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How Much Spectrum is Too Much in Millimeter
Wave Wireless Access
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Abstract—Great increase in wireless access rates might be
attainable using the large amount of spectrum available in the
millimeter wave (mmWave) band. However, higher propagation
losses inherent in these frequencies must be addressed, especially
at ranges beyond 100 meters and in non-line-of-sight (NLOS)
settings. In contrast to the interference limited legacy cellular
systems where using more bandwidth is favorable, , to use
wider bandwidth for mmWave channels in noise limited settings
may be ineffective or even counterproductive when accounting
for channel estimation penalty. In this paper we quantify the
maximum beneficial bandwidth for mmWave transmission in
some typical deployment scenarios where pilot-based channel
estimation penalty is taken into account assuming a minimum
mean square error (MMSE) channel estimator at the receiver. We
find that, under I.I.D. block fading model with coherence time
Tc and coherence bandwidth Bc, for transmitters and receivers
equipped with a single antenna, the optimal (rate maximizing)
signal-to-noise-ratio (SNR) is a constant that only depends on the
product BcTc, which measures the channel coherence and equals
the average number of orthogonal symbols per each independent
channel coefficient. That is, for fixed channel coherence BcTc,
the optimal bandwidth scales linearly with the received signal
power. Under 3GPP Urban Micro NLOS path loss model with
coherence time Tc = 5 ms and coherence bandwidth Bc = 10
MHz, using 52 dBm Equivalent Isotropic Radiated Power (EIRP)
at the transmitter and 11 dBi antenna gain at the receiver, the
maximum beneficial bandwidth at 28 (resp. 39) GHz is less than 1
GHz at a distance beyond 210 (resp. 170) meters with maximum
throughput about 200 Mbps, and less than 100 MHz beyond 400
(resp. 310) meters with maximum throughput about 20 Mbps. At
EIRP of 85 dBm, corresponding to the FCC limit of 75 dBm per
100 MHz, 1 Gbps rate can be delivered using 1 GHz bandwidth
up to 860 (resp. 680) meters.

Index Terms—millimeter wave, wireless access, spectrum,
bandwidth, channel estimation, block fading

I. INTRODUCTION

Spectrum available in the millimeter wave (mmWave) band
is expected to be tens of GHz as compared to hundreds of MHz
in legacy cellular band. For example, in the United States,
the FCC [1] recently has opened up 3.85 GHz of licensed
spectrum with an Equivalent Isotropic Radiated Power (EIRP)
limit of 75 dBm for every 100 MHz bandwidth at base sta-
tions1, and 14 GHz of unlicensed spectrum (57 GHz–71 GHz)
with 40 dBm EIRP limit2 to facilitate wireless broadband and
next generation wireless technologies in spectrum above 14
GHz. The abundant spectrum in mmWave has attracted a lot

Authors are with Nokia Bell Labs, Holmdel, NJ 07733, USA. Email:
{jinfeng.du, rav}@bell-labs.com.

1A peak EIRP limit of 43 dBm is proposed for mobile stations and 55 dBm
for transportable stations, e.g., modem.

2For outdoor fixed point-to-point backhaul links with high antenna gains,
the EIRP limit is up to 82 dBm.

of efforts both in academia and in industry to measure and
model mmWave channels [2]–[6] and to evaluate its potential
for future wireless systems. See also [7] for a rich literature
survey of advances in mmWave.

However, higher propagation losses inherent in mmWave
frequencies must be addressed, especially at ranges beyond
100 meters and in non-line-of-sight (NLOS) settings. On
one hand, higher propagation loss and higher foliage loss
make it challenging to deliver signals. On the other hand, the
limited transmit signal power spreading over a large bandwidth
may drive the link into the low signal to noise ratio (SNR)
regime. Therefore, in contrast to the interference limited legacy
cellular systems where using more bandwidth is favorable, in
mmWave systems, users located at range of hundred meters
and beyond are most likely to be noise limited, and using
more bandwidth leads to a diminishing return and can even
be counterproductive when the channel estimation penalty
exceeds the gain of increasing the degree-of-freedom (DoF).

From information theoretical point of view, it is known
that using too much bandwidth might be counterproductive
in wideband fading channels, unless the signal becomes ex-
tremely peaky, in the sense that its fourth moment grows at
least as fast as signaling bandwidth [8]. That is, concentrat-
ing the power into a vanishing fraction of its symbols and
transmitting infrequent bursts, as shown in [9] using a peaky
Frequency-Shift-Keying modulation with a vanishing duty-
cycle to facilitate non-coherent detection at the receiver. Ca-
pacity analysis with both peak and average power constraints
studied in [10] has demonstrated bell-shaped upper and lower
bounds that peak at finite bandwidths. For spread spectrum
transmission over wideband fading channels using Binary-
Phase-Shift-Keying modulation, it was shown [11], [12] that
there exists a maximum beneficial bandwidth spreading, be-
yond which over-spreading will decrease the rate. For single-
input single-output (SISO) wideband fading channels, mutual
information based analysis in [13] has provided closed-form
bounds to coarsely identify the range within which the “critical
bandwidth” locates. This analysis has been generalized in [14]
to multiple-input multiple-output (MIMO) systems accommo-
dating duty cycles and a set of new tools are developed to
bound the optimal bandwidth3.

In practical mmWave systems, channel state information
(CSI) is crucial to materialize the large beamforming gain
out of the many-element antenna array to sustain a feasible
link budget [15]–[17]. The associated channel estimation cost

3More precisely, in [14] it refers to the “bandwidth occupancy” that
measures the average bandwidth usage over time.

ar
X

iv
:1

70
4.

04
27

4v
1 

 [
cs

.I
T

] 
 1

3 
A

pr
 2

01
7



2

grows with the number of antennas4 and the signaling band-
width. Rate penalty caused by channel estimation overhead
and channel estimation error has been analyzed in [18] for
the pilot-based minimum mean square error (MMSE) channel
estimator. The cost and quality of channel estimation has
been investigated in [17] for a feedback based beam-switching
system, where the fraction of pilot is optimized to maximize
the rate.

In this work, we focus on mmWave transmission systems
that exploit pilots for channel estimation and we are interested
in determining the optimal signal bandwidth and fraction of
pilots for channel estimation to maximize user throughput at
a range of power levels and link distances in some typical de-
ployment scenarios. Our investigation has revealed a surprising
result that, under I.I.D. block fading model with coherence
time Tc and coherence bandwidth Bc, for transmitters and
receivers equipped with a single antenna, the optimal (rate
maximizing) SNR and the optimal pilot ratio are two con-
stants that only depend on the product BcTc, which measures
the channel coherence and equals the average number of
orthogonal symbols per each independent channel coefficient.
That is, for fixed channel coherence BcTc, the optimal band-
width scales linearly with the received signal power, and the
percentage of pilots is fixed whereas the absolute number
of pilots grows linearly. Our analysis is then extended to
beamforming based MIMO systems where a single data stream
is transmitted (per each polarization5). Furthermore, we find
that, under 3GPP Urban Micro NLOS path loss model [21]
with coherence time Tc = 5 ms and coherence bandwidth
Bc = 10 MHz, using 52 dBm EIRP at the transmitter and
11 dBi antenna gain at the receiver, the maximum beneficial
bandwidth at 28/39/60 GHz band is less than 1 GHz for
users beyond 210/170/120 meters with corresponding rate at
around 200 Mbps. The maximum beneficial bandwidth is less
than 100 MHz when the transmission distance is longer than
400/310/230 meters.

The rest of this paper is organized as follows. We present
the system model in Sec. II and derive the bandwidth-pilot
optimization problem and its solutions for SISO systems in
Sec. III. The results are extended to beamforming based
MIMO systems in Sec. IV and the maximum beneficial
bandwidth is evaluated in Sec. V for the 28, 39, and 60 GHz
bands with different power level and link parameters. Two
potential use cases are presented in Sec. VI, and conclusions
and future work are in Sec. VII.

II. SYSTEM MODEL

First we focus on the case where both the transmitter and
the receiver are equipped with a single antenna, formulating
and solving the joint bandwidth and pilot optimization problem
for the SISO case in Sec. III, and then extend the analysis to
beamforming based MIMO systems in Sec. IV.

4If each receive antenna is equipped with an independent RF-chain, the
channel estimation cost grows only with the number of transmit antennas.

