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Joint Rate Control and Power Allocation for

Non-Orthogonal Multiple Access Systems
Wei Bao, He Chen, Yonghui Li, and Branka Vucetic

Abstract—This paper investigates the optimal resource allo-
cation of a downlink non-orthogonal multiple access (NOMA)
system consisting of one base station and multiple users. Unlike
existing short-term NOMA designs that focused on the resource
allocation for only the current transmission timeslot, we aim
to maximize a long-term network utility by jointly optimizing
the data rate control at the network layer and the power
allocation among multiple users at the physical layer, subject
to practical constraints on both the short-term and long-term
power consumptions. To solve this problem, we leverage the
recently-developed Lyapunov optimization framework to convert
the original long-term optimization problem into a series of online
rate control and power allocation problems in each timeslot. The
power allocation problem, however, is shown to be non-convex
in nature and thus cannot be solved with a standard method.
However, we explore two structures of the optimal solution
and develop a dynamic programming based power allocation
algorithm, which can derive a globally optimal solution, with
a polynomial computational complexity. Extensive simulation
results are provided to evaluate the performance of the proposed
joint rate control and power allocation framework for NOMA
systems, which demonstrate that the proposed NOMA design can
significantly outperform multiple benchmark schemes, including
orthogonal multiple access (OMA) schemes with optimal power
allocation and NOMA schemes with non-optimal power alloca-
tion, in terms of average throughput and data delay.

Index Terms—Non-orthogonal multiple access, rate control,
power allocation, Lyapunov optimization.

I. INTRODUCTION

Due to the explosive traffic growth and the fast proliferation

of Internet of Things (IoT), the fifth generation (5G) of cellular

networks are expected to face unprecedented challenges in-

cluding 1000-fold increase in system capacity, improved spec-

tral efficiency, and massive connectivity with diverse service

requirements [1], [2]. In this context, non-orthogonal multiple

access (NOMA), although not completely new to the wireless

industry and research community [3], has been regarded as

a promising radio access technology for the 5G wireless

communication systems [4]–[7], due to its unique capability

of achieving a higher spectral efficiency and supporting a large

number of concurrent transmissions over the same communi-

cation resource. In fact, multiuser superposition transmission

(MUST), a two-user downlink scenario of NOMA, has been

investigated for the third generation partnership project long-

term evolution advanced (3GPP-LTEA) networks [8].
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The current fourth generation (4G) of cellular communi-

cation systems and previous generations primarily adopted

orthogonal multiple access (OMA) technologies, such as

frequency-division multiple access (FDMA), time-division

multiple access (TDMA), code-division multiple access

(CDMA), and orthogonal frequency-division multiple access

(OFDMA). In these OMA schemes, the resources are first

split into orthogonal resource blocks in frequency/time/code

domain and each resource block is then assigned to one

user exclusively. As such, the inter-user interference can be

avoided and the information of each user can be recovered at

a low complexity. However, due to the orthogonal resource

allocation, the maximum number of served users is limited by

the total number of available resource blocks. In this sense,

the OMA techniques are inadequate to support the massive

connectivity requirement of 5G wireless systems. Another

main problem of the OMA schemes is their relatively low

spectral efficiency, especially for the resource blocks assigned

to the users with poor instantaneous channel conditions. This

issue can be effectively addressed by applying user selection

schemes, where the users with strong channel conditions are

selected out to transmit over the limited number resources.

However, this may pose a serious user fairness problem as the

users near to the cell edge could have much fewer transmission

opportunities than those near to the cell center.

Unlike OMA with orthogonal resource allocation, NOMA

advocates the usage of the power domain to multiplex signal

streams from multiple users together and serve them simul-

taneously using the same frequency/time/code resource block.

At the transmitter, NOMA adopts the superposition coding [9]

to superimpose the signals of multiple users together by

splitting them in the power domain. At the receiver side,

successive interference cancellation (SIC) [10] is implemented

to separate multiplexed users’ signals. In this case, each user

can access to all resource blocks such that those resources

that are solely assigned to users with poor channel quality in

OMA can still be accessed by other users with good channel

conditions in NOMA, which enables NOMA to achieve a

higher spectral efficiency than OMA [11]. Apart from this,

NOMA is capable of realizing an improved tradeoff between

system throughput and user fairness than OMA. This can be

achieved by allocating less power to users with better channel

conditions and more power to users with worse channel

conditions, which is totally opposite to the conventional water-

filling power allocation scheme widely used in OMA.

http://arxiv.org/abs/1705.08572v1
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A. Related Work

The idea of using NOMA as a potential candidate for 5G

multiple access technology was first proposed in [12], [13]

by NTT DoCoMo, as a part of the mobile and wireless

communications enablers for the twenty-twenty information

society (METIS) projects. The system-level performance of

NOMA was evaluated by simulation in [14] by taking into con-

sideration many practical factors, including multiuser power

allocation, signaling overhead, SIC error propagation and

high user mobility. A test-bed of two-user downlink NOMA

system was developed and evaluated in [15], where a NOMA

scheme with each user occupying the whole bandwidth of

5.4 MHz was compared to an OMA scheme with each user

using the transmission bandwidth of 2.7 MHz. Experimental

results demonstrated that the NOMA scheme significantly

outperforms its OMA counterpart in terms of both aggregate

and individual user’s throughput.

Since NOMA uses the power domain to realize multiple

access and implements SIC to perform user decoding, the

power allocation to the data flows of different users plays

an important role in determining the performance of NOMA

systems. Specifically, the total power of the transmitter should

be allocated in a proper way so that the signals for the users

with worse channel conditions can be successfully decoded

and subsequently subtracted from the received signal of those

users with better channel conditions. Early efforts on NOMA

have mostly adopted the fixed power allocation scheme, in

which the power allocation coefficients are pre-determined and

are not affected by the instantaneous channel conditions [16]–

[20]. The fixed power allocation strategy is favorable in

terms of low implementation complexity, however, the system

performance can be disadvantaged if the power allocation

coefficients are not set appropriately. Inspired by the key

idea of cognitive radio, another power allocation scheme was

proposed and analyzed in [21], in which NOMA is treated

as a special case of cognitive radio networks. In this scheme,

the user with a weaker channel condition is regarded as a

primary user, who has a higher priority to be served. That is,

the available power is first allocated to fulfill the quality of

service of the primary user, while the secondary user with

a better channel condition will be opportunistically served

using the remaining amount of power. In this case, the overall

system spectral efficiency could be limited by the fact that

the strong user’s performance is highly affected by the weak

user’s channel quality. Recently, Yang et al. proposed a general

power allocation scheme to protect the QoS of both users, in

which the power allocation factors are dynamically adjusted

according to the instantaneous channel status to ensure that

the rates of two users in NOMA are both larger than those in

OMA [22], [23].

The aforementioned power allocation strategies were pri-

marily designed for two-user NOMA scenarios. In general,

more than two users can be multiplexed on the same resources,

where the power allocation problem becomes more compli-

cated. In [24], the dynamic power allocation scheme for a

multi-user NOMA system was addressed with max-min user

fairness for the cases with and without instantaneous channel

state information (CSI). More specifically, the objective was

set to maximize the minimum achievable user rate when the

instantaneous CSI is available, and to minimize the maximum

user outage probability when only average CSI is known. For

the case without instantaneous CSI, a sum power minimization

problem was resolved in [25] subject to outage probabilistic

constraints and the optimal decoding order. The work of [26]

provided an optimal power allocation solution to maximize

the weighted sum rate of all users subject to a total power

constraint.

