality of video chunks in each cache. CC
exploits the benefits of multiple paths by caching linearly
independent blocks of individual videos along different paths.
In particular, when the number of next-hops is not restricted,
CC improves the ratio of hit rate to 2.2.

Figure 6c illustrates the effect of the segment size t, i.e., the
number of chunks coded into one block. We compare three
strategies, CC with s = 1, s = t/2 and s = t. We observe
that CC with s = t/2 results in nearly the same cache hit rate

10

BC ClC DC

H
it
 r

a
te

/B
a

s
e

lin
e

0

2

4

6

8 CCN

Hash

Rand

CC(s=t)

CC(s=1)

(a) Cache allocation

1 2 3 4 5 No Limit
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

#(next−hop routers)

H
it
 R

a
te

/B
a
s
e
lin

e

CCN

Hash

Rand

CC(s=t)

CC(s=1)

(b) # of next-hops

2 4 6 8 10 12 14 16
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Segment size

H
it
 R

a
te

/B
a
s
e
lin

e

CC(s=1)

CC(s=t/2)

CC(s=t)

(c) Segment size

Fig. 6: Caching performance when varying impact factors

as CC with s = t, which is less than for CC with s = 1.
We also see that as the segment size increases, the cache hit
rates increase for all strategies. For CC with s = 1, the hit rate
grows quickly for small t (say t < 8). The reason is that a large
t can broaden the diversity of cached blocks in the network,
which leads to improved performance. However, the effect t
is dependent on the the number of next-hop routers (ranging
from 2 to 8 with average 5 in our network), which limits
the possibility of exploring such diversity by users. When t
becomes greatly larger than the number of next-hop routers,
the diversity brought by a larger t cannot be fully explored. As
such, when t ≤ 8, increasing t does not lead to a significant
growth of hit rate.

D. Cache privacy

So far we have confirmed that CC attains high performance,
as measured by traditional metrics. However, a key goal of our
work has been to build privacy-aware caching schemes. We
next measure how effectively CC is at preventing attackers
from inferring user activity.

To achieve this, we use two privacy metrics. First, we
measure the size of the anonymity set for each request (larger
anonymity sets indicate higher privacy). Second, we measure
the stay time of content in the first hop routers. This is because
the anonymity set at the first hop is always 1; thus, the shorter
the stay time, the lower the probability that a video access
could be detected by adversaries.

As previously mentioned, privacy is partly attained in Cod-
ingCache by using multipath routing to increase the number of
clients each router serves. Both hash-based forwarding (Hash)
and random forwarding (Rand) also exploit the availability of
multiple next-hop routers, but quite differently. For a given
object, Hash will determine the exact path from the consumer
to the video server. Thus, the size of the anonymity set is 1
at each hop. In Figure 7a, we show the size of the anonymity
set at each hop with random forwarding, when varying the
number of video servers. At hop 1, the size of the anonymity
set is always 1. As the number of hops increases, the size of
the anonymity set first increases until hop 5, then decreases.
Within the first few hops, the path diversity increases, and
therefore the size of the anonymity set well. After reaching 5
hops, the loop-free requirement on forwarding decreases both
the path diversity and the size of the anonymity set. We also
observe that as the number of servers increase, the number of

next-hop routers decrease. This is because with more servers in
the network, a single router will choose fewer next-hop routers
for each server, thus reducing the size of the anonymity set.

The second metric considered is the stay time for objects
cached at hop 1. This is important as the size of the anonymity
set at hop 1 is always 1. If the video content is returned from
this location, an adversary can directly infer that the content
has been requested by a neighbouring node. The probability
that an adversary can detect whether a video content block is
cached at hop 1 is approximately linear to the maximal stay
time of the content at that hop. At hop 1, CC with s = t acts
similarly to strategies that do not rely on network coding, and
each video object’s stay time is independent of the forwarding
strategy. We plot in Figure 7b the maximal stay time for each
content in the caches for CC with s = t and s = 1. To ease
readability, videos are ranked by decreasing popularity (i.e.,
number of requests), then they are grouped using logarithmic
bins [2i, 2i+1), where i = 0, 1, 2, · · · . From Figure 7b, we
observe that the stay time depends on the video popularity.
The most popular videos have constant stay time. As videos
becomes less popular, the stay time decays as a power-law.
The stay time of each video with CC s = t is always shorter
than with CC s = 1, demonstrating the slightly better privacy
of s = t in 1-hop routers. It is therefore likely that the value
of s would need to be varied based on the sensitivity of the
content being distributed. This provides a powerful, yet simple
means, to improve privacy without needing to modify system-
wide configurations.

