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Location Privacy in Mobile Edge Clouds: A
Chaft-based Approach
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Abstract—In this paper, we consider user location privacy in
mobile edge clouds (MECs). MECs are small clouds deployed at
the network edge to offer cloud services close to mobile users,
and many solutions have been proposed to maximize service
locality by migrating services to follow their users. Co-location of
a user and his service, however, implies that a cyber eavesdropper
observing service migrations between MECs can localize the user
up to one MEC coverage area, which can be fairly small (e.g.,
a femtocell). We consider using chaff services to defend against
such an eavesdropper, with focus on strategies to control the
chaffs. Assuming the eavesdropper performs maximum likelihood
(ML) detection, we consider both heuristic strategies that mimic
the user’s mobility and optimized strategies designed to minimize
the detection or tracking accuracy. We show that a single chaff
controlled by the optimal strategy or its online variation can drive
the eavesdropper’s tracking accuracy to zero when the user’s mo-
bility is sufficiently random. We further propose extended strate-
gies that utilize randomization to defend against an advanced
eavesdropper aware of the strategy. The efficacy of our solutions
is verified through both synthetic and trace-driven simulations.

Index Terms—Mobile edge cloud, location privacy, chaff ser-
vice.

I. INTRODUCTION

While improvement in the coverage of wireless communi-
cations brings tons of useful applications to the fingertips of
mobile users, this trend also imposes a significant threat on
user location privacy. Location privacy refers to safeguarding
a mobile user’s location from unintended use. While legitimate
use of user location can enable various location-based services
(LBS), malicious use of this information can cause harmful
consequences such as stalking, blackmailing, and fraud [2].

Existing efforts in protecting user location privacy mostly
focus on protecting the information released through the direct
channel, i.e., location information intentionally revealed by the
user. Since the direct channel is controlled by the user, e.g.,
by configuring whether/when to share his location with an
LBS provider, the user can easily obfuscate his location in the
spatial/temporal domain to make sure that his location cannot
be distinguished from the locations of many other users [2].

The more challenging problem, however, is how to prevent
unintentional release of location information through side
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Fig. 1. Providing services to mobile users via MECs.

channels. In wireless networks, an important side channel is
the user’s wireless transmission activity, which can be moni-
tored by an eavesdropper with wireless sensing capabilities to
track the user, even if the direct channel is perfectly protected.
Since its discovery, a few solutions have been proposed to
protect this side channel, e.g., by introducing intermittent radio
silence and reducing the transmission power, which can effec-
tively increase the uncertainty for the eavesdropper [3], [4].

In this work, we investigate the problem in a novel context
of mobile edge clouds (MECs) [5], also known as cloudlets
(6], mobile micro clouds 1|, fog [8l], or follow me cloud [9].
As illustrated in Fig. [[, MECs are small clouds that offer a
selected set of cloud services from the edge of the mobile
network (e.g., base stations). Since its introduction, MEC has
attracted tremendous interest from both research communities
and industry leaders as a promising approach to improve the
performance of cloud services for mobile users [10]], [11]. It
is also considered the most viable approach to offer cloud
services in tactical environments [12]. From the perspective of
location privacy, however, this technology opens a new side
channel, referred to as the cyber side channel.

Specifically, to deliver the promised performance, MECs
need to migrate service (e.g., by migrating virtual machines
(VMs) encapsulating the services [13]]) to follow the mobile
users [9], [14)], [S], [7]. For delay-sensitive services (e.g.,
augmented reality), the service has to remain no more than
one hop away from its user to prevent significant degradation
in the Quality of Service (QoS) [13]. This implies that a “cyber
eavesdropper”, who can observe service migrations among
MECs, can track physical movements of the user. Such a
cyber eavesdropper can be a hacker that has gained access
to the MECs, or an untrusted MEC provider interested in
tracking users of certain services. For example, as tactical
operations start to use commercial clouds to reduce cost [15],
a malicious (or compromised) MEC provider can track tactical

'Here we use “service” to refer to an instance of a given type of
service (e.g., a VM instance running the service), which is independently
generated/migrated for each user of this type of service as in existing solutions
(130, [91, (141, 150, 170.



