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Abstract—In this paper, we study a virtual wireless oper-
ator’s spectrum investment problem under spectrum supply
uncertainty. To obtain enough spectrum resources to meet its
customer demands, the virtual operator can either sense for
the temporarily unused spectrum in a licensed band, or lease
spectrum from a spectrum owner. Sensing is usually cheaper
than leasing, but the amount of available spectrum obtained by
sensing is uncertain due to the primary users’ activities in the
licensed band. Previous studies on spectrum investment problems
mainly considered the expected profit maximization problem of a
risk-neutral operator based on the expected utility theory (EUT).
In reality, however, an operator’s decision is influenced by not
only the consideration of expected profit maximization, but also
the level of its risk preference. To capture this tradeoff between
these two considerations, we analyze the operator’s optimal
decision problem using the prospect theory from behavioral
economics, which includes EUT as a special case. The sensing
and leasing optimal problem under prospect theory is non-convex
and challenging to solve. Nevertheless, by exploiting the unimodal
structure of the problem, we are able to compute the unique
global optimal solution. We show that comparing to an EUT
operator, both the risk-averse and risk-seeking operator achieve
a smaller expected profit. On the other hand, a risk-averse
operator can guarantee a larger minimum possible profit, while
a risk-seeking operator can achieve a larger maximum possible
profit. Furthermore, the tradeoff between the expected profit
and the minimum possible profit for a risk-averse operator is
better when the sensing cost increases, while the tradeoff between
the expected profit and the maximum possible profit for a risk-
seeking operator is better when the sensing cost decreases.

Index Terms—Prospect theory, expected utility theory, spec-
trum trading, spectrum sensing.

I. INTRODUCTION

A. Background and Motivation

THE business model of virtual operator1 has achieved sig-
nificant success worldwide in recent years [2]. According

to a recent market report published by Transparency Market
Research, the global virtual operator market is expected to
expand at an annual rate of 7.4% and reach a value of
US$ 75.25 billions by 2023 [3]. As a virtual operator (e.g.,
Consumer Cellular in the US [4]) does not own any licensed
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1Here we focus on a “virtual operator” in the wireless industry, which is
also referred to as the “mobile virtual network operator (MVNO)” in the
literature.

spectrum, it needs to acquire spectrum from a spectrum owner
(e.g., AT&T) in order to provide services to its customers. As
virtual operators often rely on leased network infrastructure
instead of building and maintaining their own infrastructure,
their investment and operational costs are usually lower than
the spectrum owners. Such an advantage often enables them
to provide cheaper and more flexible data plans to their
customers, hence reaching niche markets that are underserved
by the spectrum owners [5].

Motivated by the recent development of cognitive radio
technology and dynamic spectrum sharing, a virtual operator
can acquire spectrum in two different ways: spectrum sensing
and spectrum leasing. With spectrum sensing [6], [7], a virtual
operator detects the temporarily unused spectrum in a licensed
band, and uses it to provide services to its customers as long
as such operator does not cause any harmful interferences
to the primary (licensed) customers of the spectrum owner.
With spectrum leasing [8], [9], a spectrum owner explicitly
allows the virtual operator to operate over a given licensed
band during a given period of time with a leasing fee. In this
paper, we will consider a hybrid spectrum investment scheme
involving both approaches.

The key feature of the problem is the uncertainty of
spectrum acquisition through spectrum sensing, as the virtual
operator does not know the activity levels of the primary
customers beforehand. When facing uncertainty, most prior
studies of spectrum investment applied the expected utility the-
ory (EUT) to compute the operator’s optimal decisions (e.g.,
[10]–[13]). In these models, a (virtual) operator optimizes
the decisions to maximize its expected profit. Such an EUT
model, however, does not fully capture the rather complicated
decision process obtained in our daily life, and hence may
have a poor predication power [14]. Alternatively, the Nobel-
prize-winning prospect theory (PT) (e.g., [14]–[16]), which
establishes a more general model than the EUT, provides a
psychologically more accurate description of the decision-
making under uncertainty. PT2 incorporates three main factors
in the modeling: (1) Impact of reference point: A decision
maker evaluates an option based on the potential gains or

2To better understand PT, consider the following two lottery settings.
Lottery A1: 50% to win $200, and 50% to win $0; Lottery A2: 100% to win
$100. Experimental results [14] showed that most people prefer Lottery A2
to A1. The result reflects that people are risk averse, which we will discuss in
more details later in this section. Next we further consider another two lottery
settings. Lottery B1: 1% to win $99, and 99% to loss $1; Lottery B2: 100%
to win $0. Experimental results [14] showed that most people prefer Lottery
B1 to B2. The result reflects that people will have a subjective probability
distortion of small probability events, which we will also introduce later in
this section.
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losses with respect to a reference point, and the choice of
the reference point significantly affects the valuation. (2) The
s-shaped asymmetrical value function: A decision maker often
experiences a diminishing marginal utility when evaluating a
gain, and a diminishing marginal disutility when evaluating
a loss. Furthermore, it often prefers avoiding losses than
achieving gains. As a result, the value function is s-shaped
and asymmetrical: concave in the gain regime, convex in the
loss regime, and steeper for losses than for gains (see Fig.
2(a) in Section III-D for a concrete example). (3) Probability
distortion: A decision maker tends to overreact to small prob-
ability events, but underreact to medium and large probability
events (see Fig. 2(b) in Section III-D for a concrete example).
This characteristic is useful in explaining behaviors related
to lottery and insurance [14], where people usually purchase
lottery and insurance at prices higher than the expected returns.
As PT fits better into the reality than EUT based on many
empirical studies, researchers and practitioners have applied
PT in many areas, such as understanding the behavior of
investment agents in finance [17] and the effort and wage
levels of workers and firms in labor markets3 [20]. However,
there isn’t any existing work of using PT to understand the
spectrum investment behaviors in today’s wireless market.

B. Key Results and Contributions

In this paper, we study the spectrum sensing and leasing
decisions of a virtual operator under sensing uncertainty, and
formulate it as a two-stage sequential optimization problem.
In Stage I, the virtual operator determines the optimal amount
of licensed spectrum to sense. Due to the stochastic nature of
the primary licensed customers’ traffic, the amount of available
spectrum obtained through sensing is a random variable. If the
spectrum obtained through sensing is not sufficient to satisfy
its customers’ demand, the virtual operator will lease some
additional spectrum from the spectrum owner in Stage II.

Under this sensing uncertainty, we can model the decision
making of a risk-neutral operator, who aims to maximize its
expected profit by EUT. However, in reality, a decision maker
is rarely risk-neutral. Besides aiming to achieve a high ex-
pected profit, it is often affected by its own risk preference. To
be more specific, a risk-seeking decision maker is aggressive
and wants to achieve a high profit even with a high risk,
while a risk-averse decision maker is conservative and wants
to guarantee a satisfactory level of minimum possible profit. In
order to capture this tradeoff between the expected profit and
risk preference, we apply the PT to study the optimal sensing
and leasing decisions. It leads to a non-convex optimization
problem, which is very challenging to solve. Nevertheless,
by exploiting the unimodal structure of the problem, we can
obtain the global optimal solution analytically.

Our key contributions are summarized as follows:

3We note that prospect theory is not a theory only about “irrational
behaviors”. Instead, it is about how decision makers decide the tradeoff
between the maximum/minimum possible profit and the expected profit (in
our context), which applies to professionals as well. In fact, there have been
various studies (e.g., [18], [19]) that focus on the professionals’ decisions
problems based on prospect theory in areas such as finance and politics.

• Behavioral economics modeling of virtual operator’s in-
vestment decision under uncertainty: We model a virtual
operator’s investment decisions under sensing uncertainty
using PT, which captures the tradeoff between the ex-
pected profit maximization and risk preference. We char-
acterize the feature of a risk-averse operator (who is most
concerned of potential losses) and a risk-seeking operator
(who is most concerned of potential gains).

• Characterization of the unique optimal solution of the
non-convex decision problem: Despite the non-convexity
of the spectrum sensing problem, we characterize the
uniqueness of the optimal solution and compute it nu-
merically. We further evaluate how different behavioral
characteristics (i.e., reference point, probability distortion,
and s-shaped valuation) affect this optimal solution.

• Engineering insights based on comparison between EUT
and PT: We show that a risk-averse operator can achieve a
better tradeoff between the expected profit and minimum
possible profit in the high sensing cost scenario than the
low sensing cost scenario. The result for the risk-seeking
operator is exactly the opposite.

Next we will review the literature in Section II. In Sec-
tion III, we introduce the spectrum investment model and
formulate the sequential optimization problem. In Section IV,
we compute the global optimal solution of the non-convex
optimization problem, and discuss various engineering insights
derived from such a solution. In Section V, we illustrate
the impact of probability distortion and reference point by
considering the special case of binary sensing outcomes. In
Section VI, we provide simulation results to evaluate the
sensitivity of the optimal decision with respect to several
model parameters. We conclude the paper in Section VII.