5Throughout this paper we only use a single polarization for analysis. It
is common in practice to have separate RF power supply chain for each
polarization, in which case we can duplicate the analysis to fit the setup.

A. Channel Model and Channel Coherence

We adopt the discrete-time channel model where the channel
input-output relation can be written as

y =
√
Prhx+ z, (1)

where x ∈ C is the power-normalized complex valued input
signal with unit average power constraint E[|x|2] = 1, h ∈ C
is a complex valued random variable with E[|h|2] = 1 that
represents the small scale channel fading, y ∈ C is the
complex-valued channel output signal, and z ∈ C is the
circularly symmetric complex Gaussian additive noise with
power spectral density N0 (Watt/Hz). Note that the transmit
signal power, transmit and receive antenna element gains, path
loss, vegetation absorption, and other attenuation factors are
incorporated into the received signal power Pr (Watt). With
signaling bandwidth W (Hz), the SNR can be written as

ρ(W ) =
Pr
N0W

. (2)

We further assume that the channel coefficient h stays
unchanged for a time period equals a coherence time Tc (sec-
onds) and over a bandwidth equals a coherence bandwidth Bc
(Hz), after which h will change independently at random. This
is often referred as I.I.D. block fading channel model where
the product Lc,BcTc is defined as the channel coherence
length, or channel coherence for short. For signal symbols
of bandwidth W and symbol duration T ≥ 1

W , the number
of symbols that can be transmitted over a coherence block of
time Tc and bandwidth Bc can be written as

Bc
W

Tc
T

=
BcTc
WT

≤ BcTc,

with the equality holds when T = 1/W . Therefore the
channel coherence length Lc quantifies the average number
of independent6 signal symbols that can be packed over the
time-frequency resource block of Tc ×Bc.

B. Pilot Based Channel Estimation, Data Transmission, and
Detection

We adopt the pilot-based MMSE channel estimator and its
associated channel estimation error analysis [18] to facilitate
our analysis. Among the Lc symbols transmitted over each
coherent time-frequency block, a fraction of them, αLc with
α∈ (0, 1), are used as pilots for channel estimation and the
remaining (1 − α)Lc symbols are used to transmit data.
The MMSE channel estimation ĥ and its associated channel
estimation error h̃ can be characterized [18] as7

h = ĥ+ h̃, E[ĥh̃] = 0, (3)

E[|ĥ|2] = αLcρ(W )

1 + αLcρ(W )
, E[|h̃|2] = 1

1 + αLcρ(W )
. (4)

6This number can be reduced by adding guarding time/frequency between
a group of packed symbols to reduce interference. The number can also be
increased but at the cost of losing independence among symbols.

7 We start with the setup where both pilot symbols and data symbols use the
same transmit power. Different power allocation for pilots and data symbols
will be discussed in Sec. III-C.
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The receiver, after performing the MMSE channel estima-
tion based on the known pilots, treats the estimated channel
ĥ as the true channel and discards the signal associated with
the estimation error h̃ as noise. Therefore the channel capacity
lower bound, highlighted with the signaling bandwidth W and
pilot ratio α, can be written [18] as (bits per second, bps)

R(W,α) = (1− α)W E[log2(1 + ρeff(W,α)|h|
2)], (5)

where the effective SNR ρeff(W,α) is given as

ρeff(W,α) ,
ρ(W ) E[|ĥ|2]

1 + ρ(W ) E[|h̃|2]
=

αLcρ(W )2

1 + αLcρ(W ) + ρ(W )

=
αLcP

2
r /N

2
0

W 2 + (1 + αLc)WPr/N0
, (6)

where the first step is obtained by treating the estimated
channel ĥ as the true channel and the signal associated with
MMSE channel estimation error as noise, the second step is
obtained by substituting (4), and the last step comes from (2).

III. JOINT OPTIMIZATION OF BANDWIDTH AND PILOTS
FOR SISO

The rate in (5) is the ergodic capacity of a fading chan-
nel with effective SNR ρeff(W,α) given in (6), and the
expectation is taken over all channel realizations of h by
coding across time-frequency coherence blocks to average
out the less favorable channel fading realizations. For any
given channel fading distribution, we seek to find the signaling
bandwidth W ∗ and pilot ratio α∗ to maximize the achievable
rate R(W,α), that is,

(W ∗, α∗) = argmax
W, α

R(W,α). (7)

Given our modeling of I.I.D. block fading channel with
coherence bandwidth Bc and coherence time Tc (i.e., channel
coherence Lc = BcTc), both W and α in the optimization (7)
are discrete: W = mBc and α = n/Lc with m,n ∈ N and
n ≤ Lc−1.

Instead of solving the discrete optimization problem via
two-dimension exhaustive search, which has to be done for
each realization of the triplet (Pr/N0, Bc, Tc), we first relax
W > 0 and α ∈ (0, 1) to be continuous valued and solve
the joint optimization analytically by taking partial derivation
of R with respect to W and α, respectively. Once we get
the continuous valued solution (W ∗, α∗), we map it to the
closest discrete point in the two dimensional plane specified
by (W,α). In the remaining part of this section, we will focus
on the continuous valued relaxed optimization problem itself
and present the numerical solution in Sec. III-A and its closed-
form approximation in Sec. III-B.

A. Solution for the Continuous-Value Relaxed Optimization

We first take partial derivation of R with respect to W and
α, and set them to zero, which leads to (see Appendix A for

the detailed derivation)

E

[
log(1 +

αLcρ
2|h|2

1 + (1 + αLc)ρ
)

]
(8)

=
2 + (1 + αLc)ρ

1 + (1 + αLc)ρ
− E

[
2 + (1 + αLc)ρ

1 + (1 + αLc)ρ+ αLcρ2|h|2

]
,

ρ(α2Lc + 2α− 1) = 1− 3α, (9)

where ρ = Pr/(N0W ) as defined in (2) is the SNR when using
bandwidth W . From (8) and (9), we can determine (ρ∗, α∗)
numerically using the algorithms developed in Appendix B.

We observe that:
1) The maximum throughput depends on W ∗ only through

the SNR ρ∗ , Pr/(N0W
∗), i.e., W ∗ is proportional to

Pr/N0;
2) α∗ and ρ∗ retain the same dependence prescribed by the

necessary condition (9) regardless the distribution of h
(as long as the continuous assumption holds);

3) α∗ and ρ∗ depend only on Lc and the probability dis-
tribution function (PDF) of the channel fading ph(|h|);
that is, for given Lc and channel fading PDF ph(|h|), the
joint bandwidth and pilot optimization will allocate the
amount of bandwidth proportional to Pr/N0 to maintain
a constant SNR ρ∗.

The implication of the above observation is striking: if
there is sufficient amount of spectrum, as is the case for
mmWave band, fixed spectral efficiency transmission (cod-
ing/modulation/pilots determined by ρ∗ and α∗) is sufficient
to maximize the pilot-based transmission throughput. For
given Lc and channel fading PDF ph(|h|), only the signaling
bandwidth W needs to be adapted and it grows linearly with
the received signal power.

B. Closed-Form Approximation for the Throughput Maximiz-
ing (W ∗, α∗)

Since the channel coherence length Lc measures the number
of independent symbols that can be placed over each time-
frequency resource block of Bc × Tc, it is a quantitative
measure that is inversely proportional to the “speed” of
channel variation. The larger Lc is, the “slower” the channel
changes in the two dimensional time-frequency plane. As
channel coherence Lc goes to infinity, the channel estimation
penalty becomes negligible and therefore we have α∗ → 0
and W ∗ → ∞ (hence SNR goes to zero). In this section we
will quantify the convergence speed by deriving closed-form
approximations of (W ∗, α∗) to shed some insights into the
design and operation of the pilot-based communication over
wideband fading channels.

