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Abstract—Judiciously setting the base station transmit power
that matches its deployment environment is a key problem
in ultra dense networks and heterogeneous in-building cellular
deployments. A unique characteristic of this problem is the
tradeoff between sufficient indoor coverage and limited outdoor
leakage, which has to be met without explicit knowledge of the
environment. In this paper, we address the small base station
(SBS) transmit power assignment problem based on stochastic
bandit theory. Unlike existing solutions that rely on heavy
involvement of RF engineers surveying the target area, we take
advantage of the human user behavior with simple coverage
feedback in the network, and thus significantly reduce the
planned human measurement. In addition, the proposed power
assignment algorithms follow the Bayesian principle to utilize
the available prior knowledge from system self configuration.
To guarantee good performance when the prior knowledge is
insufficient, we incorporate the performance correlation among
similar power values, and establish an algorithm that exploits the
correlation structure to recover majority of the degraded per-
formance. Furthermore, we explicitly consider power switching
penalties in order to discourage frequent changes of the transmit
power, which cause varying coverage and uneven user experience.
Comprehensive system-level simulations are performed for both
single and multiple SBS deployment scenarios, and the resulting
power settings are compared to the state-of-the-art solutions.
Significant performance gains of the proposed algorithms are
observed. Particularly, the correlation structure enables the
algorithm to converge much faster to the optimal long-term
power than other methods.

Index Terms—Coverage optimization; Transmit power assign-
ment; Heterogeneous Network (HetNet).

I. INTRODUCTION

The massive deployment of distributed low-power low-cost

small base stations (SBS) has been viewed as one of the most

important solutions to address the challenge of exponential

growth of the wireless data traffic, particularly for indoor users

[1]. In practice, SBSs may be deployed in drastically different

scenarios, from large warehouses and buildings to small res-

idential apartments and single-office enterprises. In addition,

the radio frequency (RF) conditions may vary significantly

from one site to another. Due to the heterogeneous nature

of these deployments, the transmit power assigned to the

SBS, which effectively determines the coverage range, cannot

be the same but must be decided based on the individual

deployment environment, such as the building layout, the RF

conditions, and the locations of the base stations. Furthermore,

indoor enterprise deployments often have stringent access
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and security constraints. As a result, judiciously setting the

SBS transmit power to automatically match its deployment

environment is among the most important challenges for in-

building SBS network deployment [2].

To address this challenge, in-building enterprise networks

typically rely on RF engineers to carry out extensive mea-

surement and RF survey to determine the transmit power for

appropriate coverage and limited leakage. Then, during live

network operations, the RF engineers often need to make extra

visits to optimize the transmit power for better performance.

Clearly, this is a heavy human-in-the-loop model, as the

success of the power setting relies on the experience of

the seasoned engineers, the result of the RF survey of the

engineers’ choice, and the planning software. Not only is this

approach expensive, inflexible and error-prone, but it also does

not scale with the densification of indoor SBS networks [3].

Adaptive, automated and autonomous network optimization

is the key principle of the self-organizing networks (SON)

paradigm [4], which aims at achieving the optimal network

configuration while minimizing the planned human involve-

ment in the deployment, configuration, optimization and main-

tenance. Self-optimizing the SBS transmit power falls into the

framework of SON, and several solutions have already been

proposed. Small Cell Forum has defined a common network

monitor mode [5], allowing each SBS to periodically measure

its surrounding RF environment and adjust its transmit power.

This solution relies on an assumed coverage range based on

categorization, and the RF measurements are only taken at

the SBS location but not over the entire coverage area, which

is coarse and may cause RF mismatch [6]. To solve these

issues, Supervised Mobile Assisted Range Tuning (SMART)

was proposed in [7], which relies on the RF feedback of a

technician walking along the sampling routes. The required

RF feedback is extensive, including majority of the LTE

lower layer quantities such as RSRP RSSI, CQI, etc. These

quantities along the measurement routes provide important

RF information of the deployment, and a global optimization

can be formulated to derive the transmit power that satisfies

both coverage and leakage constraints. Unfortunately, this

problem is non-convex and the optimal transmit power is

difficult to compute [7]. In [8], the authors developed a self-

organizing policy for distributed femtocell networks, aiming

at minimizing the cell transmit power while satisfying the

service requirement. In [9], a heuristic solution was proposed

to reliably determine the coverage for the current power level

before either increasing or decreasing the power based on

user feedback. Solutions from both [8] and [9] have some

adaptability but still lack good accuracy when used in differ-
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ent environments. The authors of [10] modeled SBS power

management as a Markov Decision Process problem, focusing

on the power control in a time-varying network. Similarly,

a downlink transmit power control solution for interference

mitigation via reinforcement learning was proposed in [11].

The main objective of [10] and [11], however, is to adjust

the transmit power in reaction to the changing circumstance

for better quality of service, which makes it more of a power

control problem that has to be solved at a fast time scale.

We focus on setting the SBS transmit power of an enterprise

network in an unknown deployment environment. We limit

our attention to SBS networks with closed access mode,

which is commonly adopted in the enterprise deployment

due to security and management considerations. An adequate

power assignment is particularly crucial for the closed access

mode, as the transmit power needs to be large enough to

provide sufficient coverage for the inside users while small

enough to not create significant interference to the outside

non-enterprise co-channel users, who cannot be served by

the enterprise network. This work proposes to capture this

delicate balance between coverage and leakage by a system

performance indication function (PIF). If the deployment is

known, the optimal power assignment can be obtained by

maximizing the PIF.

However, a practical solution needs to be effective in an

arbitrarily unknown environment, and prefers minimum human

involvement and feedback. Naturally, a good solution must

compliment the aforementioned optimization problem with an

online learning approach to remove the uncertainty of the

environment, which is a key challenge for efficient transmit

power assignment. The SBSs have to balance the immediate

gains (selecting a power level that performs best so far) and

long-term performance (evaluating other power levels). We

thus resort to the theory of multi-armed bandit (MAB) [12]

to address the resulting exploration and exploitation tradeoff.

However, as opposed to directly applying classical MAB

algorithms such as UCB [13], our problem has two unique

characteristics that were not exploited. First, SBS transmit

power assignment falls into the self-optimization category

of SON. Generally, a self-configuration phase has already

taken place before invoking the transmit power assignment

algorithm. As a result, there would be some prior knowledge

of the system that can be utilized. Second, performances of

similar power levels are often very similar, which means that if

we adopt the MAB model, nearby arms are highly correlated.

Intuitively, such correlation can be used to accelerate the

convergence to the optimal selection, because any sampling

of a power level not only reveals information about itself,

but also nearby power levels that are highly correlated. Such

information was not available in classical UCB solutions [12],

[13]1, and has not been utilized in SON [7], [8], [10], [11].

In this paper, we leverage these engineering characteristics

of the problem, and develop bandit-inspired transmit power

1The authors of [14] studied the continuum-armed bandit with an infinite
continuum of strategies, which also captures the dependency among arms. We
opt out this approach because in the multi-SBS cases, the continuity of the
reward functions may not be guaranteed. The discrete arm setting makes the
solutions more effective and flexible for practical adoption.