II. LITERATURE REVIEW

A. Expected Profit Maximization in Spectrum Investment Us-
ing Expected Utility Theory

Spectrum investment problem under uncertainty has been
studied extensively through expected profit maximization us-
ing EUT (e.g., [10]–[13]). Kasbekar and Sarkar in [10] con-
sidered a spectrum auction problem under the uncertainty of
the number of secondary customers. Gao et al. in [11] studied
the spectrum contract between a primary spectrum owner and
the secondary customers considering the uncertainty of the
customer types. In [12], Jin et al. presented an insurance-
based spectrum trading problem between a primary spectrum
owner and the secondary customers, where the uncertainty also
comes from the types of the customers. Duan et al. in [13]
considered the spectrum investment of a virtual operator under
the spectrum sensing uncertainty. In all the above studies based
on EUT, a decision maker aims to maximize the weighted
average of its utilities under different outcomes, which does
not fully capture the realistic human decision behaviors exam-
ined in several well known psychological studies in the past
few decades [14]–[16]. Thus, in this paper we apply the more
general PT, which takes into account both the expected payoff
and risk preference in the human decision making.
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B. Resource Allocation in Communication Networks and
Smart Grids Using Prospect Theory

The study of resource allocation in communication networks
and smart grids based on PT only emerged recently. The
first paper is due to Li et al. in [21], which compared the
equilibrium strategies of a two-user random access game under
EUT and PT. Yang et al. in [22] considered the impact of end-
user decision-making on wireless resource pricing, when there
is an uncertainty in the quality of service (QoS) guarantees
relying on PT. Several other recent studies applied PT to study
the decision making in smart grid systems. In [23], Wang et
al. formulated a non-cooperative game among consumers in an
energy exchange system. They applied PT to explicitly account
for the users’ subjective perceptions of their expected utilities.
Xiao et al. in [24] studied the static energy exchange game
among microgrids that are connected to a backup power plant.
They analyzed the Nash equilibria under various scenarios
based on PT, and evaluated the impact of user’s objective
weight on the equilibrium of the game. To reflect the fact
that realistic decision making is different from expected profit
maximization, the studies in [21]–[24] considered a linear
value function with the probability distortion. However, to
model the impact of risk preference on a decision maker, using
only a linear value function is not comprehensive enough.
In fact, based on the psychological studies in [14]–[16], the
three characteristics of PT (i.e., reference point, s-shaped value
function, and probability distortion) together determine the risk
preference of a decision maker. Our paper is the first one that
considers all three characteristics of PT for a more accurate
and comprehensive understanding of the optimal decision
problem.

III. SYSTEM MODEL

A. Spectrum Sensing and Leasing Tradeoff

We consider a cognitive radio network with a spectrum
owner and a virtual operator. From the empirical data in
[25], [26], it is possible for the spectrum owner to estimate
the spectrum utilization at a particular location accurately
based on past measurements. In this paper, we assume that
such estimations are accurate, so that the spectrum owner
can divide its licensed spectrum into the primary band and
secondary band according to the spectrum utilization. The
spectrum owner uses the primary band to serve its primary
customers (PCs), while reserves the secondary band to meet
the potential leasing requests from the virtual operator. For the
virtual operator, it can either try to sense the idle spectrum
in the primary band (as PCs’ activities are stochastic during
the time period of interest), or lease the spectrum from the
secondary band.

As a more concrete (hypothetical) example, we consider
the spectrum trading between Consumer Cellular and AT&T
(shown in Fig. 1). AT&T is a spectrum owner, who provides
wireless services to its PCs. However, it cannot fully utilize its
spectrum in some rural areas, so it will divide its spectrum into
the primary band (channel 1-8) and secondary band (channel
9-16) at those under-utilized locations. Consumer Cellular
wants to provide spectrum services to its own customers, but

Primary Band  Secondary Band  

𝐵𝑠 𝐵𝑙 

    1      2      3     4     5     6     7      8 

AT&T 
 (Spectrum Owner) 

Consumer Cellular 
 (Virtual Operator) 

Channels  obtained   
through  sensing 

Channels  obtained   
through  leasing 

 Idle 

  Occupied 
     9    10   11   12   13   14  15   16 

     9    10   11   4                      7 

Stage I Stage II 

Fig. 1. An Example of Consumer Cellular and AT&T.

it does not own any spectrum. As a result, Consumer Cellular
senses for spectrum holes (not used by the PCs) in the primary
band (channel 3-8) without explicit payment to AT&T, and can
also choose to lease spectrum in the secondary band (channel
9-11) with explicit payment to AT&T.

From the virtual operator’s point of view, sensing is often
a cheaper way to obtain spectrum than leasing, because the
energy and time overhead involved in sensing is often much
lower than the explicit cost of spectrum leasing [13]. However,
the available amount of spectrum obtained through sensing is
uncertain due to the spectrum owner PCs’ stochastic activities
over time. We would like to understand the virtual operator’s
optimal spectrum investment decisions in every time slot that
strike the best tradeoff between the cost and the risk4.

B. Two-Stage Decision Model
We formulate the virtual operator’s spectrum investment

problem as a two-stage sequential optimization problem in
each time slot.

In Stage I (i.e., the sensing stage), the virtual operator
determines its sensing decision Bs (measured in Hz). For
simplicity, we assume a linear sensing cost cs per unit of
sensed bandwidth, which represents the time and energy
overhead for sensing [27]. Due to the stochastic nature of
PCs’ traffic, only a fraction α ∈ [0, 1] of the sensed spectrum
is temporarily available and can be utilized by the virtual
operator’s own customers. Hence, the virtual operator obtains
a bandwidth of Bsα5 at the end of the stage. In other words, a

4We choose the length of time slot such that the primary customers’
activities remain unchanged within a time slot [13].

5For simplicity, we assume perfect sensing in this paper. For imperfect
sensing [28], it involves an additional level of uncertainty, which is challenging
to consider due to the framing effect [14] in behavioral economics.
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large α corresponds to a high sensing realization, and a small
α corresponds to a low sensing realization. As an example
in Fig. 1, Consumer Cellular senses six channels in Stage I
(i.e., channel 3-8), and only channels 4 and 7 are available.
Hence, α = 1/3 in this case. We assume that the virtual
operator knows the distribution of α through historical sensing
results6. Notice that in the sensing stage, the virtual operator
has uncertainty of sensing realization, and its optimal decision
will be influenced by balancing the expected profit and its risk
preference on the sensing uncertainty. We will discuss the PT
modeling on this aspect in more details in Section III-D.

In Stage II (i.e., the leasing stage), the virtual operator
determines the leasing decision Bl (measured in Hz) after
knowing the available amount of spectrum through sensing,
Bsα. We consider a linear leasing cost cl, which is determined
through negotiation between the virtual operator and spectrum
owner and is considered to be a fixed parameter in our model.
As an example in Fig. 1, after Consumer Cellular acquires two
channels from sensing (i.e., channels 4 and 7), it further leases
three more channels in Stage II (i.e., channel 9-11). As there
is no uncertainty involved in Stage II, there is no difference
between EUT and PT modeling in terms of results7.

C. Virtual Operator’s Profit

When serving its customers, the virtual operator can obtain
a revenue of π per unit of sold spectrum. We assume that the
price π is exogenously given and cannot be changed by the
virtual operator, due to the intensive market competition [35].
Under a fixed usage-based price π, we assume that the virtual
operator’s secondary customers’ maximum spectrum (band-
width) demand is D8. However, the demand may not be fully
satisfied if the virtual operator does not have enough spectrum
obtained through sensing and leasing discussed before. Hence,
the profit of the virtual operator is

R (Bs, Bl, α) = πmin{D,Bl +Bsα}− (Bscs +Blcl) , (1)

where the revenue (first term on the right hand side) depends
on the minimum of the demand D and the spectrum supply
Bl + Bsα, and the cost (second term on the right hand
side) depends on both the sensing decision Bs and leasing
decision Bl. As α is a random variable before making the
sensing decision Bs, we will incorporate the operator’s risk
preference towards such uncertainty through the modeling
based on prospect theory.

D. Prospect Theory Modeling in Sensing Decision

To model the virtual operator’s decision under spectrum
sensing uncertainty, we consider the following three key

6 In practice, it is difficult for the operator to obtain the exact distribution of
α. However, according to [29]–[32], the operator can estimate the distribution
of α through learning based on the updated historical sensing results [33],
[34].

7In fact, as long as λ = β = α = 1, choosing a non-zero value of Rp will
just induce a constant shift of the EUT utilities, without affecting the optimal
decision under EUT. The reference point affects the analysis of PT, and our
analysis shows the impact of reference point in Section V-B.