The closed-form approximation, derived in Appendix C, can
be summarized as follows

ρ∗ =
Pr

N0W ∗
= (

4

Lc
)1/3 +O(L−2/3c ), (10)

α∗ = (2Lc)
−1/3 +O(L−2/3c ), (11)

R(ρ∗, α∗) =

(
1− (

4

Lc
)1/3 +O(L−2/3c )

)
Pr
N0

log2(e). (12)
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Table I
COMPARISON OF THE RATES OF DIFFERENT TRANSMISSION SCHEMES

scheme pilot bandwidth SNR rate R rate penalty RCSIR−R
RCSIR

peaky FSK [9] No ∞ 0 (14) 1
Lc

non-peaky Mutual Information [13] – O( Pr
N0

√
Lc

log(Lc)
) O(

√
log(Lc)

Lc
) (15) O(

√
log(Lc)

Lc
)

non-peaky pilot-based (ρ∗, α∗) Yes O( Pr
N0

3
√
Lc) O( 1

3√Lc
) (12) O( 1

3√Lc
)

That is, the throughput maximizing SNR, the pilot ratio, and
the rate penalty, all grow inversely proportional to the cubic
root8 of the channel coherence Lc.

It is worthwhile to compare different transmission schemes
and their corresponding rate penalty with respect to the full-
CSIR infinite-bandwidth capacity

RCSIR =
Pr
N0

log2(e). (13)

In [9] a non-coherent transmission scheme has been proposed
by combing infinite-bandwidth FSK modulation with a duty
cycle to concentrate the signal power to a small fraction of
active FSK symbols. The achievable rate is9

Rpeaky−FSK = (1− 1

Lc
)
Pr
N0

log2(e), (14)

which can only be approached when the duty cycle goes to
zero, i.e., using infinite high signal power for an infinitesimal
fraction of time to maintain the average power constraint.
Another benchmark is the mutual information based rate [13],

Rnon−peakyMI =

1−

√
κ log(π) log(Lc)

Lc

 Pr
N0

log2(e),

(15)

where κ is the kurtosis of the channel h, and the rate is
achievable by using non-peaky signaling with a sufficiently
large but finite bandwidth. Here the achievability refers to
the fact that there exists a coding scheme that achieves the
rate calculated based on mutual information, but the explicit
transmission/detection scheme (e.g., pilot vs. no pilot) is
yet to be determined. A detailed comparison of the three
schemes is shown in Table I. When there is no restriction
on how/whether channel estimation is performed, such as the
mutual information based study in [13], [14], the optimal SNR
and the associated rate penalty grow inversely proportional to√
Lc/ log(Lc). When pilot-based channel estimation is used,

as studied in this work, the convergence speed is associated
with the cubic root of Lc (with approximation). The speed of
the convergence depends on the actual transmission schemes
in use and the gap of rates indicates the potential gain of
using more advanced transmission schemes such as iterative
estimation-detection and joint estimation-detection.

Note that for fixed signal bandwidth W , the spectral effi-
ciency obtained by only optimizing the pilots is shown in [18]

8The underlining physical explanation for cubic root rather than any other
root is yet to be determined.

9The result in [9] has a rate penalty 2/Lc owing to the two guard time
intervals added before and after the data symbols. The rate penalty has been
improved to 1/Lc in [19] by using only one guard interval.

SNR*
SNR

convex

concave

SE(SNR), no CSI

0

turning
point

Figure 1. Illustration of the spectral efficiency [bits/s/Hz] of a wideband
fading channel without CSI as a function of the SNR. In the low SNR regime
the spectral efficiency grows as SNR2 (hence convex) and in the high SNR
regime it grows as log(1+SNR) (hence concave). The maximum rate appears
at the SNR where the growth (resp. drop) of spectral efficiency “matches” the
decrease (resp. increase) of bandwidth (∝ 1/SNR). The “convex-concave”
shaped achievable rates and the existence of the optimal SNR are first observed
in [11, Fig. II.18] (see also [12, Fig. 1]) in the analysis of spread spectrum
transmission using BPSK modulation over wideband fading channels.

to be proportional to ρ2 when ρ�1, which is significantly
smaller than the rate (12). The reason, as explained in [18], is
that the channel estimation penalty is too large when ρ�1. By
also optimizing the signal bandwidth, we can avoid the too-
low-SNR regime and achieve a rate that is close to capacity. On
the other hand, when bandwidth is very limited and therefore
the SNR ρ � 1, the channel estimation penalty is negligible
and its spectral efficiency is proportional to log(1+ρ). By
adding more bandwidth we can substantially increase the
throughput with a lower spectral efficiency.

By lifting the constraint on signaling bandwidth, the
throughput of pilot-based transmission over wideband fading
channels is maximized at a unique SNR, which is not deter-
mined by the available (finite) power. Its spectral efficiency
(SE) [bits/s/Hz] as a function of the SNR first grows as SNR2

(hence convex) in the low SNR regime and in the high SNR
regime it grows as log(1+SNR) (hence concave). The first
order derivative of spectral efficiency quantifies the “exchange
rate” of SNR to spectral efficiency. When increase the SNR
from zero to infinity, the first order derivative first increases
and then decreases, as illustrated in Fig. 1, with the maximum
exchange ratio peaked at the turning point where its second
order derivative equals zero. The maximum rate appears at
the SNR where the growth of spectral efficiency “matches”
the decrease of bandwidth (∝1/SNR), beyond which the
bandwidth becomes the limiting factor.

Remark 1. To quantify the exchange rate of bandwidth
to capacity in the infinite bandwidth regime, in [20] the
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Figure 2. Comparison of the throughput maximizing SNR ρ∗, pilot ratio α∗, and the corresponding achievable rates obtained by exhaustive search for (7),
numerical optimization using (9), the closed-form approximation (51), and the 1st-order approximation (10). The non-peaky mutual information (15) from
[13] is also plotted for reference. Coherence bandwidth Bc = 10 MHz and coherence time Tc ∈ [0.1, 100] ms are used for the simulation, with Pr/N0 = 20
dB.MHz (i.e., if W = 1 MHz is the signal bandwidth, the corresponding SNR is Pr/(N0W ) = 20 dB).

concept of wideband slope was introduced by defining it
as inversely proportional to the second order derivative of
spectral efficiency at zero SNR, i.e., C̈(ρ=0). Here we target at
maximizing the data rate for pilot-based transmission schemes,
and the maximum rate appears at the SNR ρ∗ where the
exchange rate of spectral efficiency, quantified by Ċ(ρ∗),
“matches” the decrease/increase of bandwidth (∝ 1/ρ∗).

Similar observation can also be applied to the mutual
information based achievable rate analysis [11]–[14] where
the spectral efficiency is lower bound by

I(X;Y ) = I(X,H;Y )− I(H;Y |X)

= I(X;Y |H) + I(H;Y )− I(H;Y |X)

≥ I(X;Y |H)− I(H;Y |X)

' log(1 + ρ)− 1

Lc
log(1 + ρLc), (16)

where the two equalities are from the chain rule, the inequality
comes from that fact that I(H;Y ) is non-negative, and the
approximation is obtained by replacing the two terms by the
CSIR/AWGN channel capacity where ρLc is the power boost
by using Lc symbols to estimate one channel coefficient and
the pre-log 1/Lc is due to the fact that the channel estimation
cost is shared by all Lc symbols. For low SNR ρ � 1, we
can write (16) as

log(1 + ρ)− 1

Lc
log(1 + ρLc) ' ρ−

ρ2

2
− (ρ− ρ2Lc

2
)

=
ρ2(Lc − 1)

2
, (17)

and for high SNR ρ � 1 the spectrum efficiency is ap-
proximately log(1 + ρ). Therefore, there is also a unique
SNR that maximizes the mutual information lower bound
(16). The exact value of the optimal SNR is determined
by the channel coherence length Lc and the corresponding
transmission schemes, as shown in Table I.

To verify the accuracy of the closed-form approximations
developed in Sec. III-B, in Fig. 2 we compare the throughput
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Figure 3. The deviation of the closed-form approximation from the exhaustive
search result where the coherence bandwidth Bc = 1 MHz, coherence time
Tc ∈ [0.01, 10] ms, and Pr/N0 = 0 dB.MHz. The mismatch comes from the
continuous-value relaxation of the intrinsically discrete valued optimization,
which is notable in the parameters selected for this illustration. A round
operation of the closed-form approximation to the nearest integer multiplier
of coherence Bc, denoted by [W ∗], yields marginal loss.

maximizing SNR ρ∗ and pilot ratio α∗ obtained from the nu-
merical optimization in Sec. III-A against the results obtained
by exhaustive search using (7), the 1st-order approximation
(10), and the fine-tuned approximation (51) proposed in Ap-
pendix C. From Fig. 2 we can see that, when the throughput
maximizing bandwidth is much larger than the coherence
bandwidth, i.e., Pr

N0

3
√
Lc � Bc, the discrete-to-continuous

relaxation is accurate and there is a good match among the
exhaustive search, the numerical optimization, and the closed-
form approximation. Even the 1st order approximation (10)
only introduces marginal error.