users by tracking their services. Cyber eavesdropping is a
realistic concern in MECs because of the openness of the MEC
ecosystem [10], [16]], which increases the risk of introducing
both unsecured systems vulnerable to attacks and untrusted
providers. Note that we distinguish between the network
provider, the MEC provider, and the service provider, where
the network provider and the service provider are considered as
secure and trusted, but the MEC provider can be insecure and
untrusted due to the openness of the MEC ecosystem. The role
of the MEC provider is to provide the MEC platform that runs
services provided by the service provider, where the MECs
and users are interconnected by the network provided by the
network provider. Although the spatial resolution of cyber
eavesdropping is limited to the coverage of one MEC (e.g.,
a cell sector), its harm can be severe, as it can be performed
without any physical sensing devices, thus potentially at a
much lower cost and a much larger scale.

While cyber eavesdropping and wireless eavesdropping are
conceptually similar, the defense mechanisms are quite differ-
ent. Specifically, the existing defense mechanisms for wireless
eavesdropping [3l], [4] are intrusive in that they modify the
user’s transmissions. While it is possible to defend against
cyber eavesdropping by stopping the service from following
the user, such a mechanism will significantly degrade the
QoS for delay-sensitive services [13]]. Instead, we consider
a non-intrusive mechanism using chaffs. Chaffs are legitimate
services launched by the user (or by the network provider on
behalf of the user) together with the real service to confuse
the eavesdropper about which service the user is actually
using. For example, they can be implemented by sending fake
service requests and handoff signals to user-specified MECs;
see Section [[[-Bl for details.

To confuse the eavesdropper, the chaffs must be indistin-
guishable from the real service. In terms of content, this can
be achieved by using independent instances of the same type of
service as chaffs. It is, however, insufficient to only make the
chaffs indistinguishable in content. For example, a chaff that
never migrates can be easily distinguished from a real service
that migrates with the mobile user, and a chaff that randomly
migrates among MECs can be easily distinguished from a real
service that exhibits temporal correlation in its locations. For
a chaff to effectively confuse the eavesdropper, its mobility
pattern, i.e., where it is launched and whether/where it is
migrated, has to resemble the mobility pattern of the real
service. Meanwhile, a chaff that always follows the real service
(which follows the user) offers no protection for the user’s
location privacy. Therefore, the challenge is in controlling
the mobility of the chaffs to maximally resemble the real
service while minimally co-locating with the real service. To
address this challenge, we study the following closely related
questions: (i) How will an eavesdropper track a user in the
presence of chaffs? (ii) How should the user control the chaffs
to defend against the eavesdropper? (iii) What if the user’s
defense mechanism is known to the eavesdropper?

A. Related Work

Most existing work on location privacy refers to protecting
the direct channel, where the user intentionally releases his

location to access LBS [2]. Most existing solutions, e.g.,
[20, 1171, [18], [19], use location transformations such as
spatial/temporal cloaking to satisfy a given anonymity require-
ment (e.g., k-anonymity). The basic idea is to let a trusted
server “cloak” a user by replacing the exact user locations
by bounding boxes containing sufficiently many other users.
While such a strategy can protect the direct channel where the
release of location information is explicit, it does not protect
side channels such as the cyber side channel considered here.

Besides the direct channel, side channels can also release
location information. An important side channel in wireless
networks is the transmission activity, which can be monitored
by a wireless eavesdropper to track the user. To defend
against wireless eavesdropping, mechanisms are proposed to
protect senders/receivers using anonymous routing protocols,
frequently changing pseudonyms, silent periods, and reduced
transmission power [3l], [4]. The above mechanisms are intru-
sive in that they modify the user’s behavior. In contrast, we
study another side channel arising in MECs due to correlated
user mobility and service mobility, and propose a non-intrusive
defense mechanism using chaffs.