8We do not assume any specific relationship between price π and demand
D in this paper. Please refer to [35] for some further discussions along this
line.
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Fig. 2. The s-shaped asymmetrical value function v(x) and the probability
distortion function w(p) in PT.

features of PT: reference point Rp, s-shaped value function
v (x), and probability distortion function w (p).

First, the choice of reference point Rp will significantly
affect the evaluation of profit R (Bs, Bl, α) in PT. More
specifically, we define the net gain as

x = R (Bs, Bl, α)−Rp. (2)

The reference point is a benchmark to evaluate the payoff,
where x ≥ 0 means a gain, while x < 0 means a loss. The
virtual operator will have different decision mechanisms (to be
explained in the next paragraph) when dealing with a gain or
a loss in PT. A higher reference point means that the operator
expects a higher profit (at the benchmark), which implies the
operator is more risk-seeking.

Second, as shown in Fig. 2(a), the value function v (x) is
concave for a positive argument (gain), and is convex for
a negative argument (loss). Moreover, the impact of loss is
usually larger than the gain of the same absolute value. A
common choice of value function [15], [16], [36] is

v(x) =

{
xβ , if x ≥ 0,

− λ(−x)γ , if x < 0,
(3)

where λ > 1, 0 < β < 1, and 0 < γ < 1. The parameter
λ is the loss penalty parameter, where a larger λ indicates
that the virtual operator is more concerned of loss, and hence
is more risk-averse. The parameters β and γ are the risk
parameters, where the value function of the gain part is more
concave (i.e., the virtual operator is more risk-averse) when β
approaches zero, and the value function of the loss part is more
convex (i.e., the virtual operator is more risk-seeking) when
γ approaches zero. The impact of β and γ can be interpreted
by the risk-seeking behavior in loss and risk-averse behavior
in gain. As an example, a gambler will be more addicted into
the gambling when it loses money, and will be less willing to
continue when he wins money.

We note that EUT is a special case if we choose λ = 1
and γ = β = 1. The result under the case γ = β has been
discussed in the conference version of this work in [1], and we
focus on the more complicated case of β < γ in this paper9,

9The analysis can be readily extended to the case of β > γ, although there
are no additional new insights in that case. Hence we omit the discussion of
β > γ here.
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TABLE I
KEY NOTATIONS

Symbols Physical Meanings
Bs (decision variable) Sensing amount
Bl (decision variable) Leasing amount

cs Sensing cost per unit
cl Leasing cost per unit
π Price per unit
D Secondary users’ demand
α Sensing realization factor
β Risk parameter for gain
γ Risk parameter for loss
λ Loss penalty parameter
µ Probability distortion parameter

which models the scenario that the marginal utility in gain is
diminishing faster than the marginal disutility in loss [37].

Assumption 1. The risk parameter for gain is less than the
risk parameter for loss (i.e., β < γ).

Third, as shown in Fig. 2(b), the probability distortion
function w(p) models the fact that virtual operator overweighs
a small probability event and underweighs a large probability
event. A common choice of probability distortion function
(e.g., [15], [16], [36]) is

w(p) = exp (− (− ln p)
µ
) , 0 < µ ≤ 1, (4)

where p is the objective probability of high sensing realization,
and w(p) is the virtual operator’s corresponding subjective
probability. Here the probability distortion parameter µ re-
veals how a virtual operator’s subjective evaluation distorts
the objective probability, where a smaller µ means a larger
distortion.

The key notations of the virtual operator’s profit maximiza-
tion problem are listed in Table I. In the next section, we
will study the virtual operator’s optimal sensing and leasing
decisions that maximize its profit10.

IV. SOLVING THE TWO-STAGE OPTIMIZATION PROBLEM

In this section, we use backward induction [38] to solve
the two-stage sequential optimization problem. In Section
IV-A, we derive the operator’s optimal leasing decision in
Stage II. In Section IV-B, we obtain the operator’s optimal
sensing decision in Stage I under sensing uncertainty by the
PT model11.

A. Optimal Leasing Decision in Stage II

In Stage II, given a fixed value of sensing bandwidth Bs
determined in Stage I, the operator’s leasing optimization
problem is

max
Bl≥0

R(Bs, Bl, α)=πmin{D, (Bl+Bsα)}−(Bscs+Blcl).

(5)

In our analysis, we make the following assumptions.
10We will simply use “operator” to denote “virtual operator” for the rest

of the paper.
11It should be noted that the models under EUT and PT share the same

Stage II (i.e., the leasing stage), because uncertainty only appears in Stage I
(i.e., the sensing stage).

Assumption 2. (a) The sensing cost is less than the leasing
cost (i.e., cs < cl); (b) The leasing cost is less than the
operators usage-based price (i.e., cl < π).

Both parts of Assumption 2 allow us to focus on the non-
trivial case in our analysis. When cs ≥ cl, we can show that the
operators’ optimal decision of the two-stage process is always
B∗s = 0 and B∗l = D for any type of risk preferences, because
leasing is both cheaper and risk-free. When cl ≥ π, we can
show that the operator will always choose B∗l = 0 for any
type of risk preferences. Hence, we can focus on Assumption
2 without loss of any generality. Under Assumption 2, we can
show that the optimal leasing decision that solves Problem (5)
is

B∗l = max{D −Bsα, 0}, (6)
which is the difference between the total demand D and the
available spectrum through sensing, Bsα. If Bsα exceeds D,
then B∗l = 0. Under (6), the operator’s profit in (1) can be
written as a function of Bs and α:

R(Bs, B
∗
l , α) = πD −Bscs −max{D −Bsα, 0}cl. (7)

B. Optimal Sensing Decision in Stage I
We assume that the sensing realization factor α follows a

discrete distribution with I possible outcomes12, hence has a
finite number of sensing realization outcomes [28], [39]. The
corresponding probability mass function is denoted as

p(αi) , P(α = αi) = pi, i ∈ I = {1, ..., I}. (8)

Without loss of generality, we assume that αi < αj if i < j.
By substituting (2), (3), (4) and (8) into (7), we obtain the
expected utility of the operator under PT as

U (Bs) =

I∑
i=1

v [R (Bs, B
∗
l , αi)−Rp]w (p (αi))

=

I∑
i=1

v [πD−(Bscs+max{D−Bsαi, 0}cl)−Rp]w (p (αi)) .

(9)

The operator’s spectrum sensing optimization problem in
Stage I with sensing uncertainty is

max
Bs≥0

U(Bs). (10)

1) Optimal Sensing Decision under a Risk-free Reference
Point Rp = D(π−cl): Problem (10) is a non-convex optimiza-
tion problem, because it involves the s-shaped value function
in (3). Hence, it is challenging to analytically characterize
the closed-form optimal solution. However, we can show that
there exists a unique global optimal solution by exploiting the
special unimodal structure of the problem.

In problem (10), a common choice of reference point is the
risk-free profit13. For example, in finance, investors naturally

12Since the spectrum is usually divided into a finite number of channels
in practical systems, it is reasonable to consider a discrete distribution of
α. Mathematically, when we choose the number of possible realizations I
to be large, then the discrete distribution can well approximate a continuous
distribution.

13 A complete analysis for an arbitrary reference point is challenging
because of the non-convexity in Problem (10). In Section V, we will further
look into the impact of reference point in a simplified model with binary
sensing results.
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TABLE II
OPTIMAL SENSING AND LEASING DECISION UNDER PT

Condition Optimal Sensing Decision B∗
s Optimal Leasing Decision B∗

l

D ≤Mı̂+1 B∗
s = D

αı̂+1
B∗
l = max{0, D − Dα

αı̂+1
}

Mj < D < Hj for j = ı̂+ 1, ..., I − 1 B∗
s = g−1

j (0) B∗
l = max{0, D − αg−1

j (0)}
Hj ≤ D < Mj+1 for j = ı̂+ 1, ..., I − 1 B∗

s = D
αj+1

B∗
l = max{0, D − Dα

αj+1
}

D ≥MI B∗
s = MI

αI
B∗
l = D − MIα

αI

choose the risk-free return as a benchmark to evaluate their
investment performances [36]. Here, we choose the maximum
profit that the operator can achieve without sensing (hence a
risk free choice) as the reference point. This corresponds to the
operator leasing a bandwidth Bl = D and choosing Bs = 0,
which leads to the profit of

Rp = D(π − cl). (11)

Substituting (11) into (10), we solve problem (10) and
summarize the key result in Table II. To understand Table
II, we first define some notations. We define ı̂ ∈ I as the
unique index that satisfies both the constraints αı̂ ≤ cs

cl
and

αı̂+1 >
cs
cl

14. We define Hj (for j = ı̂+1, ..., I−1) (see (17)
in Appendix A) and Mj (for j = ı̂+1, ..., I) (see (15) and (16)
in Appendix A) in Table II as decision indicators. The decision
indicators are increasing functions of the leasing cost cl and
the risk parameter for gain β, and decreasing functions of the
sensing cost cs, the risk parameter for loss γ, and the loss
penalty parameter λ. In other words, when the sensing cost cs
is higher or when the operator is more risk-averse (e.g., with a
larger λ, a smaller β, or a larger γ), the decision indicators Hj

and Mj decrease. The function gj(Bs) (for j = ı̂+1, ..., I−1)
(see (27) in Appendix A) is a decreasing function in Bs.