When NOMA is applied in a multi-carrier system, the

power allocation problem will be upgraded to a joint power

and channel allocation problem. There have been some great

efforts in this research line [27]–[33]. The joint power and

channel allocation problem of multi-carrier NOMA systems

was formally formulated with both maximum weighted sum

rate and sum-rate utilities in [27], [28], in which the problem

was proved to be NP hard and a new algorithm inspired by

Lagrangian duality and dynamic programming was proposed

to achieve a near-optimal solution. In [29], [30], the joint

power and channel allocation problem was resolved by decou-

pling it as a many-to-many matching game with externalities

and a geometric programming subproblem. Apart from the

maximization of the sum rate or weighted sum rate, the total

transmit power minimization problems were addressed subject

to the predefined QoS of individual users in [31], [32]. Very

recently, Sun et al. studied a full-duplex multi-carrier NOMA

system, wherein the monotonic optimization was adopted to

design an optimal joint power and subcarrier allocation policy

such that the weighted sum system throughput is maximized.

B. Motivation and Contributions

We notice that most existing dynamic resource allocation

strategies for NOMA systems have mainly focused on short-

term (e.g., “one-snapshot”) designs. Specifically, the system

performance is normally optimized subject to a short-term

peak power constraint for a single transmission block, over-

looking the practical long-term power constraint. These short-

term designs may lead to inferior system performance in a

long-term perspective since the power resources are forced to

be used even when the channel condition is not good enough

in some transmission blocks. Furthermore, in practice, the

amount of data that can be transmitted at the physical layer

is highly influenced by the rate control at the network layer.

The limited transmit power should not be wasted to those

users who have little data to send/receive. In this sense, to

achieve a higher long-term system throughput with limited

resources, it is desirable to jointly design the rate control at

the network layer and the resource allocation at the physical

layer for NOMA systems. However, to our best knowledge,

this important problem has not been considered in the open

literature.

Motivated by this gap, in this paper we investigate the

joint rate control and power allocation of a downlink NOMA

system with one base station (BS) communicating to multiple

users. Different from existing short-term resource allocation

policies, we aim to maximize the long-term network utility,
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defined as a sum of concave functions of average data rates

of all users, subject to a peak power constraint and a long-

term average power constraint in the physical layer, as well

as a peak rate constraint in the network layer. In the proposed

design, we implement data queues at the BS to characterize

users’ incoming data flows from the Internet and outgoing

data flows to the wireless channel. Note that it is desirable to

jointly consider the data rate control and power optimization

problems due to the fact that the amount of data delivered

to each user in a certain timeslot is limited by not only the

instantaneous channel capacity but also the amount of data

available in the queue. Furthermore, the considered short-term

peak power constraint and long-term average power constraint

make the rate control and power allocation of different users

tangled not only in each timeslot but also across various

timeslots in the long term. In this sense, developing an online

algorithm that can maximize the long-term network utility

through optimizing the coupled data rate control and power

allocation in each timeslot subject to both short-term and long-

term power constraints is a challenging task.

The main contributions of this paper are summarized as

follows:

• We, for the first time, develop a systematic framework

for the joint rate control and power allocation in NOMA

systems. The formulated long-term optimization prob-

lem is fundamentally different from those short-term

designs in the open literature since it is subject to long-

term average and short-term peak power constraints,

the network-layer peak rate constraints, and the queue

stability constraints. As such, it cannot be resolved by

the existing approaches. Motivated by this, we leverage

the recently-developed Lyapunov optimization approach

[34], [35], which enables us to achieve the asymptotic

optimality of the formulated problem. This is realized by

converting the original long-term optimization problem to

a series of online queue- and channel-aware optimization

problems to be resolved at each single timeslot. Here,

“online” means that the BS only needs to know the queue

states and channel states at the current timeslot, without

predicting anything in the future or knowing the statistics

of the channel states.

• The online queue- and channel-aware optimization prob-

lem is then decomposed into rate control and power

allocation problems in each timeslot. However, the power

allocation problem is non-convex in nature and cannot

be solved with a standard method. Instead, we explore

two important structures in solving the problem. Referred

to as the finite-point structure, we show that the opti-

mality only possibly happens at a finite set of candidate

points, which substantially decreases the searching space.

Referred to as the incremental structure, we derive the

recursion of the original optimization problem and its

subproblems, leading to the desired Bellman equation. As

a consequence, we propose a new dynamic programming

based power allocation (DPPA) approach to derive a glob-

ally optimal solution, within a polynomial computational

complexity.

Q t

Q t

QK t

R t

R t

RK t

b t

b t

bK t K

Fig. 1. System model of the considered NOMA system.

• We evaluate the performance of our proposed framework

for joint rate control and power allocation for NOMA

systems via simulation and show that NOMA can greatly

improve the network performance in both data rate and

delay compared with four benchmark schemes, including

OMA and non-optimal NOMA schemes, under a variety

of system settings.

C. Organization

The rest of the paper is organized as follows. The system

model and problem formulation are described in Section

II, where the Lyapunov optimization approach is applied to

convert the original long-term optimization problem into a

series of rate control and power allocation problems to be

optimized in each timeslot. In Section III, we elaborate the

two special structures of the power allocation problems and

develop a new dynamic programming based power allocation

algorithm, which is guaranteed to achieve its global optimality.

Simulation results and the associated discussions are presented

in Section IV, and the conclusions of the paper are drawn in

Section V.

II. SYSTEM MODEL AND LYAPUNOV OPTIMIZATION

A. System Model

As shown in Fig. 1, we consider the downlink data trans-

mission from one BS to K users using NOMA [16], [20],

[24], [25], [28], [29]. All the nodes are equipped with single

antenna and work in a half-duplex mode. The system operates

on slotted time t ∈ {0, 1, 2, . . .}. At timeslot t, Ri(t) bits of

data for user i arrive at the BS from the Internet. These data

are firstly buffered at queue i and then forwarded to user i

via a wireless channel. Let Qi(t) denote the amount of data

buffered at queue i at time t, i.e., queue backlog of the user i.

We assume that the queue is large enough so that no data will

be dropped. Let bi(t) denote the amount of data that can be

delivered to the user i at t (i.e., data transmission capability

offered by the underlying wireless channel). Ri(t) and bi(t)
are variables to be designed by the system. Ri(t) indicates

how many data should be sent to the BS in the view of the

network layer, and bi(t) indicates how many data should be

sent from the BS to user i via the wireless link in the view

of the physical layer. Since the data rate of one user cannot

be arbitrarily large in the network, we consider that Ri(t) is
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limited to Rmax.1 bi(t) is also limited by finite transmission

power, which will be elaborated shortly. Mathematically, we

can write the following expression to characterize the evolution

of each user’s queue backlog

Qi(t+ 1) = [Qi(t)− bi(t)]
+ +Ri(t), (1)

where [·]+ means max[·, 0].
To improve the spectral efficiency, in this paper we consider

that the BS adopts the NOMA method to transmit data to

users in the downlink. As the first effort towards the long-term

resource allocation designs for NOMA, here we concentrate on

a single-carrier NOMA system such that the data transmissions

to all users work on the same frequency band. The proposed

long-term resource allocation framework can be extended to a

multi-carrier NOMA system, which we would like to consider

as future work. In addition, it is assumed that channels from

the BS to the users experience quasi-static and frequency flat

fading such that the channel gains remain constant during

each timeslot but change independently from one timeslot

to another. We use ĝi(t) to denote the channel gain from

the BS to user i during timeslot t. ĝi(t) are independent in

different timeslots, but ĝi(t) and ĝj(t), i 6= j, can be dependent

in one timeslot. As explained later, in our framework we

do not need to know the probability distribution of ĝj(t).
Let pi(t) denote the power allocated to transmit the data

of user i at t. Let ĝ(t) , (ĝ1(t), ĝ2(t), . . . , ĝK(t)) and

p(t) , (p1(t), p2(t), . . . , pK(t)). p(t) is a power allocation

variable that determines how the power is allocated to multiple

users at t. As we will see shortly, the values of bi(t) depend

on channel gains and power allocations at t.