The idea of using chaffs to protect user security/privacy has
been explored in other contexts. In communication networks,
[20] uses dummy packets as chaffs to hide the true traffic rates,
and [21] furthers the idea to hide the transmission patterns of
multi-hop flows. In cloud computing, [22] proposes to use
decoy data to protect the real data during a data theft attack.
Similarly, [23] proposes to use decoy applications running on
fake inputs to confuse an insider attacker. However, we are the
first to study the use of chaff services to protect user location
privacy. Besides the novel application context, our problem
also requires new methodology. Specifically, as a real service
needs to migrate dynamically to follow a mobile user, its mo-
bility pattern (in addition to its content) can be used to identify
the service. To effectively protect the user, the chaff services
have to resemble the real service in both content and mobility.

Another line of related work is service migrations in MECs.
Service migrations in MECs are primarily driven by the need
to keep a service close to its user, where the decision on
whether to migrate a service depends on both the migration
cost (if migrating the service to follow the user) and the
communication cost (if serving the user from the original
location as the user moves away). Modeling the user’s mobility
as a Markov chain (MC), several solutions based on Markov
Decision Processes (MDPs) have been proposed to minimize
the total cost under 1-D [24], [25] or 2-D mobility models [5],
[14]. Here we consider the worst case (in terms of location
privacy) that the real service always follows the user, and focus
on protecting the user’s location privacy using chaffs. We leave
the study of privacy-aware service migration to future work.

B. Summary of Contributions

We consider the problem of protecting user location privacy
using chaffs. Our contributions are:

1) We model the eavesdropper as a maximum likelihood
(ML) detector that aims at detecting the user’s trajectory based
on multiple observed trajectories.



2) We propose a suite of increasingly sophisticated chaff
control strategies for the user: (i) an impersonating (IM)
strategy that mimics the user’s mobility, (ii)) an ML strategy
that maximizes the likelihood of the chaff’s trajectory to
mislead the detector, (iii) an optimal offline (OO) strategy that
minimizes the eavesdropper’s tracking accuracy based on the
user’s entire trajectory, and (iv) an optimal online strategy that
minimizes the expected tracking accuracy based on the user’s
past trajectory. We show that strategies (i-iii) can be computed
in polynomial time. While strategy (iv) is difficult to compute,
we propose an alternative myopic online (MO) strategy that is
easily computable.

3) Our analysis shows that while the eavesdropper’s
tracking accuracy is always non-zero under the IM or ML
strategy, it may decay to zero under the OO or MO strategy,
where we characterize the condition and the decay rate.

4) We further analyze the robustness of the proposed
strategies against an eavesdropper aware of the strategy. We
show that while the deterministic strategies (ML, OO, MO)
are vulnerable to such an eavesdropper, their robustness can
be improved through simple extensions using randomization.

5) We evaluate the proposed strategies on both synthetic
and real mobility traces. Our evaluations show that beside the
chaff control strategy, the user’s mobility model also has a
significant impact on the tracking accuracy. Nevertheless, our
strategies (especially OO and MO) can significantly reduce
the tracking accuracy even for users with highly predictable
mobility, and the same holds for the randomized strategies
even if the strategy is known to the eavesdropper.

The rest of the paper is organized as follows. Section
formulates the problem. Section specifies the model for
the eavesdropper. Section presents chaff control strategies
for the user, whose effectiveness is analyzed in Section [Y}
Section [V]] analyzes the robustness of the proposed strategies
and proposes amendments. Section evaluates the perfor-
mance through simulations. Then Section concludes the
paper. All the proofs are provided in the appendix.

II. PROBLEM FORMULATION
A. Network Model

Given a network field deployed with multiple MECs, we
quantize the space into cells such that each cell corresponds to
the coverage area of one MEC. Let £ denote the set of cells,
which also specifies the set of possible user locations from
the perspective of a cyber eavesdropper; let L := |L|. Suppose
that there is a user of interest running a delay-sensitive service
(e.g., augmented reality) that must be co-located with the user.
We consider delay-sensitive service as it has been identified
as one of the most promising applications in future wireless
networks [26], while establishing the worst case for location
privacy. We leave the study of more flexible services to future
work. Note that although our analysis focuses on the single-
user scenario, our solution can be independently applied to
protect multiple users in a multi-user scenario, where our
results provide performance lower bounds as other coexisting
users (and their chaffs) offer additional protection.