Theorem 1. Under Assumptions 1 and 2, the optimal sensing
decision B∗s for problem (10) and the optimal leasing decision
B∗l for problem (5) are summarized in Table II.

By using the unimodal structure of Problem (10), we show
that there is at most one inner local maximum point, and hence
the global optimum is either at the local maximum point or
at the boundaries [40]. For the detailed proof of Theorem
1, please refer to Appendix A. As shown in Table II, the
operator’s optimal sensing and leasing decisions depend on the
decision indicators Hj and Mj . Notice that Mj < Hj < Mj+1

for every j, and all Hj (for j = ı̂+ 1, ..., I − 1) and Mj (for
j = ı̂+1, ..., I) are increasing in cl and β, and are decreasing
in cs, γ, and λ. For a more risk-averse operator (with larger
λ, smaller β, and larger γ), it has smaller decision indicators
Hj and Mj (which refers to a lower row in Table II), hence
it leads to a smaller B∗s .

To better illustrate the insights behind Table II, we further
characterize the impact of sensing cost cs and the risk param-
eters λ, β and γ on B∗s in the following corollaries.

Corollary 1. The optimal sensing decision B∗s for problem
(10) is decreasing in the loss penalty parameter λ in (3) and
the risk parameter for loss γ in (3).

14Both the case α1 ≥ cs
cl

and the case αI ≤ cs
cl

are trivial, and the
discussion under these two cases are covered in the discussions under the
case α1 <

cs
cl
< αI .

The proof of Corollary 1 is given in Appendix B. Corollary
1 indicates that if an operator is more risk-averse (with a larger
loss penalty parameter λ or a larger risk parameter for loss
γ), it will sense less, as it prefers avoiding loss due to a low
sensing realization to achieving gain due to a high sensing
realization.

Corollary 2. When the demand is larger than the Ith decision
indicator (i.e., D > MI ), the optimal sensing decision B∗s for
problem (10) is increasing in the risk parameter for gain β in
(3).

The proof of Corollary 2 is given in Appendix C. Corollary
2 indicates that for the case of a large demand (i.e., D > MI ),
a more risk-seeking operator (with a larger risk parameter for
gain β) will sense more to achieve a larger gain.

However, in the small demand case (i.e., D ≤MI ), as long
as the total available spectrum from sensing can satisfy the
demand (i.e., Bsα ≥ D), a larger sensing decision Bs leads
to a constant revenue Dπ but a larger total sensing cost Bscs,
hence a less profit. Therefore, the optimal sensing decision B∗s
is not always increasing with β when D ≤MI .

Corollary 3. The optimal sensing decision B∗s for problem
(10) is decreasing in the sensing cost cs.

The proof of Corollary 3 is given in Appendix D. Corollary
3 indicates that the operator is more willing to sense when the
sensing cost decreases.

For comparison, we also consider the operator’s optimal
sensing and leasing decisions under the EUT model. The
detailed discussion is given in Appendix E.

V. SPECIAL CASE: OPTIMAL SENSING DECISION WITH
BINARY OUTCOMES

In Section IV, we have focused on the discussion of the
impact of the parameters of the s-shaped value function. In
this section, we consider a special case with binary sensing
outcomes (i.e., I = 2), to further illustrate the impact of
reference point and probability distortion on the sensing de-
cision. More specifically, the binary results are α1 = 0 and
α2 = 1 with probabilities p1 and p2 as in (8) respectively,
where p1 + p2 = 1.

A practical motivation of this case is the spectrum utilization
at those areas such as the subway stations or overpasses, where
the traffic patterns of PCs follow a very high peak-valley ratio
[25], [26]. In these areas, there is hardly any spectrum left
for the virtual operator when the traffic is at its peak, but
the situation completely changes during the off-peak hours.
Another example is the spectrum used by a rotating radar
system [41], where the radar antenna gain and radiation pattern
seen by the operator vary in a very high peak-valley ratio
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TABLE III
OPTIMAL SENSING DECISION UNDER DIFFERENT µ

Condition Optimal Sensing Decision B∗
s

cl
cs
≤
(
w(p1)
w(p2)

) 1
β
+ 1 B∗

s = 0

cl
cs
>
(
w(p1)
w(p2)

) 1
β
+ 1 B∗

s = D

with the rotation of main beam. Hence, there are periods of
time where the sensing realization is very high, and other
periods of time when the sensing realization is very low. To
better illustrate the impact of reference point and probability
distortion, we consider the case β = γ in this section to
simplify the analysis15. Hence, by plugging I = 2 into (9),
we can obtain the utility function:

U(Bs) = w(p1)v(πD −Bscs −Dcl −Rp)
+w(p2)v(πD−Bscs−max{0, D−Bs}cl−Rp). (12)

A. Impact of Probability Distortion

First, we discuss the impact of probability distortion on
the operator’s optimal sensing decision B∗s . To compute the
optimal sensing decision, we consider the same reference point
Rp = D(π− cl) as in Section IV-B, and obtain the following
theorem.

Theorem 2. For the case of binary outcomes, under Assump-
tions 1 and 2, the optimal sensing decision B∗s for problem
(10) is summarized in Table III.

The proof of Theorem 2 is given in Appendix F. The results
in Table III depend on the ratio w(p1)/w(p2). The operator
will sense B∗s = D when the leasing and sensing cost ratio
cl/cs exceeds the sensing threshold [w (p1) /w (p2)]

1
β +1, and

will sense B∗s = 0 otherwise. Since p1 + p2 = 1, according
to the probability distortion effect in PT, the larger probability
is underweighed and the smaller probability is overweighed.
From Table III, for the case p1 < p2, p1 is overweighted
and p2 is underweighted in PT (i.e., w(p1)/w(p2) > p1/p2),
where the operator underestimates the chance of having a high
sensing realization. Thus, the PT operator is more risk-averse
and will sense less than or equal to an EUT operator because
it has a higher sensing threshold. On the other hand, when
p1 > p2, p2 is overweighted (i.e., w(p1)/w(p2) < p1/p2),
where the operator overestimates the chance of a high sensing
realization. Thus, the PT operator is more risk-seeking and
will sense larger than or equal to that of an EUT operator
because the PT operator has a lower sensing threshold.

B. Impact of Reference Point

Next, we discuss the impact of reference point Rp on the
operator’s optimal sensing decision B∗s . A high reference point
Rp indicates that the operator has a high expectation on the
profit, and it is more likely to experience a loss since the
outcome is often less than its expectation. On the other hand,
a low reference point Rp indicates that the operator has a low
expectation, and it is more likely to experience a gain since

15We do not obtain additional new insights on reference point and proba-
bility distortion in the case β 6= γ, hence we omit the discussion of β 6= γ
here.

TABLE IV
OPTIMAL SENSING DECISION B∗

s UNDER RHIGH
p = D(π−cs) AND

RLOW
p = D(π−cl−cs)

Condition B∗
s under Rhigh

p B∗
s under Rlow

p
(i.e., Risk-Seeking) (i.e., Risk-Averse)

cl
cs
<1+

w(p1)
w(p2)

B∗
s = U

′−1
RPH(0) B∗

s = 0
cl
cs
≥1+

w(p1)
w(p2)

B∗
s = D B∗

s = U
′−1
RPL(0)

the outcome is often beyond its expectation. As we will see in
the following, whether an outcome is considered as a loss or a
gain can significantly affect the operator’s subjective valuation
of the outcome, and hence its sensing decision.

To better illustrate the impact of reference point, we focus
on two choices: (i) A high reference point Rhigh

p = D(π −
cs), which reflects the operator’s expectation of realizing all
the sensing spectrum D. (ii) the low reference point Rlow

p =
D(π − cl − cs), which reflects the operator’s expectation of
not realizing any of the sensing spectrum D. In other words,
the same outcome is more likely to be considered as a loss
under the high reference point than under the low reference
point.