It is also interesting to note that the stay time varies with
different caching decision strategies. We find that LCD offers
the highest privacy, as measured by stay time. LCD caches
content one hop closer to the consumer on each request. As
such, edge routers at hop 1 will tend to cache more popular
videos, reducing the numbers of other video objects that
can be cached. This is particularly desirable from a privacy
perspective as unpopular videos are often more sensitive and
of interest to adversaries [8]. Figure 7b shows the average stay
time in routers at hop 1 for CC and LCD. We observe that
compared to CC, CC+LCD significantly reduces the stay time
of unpopular content, demonstrating good cache privacy. This
provides an example where other caching strategies can be
combined with CC to make it more powerful.

Finally, we investigate the impact of segment size t on cache
privacy for routers at hop 1 (see Figure 7c). We observe that as

11

0 2 4 6 8 10 12 14
0

10

20

30

40

50

Hop

S
iz

e
 o

f
a
n
o
n
y
m

it
y
 s

e
t

1 server

2 servers

3 servers

4 servers

(a) Size of the anonymity set

10
0

10
1

10
2

10
3

10
4

10
−6

10
−4

10
−2

10
0

10
2

Rank

S
ta

y
 t

im
e
 i
n
 1

−
h
o
p
 c

a
c
h
e
 (

s
e
c
)

CC(s=t)

CC(s=t)+LCD

CC(s=1)

CC(s=1)+LCD

(b) Stay time of data in 1-hop router

10
0

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

Rank

S
ta

y
 t

im
e
 i
n
 1

−
h
o
p
 c

a
c
h
e
 (

s
e
c
)

CC(s=t)

CC(t=2,s=1)

CC(t=4,s=1)

CC(t=8,s=1)

CC(t=16,s=1)

(c) Impact of segment size

Fig. 7: Cache privacy evaluation.

the segment size increases, the duration that videos stay in the
cache is reduced, leading to better privacy. On the other hand,
as seen from Figure 6c, a larger segment size results in both
better cache performance and privacy. However, a larger value
of t also means that consumers need to retrieve more linearly
independent blocks to recover the original chunks, implying
an increased delay for the consumer. Therefore, larger segment
size could be less suitable for real-time applications such as
streaming media. In summary, this shows that flexibility in the
setting t is necessary for the practical use of CodingCache.

VI. CONCLUSION

CCN has widely been reported as a powerful platform for
improving video delivery. In this paper we have explored two
topics related to CCN caching: (1) Exploiting the multipath
capabilities of modern network topologies; and (2) Enabling
high performance privacy-aware video caching. To achieve our
goals, we have proposed the use of network coding to code
video content chunks into multiple blocks that can follow mul-
tiple paths back to the consumer. Through this, we expand the
anonymity set of each user (the set of potential routers that can
serve a given user) and increase the diversity of cached content
among different paths. As such, our algorithm, CodingCache,
offers an attractive combination of high performance with tight
privacy controls. We have evaluated CodingCache with real-
life video request traces and shown that it outperforms native
CCN and deterministic hash routing. We believe this is strong
evidence that CodingCache offers an attractive balance as a
candidate as a core CCN caching algorithm.

A number of implications arise from our work. Perhaps most
notably, we have shown that network coding is an attractive
technology in the context of video over CCN. We argue
that, considering the need to deploy new hardware anyway, it
would be sensible to natively build network coding support, in
order to mitigate privacy concerns and increase performance.
We next plan to extend our evaluation to show the benefits
of CodingCache in improving video quality (e.g. buffering
ratio, bitrate), and implement CodingCache as a prototype
to evaluate its performance when used with different ICN
architectures. We also intend to evaluate CodingCache with
different content types other than video, as well as expanding
its configurability to target different environments.

REFERENCES

[1] “Cisco visual networking index: Forecast and methodology, 2013-2018,”
tech. rep., Cisco, 2014.

[2] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan,
and H. Zhang, “Understanding the impact of video quality on user
engagement,” in Proceedings of the ACM SIGCOMM, 2011.

[3] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in ACM CoNEXT,
pp. 1–12, 2009.

[4] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K.
Smetters, B. Zhang, G. Tsudik, D. Massey, C. Papadopoulos, et al.,
“Named Data Networking (NDN) Project,” tech. rep., PARC, Tech.
report ndn-0001, 2010.