B. Eavesdropper and Chaffs

We consider a cyber eavesdropper that observes the tra-
jectories of services as they migrate among the MECs. Such
an eavesdropper can be a hacker inside the MEC system, or
an untrusted MEC provider (a.k.a. edge operator [16]) that
operates the MECs. Under the assumption of delay-sensitive
services as in Section the eavesdropper can track the user
by detecting the trajectory of his service.

To prevent detection, the user generates N — 1 (N > 1)
additional trajectories using chaff services. Each chaff service
is an independent instance of the same service that the user
is accessing, thus indistinguishable from the real service in
content. The chaff services will consume MEC resources,
and the cost incurred by these services is the responsibility
of the user. In this regard, the parameter N captures the
user’s budget for running chaff services. With assistance of
the network provider, the user can make a chaff service follow
an arbitrary trajectory by sending fake service requests and
migration requests to the corresponding MECs, which cause
the chaff service to be instantiated or migrated. Alternatively,
the service provider can send these requests on behalf of the
user. For example, the service provider can offer chaff-based
protection of user location privacy as a service option, and if
a user wants the protection, he can choose this option and pay
an extra cost to the service provider, who will then run chaff
services at selected MECs according to a chaff control strategy.
Since for a cyber eavesdropper, tracking a user is equivalent
to tracking his service, we simply refer to the user’s service
as “the user” and the chaff services as “the chaffs”.

C. Mobility Model

Assume that the user follows a discrete-time ergodic Marko-
vian chain (MC) as in [24], [25]], [5], with transition matrix
P = (P(x|Ti-1))ay,20_1ec- Let 1= (7(x))ze, denote his
steady-state distribution. Assume that 7(x) > 0 for all € L.
Mobility of the chaffs (i.e., migration of chaff services) is
controlled by the user and will be studied later.

For each v = 1,..., N, let x,; € L denote the location
of the u-th service in time slot ¢, and x, := (z,,)7_, the
trajectory over 7" slots. Here w = 1 corresponds to the user,
u = 2,...,N correspond to the chaffs, and 7" > 1 represents
the duration of the user’s service.

D. Location Privacy in the Presence of Chaffs

Our goal is to understand the efficacy of protecting user
location privacy using chaffs. We achieve this by studying two
closely-related problems:

(i) From the eavesdropper’s perspective: Given N trajecto-
ries generated by a user and N — 1 chaffs, which trajectory
belongs to the user?

(i) From the user’s perspective: Given N — 1 chaffs,
what trajectories should the chaffs follow to cause the worst
performance for the eavesdropper?

We measure the eavesdropper’s performance by his tracking
accuracy, defined as the time-average probability of correctly
tracking the user, i.e., if the eavesdropper believes that the u-
th trajectory belongs to the user, then his tracking accuracy



equals % ZtT:lPr{xu,t = x1.}. Note that this is different
from the detection accuracy, as u = 1 is sufficient but not
necessary for x, ; = x .

III. EAVESDROPPER’S STRATEGY

Given multiple trajectories x,, := (7, ¢)i; (u=1,...,N),
the eavesdropper wants to determine which trajectory belongs
to the user of interest. We consider a sophisticated eavesdrop-
per who knows the user’s mobility model, i.e., the transition
matrix P. For example, the eavesdropper can obtain this
information by profiling how typical users move in the network
field. At this point, we assume that the eavesdropper does not
know the user’s chaff control strategy; this assumption will be
revised in Section [VI}

Intuitively, the eavesdropper should pick the trajectory that
best matches the user’s mobility model. Mathematically, this is
the trajectory that has the maximum likelihood (ML) among all
the trajectories. Under the assumption that all the trajectories
have equal prior probability of belonging to the user, the ML
trajectory has the maximum posterior probability of belonging
to the user. Under the Makovian user mobility model in
Section[[I-C} the ML detector is given by ([N] := {1,...,N})

T

uM=arg max p(x,, )=arg max Tr(x%l)HP(xu,t |y, t—1). (1)
uw€E[N] uw€E[N] 1—9

The optimization in (1)) can be easily solved in O(NT) time.

Remark: In a multi-user scenario, the detector can also
be used to detect a particular user of interest among multiple
users, assuming that only the mobility model of the user of
interest is known.