We define gs(1)(t), gs(2)(t), . . . , gs(K)(t) as sorted

ĝ1(t), . . . , ĝK(t) in a descending order, where s(i) indicates

the index of the user with the ith largest channel gain,

i.e., subscript of the user before sorting. According to the

principle of NOMA with superposition coding and SIC, we

can compute the amount of data that can be sent to user

s(i) (i.e., bs(i)(t)) based on the channel gains and power

allocation given below [24], [28]:




bs(1)(t) = Wτ log
(
1 +

ps(1)(t)gs(1)(t)

η

)
,

bs(2)(t) = Wτ log
(
1 +

ps(2)(t)gs(2)(t)

ps(1)(t)gs(2)(t)+η

)
,

. . .

bs(K)(t) = Wτ log

(
1 +

ps(K)(t)gs(K)(t)
∑K−1

j=1 ps(j)(t)gs(K)(t)+η

)
,

(2)

where W is the radio frequency bandwidth, τ is the duration

of one timeslot, and η is the noise level. W , τ , and η are

predetermined.

In reality, the BS transmission power can be constrained

by two practical limitations. One could be imposed by the

requirement for power savings, which limits the long-term

average power consumption at the BS. The other may come

1This value is imposed by an upper-layer protocol (e.g., TCP) for each user.
This is because the upper layer protocol usually maintains a buffer to send
its data, and maximum possible data can be sent in each timeslot is limited
by the buffer size. This assumption is widely adopted in the literature that
focuses on network flow control, such as [35, Section 5.2] and [34, Section
5.2.4].

from the regulations and rules (e.g., Federal Communication

Commission (FCC)), which restricts the short-term transmis-

sion power at the BS. Motivated by this, we consider that

the NOMA system is subject to a long-term average power

constraint2,

lim
T→∞

1

T

T−1∑

t=0

E

[
K∑

i=1

pi(t)

]
≤ Pmean, (3)

as well as a one-timeslot peak power constraint,

K∑

i=1

pi(t) ≤ Pmax, ∀t, (4)

where Pmean and Pmax are the maximum allowed long-term

average power usage, and maximum allowed instantaneous

power usage in each timeslot, respectively. Please note that

the existing resource allocation designs for NOMA normally

considered the short-term power constraint, but overlooked the

long-term power constraint.

B. Problem Statement

To proceed, we first define the long-term network utility as

follows

U =

K∑

i=1

Ui

(
lim

T→∞

1

T

T−1∑

t=0

E[Ri(t)]

)
, (5)

where Ui(·) is the utility function of user i. It is an arbitrary

concave non-decreasing function. User i’s utility is a function

of its long-term average data rate, and the overall network

utility is the sum of the individual user utilities.

The aim of this paper is to optimize the long-term network

utility, by designing the data rate control in the network layer,

R(t), and the power allocation in the physical layer, p(t). The

problem is formally stated as the following Problem Origin

(Problem PO):

max
R(t),p(t),∀t

K∑

i=1

Ui

(
lim

T→∞

1

T

T−1∑

t=0

E[Ri(t)]

)
, (6a)

subject to

K∑

i=1

pi(t) ≤ Pmax, ∀t, (6b)

pi(t) ≥ 0, ∀i, t, (6c)

lim
T→∞

1

T

T−1∑

t=0

E

[
K∑

i=1

pi(t)

]
≤ Pmean, (6d)

0 ≤ Ri(t) ≤ Rmax, ∀i, t, (6e)

lim
t→∞

E[Qi(t)]

t
= 0, (6f)

where R(t) , (R1(t), R2(t), . . . , RK(t)). The last constraint

limt→∞

E[Qi(t)]
t

= 0 means that Qi(t) is mean rate stable.

2The long-term average power constraint at the BS could be imposed by
the mobile operator to control its electricity expense. It could also be imposed
by the government agency to limit the energy consumption of BS to reduce its
carbon emission on average. It is worth mentioning that this type of average
power constraint has been commonly considered in existing literature that
focused on the optimization of long-term performance of wireless systems,
see e.g., [36], [37].
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Its physical meaning is that the queue will not grow to

infinity after sufficiently long period. Note that due to the

considered queueing model given in (1) and the long-term

average power constraint given in (3), the rate control and

power allocation of all users across different timeslots are

actually tangled together. As such, the optimal solution to the

formulated optimization problem (6) cannot be achieved by

simply maximizing the data rate in each timeslot.

C. Lyapunov Optimization

The Problem PO perfectly matches the Lyapunov optimiza-

tion framework [34], [35]. This is because we aim to maximize

a long-term utility under a long-term constraint as well as

queue stability constraints. It can be shown that the long-term

power constraint (6d) can be converted to a virtual queue stable

constraint [34], [35]. We define a virtual queue Z(t), with

Z(0) = 0 and update equation

Z(t+ 1) =

[
Z(t) +

K∑

i=1

pi(t)− Pmean

]+
. (7)

With reference to [35, Section 4.4], (6d) can be guaranteed if

virtual queue Z(t) is mean rate stable. As such, we replace

condition (6d) by “Z(t) is mean rate stable”. In fact, Z(t)
indicates the accumulated power debt at t: On average, the

amount of Pmean power can be consumed in each timeslot.

Using power more than Pmean generates power debt, and using

power less than Pmean repays the power debt. The power debt

must be maintained finite over infinite timeslots, so that the

long-term power constraint is satisfied.

Subsequently, we study the queue evolution of the sys-

tem. Let Q(t) , (Q1(t), Q2(t), . . . , QK(t)), and Θ(t) =
(Q(t), Z(t)). The Lyapunov function L(Θ(t)) then becomes

[34], [35]

L(Θ(t)) ,
1

2

[
K∑

i=1

Q2
i (t) + Z2(t)

]
. (8)

The Lyapunov drift is then defined as

∆(Θ(t)) , E [L(Θ(t + 1))− L(Θ(t))|Θ(t)] . (9)

Since we aim to maximize a long-term utility as well as to

guarantee the queue stability, we focus on the following drift

minus utility (drift plus penalty [34], [35])

DPP(Θ(t)) = ∆(Θ(t)) − V E

[
K∑

i=1

Ui(Ri(t))
∣∣∣Θ(t)

]
, (10)

where V is a tunable weight, representing the relative im-
portance of “utility maximization” compared with “queue

stability”. Then DPP(Θ(t)) can be further bounded in the
following way [35, Section 3.1.2]

DPP(Θ(t)) ≤ E

[

K
∑

i=1

R2
i (t) + b2i (t)

2

∣

∣

∣
Θ(t)

]

+ E

[

K
∑

i=1

Qi(t)Ri(t)
∣

∣

∣
Θ(t)

]

− E

[

K
∑

i=1

Qi(t)bi(t)
∣

∣

∣
Θ(t)

]

+ E







(

∑K
i=1 pi(t) − Pmean

)2

2

∣

∣

∣
Θ(t)







+ E

[

Z(t)

(

K
∑

i=1

pi(t) − Pmean

)

∣

∣

∣
Θ(t)

]

− V E

[

K
∑

i=1

Ui(Ri(t))
∣

∣

∣
Θ(t)

]

≤ B + E

[

K
∑

i=1

Qi(t)Ri(t)
∣

∣

∣
Θ(t)

]

− E

[

K
∑

i=1

Qi(t)bi(t)
∣

∣

∣
Θ(t)

]

+ E

[

Z(t)

(

K
∑

i=1

pi(t) − Pmean

)

∣

∣

∣
Θ(t)

]

− V E

[

K
∑

i=1

Ui(Ri(t))
∣

∣

∣
Θ(t)

]

,

(11)

where B is an upper bound of E

[∑K
i=1

R2
i (t)+b2i (t)

2

∣∣∣Θ(t)
]
+

E

[
(
∑

K
i=1 pi(t)−Pmean)

2

2

∣∣∣Θ(t)

]
. Please note that this value is

bounded since Ri(t), bi(t), and pi(t) are all bounded values.