assignment algorithms. In the bandit literature, similar models

have been studied in [15], [16] and the corresponding bandit

algorithms have been proposed. The authors of [15] proposed

bandit algorithms with a Bayesian prior on the mean reward

that is based on a human decision-making model. [16] further

extended the algorithm to focus on the correlation among

arms. In our work, we first adopt a Bayesian [17] learning

algorithm that incorporates the prior knowledge of the system

from the self-configuration phase. The developed Bayesian

Power Assignment (BPA) algorithm iteratively updates the

posterior distribution based on new observations and the prior

distribution, and uses the updated posterior distribution to

compute the utility function and determine the transmit power

level. In addition to utilizing the prior knowledge, we further

leverage the correlation structure of the PIF of similar transmit

power levels, and a Correlated Bayesian Power Assignment

(CBPA) algorithm that combines the Bayesian principle with

the correlation property is employed. To the authors’ best

knowledge, this is the first work that incorporates bandit with

correlated arms into the design of wireless networks. Fur-

thermore, practical deployment often wants to avoid frequent

power changes, because it may cause frequent variation of

the coverage area and result in uneven user experience. To

address this issue, we present a block allocation extension

to the proposed BPA and CBPA algorithms which explicitly

considers switching cost to discourage frequent changes of

power levels. Rigorous analysis of the performance loss with

respect to the genie-aided global optimization solution is car-

ried out. A tight upper bound of the performance loss for the

most general algorithm (CBPA with switching cost) is derived,

and performance characterization of other algorithms can be

obtained as special cases. In order to reduce the algorithms’

complexity which increases exponentially with the number

of SBSs, we further introduce clustering based on the prior

knowledge, so that the complexity can be drastically reduced

without sacrificing much of the accuracy and effectiveness of

the algorithms. The performances of all the proposed algo-

rithms are verified by extensive system-level simulations and

compared with both the globally optimal power assignment

with complete information and the existing state-of-the-art

solutions. Not only do the proposed algorithms outperform

existing solutions and converge to the globally optimal power

assignment quickly, but they also reduce the planned human

involvement significantly and only require minimum amount

of user feedback (one bit per location), as opposed to the

full-blown RF measurement and feedback that is universally

required in the existing solutions.

The rest of the paper is organized as follows. The system

model and problem formulation can be found in Section II.

Section III and IV present the proposed power assignment

algorithms without and with switching cost, respectively. Per-

formance analysis for all the algorithms is given in Section V.

Complexity issues of the multi-SBS deployment are addressed

in Section VI. Simulation results are portrayed in Section VII.

Finally, Section VIII concludes the paper.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

Both single-SBS and multi-SBS deployments are consid-

ered. Note that the former is suitable for modeling single-office

enterprises, residential apartments and other small deploy-

ments, while the latter mainly applies to large enterprises, for

which multiple SBSs are installed to jointly cover the indoor

users. The set of SBSs is indexed as KSBS = {1, 2, ..,K}.

Each SBS has a set of candidate pilot2 power levels, denoted as

P = {p1, p2, .., pn}. As our focus is on the SBSs with closed

access and co-channel with the macro base stations (MBS),

we simply assume that the users at the measurement points

inside the enterprise building are served by the SBS network,

while users at points outside can only be served by one of the

MBSs from KMBS = {1, 2, ..,KM}, as Fig. 1 illustrates.

The measurement data come from the customer UE feed-

back from some inside and outside routes during normal

network operations. This is different from the RF survey

approach that is carried out during network planning. The

detailed mechanism and procedure of obtaining such customer

UE feedback are mostly the same as in [9]. However, as

opposed to a complete RF feedback required in [9], we only

require one-bit coverage indication for each inside report. The

extended set of RF measurements, such as RSRP, RSSI, and

CQI, are not needed in our power assignment algorithm. For

non-enterprise UEs, as we only need to know whether the

UE is covered at a reporting location, we will rely on the

registration attempt at the outside location to determine such

events. Note that this is a common approach to determine

leakage and has been adopted in [18], [7], [19].

In this work, our model and procedure on power assignment

follow the common industry SON operations [3]. Specifically,

the power assignment policy is executed during the self-

optimization phase of SON, at the central network controller

which is configured to oversee the operation of the entire

SBS network. This is a common choice for enterprise cellular

networks, as they often have security and privacy constraints

which are easier to be satisfied in a centralized architecture.

Furthermore, the power assignment algorithm operates in a

periodic fashion, which is typical for self-optimization of SON

[18]. For each time slot, the SBS first sets the pilot power

based on the assignment algorithm. Then the network operates

and collects UE feedback from both inside and outside of

the intended coverage area. At the end of the current period,

a performance measure is computed to evaluate the current

pilot power and then used in the assignment algorithm to

compute the power level for the next slot. This sequence of

operations is illustrated in Fig. 2. Lastly, industry SON oper-

ations typically have the self-optimization operations follow a

self-configuration phase, during which a coarse measurement

and power calibration are performed [7]. As we will see

later, the initial self-configuration, albeit coarse and sometimes

inaccurate, offers useful prior knowledge that can be leveraged

in the power assignment algorithm.

2As the purpose of the long-term power assignment is to determine the
appropriate coverage that fits the deployment, we focus on setting the pilot
power instead of the power of data and control channels [2].

(a) Single-SBS

(b) Multi-SBS

Fig. 1. An exemplary enterprise SBS network deployment.

Slot t Slot t+1

Run the 

algorithm and 

set power level 

pa(t)

Collect UE 

coverage 

indication 

feedback

Calculate PIF

ra(t)(t)

Fig. 2. The power assignment procedure in a time slot t.

B. Problem Formulation

To formulate the power assignment problem, we first need to

define the criteria for coverage and leakage. To that end, let us

denote the set of measurement points on the inside and outside

routes as Nin = {1, 2, .., nin} and Nout = {1, 2, .., nout},

respectively. The coverage and leakage criteria for a measure-

ment point can be formally defined as:

coverage: max
kS∈KSBS

SINRkS ,n > SINRth, for n ∈ Nin, (1)

leakage: max
kM∈KMBS

SINRkM ,n < SINRth, for n ∈ Nout,(2)

where SINRkS ,n and SINRkM ,n represent the SINR of the

measurement point n inside corresponding to SBS kS and the

SINR of point n outside served by MBS kM , respectively.
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They can be calculated as:

SINRkS ,n =
P r
kS ,n

∑K
i=1,i6=kS

P r
i,n +

∑KM

j=1 P
Mr
j,n +Ns

,

SINRkM ,n =
PMr
kM ,n

∑K
i=1 P

r
i,n +

∑KM

j=1,j 6=kM
PMr
j,n +Ns

,

where P r
i,n and PMr

j,n represent the received power at point

n from SBS i and MBS j, respectively, Ns denotes the

uncontrolled noise and interference, and SINRth is the SINR

threshold.

With the definition at each measurement point, the overall

system coverage and leakage are defined as the percentage

of measurement points which satisfy the coverage condition

(1) and leakage condition (2), respectively. If we denote the

number of measurement points that satisfy the corresponding

conditions as ncov and nlea, then the coverage percentage and

leakage percentage can be computed as ηin = ncov/nin ×
100% and ηout = nlea/nout × 100%. Note that a larger pilot

transmit power may simultaneously increase the indoor cov-

erage percentage and the outdoor leakage percentage. Hence,

the system performance indication function (PIF) associated

with each candidate power level must balance coverage and

leakage. In this work, we adopt a simple linear PIF as

r = αηin − (1 − α)ηout, (3)

where α ∈ [0, 1] is a control parameter and can be tuned to

weigh differently between coverage and leakage. Note that PIF

(3) is chosen as an example to illustrate the proposed power

assignment algorithms. Other meaningful PIFs that capture the

tradeoff between coverage and leakage can be used in place

of (3). The objective of a power assignment algorithm is to

find the optimal solution p∗ ∈ P that maximizes the PIF (3).

Strictly speaking, the function r in (3) is a random variable

for a given pilot power level. This is due to the random channel

effect such as shadowing, fast fading and other disturbance

in the deployment environment. We focus on a probabilistic

model with Gaussian random fluctuation around the mean.

As we will see in Sec. VII, Gaussian distribution indeed is

a very good approximation for the actual PIF. Furthermore,

we evaluate the proposed algorithms in settings with non-

Gaussian PIF distributions, and the empirical results suggest

that algorithms developed based on the Gaussian assumption

are very effective.

III. POWER ASSIGNMENT ALGORITHMS BASED ON

BAYESIAN BANDIT LEARNING

A. Stochastic Bandit Model

The necessity of balancing the short-term performance

and long-term learning has motivated us to take a stochas-

tic multi-armed bandit approach to the power assignment

problem. Specifically, we model the set of candidate pilot

power values P = {p1, p2, .., pn} as n arms, denoted by

Npow = {1, 2, .., n}. At the beginning of each time slot

t = 1, 2, .., T , a power value pa(t) ∈ P , a(t) ∈ Npow is

selected. At the end of the time slot t, the SBS observes

a performance feedback ra(t)(t) based on UE measurement

reports, which corresponds to reward in the bandit theory.