IV. USER’S STRATEGY

The problem faced by the user is that given N — 1 chaffs,
how to control the mobility of the chaffs, i.e., how to generate
the trajectories x, (v = 2,...,N), to maximally confuse
the eavesdropper. Depending on the precise definition of
“confusion”, we have the following chaff control strategies.

A. Impersonating Strategy

If the eavesdropper’s strategy is unknown, a safe choice
for the user is to make the chaffs appear similar to himself, a
strategy referred to as the impersonating (IM) strategy. Under
Markovian user mobility, this strategy makes each chaff follow
a trajectory generated independently from the same transition
matrix P as followed by the user, which naturally mimics the
user’s mobility. Under this strategy, all the IV trajectories are
statistically identical, and therefore any detector, including
the ML detector (I)), can only make a random guess.

Remark: From the eavesdropper’s perspective, this is the
same as a multi-user scenario where all the users follow the
same mobility model.

B. Maximum Likelihood Strategy

1) The Strategy: 1f the user knows that the eavesdropper
uses the ML detector (IJ), then he can design trajectories for the
chaffs to intentionally mislead the detector. A chaff’s trajectory
can mislead the ML detector only if its likelihood (based on the
user’s mobility model) is no smaller than the likelihood of the
user’s trajectory. Since the detector is deterministic, it suffices
to use a single chaff as at most one chaff (the one with the ML
trajectory) will have effect even if multiple chaffs are used.

This idea inspires a strategy referred to as the maximum
likelihood (ML) strategy. Letting £7 denote all possible tra-
jectories of length 7', this strategy controls the chaff to follow
a trajectory xo that achieves the following optimization:

T

X9 = arg max p(x) = arg max () H P(zi|xi—1). (2)
xeLT xeLT $—2

2) The Algorithm: While the space of all possible trajecto-
ries (£7) is too large to explore exhaustively, the optimization
problem in (Z) has a physical interpretation that allows a
more efficient solution. We will show that problem (2) can
be converted to a shortest-path problem as follows.

The key is to rewrite the optimization (2) as

T

X9 = argmin — log m(zq) + Z(— log P(z¢|zi—1)).  (3)
xeLT t—2

Let £; (t = 1,...,T) be a set of vertices representing all

possible chaff locations at time ¢ (|£:| = |£[). As illustrated
in Fig. [2| we construct a graph G = (V, E), with vertices V =
{zo}U{ar 1} U Ule L denoting possible chaff locations at
different times (x¢ and x7 are virtual locations) and edges
E = ({0} xL£1)U(Lr x {xr 11 })UUr_y (Li—1 X L+) denoting
possible movements. We assign each edge a cos

1) edge (zp,x) for each x € £; has cost —log 7 (z);

2) edge (x,z') for each x € L;_; and o' € L; (t =
2,...,T) has cost —log P(z'|z);

3) edge (x,zp41) for each x € L has zero cost.

Each possible trajectory x = (z;)7_; corresponds to a path
(xo,21,...,27,xp41) from 2o to 741 in G, and the cost of
this path, given by the sum of its edge costs, equals the value
of the objective function (3) at x. Thus the solution to (@) is
essentially the path from zy to xz7,; that has the minimum
cost, which can be computed by Dijkstra’s algorithnﬂ at
complexity O(TL?). Note that this trajectory only depends
on the user’s mobility model and can thus be computed
beforehand.

Remark: The ML strategy is clearly optimal against the
ML detector (I) in minimizing the detection accuracy. This
is, however, different from minimizing the tracking accuracy,
as the chaff’s trajectory may coincide with the user’s trajectory
at times, when the eavesdropper can track the user perfectly.

2Strictly, each vertex v € Ly corresponds to a unique cell fi(v) € £. Edge
(z0,z) for each z € L1 has cost —log w(fi(z)); edge (z,z’) for each
x € Ly—1 and @’ € L4 has cost —log P(fe(z)|fi—1(z)) ¢ =2,...,T).

3Dijkstra’s algorithm works in this case since all the edge costs are non-
negative.
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Fig. 2. Auxiliary graph for computing the ML trajectory.