Following the Lyapunov optimization approach, we need

to “opportunistically” minimize the drift minus utility at

each timeslot, denoted by obj(t), i.e., the following term is

minimized at each timeslot [34], [35]

obj(t) =
K∑

i=1

Qi(t)Ri(t)−

K∑

i=1

Qi(t)bi(p(t), ĝ(t)) (12)

+ Z(t)

(
K∑

i=1

pi(t)− Pmean

)
− V

K∑

i=1

Ui(Ri(t))

=

K∑

i=1

[Qi(t)Ri(t)− V Ui(Ri(t))] (13)

−

[
K∑

i=1

Qi(t)bi(p(t), ĝ(t))− Z(t)

(
K∑

i=1

pi(t)− Pmean

)]
.

Please note that bi(t) is a function of p(t) and ĝ(t) as shown

in (2), so that we use bi(p(t), ĝ(t)) to represent bi(t) in the

above equation. As a consequence, we arrive at the following

single-timeslot optimization, which is referred to as Problem

Single-Timeslot (Problem PST)

min
p(t),R(t)

obj(t), (14a)

subject to

K∑

i=1

pi(t) ≤ Pmax, (14b)

pi(t) ≥ 0, ∀i, (14c)

0 ≤ Ri(t) ≤ Rmax, ∀i. (14d)

According to (13)–(14d), we notice that in order to solve the

Problem PST, the BS only needs to know the queue states

Qi(t), ∀i, virtual queue state Z(t), and channel gains ĝi(t), ∀i,
in the current timeslot t. Therefore, the solution to Problem

PST is an online queue- and channel-aware solution.
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D. Optimality of Lyapunov Optimization

Our original aim is to solve the long-term optimization

Problem PO. By employing the Lyapunov optimization ap-

proach, we convert the problem into the online single-timeslot

optimization Problem PST. If the single-timeslot optimization

is solved optimally at each timeslot, according to [34, Section

5.4] and [35, Section 5.1], the optimal solution to the original

Problem PO can then be achieved asymptotically, following

an [O(V ), O( 1
V
)] tradeoff between the queue backlogs and

the achieved utility given below

lim
T→∞

1

T

T−1∑

t=0

K∑

i=1

E(Qi(t)) ≤
B

µsym
+O(V ), (15)

K∑

i=1

Ui

(
lim

T→∞

1

T

T−1∑

t=0

E[Ri(t)]

)
≥U∗ −O

(
1

V

)
, (16)

where U∗ represents the maximum possible utility of Prob-

lem PO, µsym is a constant (predetermined by the system)

representing the largest possible time average data rate that is

simultaneously supportable to all users3, and O(·) represents

the big O notation.

E. Decomposition of Problem PST

Since the objective function of Problem PST is in a

sum form and the problem contains non-coupled constraints,

Problem PST can be decomposed into the following two

subproblems. First, for each user i, we need to optimize

max
Ri(t)

V Ui(Ri(t))−Qi(t)Ri(t), (17a)

subject to 0 ≤ Ri(t) ≤ Rmax. (17b)

The above problem is a rate control problem for user i. It is

referred to as Problem RC-i in the rest of this paper. Second,

the following problem must also be solved

max
p(t)

K∑

i=1

Qi(t)bi(p(t), ĝ(t))− Z(t)

K∑

i=1

pi(t), (18a)

subject to

K∑

i=1

pi(t) ≤ Pmax, (18b)

pi(t) ≥ 0, ∀i. (18c)

This is a power allocation problem for all users. It is referred

to as Problem PA in the rest of the paper. Problem PST is

3µsym represents the largest possible time average data rate that is simul-
taneously supportable to all user [34, Definition 3.7 and Section 5.1.2]. Its
physical meaning is explained as follows: Suppose that the mean arrival rates
of the K users (R1(t), R2(t), . . . , RK(t)) are equal to (µ1, µ2, . . . , µK).
Then, (µ1, µ2, . . . , µK) is in the network-layer capacity region if these arrival
rates can be stably supported by the network (i.e., all queues are stable),
considering all possible strategies for choosing the control variables to affect
scheduling and resource allocation. (µ1, µ2, . . . , µK) is not in the network-
layer capacity region if it is not possible to find any strategy to support these
arrival rates. µsym is the value such that (µsym, µsym, . . . , µsym) is in the
capacity region but (µsym+ǫ, µsym+ǫ, . . . , µsym+ǫ) is out of the capacity
region for an arbitrary small ǫ. For an arbitrary system, µsym exists and can
be regarded as a predetermined constant. Please note that µsym is usually
a hidden value when we design the system. In this paper, we do not need
to know µsym to design rate control or power allocation. It is only used

to show the [O(V ), O( 1
V
)] tradeoff between the queue backlogs and the

achieved utility.

solved optimally if and only if Problems RC-i and Problem

PA are all solved optimally.

The solution to Problem RC-i is straightforward. It is a

single-variable optimization problem and the objective func-

tion is concave. The optimal Ri(t) is simply equal to the

solution to V
∂Ui(t)
∂Ri(t)

= Qi(t) (if it is grater than Rmax or

smaller than 0, then the optimal Ri(t) equals to Rmax or 0
respectively).

However, we can easily verify that Problem PA is a non-

convex optimization problem, which cannot be solved through

a standard method. For a general non-convex optimization

problem, it is not guaranteed that there is an algorithm that

can find a globally optimal solution within a polynomial

computational complexity. Nevertheless, in Section III, we

manage to develop two important structures for solving the

problem, so that a globally optimal solution to Problem PA can

be calculated within a polynomial computational complexity,

through the proposed Dynamic Programming based Power

Allocation (DPPA) algorithm.

III. DYNAMIC PROGRAMMING BASED POWER

ALLOCATION

In this section, we aim to solve the single-timeslot power

allocation problem, i.e., Problem PA. Our main contribution

is to propose a new dynamic programming approach to derive

its globally optimal solution. To this end, we first reformulate

Problem PA for presentation convenience. Then, we explore

two important properties of the optimization problem, which

will be employed to construct the Bellman formula [38,

Chapter 15]. Finally, the Dynamic Programming based Power

Allocation (DPPA) algorithm is proposed to find the optimal

solution to Problem PA.

A. Reformulation of Problem PA

We first reformulate Problem PA to facilitate the presen-

tation. First, problem PA is a single-timeslot optimization

problem, which does not depend on other timeslots, so that

we ignore the notation t throughout this section. Second,

without loss of generality, we assume that the channel gains

follow g1 ≥ g2 ≥ . . . ≥ gK . Let g , (g1, g2, . . . , gK).
Please note that we do not make any specific assumptions on

Q1, Q2, . . . , QK , and Z so that they could be arbitrary non-

negative values. Also, without loss of generality, W and τ are

normalized to 1 throughout this section. As a consequence,

Problem PA is rewritten as

max
p

Q1 log

(
1 +

p1g1

η

)
+Q2 log

(
1 +

p2g2

p1g2 + η

)
+ . . .

+QK log

(
1 +

pKgK∑K−1
j=1 pjgK + η

)
− Z




K∑

j=1

pj


 ,

(19a)

s.t.

K∑

j=1

pj ≤ Pmax, (19b)

pk ≥ 0, ∀k. (19c)
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The physical meaning of the above Problem PA is interpreted

as follows. First, the objective function (19a) comprises a

weighted sum of physical layer data rates of individual users.

The weights are Q1, Q2, . . . , QK (i.e., the queue backlogs),

which means that if more outstanding data are stored at queue

i, then data transmission to user i has a higher priority, and

this is why its data rate is multiplied by the queue backlog

Qi. The objective function (19a) also includes a penalty term

Z ·
∑K

j=1 pj , the product of Z and total power consumption

of the current timeslot. Recall from (7) that Z indicates the

accumulated power debt. A larger Z value will lead to a

higher penalty in power consumption, so that less power will

be consumed in the current timeslot, and thus the power

debt could be kept finite, i.e., the long-term power constraint

is satisfied. It is worth mentioning that the weighted sum

rate maximization problem has been studied in [27]–[29].

However, their methods cannot address our power allocation

problem due to the different objective function introduced by

the considered long-term average power constraint.