[5] S. Lederer, C. Timmerer, D. Posch, C. Westphal, A. Azgin, S. Liu,
C. Mueller, A. Detti, D. Corujo, and J. Wang, “Adaptive video streaming
over icn,” 2015.

[6] Y. Sun, S. K. Fayaz, Y. Guo, V. Sekar, Y. Jin, M. A. Kaafar, and S. Uhlig,
“Trace-driven analysis of icn caching algorithms on video-on-demand
workloads,” in Proceedings of the 10th ACM CoNEXT, 2014.

[7] Z. Li, Q. Wu, G. Xie, et al., “Video delivery performance of a large-
scale vod system and the implications on content delivery,” Transaction
on Multimedia, 2015.

[8] T. Lauinger, N. Laoutaris, P. Rodriguez, T. Strufe, E. Biersack, and
E. Kirda, “Privacy risks in named data networking: what is the cost of
performance?,” ACM SIGCOMM CCR, 2012.

[9] A. Chaabane, E. De Cristofaro, M.-A. Kaafar, and E. Uzun, “Privacy
in Content-Oriented Networking: Threats and Countermeasures,” ACM
SIGCOMM CCR, 2013.

[10] A. Chaabane, G. Acs, and M. Kaafar, “You are what you like! infor-
mation leakage through users? interests,” in Proc. Annual Network and
Distributed System Security Symposium, 2012.

[11] N. Xia, H. H. Song, Y. Liao, M. Iliofotou, A. Nucci, Z.-L. Zhang,
and A. Kuzmanovic, “Mosaic: Quantifying privacy leakage in mobile
networks,” in Proceedings of the ACM SIGCOMM, 2013.

[12] T. Ho, M. Mdard, J. Shi, M. Effros, and D. R. Karger, “On randomized
network coding,” in Proceedings of the Annual Allerton Conference on
Communication Control and Computing, vol. 41, pp. 11–20, 2003.

[13] Y. Tian, R. Dey, Y. Liu, and K. W. Ross, “Topology mapping and
geolocating for China’s Internet,” IEEE Transactions on Parallel and
Distributed Systems, vol. 24, no. 9, pp. 1908–1917, 2013.

[14] E. J. Rosensweig, J. Kurose, and D. Towsley, “Approximate models
for general cache networks,” in INFOCOM, 2010 Proceedings IEEE,
pp. 1–9, IEEE, 2010.

[15] I. Psaras, R. G. Clegg, R. Landa, W. K. Chai, and G. Pavlou, “Modelling
and evaluation of CCN-caching trees,” IFIP NETWORKING, pp. 78–91,
2011.

[16] Y. Li, H. Xie, Y. Wen, and Z.-L. Zhang, “Coordinating in-network
caching in content-centric networks: Model and analysis,” in IEEE
ICDCS, 2013.

[17] G. Rossini and D. Rossi, “Evaluating CCN multi-path interest forward-
ing strategies,” Computer Communications, 2013.

[18] G. Tyson, S. Kaune, S. Miles, Y. El-khatib, A. Mauthe, and A. Taweel,
“A trace-driven analysis of caching in content-centric networks,” in
ICCCN, pp. 1–7, IEEE, 2012.

[19] N. Laoutaris, H. Che, and I. Stavrakakis, “The LCD interconnection of
LRU caches and its analysis,” Performance Evaluation, vol. 63, no. 7,
pp. 609–634, 2006.

12

[20] W. Chai, D. He, I. Psaras, and G. Pavlou, “Cache ’less for more’ in
information-centric networks,” in IFIP NETWORKING, 2012.

[21] K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi, and S. Pack, “WAVE:
Popularity-based and collaborative in-network caching for content-
oriented networks,” in IEEE INFOCOMM WKSHPS, pp. 316–321,
IEEE, 2012.

[22] Y. Wang, Z. Li, G. Tyson, S. Uhlig, and G. Xie, “Optimal cache
allocation for content-centric networking,” in IEEE ICNP, 2013.

[23] I. Psaras, W. K. Chai, and G. Pavlou, “In-network cache management
and resource allocation for information-centric networks,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 99, no. PrePrints, 2014.

[24] B. Han, X. Wang, N. Choi, T. Kwon, and Y. Choi, “Amvs-ndn: Adaptive
mobile video streaming and sharing in wireless named data networking,”
in Computer Communications Workshops (INFOCOM WKSHPS), 2013
IEEE Conference on, pp. 375–380, IEEE, 2013.