C. Optimal Offline Strategy

1) The Strategy: The ultimate goal of the user is to prevent
himself from being tracked by the eavesdropper. To this end,
the chaff’s trajectory not only needs to mislead the detector,
but also needs to be as disjoint as possible from the user’s
trajectory. For the ML detector (T)), the optimal strategy is to
let the chaff follow a trajectory that is as disjoint as possible
from the user’s trajectory while having a higher likelihood, i.e.,
the solution X := (w2,4)7_; to the following optimizatiorf'

T
minz Lay a1} 4)
t=1
T T
S.t.7T(1‘271)HP(582¢|$2¢_1)>7T(171,1)HP(171,t|1'1,t—1)7 (5)
t=2 t=2

where the constraint (3) guarantees that the ML detector will
pick the chaff’s trajectory, and the objective (@) minimizes the
number of times that the chaff’s trajectory coincides with the
user’s trajectory. Again, a single chaff suffices as the detector
is deterministic. We refer to this strategy as the optimal offline
(OO) strategy, as it is optimal in minimizing the tracking
accuracy of an eavesdropper using the ML detector (I) and
it requires knowledge of the entire trajectory (including the
future trajectory) of the user.

Note that (3 will be infeasible if the user’s trajectory has the
maximum likelihood among all the trajectories. In this case,
we change the “>" in (3] to “=" to force the ML detector to
make a random guess, but the objective (@) remains valid as
we want to minimize the number of times the eavesdropper
tracks the user correctly when the detector guesses wrong.

2) The Algorithm: While a brute-force solution to (@) is
infeasible due to the exponentially large solution space, we
can solve it by dynamic programming over the weighted graph
introduced in Fig. [2] Let py, denote the path in this graph
corresponding to the user’s trajectory, and K (py,) the length
(sum of edge costs) of this path. Then optimizing () subject
to @) is equivalent to finding a path from x¢ to zp4; with
a length less than K(px,) (or equal to K (px,) if px, is a
shortest path) that is as disjoint as possible from py,. To this
end, we introduce K¢ (z,%) to denote the length of the shortest
path from x € £, to 71 that intersects (i.e., sharing vertices)
with py, at most ¢ times (0 <4 < T —t+ 1), and ns(z,%) to
denote the next hop neighbor of = on this path.

Initially, K (x,1) =0 for all z € L,

0 ifx#zir,
0o 0.W.,

Kr(x,0) = { (6)

4Here 1oy is the indicator function.

and nr(x,i) = xrqq for all x € L7 and i € {0, 1}. For
t=T-1,...,1,

min—log P(z'|x)+ K1 (2, 1) if © # 214,
w’€£t+1 ’

min—log P(z'|x)+ K41 (2’ — 1) o.w.,
r'€Liy1

Kt(l',i):

Ve e Ly, ie{0,....,T—t+1}, (7)

and n(z,4) is the value of o’ € L, achieving the minimum.
By definition, K;(x,i) = K;(z,T—t¢+1) forall i > T —t+1,
and Ky(z,4) = oo for i < 0 (infeasible). At ¢ = 0, we have

Ko(xo,i)zneliﬁn —logm(x) + K1 (z,4), Vie{0,...,T}, (8)
z€L1

and ng(x,%) is the © € L1 achieving the minimum.

Then i*, defined by the smallest value of ¢ € {0,...,T}
satisfying Ko(zo,1) < K(px,), is the optimal value of ()
(if infeasible, then ¢* is the smallest ¢ satisfying Ko (zq,%) =
K (px,)). The optimal chaff’s trajectory x is given by:

1) 21 = no(xo,i*), and 7:1 = i*;

2) fort =2,...,T: xoy = ny—1(x24—1,%—1), and 3, =

ip—1 if 2941 # 1,4—1 or 4 = 4,1 — 1 otherwise.
See Algorithm [I] for the pseudo code of this strategy. The
complexity of this dynamic programming is O(T2L?).