From (12), we obtain the utility under the high reference
point as

URPH (Bs)=− λw (p1) (Bscs +Dcl −Dcs)β

− λw (p2) [D (cl−cs)−Bs (cl−cs)]β , (13)

and the utility under the low reference point as

URPL(Bs)=w(p1)(Dcs−Bscs)β+w(p2) [Bs (cl−cs)+Dcs]β. (14)

By studying the first order derivatives under the two ref-
erence points U ′RPH(Bs) and U ′RPL(Bs), we can compute
the optimal sensing decision that solves problem (10) in the
following theorem.

Theorem 3. For the case of binary outcomes, under Assump-
tions 1 and 2, the optimal sensing decision B∗s for problem
(10) under different reference points Rhighp = D(π − cs) and
Rlowp = D(π − cl − cs) are summarized in Table IV.

The proof of Theorem 3 is given in Appendix G. Theorem
3 indicates that B∗s under Rhigh

p is always larger than B∗s under
Rlow
p . This means that an operator with Rhigh

p is more willing to
sense compared to an operator with Rlow

p . When an operator
has a high expectation (due to a high reference point), it is
more likely to encounter losses than gains under uncertainty.
Since the operator’s valuation function v(x − Rp) is convex
in the loss region, it will sense more in order to gain more in
the case of high sensing realization (i.e., α = 1). In contrast,
when an operator has a low expectation (due to a low reference
point), it is more likely to encounter gains than losses. Since
the operator’s valuation function v(x − Rp) is concave in
terms of gains, it will sense less, in order to avoid the risk
of low sensing realization (i.e., α = 0). To summarize, an
operator who expects a higher profit is more risk-seeking, and
an operator who expects a lower profit is more risk-averse.

VI. PERFORMANCE EVALUATIONS

In this section, we illustrate the operator’s optimal sensing
decision and the corresponding expected profit under different
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(a) β = 0.8, Rp = (π − cl)D
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(b) β = 1, Rp = (π − cl)D
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(c) β = 1, Rp = (π − cs)D
Fig. 3. Optimal sensing decision B∗

s versus γ and λ for different β and Rp. Other parameters are cl = 5, cs = 2, and D = 10. (The color represents
optimal sensing decision B∗

s .)
system parameters. The key insights under the PT modeling
include: (a) A risk-averse operator will sense less and lease
more, which leads to a smaller profit with a lower risk of loss;
while a risk-seeking operator will sense more and lease less,
which leads to a larger profit with a higher risk of loss. (b)
Risk preference changes with the probability of high sensing
realization. When the probability of high sensing realization
changes from very high to very low, the operator changes
from risk-averse to risk-seeking. (c) Both risk-averse and risk-
seeking operators face a tradeoff between satisfying their risk
preferences and maximizing expected profit. A risk-averse
operator achieves a better tradeoff in a high sensing cost
scenario than in a low sensing cost scenario, while a risk-
seeking operator achieves a better tradeoff in a low sensing
cost scenario than in a high sensing cost scenario.

A. Evaluation of the Optimal Sensing Decision

We first evaluate the impact of the three characteristics of
PT on the operator’s optimal decision.

1) Impact of s-shaped Value Function: First, we illustrate
the operator’s optimal sensing decision under different param-
eters of s-shaped value function (i.e., γ, β, and λ), assuming
reference point Rp = (π − cl)D and linear probability
distortion (i.e., µ = 1). We compare the optimal sensing
decision and the corresponding expected profit with the EUT
benchmark, where λ = β = γ = 1.

First, in Fig. 3(a) and Fig. 3(b), we study the optimal sensing
decision B∗s against the loss penalty parameter λ and the risk
averse parameter for loss γ. To illustrate the impact of β, we
set β = 0.8 in Fig. 3(a) and β = 1 in Fig. 3(b). The other
system parameters are fixed at cl = 5, cs = 2, and D = 10.
We observe the behaviors of both risk-averse and risk-seeking
operators in Fig. 3(a) and Fig. 3(b). The upper right parts of
the figures correspond to the risk-averse operators, and the
lower left parts of the figures are risk-seeking operators. The
EUT benchmark corresponds to the case of λ = β = γ = 1
(i.e., upper left corners of Fig. 3(b) and Fig. 3(c)). We observe
that risk-averse operators sense less and risk-seeking operators
sense more.

Impact of γ on B∗s : We can see that for fixed β and λ,
the operator senses more when γ decreases (see y-axis in Fig.
3(a) and Fig. 3(b)), as stated in Corollary 1. The intuition is
that when γ decreases from 1 (hence the operator is more
risk-seeking than an EUT operator), the operator experiences

less marginal disutility from loss. In order to win a potentially
large gain, the operator is more willing to take risk and sense
more. An example to illustrate this impact is that a gambler,
who has already lost a lot, cares less of losing an additional
$1 than a gambler who just starts to gamble.

Impact of λ on B∗s : As stated in Corollary 1, for fixed γ
and β, the operator senses less when λ increases (see the x-
axis in Fig. 3(a) and Fig. 3(b)). The intuition is that when λ is
larger, the penalty of loss to the operator is larger (hence the
operator is more risk-averse than an EUT operator). In order
to avoid a potential loss, the operator will sense less.

Impact of β on B∗s : By comparing Fig. 3(a) and Fig. 3(b),
we can observe that the operator senses more when β increases
for fixed λ and γ, which verifies Corollary 2. The intuition is
that when β decreases from 1 (hence the operator is more risk-
averse than an EUT operator), the operator experiences less
marginal utility from the same gain. Hence, the operator will
sense less to achieve a certain gain, rather than taking risk for
a very large gain. An example to illustrate this impact is that
a rich man is less willing to earn an additional $1 than a poor
man if doing so requires a fixed amount of effort.

2) Impact of Reference Point: In Fig. 3(b), we have consid-
ered the reference point of Rp = D(π− cl). Next, we further
illustrate the operator’s optimal sensing decision under another
high reference point of Rp = D(π− cs). As stated in Section
V-B, whether an outcome is considered a loss and gain will
significantly affect the operator’s subjective valuation of the
outcome, hence will affect its sensing decision.

In Fig. 3(c), we consider the case of Rp = D(π − cs),
which reflects the operator’s expectation of realizing all of the
sensing spectrum D. Hence the same outcome is more likely
to be considered as a loss under Rp = D(π − cs) than under
Rp = D(π − cl). We plot the optimal sensing decision of the
risk-seeking and risk-averse operators for different values of λ
and γ. The other system parameters are the same as those in
Fig. 3(b). By comparing Fig. 3(b) with Fig. 3(c), we observe
that the operator with a low reference point Rp = D(π − cl)
senses less. The intuition is that when an operator has a low
reference point, it has a low expectation, so it is more likely
to encounter gains than losses. Due to the concavity of its
valuation function v(x−Rp) in gain, the operator will become
more risk-averse and will sense less to avoid the risk of low
sensing realization.

3) Impact of Probability Distortion: Then, we illustrate the
operator’s optimal sensing decision under different probability
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β. Other parameters are Rp = (π − cl)D, cl = 4, π = 8, and D = 10.

distortion parameters µ for the case of binary sensing out-
comes (i.e., I = 2). We compare the result with the non-
distorted benchmark, where µ = 1. The PT operator is risk-
seeking when the probability of low sensing realization p1 is
high, and it is risk-averse when p1 is low.

We notice that the operator’s decisions can be characterized
by a threshold r related to the leasing and sensing cost ratio cl

cs
.

When cl
cs
≥ r, meaning that leasing is expensive, the operator

will choose to sense for all the demand D. Otherwise, when
cl
cs
< r, the operator will sense less than the demand D and

lease for part of the demand16. Hence, a larger r means that
the operator is less willing to sense.

In Fig. 4, we plot the sensing threshold r against p1 for
different values of µ, where we assume β = γ = λ = 1, and
Rp = D(π − cl). We can see that the threshold r decreases
in µ when p1 < 0.5, and increases in µ when p1 > 0.5.
As a smaller µ means that the operator will overweigh the
low probability more, it becomes more risk-averse when p1 is
small. Similarly, since a smaller µ means that the operator will
underweigh the high probability more, it is more risk-seeking
when p1 is large.

B. Expected Profit and Risk Preference Tradeoff

We then evaluate the tradeoff between the expected profit
and risk preference of an operator. A risk-seeking operator is

16Notice that the threshold r is different under different scenarios. For
example, with Rp = D(π − cl) for binary sensing outcomes, we have r =

[w (p1) /w (p2)]
1
β + 1 from Theorem 2. On the other hand, with Rp =

D(π − cs) for binary sensing outcomes, we have r = 1 + w(p1)/w(p2)
from Theorem 3.

aggressive and mainly interested in earning a high maximum
profit, while a risk-averse operator is conservative and mainly
interested in guaranteeing a high minimum profit. Given the
system parameters (i.e., cs, cl, π, and D) and risk perference
parameters (i.e., λ, β, and γ), we let B∗s and B∗l be the
optimal sensing and leasing decisions discussed in Section
IV. The optimal expected profit Eα[R(B∗s , B∗l , α)] is the aver-
aged profit over different sensing realizations. The maximum
possible profit R(B∗s , B

∗
l , 1) is the profit with α = 1, and

the minimum possible profit R(B∗s , B
∗
l , 0) is the profit with

α = 0.