As discussed in Sec. II, we model the random PIF associated

with each power value as a Gaussian random variable. The

objective is to develop an efficient power assignment solution

to maximize the cumulative PIF for any given time horizon

T . For the multi-SBS case, each arm corresponds to a set of

power levels of all K SBSs, and other definitions remain the

same.

In multi-armed bandit theory, a quantity termed as expected

cumulative regret [12] is often used to characterize the algo-

rithm performance, which represents the cumulative difference

between the reward of the arms chosen and the maximum

expected reward, which is attainable by a “genie” who knows

the expected reward of all arms. We comment that minimizing

the expected cumulative regret is equivalent to maximizing

the expected accumulated reward, which is the objective of

the power assignment problem. This is because the maximum

expected reward is independent of the adopted learning algo-

rithm and the regret is equivalent to the performance loss of

any power assignment problem due to learning.

Formally, we denote

GT =

T
∑

t=1

ra(t)(t) (4)

as the cumulative PIF up to a given time horizon T > 0, and

we define the cumulative PIF loss due to learning as

RT = G∗
T −GT = max

i=1,..,n

(

T
∑

t=1

ri(t)

)

−
T
∑

t=1

ra(t)(t), (5)

which corresponds to the definition of cumulative regret. Here

the optimal power level can be obtained by a genie-aided

solution, e.g. a global optimization of the expected PIF with

complete RF information from the technician survey. We are

interested in finding efficient algorithms that maximize the

cumulative PIF (4). Equivalently, the goal is to minimize the

PIF loss of the system (5) for any given time horizon T . The

expected PIF loss can be written as:

E[RT ] = Tµ∗ − E

T
∑

t=1

µa(t)

=

(

n
∑

i=1

E[Ni(T )]

)

µ∗ − E

n
∑

i=1

Ni(T )µi

=

n
∑

i=1

∆iE[Ni(T )], (6)

where µ∗ = max
i=1,..,n

µi is the true mean PIF of the optimal

power level and ∆i = µ∗ − µi measures the mean PIF gap

between the chosen power level and the optimum. Ni(T )
represents the number of times power level pi is selected.

According to the ground-breaking work of Lai and Robbins

[20], if the expected loss E[RT ] of our proposed algorithms

can be upper bounded3 by O(log T ), an asymptotically opti-

mal performance is achieved in the sense that the convergence

rate is of the same order as the optimum.

3log(·) represents natural logarithm if the base is not specified.
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B. Bayesian Power Assignment Algorithm

The first algorithm utilizes the prior knowledge of the PIF

estimation before the algorithm is invoked. In practice, the

most common form for the prior knowledge comes from the

self-configuration phase of SON, which is performed during

network initialization. This phase can provide us with some

prior estimation of the PIFs as it typically tries different

power levels before settling on one. However, all practical

SON solutions have certain requirements on the elapsed time

of the self-configuration operations. This is because self-

configuration affects the boot-up time, and thus must be

carefully controlled. As a result, massive measurement during

self-configuration is typically out of the question and we often

encounter coarse initial setup. Another possibility is that as the

proposed power assignment algorithm is recursive over time,

it also progressively collects PIF estimations for each selected

power level. This can be used iteratively to update the prior

knowledge. The quality of the prior depends on the detailed

process in self-configuration phase, e.g. the time duration,

mechanisms for large power settings, which is uncontrollable

and out of scope of this paper. However, it is worth noting

that the proposed algorithms also work with inaccurate prior

or even without any prior knowledge, at the expense of slower

convergence.

We first consider the power assignment algorithm without

considering the correlation between power levels. We adopt

the well-known Bayesian principle [17] that integrates the

prior distribution and quantiles of the posterior distribution.

The proposed Bayesian Power Assignment (BPA) algorithm,

which adopts the deterministic upper credible limit (UCL)

principle in [15], is given in Algorithm 1. In this algorithm,

{µ0
i , σ

2
0} denotes the prior knowledge of the Gaussian dis-

tribution for PIF. The utility function defined in step 2 is

composed of an estimated performance term and a measure

of uncertainty, which reflects the tradeoff between exploration

and exploitation. More specifically, Φ−1 : (0, 1) → R is the

inverse cumulative distribution function (CDF) for a standard

Gaussian random variable. We use the quantile function to

indicate: P(µi ≤ QBPA
i (t)) = 1−1/(

√
2πet2). Asymptotically,

the true mean PIF µi is more likely to be less than the

estimation QBPA
i , which leads to the convergence to the optimal

power level.

If the prior knowledge is not available, the BPA algorithm

can be slightly modified to address this issue. Specifically,

the estimated PIF term and uncertainty measurement have to

be updated simultaneously in each time slot. This philosophy

leads to the following utility function:

QUiPA
i (t) = r̄i(t)+

√

√

√

√

√

t
∑

τ=1
r2i (τ) − r̄2i (t)Ni(t)

(Ni(t)− 1)Ni(t)
Φ−1(1− 1/(

√
2πet2)).

(7)

The Uninformative Power Assignment (UiPA) algorithm thus

can be obtained by replacing the utility function in step 2 of

Algorithm 1 with (7), while removing the prior input at the

beginning and estimation state update in step 6.

Algorithm 1 The Bayesian Power Assignment (BPA) Algo-

rithm

Input: Prior estimation of PIF mean {µ0
i }ni=1, variance σ2

0

Initialize: Ni(t) = 0, r̄i(t) = 0, QBPA
i (t) = 0, µ̂i(1) =

µ0
i , σ̂i(1) = σ0 for all i ∈ Npow, t ∈ 1, .., T .

1: for t ∈ 1, 2, .., T do

2: For each arm i ∈ Npow update the utility function:

QBPA
i (t) = µ̂i(t) + σ̂i(t)Φ

−1(1− 1/(
√
2πet2)),

3: Select a power value pa(t) according to:

a(t) = argmax{QBPA
i (t)|i ∈ Npow},

4: Observe the PIF ra(t)(t),

5: Update the average PIF and the selected times of pa(t):

r̄a(t)(t+ 1) =
Na(t)(t)r̄a(t)(t)+ra(t)(t)

Na(t)(t)+1 ,

Na(t)(t+ 1) = Na(t)(t) + 1,

6: Update the estimated mean and variance of PIF of

power level pa(t):

µ̂a(t)(t+ 1) =
µ0
a(t)+Na(t)(t+1)r̄a(t)(t+1)

Na(t)(t+1)+1 ,

σ̂a(t)(t+ 1) = σ0√
Na(t)(t+1)+1

.

7: end for

C. Correlated Bayesian Power Assignment Algorithm

In the BPA algorithm, {µ0
i , σ

2
0} is used as our prior

knowledge of performance for each power level. If the PIFs

of different arms are independent, then utilizing individual

Gaussian distributions is sufficient in our framework. However,

for the considered power assignment problem, the PIFs of

similar transmit power levels are generally correlated due to

the slow and continuous changing nature of RF propagation.

In other words, a stronger PIF correlation exists between

adjacent power levels than distant pairs, and leveraging the

full covariance matrix of the joint distribution may provide

significant performance boost compared to the BPA algorithm.

Intuitively, if a transmit power level results in a bad PIF

with respect to the balance of coverage and leakage, then an

intelligent algorithm may not need to waste much exploration

on its immediate neighboring power levels, as they are highly

likely to be bad as well.