D. Optimal Online Strategy

1) The Strategy: In cases where the user’s future trajectory
cannot be exactly predicted beforehand, the offline strategy is
not applicable. For such cases, we consider the online coun-
terpart of the optimization (@), which only requires knowledge
of the user’s past trajectory and the transition probabilities of
the user mobility model (defined in Section [[I-C)). As shown
below, this problem can be cast as a finite-horizon Markov
Decision Process (MDP), which is characterized by a 5-tuple
(S, A, T, C, T), defined as:

e The state space S = R x L2 is the space of the
triple (¢, 14, 224), where v, = logp(x}) — logp(x5) is
the difference between the log-likelihoods of user’s/chaff’s
trajectories (x! := (z1,...,%i)), 1+ is the user location,
and s, is the chaff location, all at time ¢;

e The action space A = L is the set of possible locations
that the chaff can move to at any given time;

e The state transition 7 includes three transitions (logi-
cally) occurring as: (i) 21— transits to a random x;; with
probability P(z1¢|21 ¢—1); (i) 22,4—1 transits to a (random or
deterministic) x2 ; according to a control policy v; (iii) y;—1
transits to 7y, = v,—1+1og P(x1 ¢|x1,1—1) —log P(z2,|T2,t-1);

e The cost function C(vi, 214, 224) = Loy =20,y +
Ly s} (Lii0) + 31 7=0))5

e The horizon 7' is the time duration of the user’s trajectory.

Since the cost function C(7y;, x1,¢,z2,) represents the per-
slot tracking accuracy of the ML detector (I), the control
policy °" that minimizes the total cost over horizon 7 is
the optimal online chaff control strategy.

Solving this MDP optimally, however, faces both the usual
challenge of dimensionality and an unusual challenge that one
component of the state (7;) has a continuous space. Instead,



Algorithm 1: Optimal Offline (OO) Strategy

input : Space £, user transition matrix P, user steady state
distribution 7, time horizon 7', user trajectory xi

output: Chaff trajectory x2 = (3:27t)tT:1
K(px,) = —logm(z1,1);
foreacht =2,...,7 do

| K(px;) = K(px,) — log P(z1.¢|1.4-1)
foreach = € £ do
I(T(.CL‘7 1) =0
if x # 21,7 then

‘ KT(CL‘,O) =0
else

| Kr(z,0)=oco;
nr(z,0) = zr41;
nr(z,1) = rri1;
foreacht =T —-1,...,1 do
foreach = € £ do
foreach : =0,...,T —t+1 do

if © # x1+ then
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N R W N = D

16 | j=14

17 else

18 | j=i—-1

19 Ki(z,i) = ming/ e —log P(z'|z) + Keg1(2', 5);
20 ny(x,i) =

argmin,, ., — log P(z'|z) + Key1(2', );
21 foreach ¢ =0,...,7T do

2 Ko(zo,1) = minges —logw(z) + Ki(x,1);

23 no(xo,4) = argmin . » —log m(x) + Ki(x,1%);

2 if Ko(zo,T) < K(px,) then

25 foreach i* =0,...,T do

26 if Ko(zo,:") < K(px,) then

27 | break;

28 else

29 foreach i* =0,...,T do
30 if Ko(wo, Z*) = K(pxl) then
31 | break;

32 x21 = no(To,i");

33 4 =175

34 foreacht=2,...., 7T do

35 Zat = Ne—1(T2,t—1,%¢-1);
36 if T2 t—1 ;é T1,t—1 then
37 ‘ it = thfl

38 else

39 ‘ ’th = Z.tfl -1

we consider a commonly used heuristic, the myopic policy,
which only minimizes the immediate cost:
UJMY(’Yt—h T1,t—1,T2,t—1, xl,t) .=arg minC(%, L1t 932,t), &)
T2, ¢ eL
where -y, is completely determined by v;—1, T1¢—1, T2,¢—1,
21,4, and xo;. However, any efficient MDP solver (e.g.,
rollout algorithm) is applicable here, and we leave comparison
between different solvers to future work.