Tradeoff of a risk-seeking operator: In Fig. 5(a), we plot
the tradeoff between the expected profit and the maximum
possible profit for β = 1 under different cs and γ. Since an
EUT operator (γ = 1) makes decision only by maximizing
expected profit, we can see from Fig. 5(a) that it can achieve
the highest expected profit. On the other hand, a PT operator
makes decision by taking into account both the expected profit
and its risk preference. More specifically, although a risk-
seeking PT operator (i.e., γ < 1) achieves a lower expected
profit comparing to an EUT operator, it can earn a higher
maximum possible profit than an EUT operator. Notice in
Fig. 5(a), when the operator is very risk-seeking (γ → 0), the
expected profit and maximum possible profit both decrease.
This is because the operator can achieve the maximum possible
profit when the sensed spectrum is fully realized. However,
when the sensing decision B∗s is larger than demand D (hence
the maximum realized spectrum is larger than D), being more
risk-seeking (which leads to a larger sensing decision B∗s )
will not lead to a larger maximum possible profit, but will
only lead to a larger probability of achieving that maximum
possible profit. This explains the “bending” in the figure.
From Fig. 5(a), we also observe that the tradeoff varies
with sensing cost cs. We can see that under the three cases
of cs, an EUT operator has the same expected profit and
maximum possible profit, because it has the same optimal
sensing decision (B∗s = 0). However, a risk-seeking operator
will have a smaller loss in expected profit but a larger gain
in maximum possible profit than an EUT operator (γ = 1)
when the sensing cost cs decreases. In other words, a risk-
seeking operator achieves a better tradeoff when the sensing
cost decreases.

Tradeoff of a risk-averse operator: In Fig. 5(b), we plot
the tradeoff between optimal expected profit and minimum
possible profit for γ = 1 under different cs and β. We can see
from Fig. 5(b) that a risk-averse operator (β < 1) achieves
a lower expected profit comparing to an EUT operator (β =
1), but guarantees a higher minimum possible profit than an
EUT operator. For example, an extremely risk-averse operator
(β → 0) has a similar expected profit and minimum possible
profit under any sensing cost cs, because its optimal sensing
decision B∗s is always close to zero. We can also observe that
a risk-averse operator will have a smaller loss in expected
profit but a larger gain in minimum possible profit than an
EUT operator when the sensing cost cs increases. In other
words, a risk-averse operator achieves a better tradeoff when
the sensing cost increases.
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VII. CONCLUSIONS AND FUTURE WORK

In this paper, we considered a spectrum investment problem
with sensing uncertainty, where an operator decides its spec-
trum sensing and leasing decisions by considering both ex-
pected profit and its risk preference based on prospect theory.
This is the first paper that studied the optimal decisions based
on all three characteristics of prospect theory in the wireless
communication literature, and compared and contrasted these
decisions with those under the more widely used expected
utility theory. Our results suggested that a risk-averse operator
can achieve a large expected profit while guaranteeing a
satisfactory level of minimum possible profit when the sensing
cost is high. On the other hand, a risk-seeking operator can
achieve both a large expected profit and maximum possible
profit when the sensing cost is low.

This study demonstrated that a more realistic modeling
based on prospect theory is important in understanding the op-
erator’s decisions in the wireless industry. On the other hand,
this study is only a small first step, as we have only considered
the operator’s decision in a single time slot. Regarding the
future work, we will consider a more general problem with
decisions to be made in multiple time slots. In such a model,
the operator’s reference point may change over time, and the
study of dynamic reference point is a recent active research
field in prospect theory [17], [42]. We will also conduct a
survey to evaluate different people’s risk preferences.
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APPENDIX

A. Proof of Theorem 1

In this proof, we divide the feasible range of Bs into three
intervals,

[
0, DαI

]
,
[
D
αI
, Dclcs

]
, and

(
Dcl
cs
,∞
)

, and analyze the
optimal decision B∗s in each interval. By this division, in the
interval

[
0, DαI

]
, Bsαi ≤ D for all i ∈ I, so that we do not

need to consider the possibility of sensing realization exceeds
the demand. In the interval (Dclcs ,∞), we have Dcl < Bscs,
which means that the total cost of sensing Bscs will be larger
than the cost of leasing only Dcl. Hence the optimal solution
will not be in this range. The above reason leads to the division
of three intervals.

We will use the following notations in the proof:

MI ,


I∑

i=ı̂+1

(clαi−cs)β w(pi)β

ı̂∑
i=1

λγ (cs−clαi)γ
(

1
αI

)γ−β
w(pi)


1

γ−β

, (15)

Mj,


j∑

i=ı̂+1

(clαi−cs)βw(pi)β−βcs(clαj−cs)β−1
I∑

i=j+1

w(pi)

ı̂∑
i=1

λγ (cs − clαi)γ
(

1
αj

)γ−β
w(pi)


1

γ−β

,

j = ı̂+1, ı̂+2, ..., I−1, (16)

and

Hj,


j∑

i=ı̂+1

(clαi−cs)βw(pi)β−βcs(clαj+1−cs)β−1
I∑

i=j+1

w(pi)

ı̂∑
i=1

λγ (cs − clαi)γ
(

1
αj+1

)γ−β
w(pi)


1

γ−β

,

j = ı̂+1, ı̂+2, ..., I−1. (17)

Next, we analyze the optimal decision B∗s within each
interval.

Case I: Bs ∈
[
0, DαI

]
. We first compute the optimal

decision B∗s in this interval using the first order condition.
In this case, Bsαi ≤ D for all i ∈ I, so the optimal leasing
decision B∗l = D −Bsαi ≥ 0. From (7), the revenue is

R (Bs, B
∗
l , αi) = (π − cl)D −Bscs +Bsclαi. (18)

Since αi follows a discrete distribution in [0, 1], we can plug
(18) into (9), and get (19) by taking the proper expectation.

U(Bs)=

I∑
i=ı̂+1

(Bsclαi−Bscs)βw(pi)−
ı̂∑
i=1

λ(Bscs−Bsclαi)γw(pi)

=

I∑
i=ı̂+1

(clαi−cs)β w(pi)Bβs−
ı̂∑
i=1

λ(cs −clαi)γw(pi)Bγs . (19)

We consider the first order derivative of (19) with respect to
Bs:

U ′(Bs)=

I∑
i=ı̂+1

(clαi−cs)βw(pi)βBβ−1s −
ı̂∑
i=1

λγ(cs−clαi)γw(pi)Bγ−1s

=Bβ−1s

[
I∑

i=ı̂+1

(clαi−cs)βw(pi)β−
ı̂∑
i=1

λγ(cs−clαi)γw(pi)Bγ−βs

]
.

(20)

We can obtain

U ′ (Bs) > 0⇔
ı̂∑
i=1

−λγ (−clαi + cs)
γ
w(pi)B

γ−β
s

+

I∑
i=ı̂+1

(clαi − cs)β w(pi)β > 0

⇔ Bs <

[∑I
i=ı̂+1 (clαi−cs)

β
w(pi)β∑ı̂

i=1 λγ (cs−clαi)
γ
w(pi)

] 1
γ−β

=
MI

αI
, (21)

where MI is defined in (15). Since the second order derivative
U ′′(Bs)< 0, we know that U ′(Bs) in (20) decreases in Bs.
Hence, we only need to compare the right boundary D

αI
and

the critical point MI

αI
. From (21), we have

B∗s =


MI

αI
, if

MI

αI
<
D

αI
,

D

αI
, if

MI

αI
≥ D

αI
.

(22)

Intuitively, when the leasing cost cl is high (and hence every
Hj in (17) is large), the utility increases when the operator
senses more (and leases less).

Case II: Bs ∈
[
D
αI
, Dclcs

]
. We compute the optimal decision

B∗s in this interval by capturing the unimodal structure. In this
case, profit R (Bs, B

∗
l , α) can be represented as a piecewise

function as follows.

R (Bs, B
∗
l , α) =


πD −Bscs, if α >

D

Bs
,

Bsclα−Bscs, if 0 < α <
D

Bs
.