Note that W ∗ and α∗ obtained from the numerical opti-
mization will be mapped onto the closest discrete point by
rounding. Since the rounding operation, denoted by α = [α∗],
is to ensure that the number of pilots αLc is an integer,
the associated rounding error for α∗ is less than 0.5/Lc in
absolute value or (2Lc)−2/3 percentage wise calculated based
on (11). The rounding operation for W ∗ to the nearest integer
multiplier of coherence Bc, denoted by W = [W ∗], will incur
a rounding error for W ∗ of Bc/2 or less in absolute value or
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(2Lc)
−1/3( Pr

N0Bc
)−1 percentage wise calculated based on (10).

To put them into perspective, for coherence time of Tc=5 ms
and coherence bandwidth of Bc=10 MHz (roughly indicates
a delay spread of 50–100 ns as reported in mmWave channel
models [6]), we have Lc = 50000 and the percentage-wise
rounding error is less than 0.06% for α∗ and less than 0.3%
for W ∗ with Pr/(N0Bc) = 10 dB. On the other hand, when
the throughput maximizing bandwidth is comparable with the
coherence bandwidth, i.e., Pr

N0

3
√
Lc = O(Bc), the discrete-

to-continuous relaxation will introduce some mismatch, as
illustrated in Fig. 3 where Pr

N0

3
√
Lc ∈ [3Bc, 30Bc]. Simulation

results in Fig. 3 suggest that a round operation will serve its
purpose with marginal loss. For throughput maximizing band-
width larger than tens of coherence bandwidth, the deviation
is hardly visible.

C. Negligible Gain in Optimizing Power for Pilots If Band-
width is Sufficient

The rate can be further improved if we also allow different
transmit power for pilots and for data symbols, and optimize
both the fraction of the pilots and their power level, subject to
the same average power constraint. It has been shown in [18]
that the gain is maximized when we use a single pilot for
each channel coherence block (accommodating Lc symbols)
with sufficiently high power. To quantify the potential gain of
optimizing the power of pilots, we use the same parameters
from Sec. II-B to represent the power level adjustment for
pilots. Let ρpilot = αLcρ be the SNR of the pilot symbol.
Since the SNR for the coherence block of Lc symbols is ρ,
the SNR for the (Lc − 1) data symbols is therefore ρdata =
(1−α)ρLc/(Lc−1). It is easy to verify that the same average
power constraint is respected since

1

Lc
ρpilot+

Lc − 1

Lc
ρdata =

αLcρ

Lc
+
(Lc − 1)

Lc

(1− α)ρLc
(Lc − 1)

= ρ.

We now substitute ρpilot into (4) to quantify the channel esti-
mation error and substitute ρdata into (6) to derive the effective
SNR, which leads to the achievable spectral efficiency as

R

W
= (1− 1

Lc
) E

[
log(1 +

ρdata
ρpilot

1+ρpilot
|h|2

1 + ρdata
1

1+ρpilot

)

]

' E

[
log(1 +

α(1− α)Lcρ2|h|2

1 + ρ+ αLcρ− 2αρ
)

]
, (18)

where the “'” in the last step comes from the fact that (Lc−
1)/Lc ' 1 for Lc � 1.

If we have sufficient bandwidth, the throughput maximizing
SNR ρ is small, and we can approximate (18) by

R

W
=E

[
α(1− α)Lcρ2|h|2

1 + ρ+ αLcρ

]
log2(e)=

α(1− α)Lcρ2

1 + ρ+ αLcρ
log2(e),

(19)

which provides the same rate as (5) where only the fraction of
pilots is optimized. Therefore, if bandwidth is not the limiting
factor, the gain by also optimizing the power of pilots is
negligible. However, if bandwidth is limited and hence SNR
is high, we have

log(1 + (1− α)ρeff) > (1− α) log(1 + ρeff),

and allocating more power to pilot does improve the rate.

IV. EXTENSION TO MULTIPLE ANTENNAS

A. SIMO: Antenna Array only at the Receiver

The transmitter is equipped with a single antenna and the
receiver has Nr antennas. Assuming the same number of RF
chains as the number of antennas, all the channel coefficients
can be estimated by the receiver simultaneously based on the
same pilots. Then the estimated channel coefficients are used
to perform receive beamforming and the effective SNR of the
data symbols in the channel capacity lower bound (5) can now
be written as

ρeff =
GρE[|ĥ|2]

1 +GρE[|h̃|2]
=

GαLcρ
2

1 + (G+ αLc)ρ
, (20)

where E[|ĥ|2] and E[|h̃|2], the power of MMSE channel
estimation and its estimation error, respectively, are defined
in (4), and G ≤ Nr is the gain of signal combining using the
estimated channel coefficients.

Following the same procedure as in Appendix A, we can
obtain the condition

α2Lcρ+Gρ(2α− 1) = 1− 3α. (21)

Note that by variable substitution ρ̃ = Gρ and L̃c = Lc/G,
we can rewrite (20) and (21) as

ρeff =
αL̃cρ̃

2

1 + (1 + αL̃c)ρ̃
,

α2L̃cρ̃+ ρ̃(2α− 1) = 1− 3α.

(22)

Now we can use (22) to determine the throughput maximiz-
ing (ρ̃∗, α̃∗) numerically following the methods developed
in Sec. III-A, and then restore the throughput maximizing
(ρ∗, α∗) by

ρ∗ = ρ̃∗/G, α∗ = α̃∗. (23)

Similarly, the closed-form expressions (10)-(12) can now be
written as

ρ∗ ' (
4

LcG2
)1/3, α∗ ' (

G

2Lc
)1/3,

R(ρ∗, α∗) '
(
1− (

4G

Lc
)1/3

)
PrG

N0
log2(e). (24)

B. MISO: Antenna Array only at the Transmitter

The transmitter is equipped with Nt antennas and the
receiver has a single antenna. A limited feedback beam-
switching transmission strategy proposed in [16] is adopted,
where the transmitter first send out pilots using a pre-selected
beamforming vector out of a pool of Kt vectors. The receiver,
after estimating all the superposed channels, one for each beam
vector, feeds back to the transmitter the index of the “hottest”
beam. Then the transmitter sends its data symbols using the
beamforming vector selected by the receiver.

To simplify our analysis, we assume that the feedback delay
(assumed to be much smaller than the channel coherence time
Tc) and the feedback data rate (used to transmit the index of
the beamforming vector, only a few bits) is negligible. Then



7

on average each beam is estimated using αLc/Kt pilots, and
the MMSE channel estimation (4) of the selected beam (will
be used for data transmission) can be written as

E[|ĥ|2] = GραLc/Kt

1 +GραLc/Kt
, E[|h̃|2] = 1

1 +GραLc/Kt
,

(25)

where G ≤ Nt is the average gain of the hottest beam selected.
The corresponding effective SNR (6) can then be written as

ρeff =
GρE[|ĥ|2]

1 +GρE[|h̃|2]
=

(Gρ)2αLc/Kt

1 + (1 + αLc/Kt)Gρ
. (26)

Following the same procedure as in Appendix A, we can
obtain the condition

α2 Lc
Kt

Gρ+Gρ(2α− 1) = 1− 3α. (27)

As in Sec. IV-A, we now use variable substitution ρ̃ = Gρ and
L̃c = Lc/Kt to obtain (22), which can be used to determine
the throughput maximizing (ρ̃∗, α̃∗) numerically. Note that we
have ρ∗ = ρ̃∗/G and α∗ = α̃∗. Similarly, we can obtain the
closed-form approximations as follows

ρ∗ ' 1

G
(
4Kt

Lc
)1/3, α∗ ' (

Kt

2Lc
)1/3,

R(ρ∗, α∗) '
(
1− (

4Kt

Lc
)1/3

)
PrG

N0
log2(e). (28)

C. MIMO: Antenna Arrays at both the Transmitter and the
Receiver

The transmitter is equipped with Nt antennas and the
receiver has Nr antennas. When there is no constraint on
bandwidth, the throughput maximizing transmission strategy
is to use as much bandwidth as needed to maximize the
throughput, which necessarily put the overall transmission into
the low SNR regime [13], [14], as also witnessed in Sec. IV-A
and Sec. IV-B where the throughput maximizing operation
SNR Gρ∗, with beamforming gain, turns out to be small. In the
low SNR regime, rank-1 transmission strategy is near optimal
since

E[log(|I+ρH†H|)] = E[log(1+ρTr(H†H))]+O(ρ2), ρ < 1.