We formally present the Correlated Bayesian Power Assign-

ment (CBPA) algorithm in Algorithm 2. Let N (µ0,Σ0) be

a correlated prior assumption while Σ0 is a positive definite

matrix, we define {φt ∈ R
n}t∈{1,..,T} as the indicator vector

to reveal the currently selected power value pa(t), i.e.,

(φt)k =

{

1 k = a(t),

0 otherwise,

where (φt)k represents the k-th entry of φt. The estimation

of the mean PIFs and correlation structure of the PIF (µt,Σt)
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Algorithm 2 The Correlated Bayesian Power Assignment

(CBPA) Algorithm

Input: Prior estimation of joint Gaussian distribution of the

PIFs: N (µ0,Σ0);

Initialize: Ni(t) = 0, r̄i(t) = 0, QCBPA
i (t) = 0, µ̂i(1) =

µ0
i , Σ̂1 = Σ0 for all i ∈ Npow and t ∈ 1, .., T .

1: for t ∈ 1, 2, .., T do

2: For each i ∈ Npow update the utility function

QCBPA
i (t) = µ̂i(t) + σ̂i(t)

√

n
∑

j=1

ρ2ij(t)Φ
−1(1 −

1/(
√
2πet2)), where ρij(t) is the correlation coefficient

between power value i and j at time t, which is obtained

from Σ̂t; µ̂i(t),σ̂
2
i (t) is the i-th entry of µ̂t and diagonal

entry of Σ̂t.

3: Select a power value pa(t) according to:

a(t) = argmax{QCBPA
i (t)|i ∈ Npow},

4: Collect the performance function ra(t)(t),

5: Update the average performance and the selected time

of pa(t):

r̄a(t)(t+ 1) =
Na(t)(t)r̄a(t)(t)+ra(t)(t)

Na(t)(t)+1 ,

Na(t)(t+ 1) = Na(t)(t) + 1,

6: Update the estimation state:

µ̂t+1 = (Σ−1
0 + P (t + 1)−1)−1(P (t + 1)−1

r̄t+1 +

Σ−1
0 µ0),

Σ̂−1
t+1 = Σ−1

0 + P (t+ 1)−1.

7: end for

is updated following the Bayesian principle [16]:

qt =
rtφt

σ2
0

+ Λ̂t−1µ̂t−1, Λ̂t =
φtφ

T
t

σ2
0

+ Λ̂t−1,

Σ̂t = Λ̂−1
t , µ̂t = Σ̂tqt = Λ̂−1

t qt,

where rt is the PIF observed at time slot t. To derive a general

expression of the estimation, we introduce a diagonal matrix

P (t) with entries σ2
0/Ni(t), i ∈ Npow, and r̄t is the vector of

r̄i(t), i ∈ Npow. We first rewrite the expression of Λ̂t as:

Λ̂t =
φtφ

T
t

σ2
0

+
φt−1φ

T
t−1

σ2
0

+ Λ̂t−2

=
φtφ

T
t

σ2
0

+
φt−1φ

T
t−1

σ2
0

+ . . .+
φ1φ

T
1

σ2
0

+ Λ0

=
1

σ2
0











N1(t)
N2(t)

. . .

Nn(t)











+ Λ0

= P (t)−1 + Λ0.

(8)

Then, µ̂t can be derived based on (8):

µ̂t = Λ̂−1
t qt = Λ̂−1

t

(

rtφt

σ2
0

+ Λ̂t−1Σ̂t−1qt−1

)

= Λ̂−1
t

(

rtφt

σ2
0

+
rtφt

σ2
0

+ . . .+
rtφt

σ2
0

+ Λ0µ0

)

= Λ̂−1
t

















N1(t)
σ2
0

r̄1(t)

. . .
Nn(t)
σ2
0

r̄n(t)









+ Λ0µ0









= (Λ0 + P (t)−1)−1(P (t)−1
r̄t + Λ0µ0).

(9)

Finally, combining equation (8) and (9), the estimation at time

slot t can be written as:

Λ̂t = P (t)−1 + Λ0,

µ̂t = (Λ0 + P (t)−1)−1(P (t)−1
r̄t + Λ0µ0),

which is used in Algorithm 2.

IV. POWER ASSIGNMENT WITH SWITCHING COST

A. Problem Formulation with Switching Cost

In practice, it is very critical for any practical cellular

deployment to avoid frequent power changes. In a cellular

network, coverage variation due to the change of transmit

power often results in poor user experience (call drop, low data

rate, frequent handover, etc.), which in turn degrades the net-

work performance significantly. To address this problem, we

explicitly add a switching cost when the power level changes.

In this way, a good power assignment policy will determine

the optimal power value while minimizing frequent switches.

We adopt a general switching loss function sij = f(|pi−pj|),
which is a bounded non-decreasing function of the difference

between the two power values with f(0) = 0. sij is incurred

whenever SBS changes its pilot power value between pj and

pi. The cumulative switching cost up to T can be written as:

SC(T ) =

T
∑

t=2

sa(t)a(t−1) =

T
∑

t=2

f(|pa(t) − pa(t−1)|).

Thus the cumulative PIF in this problem can be expressed as:

GS
T = GT − SC(T ).

In a multi-SBS deployment, the switching cost is defined as

the sum of individual switching costs of all SBSs.

B. The Power Assignment Algorithm with Switching Cost

We extend the preceding algorithms to a block allocation

scheme to address switching costs. Block allocation schemes,

such as the one in [21], determine specific intervals of time

over which the selection is consistent. A power value is

selected at the beginning of each interval. The construction of

the intervals should ensure the expected number of switches

scales at most logarithmically in time to guarantee good

performance. This idea is graphically presented in Fig. 3.

We first divide time into frames whose last time slot is

denoted as Lf , f ∈ {1, 2...l}, l = ⌈
√

log2 T ⌉. Each frame

is then subdivided into bf = ⌈(2f2 − 2(f−1)2)/f⌉ blocks
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Fig. 3. The block allocation scheme used in BPA-SC and CBPA-SC.

each of which contains f time slots. Each block is identified

by (f, k), f ∈ {1, 2, .., l}, k ∈ {1, 2, .., bf}, with f and k
representing the frame number and block number within the

frame respectively. The beginning time slot of block k in

the f -th frame is denoted as τfk. Note that the key element

in selecting the blocking length is to only incur o(log T )
switching cost. In this way, the O(logT ) regret of the standard

algorithm still dominates the total regret.

Algorithm 3 The Power Assignment with Switching Cost

Algorithm

Input: Prior estimation of PIF mean: N (µ0,Σ0);

Initialize: Ni(t) = 0, r̄i(t) = 0, Qi(t) = 0, µ̂i(1) =

µ0
i , Σ̂1 = Σ0 for all i ∈ Npow, t ∈ 1, .., T .

1: for f ∈ {1, 2, .., l} do

2: for k ∈ {1, 2, .., bf} do

3: The beginning time slot of k-th block in the f -th

frame τfk = Lf−1 + 1 + f(k − 1),

4: For each i ∈ Npow update the utility function Qi,

5: Select a power value pa∗ according to:

a∗ = argmax{Qi|i ∈ Npow},

6: Keep SBS on power value pa∗ for the next (nf − 1)

slots,

7: Collect the performance function ra∗(t), possibly ex-

cluding a switching loss sa(t)a(t−1), t ∈ {τfk, τfk +

1, .., Te}, Te = τfk+f−1, nf = f if τfk+f−1 6 T ,

otherwise Te = T, nf = T − τfk + 1;

8: Update the average performance and the selected

time of pa∗ :

r̄a∗ =
Na∗ r̄a∗+

∑Te
t=τfk

(ra∗ (t)−sa(t)a(t−1))

Na∗+nf
,

Na∗ = Na∗ + nf ,

9: Update the estimation state.

10: end for

11: end for

The Power Assignment with Switching Cost algorithm is

formally presented in Algorithm 3. The Uninformative (UiPA-

SC), Bayesian (BPA-SC) and Correlated Bayesian Power

Assignment with Switching Cost (CBPA-SC) algorithms can

be similarly obtained, by replacing Qi with QUiPA
i , QBPA

i and

QCBPA
i respectively. Note that in BPA-SC, the prior estimation

state Σ0 becomes a diagonal matrix with entries σ2
0 , while

there is no prior input in UiPA-SC. At the beginning of each

block, a power value is selected and the SBS locks on this

power value in each of the next f time slots in the block. The

estimation update in step 9 also follows step 6 in Algorithm 1

and step 6 in Algorithm 2.