(23)

We substitute (23) into (9), and the utility function becomes

U(Bs)=

ı̂∑
i=1

−λ[Bs(cs−clαi)]γw(pi)

+

j∑
i=ı̂+1

[Bs(clαi−cs)]βw(pi)+
I∑

i=j+1

(Dcl−Bscs)βw(pi). (24)

The value of j in (24) varies when Bs belongs to different
sub-intervals. The utility function U (Bs) in (24) is a contin-
uous function in the whole interval, and is differentiable in
each of the I − ı̂ sub-intervals, D

αj+1
≤ Bs ≤ D

αj
, j = ı̂ + 1,

..., I−1, and D
αı̂+1

≤ Bs ≤ Dcl
cs

. Although the utility function
is not globally differentiable, we can evaluate the derivative
of each sub-interval, and find the optimal point for each of
the I − ı̂ sub-intervals. Then we can find the optimal solution
of the whole interval by comparing the optimal points in the
I − ı̂ sub-intervals.



12

We conclude the optimal sensing decision B∗s,j in the
interval D

αj+1
≤ Bs ≤ D

αj
, j = ı̂+ 1, ..., I − 1 in Proposition

1.

Proposition 1. The maximum utility value U
(
B∗s,j

)
in each

sub-interval among D
αj+1

≤ Bs ≤ D
αj

, j = ı̂ + 1, ..., I − 1 is
achieved at

B∗s,j =



D

αj
, if D ≤Mj ,

g−1j (0) , if Mj < D < Hj ,

D

αj+1
, if Hj ≤ D < Mj+1.

(25)

Proof: We prove Proposition 1 by capturing the unimodal
structure of (24) in each sub-interval D

αj+1
≤ Bs ≤ D

αj
. For

a unimodal problem, the optimal point is either at the unique
local maximum point or the boundaries. For D

αj+1
≤ Bs ≤ D

αj
,

we consider the first order derivative of (24) with respect to
Bs:

U ′(Bs)=

ı̂∑
i=1

−λ (cs−clαi)γ w(pi)γBγ−1s

+

j∑
i=ı̂+1

β(clαi−cs)βw(pi)Bβ−1s −cs
I∑

i=j+1

β(Dcl−Bscs)β−1w(pi)

=

j∑
i=ı̂+1

β (clαi−cs)β w(pi)Bβ−1s

[ ı̂∑
i=1

−λ (cs−clαi)γ Bγ−βs

j∑
i=ı̂+1

(clαi − cs)β w(pi)β

+1−
cs

I∑
i=j+1

(
Dcl
Bs
−cs

)β−1
w(pi)

j∑
i=ı̂+1

(clαi−cs)β w(pi)

]
, (26)

where we define

gj (Bs) ,

ı̂∑
i=1

−λ (cs−clαi)γ Bγ−βs

j∑
i=ı̂+1

(clαi−cs)β w(pi)β
+1

−
cs

(
Dcl
Bs
−cs

)β−1 I∑
i=j+1

w(pi)

j∑
i=ı̂+1

(clαi−cs)β w(pi)
, j = ı̂+1, ı̂+2, ..., I−1.

(27)

With (27), we can rewrite U ′ (Bs) as

U ′ (Bs) =

j∑
i=ı̂+1

β (clαi − cs)β w(pi)Bβ−1s gj (Bs) , (28)

where
∑j
i=ı̂+1 β (clαi − cs)

β
w(pi)B

β−1
s > 0. The function

gj (Bs) in (27) is a strictly decreasing function of Bs, which
means the first order derivative U ′ (Bs) in (28) will only be
zero at most once, thus there is at most one local maximum
point17.

17If this point is local minimum, then there is no local maximum point,
and the maximum point in this sub-interval is at the boundaries.

We then consider the two boundary points: Bs = D
αj+1

and
Bs =

D
αj

.
1) When Bs = D

αj+1
, we have:

gj

(
D

αj+1

)
=

∑ı̂
i=1−λ (−clαi+cs)

γ
(

D
αj+1

)γ−β
γw(pi)∑j

i=ı̂+1 (clαi−cs)
β
w(pi)β

+1

−
cs
∑I
i=j+1(clαj+1−cs)β−1 w(pi)∑j
i=ı̂+1 (clαi−cs)

β
w(pi)

. (29)

We can obtain

gj

(
D

αj+1

)
> 0⇔ D < Hj . (30)

2) When Bs = D
αj

, we have:

gj

(
D

αj

)
=

∑ı̂
i=1−λ (−clαi + cs)

γ
(
D
αj

)γ−β
γw(pi)∑j

i=ı̂+1 (clαi − cs)
β
w(pi)β

+ 1

−
cs
∑I
i=j+1 (clαj−cs)

β−1
w(pi)∑j

i=ı̂+1 (clαi − cs)
β
w(pi)

. (31)

We can obtain

gj

(
D

αj

)
> 0⇔ D < Mj . (32)

We can see that gj (Bs) and U ′ (Bs) in (28) have the same
sign within the interval

[
D

αj+1
, Dαj

]
. From (30), we have that

U ′
(

D
αj+1

)
≥ 0 when D ≥ Hj and U ′

(
D

αj+1

)
< 0 when

D < Hj . From (32), we have that U ′
(
D
αj

)
≥ 0 when D ≥

Mj and U ′
(
D
αj

)
< 0 when D < Mj . Thus U ′ (Bs) can

be either negative within the entire interval
[

D
αj+1

, Dαj

]
, or

positive within the entire interval, or first positive and then
negative within that interval based on the value of demand
parameters Hj and Mj .

To sum up, the optimal solution B∗s,j in each sub-interval

Bs ∈
[

D
αj+1

, Dαj

]
, j = ı̂ + 1, ..., I − 1 depends on the value

of demand parameters Hj and Mj as in (25).
Then we are going to study the cases at the boundaries of

the interval
[
D
αI
, Dclcs

]
. The case of left boundary (Bs = D

αI
) is

included in Proposition 1. When Bs > D
αı̂+1

, we can show the
utility U (Bs) in (24) is decreasing in Bs, hence the optimal
B∗s ≤ D

αı̂+1
.

We then study the relation between the adjacent sub-
intervals. Since (i) U (Bs) is continuous, (ii) gj (Bs) >
gj−1 (Bs) for all j, and (iii) gj (Bs) is decreasing in Bs for
all j, we know in

[
D
αI
, Dclcs

]
,

B∗s =


D

αj
, if gj

(
D

αj

)
≥ 0 and gj−1

(
D

αj

)
≤ 0,

g−1j (0) , if gj

(
D

αj

)
< 0 and gj

(
D

αj+1

)
> 0.

(33)
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Based on (30), (32) and (33), we can have the following
summary.

B∗s =


D

αj
, if Hj ≤ D ≤Mj+1,

g−1j (0) , if Mj < D < Hj ,

(34)

where j = ı̂, ..., I − 1.
Case III: Bs ∈

(
Dcl
cs
,∞
)

. In this case, Dcl − Bscs < 0.
From (7) and (11), we know

R (Bs, B
∗
l , α)−Rp = Dcl −Bscs −max{D−Bsα, 0} < 0,

(35)
which means the total cost of sensing Bscs will be larger than
the cost of only using spectrum leasing Dcl. However, the
amount of revenue Dπ from sensing or leasing is the same,
since the total demand is limited. Hence it is impossible to
choose the optimal B∗s in this range to maximize the utility.

By summarizing the analysis of the above three cases, we
obtain Table II.

B. Proof of Corollary 1

From (26), we obtain

hλ (λ) ,
∂U ′ (Bs)

∂λ
=

ı̂∑
i=1

−γw(pi) (cs − clαi)γ Bγ−1s < 0,

(36)
and

hγ (γ) ,
∂U ′ (Bs)

∂γ
=

ı̂∑
i=1

−λw(pi) (cs − clαi)γ Bγ−1s

+

ı̂∑
i=1

−λw(pi) γ ln (cs − clαi) (cs − clαi)γ

−Bγ−1s

ı̂∑
i=1

λw(pi) γ lnBs (cs−clαi)γ Bγ−1s < 0.

(37)

If λ1 > λ2, then hλ (λ1) < hλ (λ2) for every Bs, which
means U ′ (Bs) with λ = λ1 is less than U ′ (Bs) with λ = λ2
for every Bs, and U ′ (Bs) with λ = λ1 will become zero with
a smaller Bs. Hence B∗s decreases in λ.

If γ1 > γ2, then hγ (γ1) < hγ (γ2) for every Bs, which
means U ′ (Bs) with γ = γ1 is less than U ′ (Bs) with γ = γ2
for every Bs, and U ′ (Bs) with γ = γ1 will be zero with a
smaller Bs. Hence B∗s decreases in γ when D > MI .

C. Proof of Corollary 2

From (21), we obtain

hβ (β) ,
∂U ′(Bs)

∂β
=

I∑
i=ı̂+1

w(pi) (clαi−cs)β Bβ−1s

−
I∑

i=ı̂+1

λw(pi)β ln (clαi−cs) (clαi−cs)β

−Bβ−1s

I∑
i=ı̂+1

λw(pi)β lnBs(clαi−cs)βBβ−1s <0. (38)

If β1 > β2, then hβ (β1) < hβ (β2) for every Bs, which
means U ′ (Bs) with β = β1 is less than U ′ (Bs) with β = β2
for every Bs, and U ′ (Bs) with β = β1 will be zero with a
smaller Bs. Hence B∗s decreases in β.