As in Sec. IV-B we focus on the beam-switching transmis-
sion strategy [16], where the transmitter maintains a pool of
Kt pre-selected beamforming vectors and sweeps over all the
candidate beams by transmitting dedicated pilots. The receiver,
after estimating all the superposed channels, Nt of them per
each receiver antenna, feeds back to the transmitter the index
of the “hottest” beam that provides the highest gain after
applying signal combining at the receiver. Then the transmitter
sends its data symbols using the beamforming vector selected
by the receiver and the receiver applies the corresponding
best signal combining vector for the selected beam using the
estimated channel coefficients.

Let G1 ≤ Nt be the expectation of the gain of the “hottest”
beam selected by the beam-switch mechanism, the MMSE

channel estimation of the best beam can be characterized,
following (25), as

E[|ĥ|2] = G1ραLc/Kt

1 +G1ραLc/Kt
, E[|h̃|2] = 1

1 +G1ραLc/Kt
.

(29)

Let G2 ≤ Nr denote the gain of receive signal combining, the
combined transmit-receive beamforming gain would be G1G2

and the corresponding effective SNR of the data symbols can
be written as

ρeff =
G1G2ρE[|ĥ|2]

1 +G1G2ρE[|h̃|2]
=

G2(G1ρ)
2αLc/Kt

1 + (G2 + αLc/Kt)G1ρ

=
(G1G2ρ)

2α Lc

KtG2

1 + (1 + α Lc

KtG2
)G1G2ρ

. (30)

Remark 2. Note that the gain G1, which is obtained by
selecting the “hottest” beam out of Kt candidate beams using
Nt transmit antennas, is materialized both during channel
estimation and data transmission process, as shown in (29)
and (30). The gain G2, on other hand, is obtained by perform-
ing receive signal combining based on the estimated channel
coefficients. Therefore G2 is only available during the data
transmission stage rather than the channel estimation stage,
as shown in (29).

Following similar steps as in Sec. IV-A and Sec. IV-B,
we now use variable substitution ρ̃ = G1G2ρ and L̃c =
Lc/(KtG2) to obtain (22), which can then be used to de-
termine the throughput maximizing (ρ̃∗, α̃∗) numerically, and
the closed-form approximations as follows

ρ∗ ' 1

G1G2
(
4KtG2

Lc
)1/3, α∗ ' (

KtG2

2Lc
)1/3,

R(ρ∗, α∗) '
(
1− (

4KtG2

Lc
)1/3

)
PrG1G2

N0
log2(e). (31)

Remark 3. (31) and its associated variable substitution
ρ̃ = G1G2ρ and L̃c = Lc/(KtG2) are generic. We can
recover the SIMO case by setting Kt = G1 = 1 and recover
the MISO case with beam-switching by setting G2 = 1. If
beam-switching is not used and the full channel matrix is
estimated before choosing the beamforming vectors for data
transmission, we can set Kt = Nt and G1 = 1, and leave
G2 to represent the actual gain during the data transmission
process. On the other hand, if beam-switching strategy is
adopted both at the transmitter and the receiver, we can use
Kt ∼ O(NtNr) to represent the size of overall candidate
beams and let G1 ≤ NtNr represent the gain of the “hottest”
beam, leaving G2 = 1 to reflect the fact that there is no extra
combining gain in the data transmission stage as compared
to the channel estimation stage.

In Fig. 4 we evaluate the accuracy of the closed-form
approximations of the throughput maximizing SNR ρ∗ (hence
W ∗) for MIMO setup, where beam-switching is adopted
assuming full combining gain NtNr = 10. Compared with
the results obtained from numerical optimization and from
exhaustive search, the 1st-order closed-form approximation
of ρ∗ in (32) admits some small error when the channel
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Figure 4. Comparison of the throughput maximizing SNR ρ∗ obtained by exhaustive search for (7), numerical optimization using (27), the 1st-order
approximation (32), and the closed-form approximation by resorting to (51). The throughput maximizing pilot ratio α∗ is obtained using (27) and the
corresponding achievable rates are achieved using corresponding (ρ∗, α∗). Coherence bandwidth Bc = 10 MHz, coherence time Tc ∈ [0.1, 100] ms, and
Pr/N0 = 20 dB.MHz, and beam-switching with full gain NtNr = 10 are used for the simulation.

coherence Lc is not sufficiently large, and the error diminishes
as Lc →∞. The associated error on pilot ratio and achievable
rate, caused by inaccurate ρ∗ approximation, is negligible. The
results obtained by resorting to the closed-form approximation
(51) provide excellent match with the numerical optimization
and the exhaustive search.

D. Impact of Beam-Switching Strategy and the Hottest Beam

It is worthwhile to examine the operational parameters
(ρ∗, α∗, R(ρ∗, α∗)) for some special cases to see the impact
of the beam-switching strategy. Assuming beam-switching is
used both at the transmitter side with Nt candidate beams and
at the receiver side with Nr candidate beams, the expected
gain of the “hottest” beam, selected by sweeping over all
candidate beams, depends on the number of antennas Nt and
Nr, pre-selected beamforming vector codebook, and channel
characteristics.

For example, when channel is highly directional (e.g.,
small angular spread) and the beamforming vector codebook
is designed based on a prior knowledge of the channel
learned either from previous feedback or from the approximate
uplink/downlink channel reciprocity, the overall beamform-
ing/combining gain for the hottest beam is close to NtNr.
By substituting G1 = NrNt, Kt = NtNr, and G2 = 1 into
(31), we obtain

ρ∗ ' 1

NtNr
(
4NtNr
Lc

)1/3, α∗ ' (
NtNr
2Lc

)1/3,

R(ρ∗, α∗) '
(
1− (

4NtNr
Lc

)1/3
)
PrNtNr
N0

log2(e). (32)

However, if the channel has rich scattering and all the entries
in the full-rank channel matrix are I.I.D. with finite variance,
the average gain of the “hottest” beam can be approximated10

10Strictly speaking, the gain of the “hottest” beam is smaller than the gain
of the strongest channel eigenmode when we do not have the full CSI for
signal combining. Here we approximate the gain of the “hottest” beam by the
largest eigenvalue λmax(H∗H), whose distribution can be found in [22],
[23].

as O(Nt + Nr) instead of NtNr. By setting G1 = Nt+Nr
we will have

ρ∗ ' 1

Nt+Nr
(
4NtNr
Lc

)1/3, α∗ ' (
NtNr
2Lc

)1/3,

R(ρ∗, α∗) '
(
1− (

4NtNr
Lc

)1/3
)
Pr(Nt+Nr)

N0
log2(e).

(33)

V. HOW MUCH BANDWIDTH IS TOO MUCH: NUMERICAL
RESULTS

In this section we evaluate a Nt × Nr MIMO link in
mmWave band where the transmitter sweeps for the hottest
beam out of Nt transmit candidate beams and the receiver
sweeps over Nr candidate beams. Carrier frequency fc, path
loss, transmission distance d, and transmit power Pt are
subject to design. Unless otherwise specified, in this section
we assume Tc × Bc block fading channels with coherence
time Tc = 5 ms and coherence bandwidth Bc = 10 MHz11,
resulting in a channel coherence length Lc = 5 × 104. Each
transmit antenna has element gain Gt = 8 dBi and each
receive antenna has element gain Gr = 5 dBi. The noise figure
is set to F = 9 dB.