There are two key ideas of Algorithm 3. The first is that

since the switching cost results in a penalty in performance, the

algorithm needs to “explore in bulk”. This is done by grouping

time slots and not switching within these slots. The second

is that as time goes by, the algorithm has more information

about the optimal power value, and hence the block size should

increase to take advantage of the better knowledge.

V. PERFORMANCE ANALYSIS OF THE PROPOSED

ALGORITHMS

So far, we have presented two sets of power assignment

algorithms (without and with switching cost), each of which

further consists of components that have different assumptions

on the prior knowledge and the correlation structure. In this

section, we will provide a unified performance analysis frame-

work that can be applied to all of the developed algorithms. We

focus on the finite-time analysis where, for a given stopping

time T , the cumulative PIF loss and the convergence speed

will be characterized. In this way, we can shed important light

on the fundamental differences of these algorithms, and how

these differences impact their performances.

We start with the expected cumulative PIF loss defined in

Sec. III-A. For BPA and CBPA, the expected PIF loss can be

written as (6). When the switching cost is considered, equation

(5) and (6) should be rewritten as:

RSC
T = G∗

T −GS
T

= max
i=1,..,n

(

T
∑

t=1

ri(t)

)

−
T
∑

t=1

ra(t)(t) +
T
∑

t=2

sa(t)a(t−1),

and

E[RSC
T ] = Tµ∗ − E

(

T
∑

t=1

µa(t) − SC(T )

)

=

n
∑

i=1

∆iE[Ni(T )] + E[SC(T )],

respectively.

A. Upper Bound Analysis

In order to derive the unified framework that applies to all

the algorithms, we focus on analyzing CBPA-SC as it is the
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most general algorithm consisting of all the key components.

As we have discussed, the expected cumulative PIF loss should

grow sub-linearly with T in order to achieve the optimal

performance, which indicates that limT→∞ RT /T = 0. We

have the following theorem to bound the expected cumulative

PIF loss of CBPA-SC.

Theorem 1. The expected cumulative PIF loss E[RSC
T ] of

CBPA-SC is bounded above as:

E[RSC
T ] 6

n
∑

i=1,i6=i∗

∆iE[Ni(T )] + E[SC(t)]

6

n
∑

i=1,i6=i∗

(

∆i(C
i
1 logT + Ci

2) + (s̃max
i + s̃max

i∗ )E[Si(T )]
)

+ s̃max
i∗

6

n
∑

i=1,i6=i∗

∆i(C
i
1 logT + Ci

2) +

n
∑

i=1,i6=i∗

(s̃max
i + s̃max

i∗ )

(

log 2Ci
1

√

log2 T + (Ci
2 + log 2Ci

1)

(

1 +
π2

6

)

)

+ s̃max
i∗ ,

where

Ci
1 =

16σ2
0

∆2
i

+
log 2

2

(

e
3M2

i∗

2σ2
0 + e

3M2
i

2σ2
0

)

,

Ci
2 =

4σ2
0

∆2
i

log
√
2πe+

(

e
M2

i∗

3σ2
0 + e

M2
i

3σ2
0

)

,

δ2i = σ2
0/σ

2
i−cond, and σ2

i−cond = σ2
0 − σi(0)Σ

−1
∼i (0)σ

T
i (0).

Mi = σ2
0

√

1 + δ2i
n
∑

j=1

n
∑

k=1

|λ0
kj ||µ0

j − µj | measures the accu-

racy of the prior knowledge, where Σ∼i is the submatrix of

Σ0, which excludes the i-th column and i-th row and λ0
kj is the

component of Λ0. s̃max
i = maxj=1,..,n E[sij ] is the maximum

expected switching loss when SBS changes power to pi.

Proof. See Appendix A.

Theorem 1 provides an O(logT ) upper bound for CBPA-

SC, which guarantees that its cumulative PIF will converge

to that of the global optimum power value at a rate of

O(log T/T ). Furthermore, this upper bound applies to any

finite time T and any general function of switching loss

f(|pi−pj |) as long as f is a non-decreasing and finite function.

Theorem 1 is a powerful result as it gives an O(log T )
bound for the most general algorithm CBPA-SC. We can now

derive similar results for all the other proposed algorithms.

First, when sij = 0, ∀i, j ∈ Npow, Theorem 1 can be applied

to CBPA. Formally, we have the following corollary.

Corollary 2. The expected cumulative PIF loss E[RT ] of

CBPA is bounded above as:

E[RT ] ≤
n
∑

i=1,i6=i∗

∆i

(

⌈4σ
2
0

∆2
i

(log 2πe+ 4 logT )− 1⌉+ N̂i

)

,

where

N̂i = e
M2

i∗

3σ2
0 + e

M2
i

3σ2
0 +

9

2

(

e
3M2

i∗

2σ2
0 + e

3M2
i

2σ2
0

)

.

Proof. See Appendix B.

As Corollary 2 shows, the O(log T ) upper bound of the

cumulative PIF loss still holds for the CBPA algorithm. Thus,

adding switching cost into the problem does not change

the optimal scaling of the cumulative PIF loss. However,

the algorithm that deals with the switching cost (CBPA-SC)

is considerably more complicated than the one without the

switching cost (CBPA).

Next, we note that the difference between BPA and CBPA

lies in the correlation structure. We can further remove the

correlation component in Corollary 2 to analyze BPA.

Corollary 3. The expected cumulative PIF loss E[RT ] of BPA

is bounded above as:

E[RT ] ≤
n
∑

i=1,i6=i∗

∆i

(

⌈4σ
2
0

∆2
i

(log 2πe+ 4 logT )− 1⌉

+e
∆m2

i∗

3σ2
0 + e

∆m2
i

3σ2
0 +

9

2
e

3∆m2
i∗

2σ2
0 +

9

2
e

3∆m2
i

2σ2
0

)

,

where ∆mi = µi − µ0
i measures the accuracy of the prior

knowledge of the mean PIF.

Proof. See Appendix C.

Finally, because the UiPA algorithm does not use any prior

knowledge, its utility function QUiPA
i (t) is similar to the

UCB1-NORMAL algorithm in [13]. Thus, the upper bound of

the expected PIF loss can be derived analogously.

Theorem 4. The expected cumulative PIF loss E[RT ] of UiPA

is bounded above as:

E[RT ] ≤
n
∑

i=1,i6=i∗

∆i

(16σ2
0

∆2
i

(log 2πe+ 4 logT )

+((2πe)−1/4 + 2) logT +
log 2πe

2
+

2√
2πe

)

,

Proof. See Appendix D.

We can see that even though the constant terms in the

upper bounds of CBPA and BPA may possibly be larger than

the ones of UiPA, with a much smaller coefficient of logT ,

the performance turns out to be better. Moreover, if the prior

knowledge is accurate in BPA and CBPA, the upper bounds

for both will become:

E[RT ] ≤
n
∑

i=1
i6=i∗

∆i

(

⌈4σ
2
0

∆2
i

(log 2πe+ 4 logT )− 1⌉+ 4√
2πe

)

,

which can be easily derived from the corollaries.

VI. REDUCING COMPLEXITY IN MULTI-SBS

A practical problem in a multi-SBS deployment may arise

due to the “curse of dimensionality”. As the set of arms

consists of the combinations of different power levels at

all SBSs, it leads to nK arms and incurs exponential time

and space complexity for the proposed algorithms. Plus, the

number of available power levels for each SBS n can be

large. Note that in the CBPA and CBPA-SC algorithms, we
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need matrix calculations when updating the estimated state,

which calls for O(n3K) time complexity and O(n2K) space

complexity [22]. This severely limits the applicability of the

proposed algorithms in large enterprise networks.

To reduce the complexity, we first explore a practical con-

straint that has not been utilized in the proposed algorithms.