In what follows, we introduce two important properties of

Problem PA, which will enable to find a globally optimal

solution.

B. Finite-Point Structure

In this subsection, we show the finite-point structure of

Problem PA, which will greatly decrease the searching space

for the optimal solution. Let F denote the objective function

(19a).

Lemma 1. Finite-Point Structure. If the optimality of Prob-

lem PA is achieved, ∀k ≤ K , the value of p1 + p2 + . . .+ pk
can only be one from the following values in E , where

E =

{
0;

η(gjQj−giQi)
gigj(Qi−Qj)

, ∀i, j, 1 ≤ i < j ≤ K; Qi

Z
− η

gi
, ∀i, 1 ≤

i ≤ K;Pmax

}
.

Proof. To proceed, we first calculate the first-order derivative
of the objective function given by















































































∂F
∂p1

=
g1Q1

p1g1+η
−

g2Q2
p1g2+η

+
g2Q2

(p1+p2)g2+η
−

g3Q3
(p1+p2)g3+η

+

. . .+
gK−1QK−1

(p1+...+pK−1)gK−1+η
−

gKQK

(p1+...+pK−1)gK+η

+
gKQK

(p1+...+pK)gK+η
− Z,

∂F
∂p2

=
g2Q2

(p1+p2)g2+η
−

g3Q3
(p1+p2)g3+η

+ . . .

+
gK−1QK−1

(p1+...+pK−1)gK−1+η
−

gKQK

(p1+...+pK−1)gK+η

+
gKQK

(p1+...+pK)gK+η
− Z,

. . .
∂F

∂pK−1
=

gK−1QK−1

(p1+...+pK−1)gK−1+η
−

gKQK

(p1+...+pK−1)gK+η

+
gKQK

(p1+...+pK)gK+η
− Z,

∂F
∂pK

=
gKQK

(p1+...+pK)gK+η
− Z.

(20)

If the optimality is achieved, the following Karush-Kuhn-

Tucker (KKT) condition must be satisfied4.




− ∂F
∂pk
− λk + µ = 0, ∀k,

λk = 0 or pk = 0, ∀k,

µ = 0 or
∑K

j=1 pj = Pmax.

(21)

where λk is the Lagrange multiplier associated with pk ≥ 0,

and µ is the Lagrange multiplier associated with
∑K

j=1 pj ≤
Pmax.

At the optimal solution, if at least one entry of p is

greater than zero5, we have i1 < i2 < . . . < iM ∈
{1, 2, . . . ,K},M ≥ 1, pi1 > 0, pi2 > 0, . . . , piM >

0. {i1, i2, . . . , iM} is an arbitrary non-empty subset of

{1, 2, . . . ,K}. Then, following the KKT condition, we have

λi1 = λi2 = . . . = λiM = 0 and thus

∂F

∂pi1
=

∂F

∂pi2
= . . . =

∂F

∂piM
. (22)

If µ 6= 0, we have

pi1 + pi2 + . . .+ piM−1 = Pmax. (23)

Otherwise, µ = 0, and we have

∂F

∂pi1
=

∂F

∂pi2
= . . . =

∂F

∂piM
= 0. (24)

As a consequence, either (23) or (24) stands.
Substituting pj = 0, j 6= i1, . . . , iM , into (20), and ignoring

those lines regarding to ∂F
∂pj

, j 6= i1, . . . , iM , we have















































































































∂F
∂pi1

=
gi1Qi1

pi1gi1+η
−

gi2Qi2
pi1gi2+η

+
gi2Qi2

(pi1+pi2 )gi2+η
−

gi3Qi3
(pi1+pi2 )gi3+η

+ . . .

+
giM−1

QiM−1

(pi1+...+piM−1
)giM−1

+η
−

giM
QiM

(pi1+...+piM−1
)giM

+η

+
giM

QiM

(pi1+...+piM
)giM

+η
− Z,

∂F
∂pi2

=
gi2Qi2

(pi1+pi2 )gi2+η
−

gi3Qi3
(pi1+pi2 )gi3+η

+ . . .

+
giM−1

QiM−1

(pi1+...+piM−1
)giM−1

+η
−

giM
QiM

(pi1+...+piM−1
)giM

+η

+
giM

QiM

(pi1+...+piM
)giM

+η
− Z,

. . .

∂F
∂piM−1

=
giM−1

QiM−1

(pi1+...+piM−1
)giM−1

+η
−

giM
QiM

(pi1+...+piM−1
)giM

+η

+
giM

QiM

(pi1+...+piM
)giM

+η
− Z,

∂F
∂piM

=
giM

QiM

(pi1+...+piM
)giM

+η
− Z.

(25)

By combining (22) into (25), we have




gi1Qi1

pi1gi1+η
−

gi2Qi2

pi1gi2+η
= 0,

gi2Qi2

(pi1+pi2 )gi2+η
−

gi3Qi3

(pi1+pi2 )gi3+η
= 0,

. . .
giM−1

QiM−1

(pi1+...+piM−1
)giM−1

+η
−

giM QiM

(pi1+...+piM−1
)giM +η

= 0,

(26)

4Please note that the KKT condition does not guarantee global optimality,
but global optimality implies the KKT condition.

5If all entries of the optimal p equal to zero, ∀k ≤ K , the values of
p1 + p2 + . . .+ pk are always 0, so that the Lemma 1 is trivially true. This
scenario can be ignored in this proof.
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which leads to




pi1 =
η(gi2Qi2−gi1Qi1 )

gi1gi2 (Qi1−Qi2 )
,

pi1 + pi2 =
η(gi3Qi3−gi2Qi2 )

gi2gi3 (Qi2−Qi3 )
,

. . .

pi1 + pi2 + . . .+ piM−1 =
η(giM QiM

−giM−1
QiM−1

)

giM−1
giM (QiM−1

−QiM
) .

(27)

By combining (23) and (24) into the last line of (25), we

have either

∂F

∂piM
=

giMQiM

(pi1 + . . .+ piM )giM + η
− Z = 0, (28)

or

pi1 + . . .+ piM = Pmax. (29)

Therefore, by combining (27), (28), and (29), pi1 +
pi2 + . . . + pim , m ≤ M can only possibly be

one from the following values in E(i1, i2, . . . , iM ) ={
η(gi2Qi2−gi1Qi1 )

gi1gi2 (Qi1−Qi2)
,
η(gi3Qi3−gi2Qi2 )

gi2 gi3 (Qi2−Qi3)
, . . . ,

η(giM QiM
−giM−1

QiM−1
)

giM−1
giM (QiM−1

−QiM
) ,

QiM

Z
− η

giM
, Pmax

}
.

Finally, {i1, i2, . . . , iM} could be an arbitrary subset of

{1, 2, . . . ,K}. Thus, p1 + p2 + . . . + pk can only possibly

be 0 or one value in
⋃

all possible i1,i2,...,iM
E(i1, i2, . . . , iM ),

which is equivalent to

{
0;

η(gjQj−giQi)
gigj(Qi−Qj)

, ∀i, j, 1 ≤ i < j ≤

K; Qi

Z
− η

gi
, ∀i, 1 ≤ i ≤ K; Pmax

}
. This completes the proof.

Lemma 1 shows that when the optimality of Problem PA is

achieved, the value of p1 + p2 + . . . + pk, ∀k ≤ K , must be

one from the candidate values in E . This is because if a value

of p1+p2+ . . .+pk, ∀k ≤ K , is not in E , the KKT condition

is not satisfied and p is not an optimal solution. Such property

greatly decreases the searching space for the optimal solution,

which will then be employed as a key in the DPPA algorithm.

Please note that if a value in E is greater than Pmax or

smaller than 0, p1 + p2 + . . .+ pk, ∀k ≤ K , cannot be equal

to that value. Therefore, we can eliminate such values from

E . Let Ẽ , {e ∈ E|0 ≤ e ≤ Pmax}. We have the following

corollary

Corollary 1. If the optimality of Problem PA is achieved, the

value of p1 + p2 + . . . + pk, ∀k ≤ K , can only be one from

those in Ẽ .