D. Proof of Corollary 3

From (26), we obtain

hcs (cs) ,
∂U ′ (Bs)

∂cs
=

ı̂∑
i=1

−λγ2w(pi) (cs − clαi)γ−1Bγ−1s

+ cs

I∑
i=j+1

Bsβ (β − 1)w(pi) (Dcl−Bscs)β−2

−
I∑

i=j+1

β (Dcl−Bscs)β−1 w(pi)

−
j∑

i=ı̂+1

β2w(pi) (clαi −cs)β−1Bβ−1s <0. (39)

If c1s > c2s, then hcs
(
c1s
)
< hcs

(
c2s
)

for every Bs, which
means U ′ (Bs) with cs = c1s is less than U ′ (Bs) with cs = c2s
for every Bs, and U ′ (Bs) with cs = c1s will be zero with a
smaller Bs. Hence B∗s decreases in cs.

E. The EUT Benchmark in Section IV

For comparison, we also consider the operator’s optimal
sensing and leasing decisions under the EUT model. As
mentioned in Section III, EUT model is a special case of the
PT model with β = 1, γ = 1, λ = 1, and µ = 1. Under
the EUT model, we can obtain the solution of problem (10)
analytically.

Theorem 4. The optimal sensing decision B∗s for problem (10)
and the optimal leasing decision B∗l for problem (5) under
EUT are summarized in Table V.

Proof: In the proof, we divide the feasible range of Bs
into two intervals,

[
0, Dα1

]
, and

[
D
α1
,∞
)

.

1) Case I: Bs ≤ D
α1

. We first compute the optimal decision
B∗s in this interval. In this case, Bsα is not always larger
than D, thus by (9), we can write the expectation of revenue
R (Bs, B

∗
l , α) with respect to α. In each sub-interval 0 ≤

Bs ≤ D
αI

18 and D
αj+1

≤ Bs ≤ αj , j = 1, ..., I − 1, we can
write

U (Bs) =Eα [R (Bs, B
∗
l , α)]

=(πD−Bscs)
I∑

i=j+1

pi+

j∑
i=1

[(π−cl)D−Bs(cs−clαi)]pi

=πD −
j∑
i=1

piDcl +

[(
j∑
i=1

αipi

)
cl − cs

]
Bs.

(40)

18In the case 0 ≤ Bs ≤ D
αI

, the utility function U (Bs) is equivalent to
U (Bs) in (40) with j = I .
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TABLE V
OPTIMAL SENSING DECISION AND LEASING DECISION UNDER EUT

Condition Optimal Sensing Decision B∗
s Optimal Leasing Decision B∗

l

cl
cs
≤
(

I∑
i=1

piαi

)−1

B∗
s = 0 B∗

l = D(
j+1∑
i=1

piαi

)−1

< cl
cs
<

(
j∑
i=1

piαi

)−1

for j = 1, ..., I−1 B∗
s = min{ D

αj+1
, Dcl
cs
} B∗

l =max{0, D−αmin{ D
αj+1

, Dcl
cs
}}

cl
cs
≥ (α1p1)

−1 B∗
s = D

α1
B∗
l = D − α D

α1

From (40), we know that U (Bs) is continuous and piece-

wise linear in Bs. Since
j∑
i=1

αipicl in (41) is increasing in

j, we know that there is at most one local maximum point.
Hence, the optimal B∗s is either at the local maximum point
or the boundaries, depending on the value of cl

cs
,

B∗s =



0, if
cl
cs
≤

(
I∑
i=1

αipi

)−1
.

D

αj
, if

(
j+1∑
i=1

αipi

)−1
<
cl
cs
<

(
j∑
i=1

αipi

)−1
, j=1, 2, ..., I−1,

D

α1
, if

cl
cs
≥ (α1p1)

−1
.

(41)

From the analysis of Case III in Appendix A, we know that
the optimal B∗s ∈

[
0, Dclcs

]
. By comparing the value of Dcl

cs

with the optimal B∗s in (40), we obtain the results in the first
two rows of Table V.

3) Case II: Bs ∈
[
D
α1
,∞
)

.
In this case, Bsα ≥ D. From (9), we know

U (Bs) = E [R (Bs, B
∗
l , α)] = πD −Bscs. (42)

Since R (Bs) is decreasing in Bs in this case, the optimal
sensing decision B∗s = D

α1
, and the corresponding utility

U (B∗s ) = πD − D
α1
cs

Since U (Bs) is continuous, we combine the optimal utilities
from Case I and Cases II, and obtain the optimal B∗s with
different values of cl

cs
as in Table V.

The results in Table V also depend on the cost ratio cl
cs

.

When cl
cs
≤
(∑I

i=1 piαi

)−1
, the leasing is cheap enough

so that the operator will choose to lease only (B∗s = 0).
For the case cl

cs
≥ (p1α1)

−1 (hence leasing is significantly
more expensive), we have B∗s = D

α1
. The threshold value(∑j

i=1 piαi

)−1
is based on the distribution of α, as the

expected “effective cost” of getting one unit of idle spectrum

through sensing is cs
(∑j

i=1 piαi

)−1
.

F. Proof of Theorem 2
From (12), when Bs > D, U (Bs) is decreasing in Bs, so

B∗s ∈ [0, D]. Hence, we obtain

U (Bs) = −λw (p1) (Bscs)
β
+ (cl − cs)β Bβsw (p2)

=
[
w (p2) (cl − cs)β − λw (p1) cs

β
]
Bβs . (43)

From (43), we find that U (Bs) is a monotonic function of
Bs. Hence, we can find the optimal sensing decision

B∗s =

{
0, if w (p2) (cl − cs)β < λw (p1) cs

β ,

D, if w (p2) (cl − cs)β ≥ λw (p1) cs
β .

(44)

G. Proof of Theorem 3

From (13) and (14), when Bs > D, both URPH (Bs) and
URPL (Bs) are decreasing in Bs, so B∗s ∈ [0, D]. We prove
Theorem 3 by capturing the unimodal structure of (13) and
(14). For a unimodal problem, the optimal point is either at
the unique local maximum point or the boundaries. We first
compute the first order derivatives of URPH and URPL with
respect to Bs:

∂URPH(Bs)

∂Bs
=− λcsw (p1)β [Bscs +D (cl − cs)]β−1

+ λw (p2)β (cl − cs)β [(D −Bs)]β−1 ,
(45)

and
∂URPL(Bs)

∂Bs
=−csβ (−Bscs +Dcs)

β−1
w (p1)

+β (cl−cs) [Bs (cl−cs)+Dcs]β−1 w (p2) . (46)

Since the second order derivatives ∂2URPH(Bs)
∂B2

s
> 0 and

∂2URPL(Bs)
∂B2

s
< 0, the function ∂URPH

∂Bs
is a strictly increasing

function of Bs, and the function ∂URPL(Bs)
∂Bs

is a strictly
decreasing function of Bs, which means ∂URPH(Bs)

∂Bs
and

∂URPL(Bs)
∂Bs

will only be zero at most once, thus at most one
local maximum point for both URPH (Bs) and URPL (Bs).

We then consider the two boundary points (a) Bs = 0 + ε
and (b) Bs = D − ε, with ε being a small positive number
approaching zero (i.e., ε → 0), to see if the optimal point is
at the local maximum point or at the boundaries.

(a) When Bs = 0 + ε, we have:

lim
ε→0

U ′RPH(ε)=βλ [D(cl−cs)]β−1[w(p2)(cl−cs)−w(p1)cs] ,
(47)

and

lim
ε→0

U ′RPL(ε) = βDcβ−1s [−w (p1) cs + (cl − cs)w (p2)] .

(48)

(b) When Bs = D − ε, we have:

lim
ε→0

U ′RPH (D − ε) =∞, (49)
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and

lim
ε→0

U ′RPL (D − ε) = −∞. (50)

We can obtain

lim
ε→0

U ′RPH (ε) < 0⇔− w (p1) cs + (cl − cs)w (p2) < 0

⇔ lim
ε→0

URPL (ε) < 0. (51)

Since U ′RPH (ε) and U ′RPL (ε) have the same sign from (47)
and (48), either U ′RPH (Bs) is first negative then positive
and U ′RPL (Bs) is all negative within the range (0, D), or
U ′RPH (Bs) is all positive and U ′RPL (Bs) is first positive then
negative within the range (0, D).

Since U (Bs) is continuous in Bs ∈ [0, D], the optimal
solution B∗s under the two reference points depends on the
value of cl and cs as in Table IV.
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