In real-world deployment, the neighboring SBSs are generally

not allowed to have vastly different pilot power levels. This

is because otherwise they may result in significantly differ-

ent coverage areas and therefore lead to very uneven load

distributions. Thus, utilizing this practical constraint, we only

need to consider the combinations of power levels in which

neighboring SBS power levels are different by no more than

a certain threshold Pth.

Even with the power difference threshold, the size of set is

still exponential in K . To further reduce the complexity, we

notice that the performance space of all set of arms exhibits

certain “clustering” effect that can be utilized. For two power

settings that differ only slightly (e.g., {0, 3, 5} and {0, 4, 4}
dBm for K = 3), the performances may be very similar. Thus,

if we can carefully group the power settings into a few clusters,

and only use the cluster center as the representative power

setting, we can achieve a good tradeoff between complexity

and performance for the algorithms.

We propose to perform a clustering operation to address

the complexity issue. The clustering operation is done after

the self-configuration phase to leverage the prior knowledge,

but before invoking the power assignment algorithm. We adopt

the K-medoids clustering [23] because, different from the well-

known K-means clustering, K-medoids is based on the most

central object instead of the centroids in K-means, each of

which is the mean point of all objects in the cluster. Therefore,

the medoids in each cluster can be seen as the representative

power settings. We note that the choice of the number of

clusters N plays a critical role in the overall performance.

If it is too large, the global optimum power setting may be

a medoid with high probability, which contributes to high

accuracy for the power assignment process but also increases

the complexity and leads to low efficiency, and vice versa.

We further note that there is a O(nKN) time complexity for

K-medoids clustering [23], but as clustering is done prior to

the self-optimization phase, the process can be handled offline.

Thus, time complexity is less of a concern.

VII. SIMULATION RESULTS

A. Simulation setup

We resort to numerical simulations to verify the effective-

ness of the developed transmit power assignment algorithms.

A system-level heterogeneous network simulator is developed

considering both indoor SBS and outdoor MBS. We consider

a large warehouse with K = 1, 2, 4 SBSs deployed inside

and a MBS outside with a fixed transmit power setting. The

measurement points constitute two routes inside and outside

respectively which we assume to follow concentric circle or

ellipse pattern. 100 measurement points are set uniformly on

each route. At each time slot, the measurement points feedback

their own coverage condition, determined by the respective

SINR which is naturally decided by the current SBS power

setting. We set the total time horizon as T = 3000 slots and

iterate each simulation setting for 50 times to average out the

randomness. The size of the warehouse and the SBS locations

are given in Table I. Here we set the center of the warehouse

as origin. The PIF r under each power value can be calculated

following the procedure in Sec. II.

We obtain the received power from SBS or MBS using the

indoor femto channel model of urban deployment from [24]

as follows.

• indoor UE to MBS:

PL(d)[dB] = 15.3+37.6×log10(d)+Low+XσdB
, (10)

• outdoor UE to MBS:

PL(d)[dB] = 15.3 + 37.6× log10(d) +XσdB
, (11)

• indoor UE to SBS:

PL(d)[dB] = 38.46 + 20× log10(d) +Xσ′

dB
, (12)

• outdoor UE to SBS:

PL(d)[dB] = max{15.3 + 37.6 log10(d),

38.46 + 20 log10(d)} + Low +Xσ′

dB
.

(13)

Note that (10) and (12) are for indoor routes while (11) and

(13) are for outdoor routes; d represents the separation between

a BS and the measurement point; Low is the penetration loss

of an outdoor wall, which indoor user suffers when receiving

power from outdoor MBS and outdoor user receiving from

indoor SBS; XσdB
and Xσ′

dB
stand for shadow fading. Other

important simulation parameters are summarized in Table I.

TABLE I
SIMULATION PARAMETERS

Parameters Value

SBS transmit power [-10dBm, 20dBm]

MBS transmit power 40dBm

Thermal noise density -174dBm/Hz

Bandwidth 20MHz

Carrier frequency 2GHz

Penetration loss (Low) 20dB

Shadowing effect
log-normal with

σ = 8dB, σ′ = 4dB

d0 1m

α 0.7

Enterprise Size K=1 30m×30m

K=2 40m×40m

K=4 50m×40m

SBS location K=1 (12m,8m)

K=2 (16m,17m), (-15m,-11m)

K=4 (20m,18m), (11m,-19m)

(-11m,18.5m), (-10.5m,-19m)

B. Evaluation of the PIF Gaussian Distribution

We first study the empirical distribution of the PIF r in K =
1 SBS with the set of power levels P = {−10,−5, .., 15, 20}
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Fig. 4. A 40× 30m2 warehouse, with elliptic routes inside and outside.

dBm. We present the comparison of empirical and Gaussian

distributions in two representative scenarios in Fig. 4(a) and

4(b). As we can see, the assumption on Gaussian distributed

PIFs matches well with the empirical distributions.

To further verify the dependency on the Gaussian distri-

bution, we study the performance of the proposed algorithms

compared with a well-behaved UCB extended algorithm which

makes no assumptions on the distribution of the rewards,

e.g. UCB-V in [25] under non-Gaussian reward distributions.

More specifically, two well-adopted distributions in wireless

communications, uniform and Rayleigh, are considered. We

can see from Fig. 5 that performances under non-Gaussian

distributions are still very good, particularly for BPA and

CBPA. This observation indicates that Gaussianness is not a

fundamental assumption that must be met to guarantee the

effectiveness of the algorithms.
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Fig. 5. Verifications of algorithms under non-Gaussian distributed rewards.

C. System Performance

In the simulation setting for K = 1, we deploy an outside

MBS at [100m, 100m]. The set of power levels for SBS is

P = {−10,−8, .., 18, 20} dBm while other settings follow

Table I. The inside and outside routes have the concentric

circle pattern, whose radiuses are (2, 13) meters for the

two indoor routes, and (24, 30) meters for the two outdoor

routes. The cumulative loss over time is used to evaluate the

performance, and we use the optimal power achieved by the

global optimization of the expected PIF with complete RF

information as the genie-aided optimum.
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Fig. 6. Cumulative loss comparison of prior knowledge with different qualities
in a single-SBS deployment with α = 0.7.

We first compare the performance of UiPA, BPA and CBPA

algorithms with different quality of priors. Fig. 6(a) reports the
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cumulative loss over time for all three algorithms when the

prior knowledge is of good quality, i.e. the estimated mean

from the empirical distribution is used. Fig. 6(b) shows the

same simulation but with a poor prior knowledge, which uses

a uniform prior distribution with each element µ0 = 50. A few

important observations can be made from these simulations.

First of all, we see that all three algorithms can converge

to the optimal power value asymptotically, but with different

speed. To further evaluate the convergence speed, we plot the

empirical CDF of the convergence time for all three algorithms

in Fig. 7. It becomes clear that leveraging both the prior

knowledge and the correlation structure significantly acceler-

ates the convergence of CBPA. In terms of minimizing the total

PIF loss, CBPA also outperforms BPA which performs better

than UiPA. Second, degradation of the quality of the priors

degrades the performance of BPA and CBPA. Particularly,

performance of the BPA is getting close to UiPA with poor

prior knowledge. It is interesting to note that even with poor

prior, CBPA still converge faster than other algorithms with

good prior. This is because when the prior knowledge is

inaccurate, CBPA recovers some of the PIF degradation by

leveraging its correlation structure. Lastly, as UiPA does not

leverage the prior knowledge, changing its quality does not

affect the convergence speed.
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Fig. 7. Convergence speed comparison of prior knowledge with different
qualities in a single-SBS deployment with α = 0.7. “Good prior” corresponds
to using the estimated mean while “poor prior” uses a uniform distribution.

Next, we compare the proposed algorithms with the industry

solution. The heuristic solution [9] keeps a power value long

enough to obtain a near-perfect PIF estimation, and then

it either increases or decreases the power value by a fixed

step size. Clearly, this method trades off fast convergence

for certainty. Fig. 8 reports the numerical comparison with

a maximum 20dBm and step size 2dB. We can see that

the industrial solution adapts poorly to different deployments,

while our algorithms are stable thanks to online learning.