[25] S. Ando and A. Nakao, “In-network cache simulations based on a
youtube traffic analysis at the edge network,” in Proceedings of The
Ninth International Conference on Future Internet Technologies, p. 10,
ACM, 2014.

[26] S. Guo, H. Xie, and G. Shi, “Collaborative forwarding and caching in
content centric networks,” in IFIP Networking, 2012.

[27] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen,
B. M. Maggs, K. Ng, V. Sekar, and S. Shenker, “Less Pain, Most of the
Gain: Incrementally Deployable ICN,” in ACM SIGCOMM, 2013.

[28] C. Yi, A. Afanasyev, L. Wang, B. Zhang, and L. Zhang, “Adaptive
forwarding in named data networking,” ACM SIGCOMM CCR, vol. 42,
no. 3, pp. 62–67, 2012.

[29] G. Acs, M. Conti, P. Gasti, C. Ghali, and G. Tsudik, “Cache privacy in
named-data networking,” in Distributed Computing Systems (ICDCS),
2013 IEEE 33rd International Conference on, pp. 41–51, IEEE, 2013.

[30] S. Arianfar, T. Koponen, B. Raghavan, and S. Shenker, “On preserving
privacy in content-oriented networks,” in ACM SIGCOMM ICN work-
shop, 2011.

[31] I. Psaras, W. K. Chai, and G. Pavlou, “Probabilistic in-network caching
for information-centric networks,” in ACM SIGCOMM ICN workshop,
pp. 55–60, ACM, 2012.

[32] S.-Y. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE
Transactions on Information Theory, vol. 49, no. 2, pp. 371–381, 2003.

[33] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft,
“XORs in the air: practical wireless network coding,” in ACM SIG-
COMM CCR, 2006.

[34] M. Wang and B. Li, “R2: Random push with random network coding
in live peer-to-peer streaming,” IEEE Journal on Selected Areas in
Communications, vol. 25, no. 9, pp. 1655–1666, 2007.

[35] M.-J. Montpetit, C. Westphal, and D. Trossen, “Network coding meets
information-centric networking: an architectural case for information
dispersion through native network coding,” in ACM NoM Workshop,
pp. 31–36, 2012.

[36] L. Sweeney, “k-anonymity: A model for protecting privacy,” vol. 10,
pp. 557–570, World Scientific, 2002.

[37] A. Ahmedsaid, A. Amira, and A. Bouridane, “Improved SVD systolic
array and implementation on FPGA,” in FPT, 2003.

[38] A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM: NDN simulator
for NS-3,” Technical Report NDN-0005, NDN, October 2012.

[39] Z. Li, J. Lin, M.-I. Akodjenou, G. Xie, M. A. Kaafar, Y. Jin, and G. Peng,
“Watching videos from everywhere: a study of the PPTV mobile VoD
system,” in ACM IMC, 2012.

[40] K. Katsaros, G. Xylomenos, and G. Polyzos, “MultiCache: An overlay
architecture for information-centric networking,” Computer Networks,
2011.

Qinghua Wu received his PhD degree from Institute
of Computing Technology (ICT), Chinese Academy
of Sciences (CAS) in 2015. He is now an assistant
researcher in ICT/CAS. His research interests lie in
Information-Centric Networking, network architec-
ture and Internet measurement.

Zhenyu Li received the PhD degree from the
ICT/CAS in 2009. He is an associate researcher in
ICT. His research interests include future Internet
architecture, network measurement and modelling.
He is a member of the IEEE and the IEEE Computer
Society.

Gareth Tyson received the PhD degree from Lan-
caster University in 2010. He is a lecturer at Queen
Mary University of London. His research interests
centre on networked systems, particularly in the
context of content distribution.

Steve Uhlig received the PhD degree from the
University of Louvain in 2004. He is a professor
of networks at Queen Mary University of London.
His main research interests are focused on the large-
scale behaviour of Internet routing and traffic, and
their interactions through the network topology.

Mohamed Ali Kaafar received his Ph.D. degree in
computer science form the Universite Nice Sophia
Antipolis in 2007. He is currently research group
leader in NICTA and DATA61, Australia. His re-
search interests include Internet Security, Anomaly
detection and Internet Measurements.

Gaogang Xie received the PhD degree in computer
science from Hunan University, in 2002. He is the
professor at ICT/CAS. His research interests include
Software-Defined Networking, Internet architecture,
and Internet measurement. He is a member of the
IEEE and the IEEE Computer Society.