A. Maximum Rate and Optimal Bandwidth for 28 GHz Band
at 100-Meter Distance

In Fig. 5 we plot the maximum rate as a function of
signaling bandwidth for a link at the fc = 28 GHz band
using Pt = 1 Watt transmit power with Nt = 16 antenna
elements at the transmitter and Nr = 2 elements at the
receiver, placed at 100 meters apart. Ideal beamforming with
rank-1 transmission (i.e., single data stream) is assumed and
the percentage of pilots is optimized to maximize the rate.
When channel coefficients are known at the receiver (CSIR),

11Coherence time of Tc=5 ms roughly matches user/environment move-
ment at speed of 1 m/s at 28 GHz, and the coherence bandwidth of Bc=10
MHz roughly indicates a delay spread of 50–100 ns as suggested by mmWave
channel measurements [6].
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Figure 5. The maximized rate at transmission distance d = 100 meters as a function of signaling bandwidth for a 28GHz band link using Pt = 1 Watt
transmit power with Nt = 16 antenna elements at the transmitter and Nr = 2 elements at the receiver: (left) 3GPP Urban Micro NLOS [21]; (right) 5GCM
Suburban [5]. Ideal beamforming with rank-1 transmission (i.e., single data stream) is assumed. The rate assuming perfect CSIR, the maximum R(W ∗, α∗)
and the throughput maximizing bandwidth W ∗, and their closed-form approximation counter parts obtained using (51) and (52) are plotted as references.

there is no channel estimation penalty and therefore using
more bandwidth will monotonically increase the achievable
rate. Under the 3GPP Urban Micro NLOS [21] path loss
model12, the maximum rate peaks at W ∗ ∼= 6 GHz, which
is far more than the available bandwidth assigned by FCC
(two channels each of 425MHz). When the path loss is severe,
such as scenarios modeled by the 5GCM Suburban channel
model13 [5], the maximum rate peaks at W ∗ ≤ 400 MHz, and
using more bandwidth will hurts the achievable rate. As the
bandwidth approaches its optimum, adding more bandwidth
leads to very limited rate gain: in both cases, using one tenth
of the optimal bandwidth W ∗ only leads to less than 30%
rate deduction. Also note that our closed-form approximation
matches well with the numerical solutions, which means
bandwidth optimization can be performed on-the-fly using our
closed-form expressions.

B. Maximum Beneficial Bandwidth as a Function of Trans-
mission Distance

In Fig. 6 we demonstrate the influence of beamforming
gain of the hottest beam on the maximized Rate R(W ∗, α∗),
throughput maximizing bandwidth W ∗, and corresponding
SNR Gρ∗ for a Nt × Nr MIMO link with Pt = 30 dBm
(1 Watt) at fc = 60 GHz band. The average gain G of the
hottest beam is assumed to be either NtNr or Nt+Nr, which
represent the ideal case with high directional channels and the
rich scattering case, respectively.

When the path loss is favorable, as shown in Fig. 6 (a) for
the Blocked LOS path loss model [17] (i.e., free-space path
loss plus 25dB shadowing loss to account for blockage effect
in mmWave), even in the ideal case, the achievable rate is less

12Note that [21] is designed for frequency below 6GHz and we simply
apply frequency extrapolation to high bands, since in [6] the Urban Micro is
only defined for Street Canyon scenario.

13This channel model is designed for the scenario where the base station
antennas are placed below clutter top and user equipment is under clutter,
with 12 dB vegetation loss to account for wave propagation over trees.

than 1 Gbps for transmission distance beyond 200 meters. The
maximum beneficial bandwidth W ∗ (i.e., the bandwidth that
maximizes the rate) decreases with the transmission distance
and it becomes less than 200 MHz for distance beyond 1000
meters. When the path loss is severe, as shown in Fig. 6 (b)
for the 3GPP uMi-NLOS [21] path loss, even in the ideal
case, the achievable rate is less than 1 Gbps for transmission
distance beyond 100 meters, and the rate is below the low-band
benchmark (SISO with fc=2 GHz, W=10 MHz, Pt=46 dBm)
for distance beyond 160 meters. The maximum beneficial
bandwidth W ∗ is less than 1 GHz for distance beyond 140
meters and it becomes less than 100 MHz for range beyond
260 meters.

For the rich scattering case where channel matrix contains
i.i.d. entries, with the average gain of the hottest beam at
Nt+Nr, the rate and the throughput maximizing bandwidth
are roughly min(Nt, Nr) times lower as compared to the ideal
case, since bandwidth optimization will provide rates almost
linearly with the signal power.

C. Maximum Beneficial Bandwidth as a Function of EIRP

In Table II we list the potential EIRP that might be sup-
ported by next generation RF techniques. The EIRP upper limit
of 75 dBm per 100 MHz, set by FCC regulation [1], is also
listed for reference. In Fig. 7 we demonstrate the maximized
Rate R(W ∗, α∗), the throughput maximizing bandwidth W ∗,
and corresponding SNR Gρ∗ for a Nt × 4 MIMO link at (a)
fc = 28 GHz band (b) fc = 39 GHz band, and (c) fc = 60
GHz band, with different EIRP and transmit antennas. Joint
TX-RX beam-switching is assumed with the average gain of
the hottest beam as G=NtNr (ideal case), and 3GPP uMi-
NLOS path loss model [21] is used with frequency extrap-
olation. With 70 dBm EIRP and 1 GHz bandwidth, 1 Gbps
user rate at 28GHz/39GHz/60GHz band can be provided up
to 400/310/220 meters. At the EIRP ceiling set by the FCC
regulation, i.e., 85 dBm EIRP using 1 GHz bandwidth, 1 Gbps
rate can be delivered up to 860/680/500 meters.
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(a) 32× 4 MIMO under Blocked LOS path loss
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(b) 64× 4 MIMO under 3GPP uMi-NLOS path loss

100 200 300 400 500

Distance d [m]

100

101

102

103

R
at

e 
[M

bp
s]

R(1GHz, α*)
R(W*,α*)
f
c
=2GHz

100 200 300 400 500

Distance d [m]

101

102

103

O
pt

im
al

 b
an

dw
id

th
 [M

H
z]

W=1GHz
W*, G=N

t
N

r

W*, G=N
t
+N

r

100 200 300 400 500

Distance d [m]

-20

-15

-10

-5

0

O
pt

im
al

 S
N

R
 [d

B
]

Gρ(1GHz), G=N
t
N

r

Gρ*, G=N
t
N

r

Gρ*, G=N
t
+N

r

G=N
t
N

r

G=N
t
+N

r

Figure 6. The maximized Rate R(W ∗, α∗), the throughput maximizing bandwidth W ∗, and corresponding SNR Gρ∗ for a Nt × Nr MIMO link with
Pt = 30 dBm (1 Watt) at fc = 60 GHz band. Joint TX-RX beam-switching is used and the average gain G of the hottest beam is assumed to be either
NtNr or Nt+Nr , which represent the ideal case (high directional channel) and the rich scattering case (i.i.d. entries in channel matrix), respectively. The
case with fixed bandwidth W = 1 GHz using optimized pilot ratio α∗ are plotted to illustrate the benefit of bandwidth optimization. The low band SISO
case with carrier fc = 2 GHz, bandwidth W = 10 MHz, and transmit power Pt = 46 dBm (40 Watt) is also plotted as a benchmark. (a) blocked LOS (i.e.,
free-space path loss with 25dB loss [17]), (b) 3GPP uMi-NLOS [21].

The maximum beneficial bandwidth with 70 dBm EIRP is
less than 1 GHz for users beyond 530/420/310 meters, and it
becomes less than 100 MHz when the transmission distance
is longer than 1000/780/580 meters. The EIRP ceiling set by
the FCC regulation allows a maximum beneficial bandwidth
of 1 GHz bandwidth at range beyond 1080/850/630 me-
ters. On the other hand, at 52 dBm EIRP [25], the max-
imum beneficial bandwidth is less than 1 GHz for users
beyond 210/170/120 meters with corresponding rate at around
200 Mbps. The maximum beneficial bandwidth is less than
100 MHz when the transmission distance is longer than
400/310/230 meters.

VI. POTENTIAL USE CASES

A. New Air Interface: Constant Spectral Efficiency Transmis-
sion

As discussed in Sec. III and Sec. IV, when signaling
bandwidth is free to be optimized, the maximized 1×1 SNR ρ∗

turns out to be a constant that depends on channel coherence
Lc and beamforming gain G, and their dependence can be
approximately described as

ρ∗ ' 1

G
3

√
4G

Lc
.