In the rest of this paper, let L = |Ẽ | represent the number of

elements in Ẽ . L ≤ K(K−1)
2 +K+2 since there are

K(K−1)
2 +

K + 2 elements in E by definition.

C. Incremental Structure

In this subsection, we present the incremental structure in

the optimal solution, which will help to construct the Bellman

equation to be used in the dynamic programming.

For convenience, we define

f1(p1) , Q1 log

(
1 +

p1g1

η

)
− Z · p1, (30)

f2(p1, p2) , Q2 log

(
1 +

p2g2

p1g2 + η

)
− Z · p2, (31)

. . .

fK(p1 + p2 + . . .+ pK−1, pK) ,

QK log

(
1 +

pKgK∑K−1
j=1 pjgK + η

)
− Z · pK . (32)

Let

Gk(p1, p2, . . . , pk) ,f1(p1) + f2(p1, p2) + . . .

+fk(p1 + p2 + . . .+ pk−1, pk), ∀k. (33)

Then, we have

Gk(p1, p2, . . . , pk) =Gk−1(p1, p2, . . . , pk−1)

+fk(p1 + p2 + . . .+ pk−1, pk). (34)

Please note that GK(p1, p2, . . . , pK) = F (p1, p2, . . . , pK), the

objective function of Problem PA.

We notice that if we want to obtain the optimal solution to

PA, we can solve them by gradually improving the objective

function, using the following incremental structure.

Lemma 2. Incremental Structure. If p∗1, p
∗
2, . . . , p

∗

k, k ≥ 2,

is an optimal solution to the following problem

max
p1,p2,...,pk

Gk(p1, p2, . . . , pk), (35a)

subject to p1 + p2 + p3 + . . .+ pk = A, (35b)

pj ≥ 0, ∀j = 1, 2, . . . k, (35c)

where A is some non-negative value, then, p∗1, p
∗
2, . . . , p

∗

k−1 is

an optimal solution to the following problem

max
p1,p2,...,pk−1

Gk−1(p1, p2, . . . , pk−1), (36a)

subject to p1 + p2 + p3 + . . .+ pk−1 (36b)

= p∗1 + p∗2 + p∗3 + . . .+ p∗k−1,

pj ≥ 0, ∀j = 1, 2, . . . k − 1. (36c)

Proof. Suppose p∗1, p
∗
2, . . . , p

∗

k−1 is not an optimal solution

to problem (36a)–(36c), then we can find another solution

p∗∗1 , p∗∗2 , . . . , p∗∗k−1 leading to a even larger value of the object

function (36a), f1(p
∗∗
1 ) + f2(p

∗∗
1 , p∗∗2 ) + . . .+ fk(p

∗∗
1 + p∗∗2 +

. . .+ p∗∗k−2, p
∗∗

k−1) > f1(p
∗
1) + f2(p

∗
1, p

∗
2) + . . .+ fk(p

∗
1 + p∗2 +

. . .+ p∗k−2, p
∗

k−1).
Please note that p∗∗1 , p∗∗2 , . . . , p∗∗k−1, p

∗

k is also a feasible

solution to (35a)–(35c), however, such solution leads to a

greater value in the objective function in (35a), i.e., f1(p
∗∗
1 )+

f2(p
∗∗
1 , p∗∗2 )+ f2(p

∗∗
1 + p∗∗2 , p∗∗3 )+ . . .+ fk(p

∗∗
1 + p∗∗2 + . . .+

p∗∗k−1, p
∗

k) > f1(p
∗
1)+f2(p

∗
1, p

∗
2)+f2(p

∗
1+p∗2, p

∗
3)+. . .+fk(p

∗
1+

p∗2 + . . .+ p∗k−1, p
∗

k), leading to a contradiction. Through this

contradiction, Lemma 2 is proved.

Lemma 2 implies that in order to solve the optimiza-

tion problem with the objective function Gk(·), we can
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first solve a reduced subproblem with the objective func-

tion Gk−1(·). Therefore, the original problem with ob-

jective function GK(·) can then be solved recursively,

through solving optimization problems with objective func-

tions GK−1(·), GK−2(·), . . . , G1(·). In what follows, we re-

alize such idea by detailed derivations: We first derive the

Bellman equation showing the recursion of the optimality.

Then, a dynamic programming approach is proposed to solve

the Problem PA.

D. Recursion of Optimality: Bellman Equation

In the next step, we aim to solve the Problem PA via a

dynamic programming approach. Intrinsically, dynamic pro-

gramming is a mathematical optimization method. The original

problem is broken down into simpler sub-problems in a

recursive manner, so that the original problem can be solved

optimally through recursively finding the optimal solutions

to the sub-problems. The mathematical relation between the

optimality of the problem and its sub-problems is characterized

by the Bellman equation [38, Chapter 15].

As a prerequisite for dynamic programming, the Bellman

equation regarding to the optimal solution to Problem PA is

derived in this subsection, which is achieved through taking

the advantage of the structures derived by Lemmas 1 and 2.

We define the Subproblem-l-k (SP-l-k) as follows

max
p1,p2,...,pk

Gk(p1, p2, . . . , pk), (37a)

subject to p1 + p2 + p3 + . . .+ pk = πl, (37b)

pj ≥ 0, ∀j = 1, 2, . . . k, (37c)

p1 + p2 + . . .+ pk′ ∈ Ẽ , ∀k′ ≤ k, (37d)

where πl is the lth smallest element in Ẽ . {π1, π2, . . . , πL}
is the sorted version (in ascending order) of Ẽ . We de-

fine H(l, k) as the optimal Gk value of SP-l-k, and let

popt(l, k) = (popt,1(l, k), . . . , popt,k(l, k)) denote the optimal

solution. Following Corollary 1, since p1+p2+p3+. . .+pK is

one from the values in {π1, π2, . . . , πL}, the optimal solution

to Problem PA is the best one among the optimal solutions to

SP-1-K , SP-2-K , . . . , SP-L-K .

Then, we characterize H(l, k) through analyzing H(l′, k −
1). When SP-l-k is optimized, p1+p2+p3+ . . .+pk−1 must

be equal to some πl′ ∈ Ẽ , l′ ≤ l. Given l′, due to Lemma 2,

the following SP-l′-(k − 1) must be optimized first

max
p1,p2,...,pk−1

Gk−1(p1, p2, . . . , pk−1), (38a)

subject to p1 + p2 + p3 + . . .+ pk−1 = πl′ , (38b)

pj ≥ 0, ∀j = 1, 2, . . . k − 1, (38c)

p1 + p2 + . . .+ pk′ ∈ Ẽ , ∀k′ ≤ k − 1. (38d)

However, at this stage, we do not know the value l′, so that we

need to examine all possible l′ values. By solving all possible

SP-l′-(k − 1), ∀l′ ≤ l, we can find the best one among them

to achieve the optimal SP-l-k.

Given that SP-l′-(k− 1) is optimized (it implies p1 + p2 +
p3+ . . .+pk−1 = πl′ ), and given the constraint p1+p2+p3+
. . .+pk = πl in SP-l-k, pk is fixed at πl−πl′ . Then the value

of the objective function of SP-l-k becomes H(l′, k − 1) +
fk(πl′ , πl−πl′) in this scenario. By examining all possible l′,

∀l′ ≤ l, H(l, k) is the largest one among all possible H(l′, k−
1) + fk(πl′ , πl − πl′ ) values, l′ ≤ l.

As a consequence, we have the following Bellman equation

showing the relationship between the optimal solution to SP-

l-k and its subproblems for k ≥ 2

H(l, k) = max
l′=1,2,...,l

(H(l′, k − 1) + fk(πl′ , πl − πl′)). (39)

When k = 1, the optimal value of the objective of SP-

l-1 can be simply derived as H(l, 1) = f1(πl) following

definition.