For K = 2 and K = 4, an outside MBS is deployed

at [100m, 100m]. The power value difference threshold is

Pth = 5dB. The power value for each SBS is selected from

P = {−10,−5, .., 15, 20}dBm. It results in n = 19 for K = 2
without any clustering, which may be acceptable in terms

of complexity. The cumulative PIF loss with respect to the

optimal power setting is shown in Fig. 9(a). For K = 4 case,
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Fig. 8. Comparison of the industrial solution to UiPA, BPA and CBPA in
different scenarios.

however, there are n = 149 power settings. We thus employ

the clustering strategy in Sec. VI and study two cases where

the number of clusters is either N = 20 or N = 40. The PIF

loss normalized by time is shown in Fig. 9(b). We can see

that all algorithms exhibit a decaying loss per slot. As for the

effect of N , there exists an initial period when larger cluster

number results in worse performance for all the algorithms.

This is because during the initial slots, more power settings

lead to more exploration and thus sub-optimal power settings

are selected more. As time goes by, the algorithms have more

knowledge about the optimal power setting. While a larger

cluster number means one of the selected clustering medoids

is closer to the globally optimal power setting, a larger N
results in a better performance. Detailed coverage and leakage

results under optimal selections are reported in Table II.

Fig. 10(a) and 10(b) study the impact of power switching

cost for K = 2 and K = 4, respectively. Here we adopt a

simple linear function of switching loss as sij = γ|pi − pj |,
where γ is a tunable parameter for different scenarios and we

set as 0.2. We can see that the additional performance loss

occurring whenever a SBS changes its power value increases

the overall performance loss in all algorithms. However, the
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TABLE II
MULTI-SBS SIMULATION RESULTS

Metric K=2 K=4

Globally optimal power [dBm] (0, 5) (0, 5, 10, 15)

Coverage percentage 91.506% 96.548%

Leakage percentage 5.691% 28.725%

Simulation output power [dBm] (0, 5) (-5, 0, 5, 10) when N = 20
(0, 5, 10, 15) when N = 40
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Fig. 9. Simulation results for two and four SBSs in different scenarios.

algorithms can still converge to the optimal power settings

asymptotically in a sub-linear fashion, matching the regret

analysis in Sec. III. In Fig. 10(b), the performances of different

cluster numbers also comply with our previous analysis.

VIII. CONCLUSION

We have studied the pilot power assignment problem asso-

ciated with indoor enterprise closed-access SBS networks, in

which the focus is on achieving optimal balance between pro-

viding sufficient coverage for the indoor users and suppressing

leakage that causes interference to outdoor MBS users. We
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Fig. 10. Performance with switching cost factor γ = 0.2.

modeled power assignment as an online learning problem,

and adopted a Bayesian approach that leverages the prior

information of the Gaussian distribution. We proposed bandit-

inspired power assignment algorithms that utilize different

levels of the statistical information. The CBPA algorithm

makes use of both prior knowledge of the mean and variance

of each arm as well as the dependency of PIFs across different

power values. In contrast, the BPA algorithm only uses the

prior knowledge but not the correlation information, and its

performance is worse than CBPA but better than the UiPA

algorithm that does not use either prior or correlation. Further-

more, we explicitly took into account the power switching cost,
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and enhanced the power assignment algorithms with a block

allocation scheme to reduce frequent power-switchings. A sub-

linear upper bound for performance loss was proved for all the

algorithms. Furthermore, for the multi-SBS deployment, we

proposed to use K-medoids clustering to reduce the complexity

while maintaining the performance. When the cluster number

becomes large, the algorithms can approach the globally

optimal power setting for all K SBSs.

As a possible future direction, the spectral bandits method

proposed in [26] offers a new perspective to efficiently handle

a large number of arms while capturing the correlation struc-

ture. This can be an interesting alternative for the enterprise

transmit power assignment problem. In particular, complexity

and performance comparison with the algorithms of this paper

may shed light into its feasibility.

APPENDIX A

PROOF OF THEOREM 1

We start by proving for the case Ll−1 < T 6 Ll. Note that

Ni(T ) =

T
∑

t=1

I(pa(t) = i) 6

T
∑

t=1

I(Qt
i > Qt

i∗)

6 ηi +

T
∑

t=1

I(Qt
i > Qt

i∗ , Ni(t− 1) > ηi) (14)

6 ηi +

l
∑

f=1

bf
∑

k=1

fI(Qt
i > Qt

i∗ , Ni(τfk) > ηi), (15)

where i∗ = argmaxi=1,..,n µi, ηi is a positive integer, and

I(x) is the indicator function. At any time t, sub-optimal i is

selected only when Qt
i∗ 6 Qt

i, which is true as long as one of

the following inequalities holds:

µ̂i∗(τfk) 6 µi∗ − Ui∗(τfk), (16a)

µ̂i(τfk) > µi + Ui(τfk), (16b)

µi∗ < µi + 2Ui(τfk), (16c)

where Ui(τfk) = σ̂i(τfk)

√

n
∑

j=1

ρ2ij(τfk)Φ
−1(1−1/

√
2πeτ2fk).

Define the bias e and covariance Σ̄ of the estimate µ̂(t), with

ei and σ̄i representing the i-th entry of e and the diagonal

of Σ̄, and we have µ̂(t) ∼ N (e(t) + µ, Σ̄(t)), with ei(t) =
∑n

j=1

∑n
k=1 σ̂ik(t)λ

0
kj(µ

0
j − µj).

We now separately analyze (16a), (16b), and (16c). First, if

Ni∗(τfk) = 0, then (16a) is false if [16, Lemma 7]

Ui∗(τfk) > σi∗−cond

√

3 log τfk >
Mi∗

√

1 + δ2i∗
> |ei∗(τfk)|

or equivalently,

τfk > e

M2
i∗

δ2
i∗

3σ2
0
(1+δ2

i∗
) . (17)

Otherwise, if Ni∗(τfk) > 1, we have

P{µ̂i∗(τfk) 6 µi∗ − Ui∗(τfk)}

6 P

{

z > Φ−1(1− 1/
√
2πeτ2fk)−

Mi∗

σ0

}

6 P

{

z >
√

3 log τfk −
Mi∗

σ0

}

, (18)

where z is a standard Gaussian random variable. This indicates

that
√

3 log τfk − Mi∗

σ0
> 0. Thus we have τfk > eM

2
i∗/3σ

2
0 =

τ1. For τfk > τ1, we have

P{(16a) holds} 6
1

2
exp

(

−1

2

(

√

3 log τfk −
Mi∗

σ0

)2
)

6
1

2
exp

(

−1

2

(

9

4
log τfk − 3

M2
i∗

σ2
0

))

=
1

2
e

3M2
i∗

2σ2
0 τ

− 9
8

fk . (19)

Inequality (19) is deduced using [16, Lemma 2].

Similarly, we can deduce that if Ni(τfk) > ηi and τfk >

τ2 := eM
2
i /3σ

2
0 , then

P{(16b) holds} 6
1

2
e

3M2
i

2σ2
0 τ

− 9
8

fk . (20)

For inequality (16c), it holds if

µi∗ − µi < 2Ui(τfk)

=⇒ ∆i <
2σ0

√

1 +Ni(τfk)
Φ−1(1− 1/

√
2πeτ2fk)

=⇒ Ni(τfk) <
4σ2

0

∆2
i

(log 2πe+ 4 logT )− 1.

Thus we have that (16c) does not hold if

Ni(τfk) >
4σ2

0

∆2
i

(log 2πe+ 4 logT )− 1. (21)

Setting ηi = ⌈ 4σ2
0

∆2
i

(log 2πe+4 logT )−1⌉ and combining (17),

(19) and (20), the inequality (15) can be written as

E[Ni(T )] 6 ηi + τ1 + τ2 +
1

2

(

e
3M2

i∗

2σ2
0 + e

3M2
i

2σ2
0

)

l
∑

f=1

bf
∑

k=1

fτ
− 9

8

fk .