When channel coherence Lc and beamforming gain G re-
main unchanged, the throughput maximizing bandwidth W ∗

increases as the user becomes closer to the base station and
decreases when the user moves away such that the overall SNR
Gρ∗ as well as the pilot ratio α∗ remain constant. Therefore,
a constant low spectral efficiency transmission is optimal in
the sense that it maximizes the user’s rate. This can be an
attractive option for new air interface in mmWave band since
it will allow the transceiver to use the same coding/modulation
schemes without sacrificing performance, in contrast to the
classical adaptive coding and modulation look-up tables used
in the current telecommunication systems. The price to pay is
the coordination between the transmitter and the receiver (e.g.,
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Figure 7. The maximized Rate R(W ∗, α∗), the throughput maximizing bandwidth W ∗, and corresponding SNR Gρ∗ for a Nt×4 MIMO link with different
EIRP and transmit antennas Nt adopted from Table II. Joint TX-RX beam-switching is used with the average gain of the hottest beam G = NtNr (ideal
case), and 3GPP uMi-NLOS path loss model is used. The case with fixed bandwidth W = 1 GHz (dash lines) using optimized pilot ratio α∗ are plotted to
illustrate the benefit of bandwidth optimization. The low band SISO case with carrier fc = 2 GHz, bandwidth W = 10 MHz, and transmit power Pt = 46
dBm (40 Watt) is also plotted (dotted line) as a benchmark. (a) fc = 28 GHz band, (b) fc = 39 GHz band, (c) fc = 60 GHz band.
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Table II
POTENTIAL ACHIEVABLE EIRP FOR MMWAVE BAND

Type No. Elements Power per element Element gain Gt EIRP
30 dBm sum power Nt — 8 dBi 38 + 10 log10(Nt) dBm

RF IC [24] Nt = 16 10 dBm 2 dBi 36 dBm
Hydra chip [25] Nt = 16 20 dBm 8 dBi 52 dBm

large array Nt 20 dBm 8 dBi 28 + 20 log10(Nt) dBm
FCC regulation [1] — — — ≤ 75 dBm per 100 MHz

(a) 28 GHz with Nt = 24 and Nr = 1 (b) 39 GHz with Nt = 24 and Nr = 1
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Figure 8. CDF of downlink throughput by two-user bandwidth-power joint optimization subject to the constraint that no one’s rate shall be decreased after
the joint allocation. The user throughput is evaluated by leveraging the CDFs of SINR generated by [26] for the 28 GHz band and by [27] for the 39 GHz
band. (a) 28 GHz system with 228 meters ISD equipped with 24× 1 MIMO with transmit power Pi = 24dBm and bandwidth Wi = 250MHz budget for
each user; (b) 39 GHz system with 150 meters average ISD equipped with 32× 1 MIMO subject to 68 dBm EIRP constraint and Wi = 200MHz per user
bandwidth budget. For convenience, the channel coherence is assumed to be Lc = 2.4× 104 and Lc = 3.2× 104, respectively.

via feedback) to adapt the signaling bandwidth (e.g., by ad-
justing the number of Physical Resource Blocks in scheduling)
and pilots as the communication distance or channel coherence
changes. Since both the optimal bandwidth W ∗ and pilot ratio
α∗ changes with the cubic root of Lc, such adaptation is
slow for typical wireless communication scenarios where user
movement and channel dynamics are slow.

Note that for reasonable range of beamforming gain G and
channel coherence Lc, the optimized SNR Gρ∗ ' 3

√
4G/Lc

is smaller than 1 and the corresponding spectral efficiency
is around 0.1 bits/s/Hz, which is substantially lower than the
legacy cellular system. With practical range of available band-
width (∼GHz), when such low spectral efficiency transmission
is optimal, the end user’s rate will be in the range of hundreds
Mbps or lower. For example, when a user’s received signal
power is low and the throughput maximizing bandwidth is in
the range of tens to hundred MHz, the corresponding rate will
be in the range of a few Mbps. Therefore the constant low
spectral efficiency transmission is more suitable for low-rate
use cases.

B. Throughput Improvement via Bandwidth Optimization

When user’s received power is not high, using too much
bandwidth will decrease the rate since the penalty from
channel estimation becomes significant when SNR is too low.
Therefore for users with low SNR, their rate will be increased

if they use less bandwidth. The unused bandwidth can then be
allocated to users with high SNR to improve their throughput.

Let 0 < g1 ≤ g2 ≤ · · · ≤ gk be the combined channel gain
for a group of k users served by the same base station. Under
equal power and bandwidth allocation policy, their individual
SNR will be

0 <
Ptg1
W0N0

≤ Ptg2
W0N0

≤ · · · ≤ Ptgk
W0N0

,

where Pt is individual power budget and W0 is the band-
width. Under some fairness constraint, the joint bandwidth-
power allocation problem can be formulated as a constrained
optimization problem as follows

max a preselected objection function
subject to Pi ≥ 0, Wi ≥ 0,∀i,∑

i

Pi ≤ kPt,
∑
i

Wi ≤ kW0, (34)

Wi = argmax
W

R∗(W,α|Pigi),

R(Wi, Pi) ≥ R(W,P ),

where the throughput maximizing bandwidth is obtained via
the joint bandwidth and pilot optimization framework devel-
oped in Sec. III and Sec. IV, and the last constraint is a fairness
constraint to ensure that no user’s rate shall be decreased
after participating the joint resource allocation. The objective
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function can be designed based on system level performance
requirement.

In Fig. 8 we evaluate the downlink throughput gain by two-
user joint bandwidth-power allocation. The user throughput is
evaluated by leveraging the CDFs of SINR generated for (a)
a 28 GHz system [26] with 228 meters inter site distance
(ISD) equipped with 24 × 1 MIMO with transmit power
Pt = 24dBm and bandwidth W0 = 250MHz budget for each
user; (b) a 39 GHz system [27] with average ISD of 150
meters equipped with 32× 1 MIMO subject to 68 dBm EIRP
constraint and W0 = 200MHz per user bandwidth budget. For
convenience of simulation, the channel coherence is assumed
to be Lc = 2.4 × 104 and Lc = 3.2 × 104, respectively, to
ensure an integer value of Lc/G. When we maximize the weak
user’s throughput, the 5-percentile rate can be improved by
10 times for the 28 GHz system and 9 times for the 39 GHz
system, whereas the gain for medium and 95-percentile rate
is negligible. However, if we choose to maximize the strong
user’s rate, the 5-percentile rate can be improved by roughly
5 times (by using less bandwidth) and the 95-percentile rate
can be improved by 25% and 30% for the 28 GHz and 39
GHz system, respectively. The gain of the 95-percentile rate
mainly comes from the exchange power for bandwidth with
the weak users. Therefore a joint bandwidth-power allocation
will make more efficient use of system resource.

VII. CONCLUSIONS

Given the abundant spectrum available in mmWave band,
the challenge to provide high speed wireless access to users
located a few hundreds meters away from the transmitter
cannot be solved by simply adding more bandwidth. When
channel estimation penalty is properly accounted for, as we
have shown in this paper, the throughput gain by adding more
spectrum is marginal14, and it becomes counterproductive if
we use too much bandwidth.

Our analysis has revealed a surprising dependence of the
optimal bandwidth and pilots ratio on the channel coherence
length, which measures the average orthogonal symbols per
each independent channel coefficient. When bandwidth is
not limiting, for fixed channel coherence, the optimal band-
width scales linearly with the received signal power, and the
percentage of pilots is fixed whereas the absolute number
of pilots grows linearly. Under reasonable assumptions, our
analysis and numerical results have shown that the maximum
beneficial bandwidth is below 100MHz for users located at
a few hundreds meters away. We also show that, by joint
allocation of power and bandwidth, under fairness constraint,
the edge rate can be greatly increased.

There are some limitations of our results. Our analysis is
based on the IID block fading model, which is inherently a
discrete model whereas the channel fading is continuous both
in time and in frequency. The intra-block channel variation
requires more pilot resource whereas the inter-block correla-
tion has the potential to reduce the channel estimation penalty.
This I.I.D. block fading simplification ignores the inter-block

14As shown in Fig. 5, when the rate is close to its maximum, ten times
bandwidth increase only buys less than two times rate gain.

correlation and discards the intra-block variation, and therefore
represents the first-order approximation of continuous channel
variation. A detailed analysis based on continuous channel
variation is left to future work. The impact of spatial cor-
relation, transmit/receiver array size, and the effective beam-
forming gain are yet to be investigated. A full treatment is out
of the scope of this paper and a preliminary investigation onto
this topic can be found in [30].