The optimal solution to Problem PA is

max [H(1,K), H(2,K), . . . , H(L,K)], which can be

derived through recursively finding the optimal solutions

to H(l,K − 1), H(l,K − 2), . . . , H(l, 1), ∀l, by employing

dynamic programming. In the next subsection, we will

formally propose the Dynamic Programming based Power

Allocation (DPPA) algorithm to solve Problem PA.

E. Dynamic Programming based Power Allocation (DPPA)

In this subsection, we propose the DPPA formally described

in Algorithm 1 through the derived the Bellman equation given

in (39).

In Lines 1–16 of Algorithm 1, we construct the set Ẽ .

In Lines 17–26, we derive the optimal H(k, l) values via

dynamic programming approach. Finally, the optimal solution

to Problem PA is derived in Lines 27–29, since the optimal

solution to Problem PA is the best one among the optimal

solutions to SP-1-K , SP-2-K , . . . , SP-L-K .

F. Complexity Analysis

The computational complexity of the above DPPA is charac-

terized as follows. In Lines 20–26, there are two levels of “for”

loops. The outer level (Line 20) introduces a computational

complexity of O(K), and the inner level (Line 21) introduces

a computational complexity of O(L). Within the inner “for”

loop (Lines 22–23), we search for the maximum term among

l terms, and l ≤ L, introducing another level of computational

complexity of O(L). Therefore, the overall computational

complexity is O(KL2). L is in the scale of O(K2) according

to Corollary 1, so that the overall computational complexity

is O(K5), which is polynomial.

Note that for a general non-convex optimization problem,

there are no standard methods to find a globally optimal

solution within a polynomial computational complexity. In

order to derive a globally optimal solution to Problem PA,

one alternative method is to study the KKT condition of

the optimization problem and exhaustively search for all the

solutions satisfying the KKT condition. Then, the best solution

among them is selected as the globally optimal solution.

By this method, the KKT condition is shown in (21), and

then we need to find all solutions satisfying (21). According to

the second line of (21), for each user k, we need to consider

two possibilities: (1) λk = 0 and (2) pk = 0 for this user.

Since there are K users, there are 2K possibilities. In the
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Algorithm 1: Dynamic Programming based Power Allo-

cation

1 Find all possible p1 + p2 + . . .+ pk, k ≤ K,

values and put them in Ẽ ;

2 Ẽ ← {0, Pmax};
3 for i← 1 to K do

4 for j ← i+ 1 to K do

5 pa ←
η(gjQj−giQi)
gigj(Qi−Qj)

;

6 if 0 < pa < Pmax then

7 Put pa in E ;

8 end

9 end

10 pa ←
Qi

Z
− η

gi
;

11 if 0 < pa < Pmax then

12 Put pa in Ẽ ;

13 end

14 end

15 L← |Ẽ|, i.e., the size of Ẽ ;

16 Sort all elements in Ẽ in ascending order π1, π2, . . . , πL;

17 Dynamic programming using Bellman

equation;

18 Set H(l, k)← 0, ∀k = 1, 2, . . . ,K, ∀l = 1, 2, . . . , L;

19 Set H(l, 1)← f1(πl), popt(l, 1)← (πl), ∀l = 1, 2, . . . , L;

20 for k ← 2 to K do

21 for l← 1 to L do

22 H(l, k)←
maxl′=1,2,...,l [H(l′, k − 1) + fk(π

′

l, πl − π′

l)];
23 l0 ←

argmaxl′=1,2,...,l [H(l′, k − 1) + fk(π
′

l, πl − π′

l)];

24 popt(l, k)← (popt(l0, k − 1), πl − πl0); append
πl − πl0 in the end;

25 end

26 end

27 Hopt ← maxl=1,2,...,LH(l,K); Optimal value of

objective function of Problem PA;

28 l0 ← argmaxl=1,2,...,L H(l,K);
29 popt ← popt(l0,K); Optimal power allocation

of Problem PA.

third line of (21), we need to consider another set of two

possibilities. In sum, we need to exhaustively search for 2×2K

possibilities to find all solutions satisfying (21), in order to

find the best one among them. Therefore, the computational

complexity is O(2K), non-polynomial, without our proposed

DPPA algorithm.

IV. SIMULATION PERFORMANCE EVALUATION

In this section, we present simulation based performance

evaluation of the proposed long-term resource allocation

framework for NOMA. We first introduce the simulation

setup and four benchmark schemes, and then demonstrate

the performance gain of our DPPA-based NOMA scheme

over these benchmark schemes. For simplification, the NOMA
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Fig. 2. Queue backlog versus network utility in Scenario 1.
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Fig. 3. Queue backlog versus network utility in Scenario 2.

scheme proposed in this paper is referred to as NOMA-OPT

in the rest of this section.

A. Simulation Setup

The channel gain from the BS to each user is computed as
1

Dα ·g0, where Dα is the pathloss, D (in meter) is the distance

between the BS to the user, α = 4 is the pathloss exponent,

and g0 is independently exponentially distributed with a unit

mean (corresponding to a normalized Rayleigh fading). We set

W = 20 MHz and τ = 50 ms. The utility function of each user

is set to be ln(data rate in Mbit per timeslot). Each simulation

point is averaged over 50000 timeslots. We set Pmax = 33
dBm, Pmean = 30 dBm, Rmax = 15 Mbits, and the noise

η = −87 dBm. The initial queue backlogs for all users are 0.

B. Benchmark Schemes

In this section, we compare the proposed NOMA-OPT

scheme with four benchmark schemes as follows.

1) Time-sharing Orthogonal Multiple Access (OMA)

Scheme: In this scheme, different users are operated on

equally partitioned time durations in each timeslot. For fair-

ness, the OMA scheme has the same queueing model as the

NOMA-OPT scheme: Problem PO is still the initial objective

to be solved. The same Lyapunov optimization analysis can

be performed, and PO is converted to a single-timeslot opti-

mization, which can then be decomposed into Problems RC-

i and Problem PA. The only difference is that the objective

function of Problem PA is replaced by maxp
1
K
Q1 log

(
1 +
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p1g1
η

)
+ 1

K
Q2 log

(
1+ p2g2

η

)
+ . . .+ 1

K
QK log

(
1+ pKgK

η

)
−

Z
(∑K

i=1 pi

)
. We can verify that Problem PA for OMA is

a convex optimization problem, which can be solved by a

standard method (e.g., interior point method). The derived

optimal solution is adopted in each timeslot.

2) Single User Serving (Single) Scheme: In this scheme,

only one single user is served in each timeslot. For fairness, the

Single scheme has the same queueing model as the NOMA-

OPT scheme. The objective function of Problem PA does

not change, but an additional constraint that at most one of

p1, p2, . . . , pK can be positive is added. Through this way,

the resultant power is allocated to one “best” user in each

timeslot.6

3) NOMA with Equal Power Allocation (NOMA-EQ)

scheme: In this scheme, NOMA is employed, but power

allocation is not optimized. In each timeslot, power is equally

allocated to all users, and the total power allocated is equal

to Pmean. For fairness, the NOMA-EQ scheme has the same

queueing model as the NOMA-OPT scheme.

4) NOMA with Power Allocation Proportional to Queue

Backlog (NOMA-Pro-Q) scheme: In this scheme, NOMA is

employed, but power allocation is not optimized. In each

timeslot, the power allocated to each user is proportional to

the queue backlog of that user (Qi(t)), and the total power

allocated is equal to Pmean. The NOMA-EQ scheme has the

same queueing model as the NOMA-OPT scheme.

C. Tradeoff between Utility and Queue Backlog

First, we study the tradeoff between the long-term user

utility and the average queue backlog Qi(t), when we adjust

the value of V from 10−1 to 103. Recall that V is a tunable

value that achieves an [O(V ), O( 1
V
)] tradeoff between the

queue backlogs and utility, shown in (15)–(16). We study

two scenarios. There are K = 5 users in both scenarios. In

Scenario 1, all of the five users are 100 meters from the BS;

and in Scenario 2, the five users are 60, 80, 100, 120, and 140
meters from the BS.