(22)

We now focus on
∑l

f=1

∑bf
k=1 fτ

− 9
8

fk . With τfk = Lf−1 +

1 + (k − 1)f and 2f
2

6 Lf 6 2f
2

+ f2, we have

bf
∑

k=1

fτ
− 9

8

fk 6

bf
∑

k=1

f(2(f−1)2 + (f − 1)2 + 1 + (r − 1)f)−9/8

6

bf
∑

k=1

f

2(f−1)2 + (f − 1)2 + 1 + (r − 1)f

6

∫ bf

1

f

2(f−1)2 + (f − 1)2 + 1 + (r − 1)f
dr

= log
2f

2

+ (f − 1)2 + 1

2(f−1)2 + (f − 1)2 + 1

6 log
2f

2

2(f−1)2
,

and

l
∑

f=1

bf
∑

k=1

fτ
− 9

8

fk 6

l
∑

f=1

log
2f

2

2(f−1)2
= l2 log 2 6 log 2T.



14

Therefore (22) yields

E[Ni(T )] 6 ηi + τ1 + τ2 +
1

2

(

e
3M2

i∗

2σ2
0 + e

3M2
i

2σ2
0

)

log 2T

6 Ci
1 logT + Ci

2,

Ci
1 =

16σ2
0

∆2
i

+
log 2

2

(

e
3M2

i∗

2σ2
0 + e

3M2
i

2σ2
0

)

,

Ci
2 =

4σ2
0

∆2
i

log
√
2πe+

(

e
M2

i∗

3σ2
0 + e

M2
i

3σ2
0

)

.

We then establish the expected number of switches to a

sub-optimal arm i from a different arm. We have

Si(T ) 6 1 +

l
∑

f=1

Ni(Lf)−Ni(Lf−1)

f

= 1 +
l
∑

f=1

Ni(Lf)

f
−

l−1
∑

f=0

Ni(Lf−1)

f + 1

=
Ni(Ll)

l
+

l−1
∑

f=1

Ni(Lf )

(

1

f
− 1

f + 1

)

6
Ni(Ll)

l
+

l−1
∑

f=1

1

f2
,

using the same argument as [21]. Then it follows that

E[Si(T )] 6
E[Ni(Ll)]

l
+

l−1
∑

f=1

E[Ni(Lf )]

f2
. (23)

With the upper bound on E[Ni(T )] and Lf 6 2f
2

+ f2 6

2f
2+1, (23) can be further deduced as

E[Si(T )] 6
Ci

1 logLl + Ci
2

l
+

l−1
∑

f=1

Ci
1 logLf + Ci

2

f2

6
Ci

2

l
+

l−1
∑

f=1

Ci
2

f2
+

Ci
1 log 2

l2+1

l
+

l−1
∑

f=1

Ci
1 log 2

f2+1

f2

6 Ci
2

(

1 +
π2

6

)

+ log 2Ci
1

(

l +
π2

6

)

6 log 2Ci
1

√

log2 T + (Ci
2 + log 2Ci

1)

(

1 +
π2

6

)

.

Finally, the cumulative switching cost can be bounded as

SC(T ) 6

n
∑

i=1,i6=i∗

s̃max
i E[Si(T )] + s̃max

i∗ E[Si∗(T )]

6

n
∑

i=1,i6=i∗

(s̃max
i + s̃max

i∗ )E[Si(T )] + s̃max
i∗ .

APPENDIX B

PROOF OF COROLLARY 2

For the CBPA algorithm, (14) still holds. Hence, the ar-

gument from (16a) to (21) equally applies to any time slot

t = 1, 2, .., T . The proof is complete by rewriting (14) as

E[Ni(T )] 6 ηi + τ1 + τ2 +
1

2

(

e
3M2

i∗

2σ2
0 + e

3M2
i

2σ2
0

)

T
∑

t=1

t−
9
8

6 ⌈4σ
2
0

∆2
i

(log 2πe+ 4 logT )− 1⌉+ N̂i,

N̂i = e
M2

i∗

3σ2
0 + e

M2
i

3σ2
0 +

9

2

(

e
3M2

i

2σ2
0 + e

3M2
i

2σ2
0

)

.

APPENDIX C

PROOF OF COROLLARY 3

In the BPA algorithm, inequalities (14)(16a)(16b)(16c)

still hold for any time slot t = 1, 2, .., T , with Ui(t) =
σ0√

1+Ni(t)
Φ−1(1 − 1/

√
2πet2). The estimated mean µ̂i(t)

is a Gaussian random variable with mean
µ0
i+Ni(t)µi

1+Ni(t)
and

variance
Ni(t)σ

2
0

(1+Ni(t))2
. The proof then follows the similar steps

as Appendix A, with inequality (18) written as

P{µ̂i∗(t) 6 µi∗ − Ui∗(t)} 6

P

{

z >

√

Ni∗ + 1

Ni∗
Φ−1

(

1− 1√
2πeτ2fk

)

− ∆mi∗

σ0

√

Ni∗(t)

}

.

Thus, inequalities (19) and (20) become

P{(16a) holds, t > τ1} >
1

2
e

3∆m2
i∗

2σ2
0 t−

9
8 , τ1 = e

∆m2
i∗

3σ2
0

P{(16b) holds, t > τ2} >
1

2
e

3∆m2
i

2σ2
0 t−

9
8 , τ2 = e

∆m2
i

3σ2
0 .

This leads to

E[Ni(T )] 6 ηi + τ1 + τ2 +
1

2

(

e
3∆m2

i∗

2σ2
0 + e

3∆m2
i

2σ2
0

)

T
∑

t=1

t−
9
8

6 ⌈4σ
2
0

∆2
i

(log 2πe+ 4 logT )− 1⌉+ e
∆m2

i∗

3σ2
0 + e

∆m2
i

3σ2
0 +

9

2
e

3∆m2
i∗

2σ2
0 +

9

2
e

3∆m2
i

2σ2
0 ,

which completes the proof.

APPENDIX D

PROOF OF THEOREM 4

According to the Lemma 1 in [16], the utility function

QUiPA
i can be written as

QUiPA
i (t) 6 r̄i(t) + Ui(t),

with

Ui(t)
.
=

√

√

√

√

√

t
∑

τ=1

r2i (τ) − r̄2i (t)Ni(t)

(Ni(t)− 1)Ni(t)
(log 2πe+ 4 log t).

Then, we can use [13, Theorem 4] to bound the expected

loss. We have (24), shown at the top of the next page, for

all Ni(t) > log 2πe/2 + 2 log t. Furthermore, P{µ̂i∗(t) >
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P{µ̂i(t) > µi+Ui(t)} = P







µ̂i(t)− µi
√

(
∑t

τ=1 r
2
i (τ) − r̄2i (t)Ni(t))/(Ni(t)(Ni(t)− 1))

>
√

log 2πe+ 4 log t







6 1/
√
2πet−2 (24)

µi∗ +Ui∗(t)} can be similarly bounded. Lastly, using the Chi-

squared distribution, we have

P{µi∗ < µi + 2Ui(t)} =

P

{

∑t
τ=1 r

2
i (τ) − r̄2i (t)Ni(t)

σ2
0

>
(Ni(t)− 1)∆2

iNi(t)

4σ2
0(log 2πe+ 4 log t)

}

6 P

{

∑t
τ=1 r

2
i (τ) − r̄2i (t)Ni(t)

σ2
0

> 4(Ni(t)− 1)

}

6 e−Ni(t)/2

6 (2πe)−1/4t−1,
(25)

and

Ni(t) > max

{

16σ2
0

∆2
i

,
1

2

}

(log 2πe+ 4 logT ). (26)

Combining (24)(25)(26), Ni(t) can be bounded as

Ni(T ) 6 max

{

16σ2
0

∆2
i

,
1

2

}

(log 2πe+ 4 logT )+

T
∑

t=1

(

2/
√
2πet−2 + (2πe)−1/4t−1

)

6
16σ2

0

∆2
i

(log 2πe+ 4 logT )+

((2πe)−1/4 + 2) logT +
log 2πe

2
+

2√
2πe

.

This completes the proof.
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