APPENDIX A
DERIVATION OF SOLUTION FOR THE CONTINUOUS

VALUED OPTIMIZATION

Since there is an E[·], we have to first verify that the
condition of the Leibniz Integral Rule holds (See [28] for
details) before we can move the partial derivative operator
inside the expectation (which we will exercise later). That is,
denoting

f(W,α, |h|) = log(1 +
αLc|h|2P 2

r /N
2
0

W 2 + (1 + αLc)WPr/N0
)ph(|h|),

where ph(|h|) is the probability density distribution (pdf) of
the channel amplitude |h|, following [29, Theorem 5], we need
to show that

1) f(W,α, |h|), ∂f/∂W , and ∂f/∂α are continuous over
[Bc,Wmax]× [ 1

Lc
, 1]× [0,∞);

2)
∫∞
0
f(W,α, x)dx,

∫∞
0
∂f/∂Wdx, and

∫∞
0
∂f/∂αdx are

uniformly convergent.
The first condition can be satisfied by assuming ph(|h|),

the pdf of the small scale fading, is continuous, which is well
justified in most relevant communication scenarios. To estab-
lish the second condition, we need to resort to the Lebesgue
Dominated Convergence Theorem (LDCT) by showing that
for any given ε > 0, we can find x0 > 0 such that for all
x1, x2 > x0, we have∣∣∣∣∫ x2

x1

f(W,α, x)dx

∣∣∣∣<ε; ∣∣∣∣∫ x2

x1

∂f

∂W
dx

∣∣∣∣<ε; ∣∣∣∣∫ x2

x1

∂f

∂α
dx

∣∣∣∣<ε.
(35)

Fortunately, |h| is the normalized channel amplitude repre-
senting the small scale fading, and its pdf ph(|h|) is generally
regarded as continuous with infinite long tail of negligible
probability. Since E[|h|2] = 1, we can find a sufficiently
large x0 such that all the three inequalities in (35) hold.
Therefore we conclude that we can exchange the order of
partial derivation and expectation under the aforementioned
assumptions on |h|.

We now take partial derivation of R(W,α) defined in (5)
with respect to W and α, respectively, shown in (36) and (37)
on the top of the next page, where log2(e) comes from the
base substitution log2(·) → log(·). Setting ∂R/∂W = 0 and
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∂R

∂W
=(1−α) log2(e) E

[
log(1 +

αLc|h|2P 2
r /N

2
0

W 2 + (1 + αLc)WPr/N0
)

]
(36)

+ (1−α)W log2(e)

(
E

[
2W + (1 + αLc)Pr/N0

W 2+(1+αLc)WPr/N0+αLc|h|2P 2
r /N

2
0

]
− 2W + (1+αLc)Pr/N0

W 2+(1+αLc)WPr/N0

)
,

∂R

∂α
=−W log2(e) E

[
log(1 +

αLc|h|2P 2
r /N

2
0

W 2 + (1 + αLc)WPr/N0
)

]
(37)

+ (1−α)W log2(e)

(
E

[
WLcPr/N0 + Lc|h|2P 2

r /N
2
0

W 2+(1+αLc)WPr/N0+αLc|h|2P 2
r /N

2
0

]
− WLcPr/N0

W 2+(1+αLc)WPr/N0

)
,

∂R/∂α = 0, and substituting ρ = Pr/(N0W ) defined in (2)
to simplify the equations, we obtain

E

[
log(1 +

αLcρ
2|h|2

1 + (1 + αLc)ρ
)

]
(38)

=
2 + (1 + αLc)ρ

1 + (1 + αLc)ρ
− E

[
2 + (1 + αLc)ρ

1 + (1 + αLc)ρ+ αLcρ2|h|2

]
,

E

[
log(1 +

αLcρ
2|h|2

1 + (1 + αLc)ρ
)

]
(39)

= E

[
(1−α)Lcρ+ (1−α)Lcρ2|h|2

1 + (1 + αLc)ρ+ αLcρ2|h|2

]
− (1− α)Lcρ

1 + (1 + αLc)ρ
.

Combining (38) and (39), we get

1 + (1− α)Lcρ
1 + (1 + αLc)ρ

= E

[
1 + (1− α)Lcρ+ (1− 2α)Lcρ

2|h|2

1 + (1 + αLc)ρ+ αLcρ2|h|2

]
.

(40)

We first multiply both sides of (40) by α and then subtract
(1− 2α), which results in

α2Lcρ−(1−2α)(1+ρ)+α
1 + (1 + αLc)ρ

= E

[
α2Lcρ−(1−2α)(1+ρ)+α
1+(1+αLc)ρ+αLcρ2|h|2

]
.

(41)

Since |h| > 0 with E[|h|2] = 1, we can see that (41) holds if
and only if

α2Lcρ− (1− 2α)(1 + ρ) + α = 0, (42)

which can be written in two equivalent forms

α2Lcρ+ α(3 + 2ρ)− (1 + ρ) = 0, (43)

ρ(α2Lc + 2α− 1) = 1− 3α. (44)

APPENDIX B
ALGORITHMS TO DETERMINE ρ∗ AND α∗

Since ρ > 0, we can obtain from (43) that

α∗ =

√
( 32+ρ

∗)2 + (1+ρ∗)ρ∗Lc − ( 32+ρ
∗)

ρ∗Lc

=
1 + ρ∗√

( 32+ρ
∗)2 + (1+ρ∗)ρ∗Lc +

3
2+ρ

∗
, (45)

and from (44) that
1
3 < α∗ < 1

1+
√
1+Lc

, Lc < 3,

α∗ = 3, Lc = 3,
1

1+
√
1+Lc

< α∗ < 1
3 , Lc > 3.

(46)

Now we can either first substitute α(ρ) from (45) into
(38) to search for the throughput maximizing ρ∗ using the
classical bisection method, and then use (45) to determine α∗,
or first resort to the substitution (44) into (38) to search for the
throughput maximizing α∗ and then determine ρ∗ from (44).

Alternatively, we can substitute either α(ρ) defined in (45)
or ρ(α) defined in (44) into the rate maximizing optimization
problem (7), which can be efficiently solved by the bisection
method.

APPENDIX C
CLOSED-FORM APPROXIMATION OF ρ∗ AND α∗

As channel coherence Lc grows to infinity, we have W ∗ →
∞ and α∗ → 0, and the continuous-valued relaxation becomes
plausible. We can approximate (38) by first applying E[·]
directly onto |h|2 and then substituting log(1+x) ' x−x2/2,
which leads to

αLcρ
2

1 + (1 + αLc)ρ
− (αLcρ

2)2

2(1 + (1 + αLc)ρ)2

=
2 + (1 + αLc)ρ

1 + (1 + αLc)ρ
− 2 + (1 + αLc)ρ

1 + (1 + αLc)ρ+ αLcρ2
. (47)

Note that, with E[|h|2] = 1, the relaxation to obtain (47) shall
introduce negligible impairment in the closed-form approxima-
tion as the throughput is maximized in the wideband regime
where the SNR is low.

For low SNR, we can approximate (45) by

α '
√
(1+ρ)ρLc − 3

2

ρLc

' (ρLc)
−1/2(1 +

1

2
ρ− 3

2
(ρLc)

−1/2). (48)

Substituting (48) into (47) and throwing away some smaller
terms to simplify the derivation, we obtain

ρ∗ = 2(2Lc)
− 1

3 +O(L
− 2

3
c ) = 3

√
4/Lc +O(L

− 2
3

c ), (49)

α∗ = (2Lc)
− 1

3 +O(L
− 2

3
c ) = 3

√
1/(2Lc) +O(L

− 2
3

c ). (50)

To retain better approximation to ρ∗ and α∗ against the
numerical solution proposed in Appendix B, the following
empirical approximation can be used (at the same error level
of O(L

− 2
3

c ))

ρ∗ ' 2(2Lc)
− 1

3 +
3

2
(2Lc)

− 2
3 , (51)

α∗ ' (2Lc)
− 1

3 +
5

8
(2Lc)

− 2
3 . (52)
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