The tradeoff performance of NOMA-OPT and four bench-

mark schemes in Scenarios 1 and 2 is shown in Figs. 2

and 3. First, we observe that when the queue backlog in-

creases, the user utility increases fast at the beginning, but

then gradually saturates. This matches our analysis that there

is an [O(V ), O( 1
V
)] tradeoff. Please note that here O(V )

indicates the size of queue backlog, and O( 1
V
) indicates the

gap between the utility under V and the maximum possible

utility. Therefore, the utility asymptotically approaches the

maximum possible utility when we keep increasing the queue

backlog.

Second, in both figures, we observe that the performance

of NOMA-OPT is much better than those of OMA and

6Note that “Single” is not optimal to Problem PA. If gi > gj , then serving
user i instead of user j will lead to a better solution. If Qi > Qj , we should
give a higher priority to serve user i since the queue backlog at user i is larger.
If gi > gj and Qi > Qj , serving user i but not j is optimal. However, if
we have gi > gj and Qi < Qj , it is not straightforward to decide which
user to serve, and how much power should be allocated to users i and j.
We can only solve the problem optimally through our proposed NOMA-OPT
solution, which is one of our core contributions of this work.
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Fig. 4. Performance comparison in Scenario 1.

Single. Given an arbitrary queue backlog, the overall utility

of NOMA-OPT is higher than those of Single and OMA.

This matches our expectation: NOMA-OPT outperforms OMA

because NOMA can better utilize the radio resource to achieve

better data rates for all users. NOMA-OPT outperforms Single

because Single gives a sub-optimal solution to Problem PA in

each timeslot (since an additional constraint that at most one

user can be served is added in Single).

Third, we observe that in Fig. 2, the performances of

NOMA-OPT, NOMA-EQ, and NOMA-Pro-Q schemes are

close to each other. This is because in Scenario 1, the distances

from the five users to the BS are the same, so that the

five users are symmetric. Equal power allocation is already a

sufficiently good solution to these five symmetric users. In this
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Fig. 5. Performance comparison in Scenario 2.

scenario, for NOMA-Pro-Q scheme, the five users experience

almost the same queue backlogs, so that NOMA-Pro-Q is

almost equivalent to NOMA-EQ. However, in Fig. 3 when the

distances from the five users to the BS are different (which is

most likely in reality), NOMA-OPT substantially outperforms

NOMA-EQ and NOMA-Pro-Q. This is because NOMA-EQ

does not allocate sufficient power to users far from the BS,

so that these users experience very low data rate, leading

to low log utility. Compared with NOMA-EQ, NOMA-Pro-

Q improves the log utility by allocating more power to users

farther away. However, the improved performance is still much

worse than that of NOMA-OPT.

Finally, we notice that without wisely devising the power

allocation scheme for NOMA, the benefit of NOMA cannot

be realized. The performances of NOMA-EQ and NOMA-

Pro-Q are even much worse than that of OMA in Fig. 3.

Such observation further demonstrates the significance of our

proposed NOMA-OPT scheme.

D. User Data Rate and Queueing Delay

We also study the average user data rate and average

queueing delay7 of the five users in Scenarios 1 and 2, under

the five schemes. V = 30 in this subsection. In Figs. 4 and

5, we show the data rate, average queueing delay, and the

overall utility in subfigures (a), (b), and (c), respectively. In

Scenario 1, NOMA-OPT slightly improves the data rates and

queueing delays for all users compared with Single, NOMA-

EQ, and NOMA-Pro-Q, but substantially improves data rates

and queueing delays for all users compared with OMA. In

Scenario 2, the advantage of NOMA-OPT is much more

substantial. In particular, we observe

1) Compared with OMA, the data rates and queueing

delays for all users are substantially improved.

2) Compared with Single, the data rate of user 1 is slightly

smaller. This gives way to the performance gains of users

2, 3, 4, and 5, and thus the overall log utility shown in

Fig. 5(c). In addition, the delay performance of users

4 and 5 are substantially improved (Note that the y-

axis of Fig. 5(b) is shown in log scale). This is because

the performance gain of NOMA-OPT stems from the

optimality in solving Problem PA (while Single gives a

non-optimal solution).

3) NOMA-EQ and NOMA-Pro-Q only provide large data

rate and small delay to the closest user, while the data

rate and delay performance of far users are very poor.

Therefore, without our proposed NOMA-OPT approach,

the performance NOMA could be unsatisfactory.

4) NOMA-OPT brings the highest performance enhance-

ment to user 5 (the farthest user) compared with all the

other four schemes. It suggests that edge users will get

more benefits if NOMA-OPT is adopted.

E. Evolution of Queue Backlogs

In this subsection, we investigate the evolution of the queue

backlogs and understand how they influence the system fair-

ness. For illustration purpose, we study the following Scenario

3: There are K = 3 users, and they are 20, 100, and 200
meters from the BS. Obviously, their distances to the BS and

thus channel gains are quite different in this scenario. V = 50
in this subsection.

Through the NOMA-OPT approach, the data rates of the

three users are 215.65, 137.94, and 105.82 Mbps respectively.

Even if the channel gain of the furthest user is 40 dB smaller

than that of the closest user (on average), it can still achieve

48.8% of data rate of the closest user, suggesting that the

system fairness is well protected. This is aligned with the fact

that the queue backlogs of the three users fluctuate around 11,

7It is the average time of a data bit staying in queue Qi(t). In the
simulation, we track the timestamps at which each data bit enters and leaves
the queue Qi(t), and compute the time difference. The result is averaged over
all data bits in the simulation.
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Fig. 7. Performance comparison under different numbers of users.

16, and 20 respectively: user 3 is usually associated with a

larger queue backlog and thus has a higher weight (priority)

in the optimization problem in (19a).

F. Performance Gain under Different Numbers of Users

Finally, we investigate the performance gain of NOMA-OPT

over the four benchmark schemes under variable numbers of

users. V = 20 in this subsection. We consider scenarios where

the number of users increases from 5 to 40. In each case,

users are lined from 50 meters to 150 meters from the BS

with equal intervals. We study the utility gain of NOMA-OPT

compared with each of the benchmark schemes (i.e., utility

of NOMA-OPT minus utility of the benchmark scheme) and

the delay ratio of NOMA-OPT over each of the benchmark

schemes (i.e., average queueing delay of NOMA-OPT over

average queueing delay of the benchmark scheme). The results

shown in Fig. 7 suggest that NOMA-OPT brings substantial

performance gain, in terms of both data rate and delay, under

a variety of user numbers in the system. In addition, the utility

gain increases as the number of user increases. This is because

the original Problem PO is solved asymptotically optimally by

our proposed NOMA-OPT, but all of the benchmark schemes

give non-optimal solutions. The more users in the system, a

non-optimal solution has a higher chance to make a “poor”

decision, and thus causes larger performance loss compared

with NOMA-OPT.

V. CONCLUSIONS

In this paper, we developed a long-term resource allocation

framework for a downlink multi-user non-orthogonal multiple

access (NOMA) network, which jointly optimizes the rate

control at the network layer as well as the power allocation

at the physical layer to maximize the long-term network

utility, subject to several practical long-term and short-term

constraints on the power consumption and user queue stability.

By resorting to the Lyapunov optimization theory, we attained

the asymptotically optimal solution to the formulated long-

term network utility maximization problem. To achieve this,

we converted the utility maximization problem into a series

of short-term rate control and power allocation problems to

be optimized in each timeslot and successfully resolved these

short-term problems by leveraging the special structures of

the objective functions. Simulation results were presented to

compare the performance of the proposed NOMA method

with those of four benchmark schemes, including OMA and

non-optimal NOMA schemes, under the same setups. The

simulation results showed that compared to these benchmark

schemes, the proposed NOMA method can achieve a higher

network throughput, lower data delay, and better user fairness.
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