2) The Algorithm: Based on (9), we develop a control
strategy called the myopic online (MO) strategy. This strategy
combines the maximization of the cumulative likelihood and
the minimization of the per-slot tracking accuracy: for each
t=1,...,T, given the user’s location z1 ¢,

1) if the ML location for the chaff xélt) =
argmax,c, P(z|ra;—1) (or argmax,c,m(z) if
t = 1) does not coincide with the user’s location x1 4,
then move the chaff to x(gl,) ;

2) otherwise, if the second ML location for the

chaff :E;t arg MaX,e o\ fq, ,} L([T2,4-1) (or

arg MaX, e,y (4, ,3 7(¢) if ¢ = 1) is good enough (i.e.,
giving an overall likelihood no smaller than that of the

user), then move the chaff to xgzg ;

3) otherwise, move the chaff to xglg

Note that in the third case, the user will be tracked correctly
at ¢ no matter where the chaff moves, and hence we move the
chaff to the ML location to maximize the chance of evading
tracking in future slots. See Algorithm [2| for the pseudo code
of this strategy, where lines [4] and [16] handle case (1), lines [§]
and [20] handle case (2), and lines [I0] and 22] handle case (3).

Algorithm 2: Myopic Online (MO) Strategy

input : Space £, user transition matrix P, user steady state
distribution 7, time horizon T'
output: Locations of chaff in slots 1,...,7T
1 observe initial user location x1,1;
compute xéli = argmax, ., 7();
if x(;i # x1,1 then
1
‘ 2,1 < :céﬂi;
else

compute a:g = argmaX, ey (2, 1 ()3

if 7T(l‘é2i) > m(x1,1) then
8 ‘ 2,1 < xfi,

9 else

10 ‘ 2,1 < I(Q%i,

1y < logm(x1,1) — logm(w2,1);
12 foreach t =2,...,7T do

SN e W N

~

13 observe new user location x1 ¢;
(1) _ P .
14 compute x5 ; = argmax, . » P(x|r2,t-1);
e (1
15 if xét) # x1,; then
1
16 ‘ T2t < Ltg,g;
17 else
2
18 compute mgt) = argmaX, e\ (4, ,} P(x|z2,t-1);
. 2
19 if 7i-1 + log P(x1,1|71,0-1) — log P(a4) |22,-1) < 0
then
2
20 ‘ T2t < xé,);
21 else
1
22 ‘ T2t < xé 2;

23 Yt < Yi—1 + log P(x1,¢|x1,6—1) — log P(x2,¢|z2,6—1);

V. PERFORMANCE ANALYSIS

We now analyze the performance of the proposed strategies
in Section in terms of the tracking accuracy of the eaves-
dropper in Section We denote the time-average tracking
accuracy under each strategy by Py, Py, Poo, and Pyo.

A. Tracking Accuracy under IM

Under the IM strategy, the eavesdropper randomly guesses
a trajectory for the user. He correctly tracks the user at time ¢
if and only if (i) he guesses the trajectory right, which occurs
with probability 1/N, or (i) he guesses the trajectory wrong
but the guessed trajectory coincides with the user’s trajectory
at time ¢. Thus, the overall tracking accuracy equals

T
1 N—-1 1

S S Priag = |
N+ N 2 r{z; =z}, (10)



where x’ = (2})L_; and x = (z4){_, are two independent

instances of the same MC that describes the user’s mobility.
Given the steady-state distribution 7 of this MC, it is easy to
see that Pr{z} = ,} = Y. ., m*(x). Therefore,

P, = (;7‘(2(1’)> + %(1 - ZLWQ(;E))

fAS

(1)

Remark: (i) As the number of chaffs increases, the tracking
accuracy under the IM strategy converges monotonically at
rate O(1/N). (i) The limit imy oo Py = >, 72 (2) >
1/L, where the lower bound is achieved if and only if 7 is a
uniform distribution. Thus, under the IM strategy, the tracking
accuracy is bounded away from zero even with infinite chaffs.

B. Tracking Accuracy under ML

Under the ML strategy, the chaff’s trajectory x5 is deter-
ministic and is guaranteed to be selected by the ML detectmﬂ
The tracking accuracy is therefore determined by the fraction
of time that the user’s trajectory coincides with xs, i.e.,

T T
1 1
P = T ;:1 Pr{z,; =x9,} = T ;:1 m(z2,t), (12)

where x5 is the solution to (2).

Compared with the value of limy_,, Py, Py can be either
smaller or larger. However, we have a fixed comparison when
the following lemma applies.

Lemma V.1. For any distribution (7(z))zez, D e 7 (2) <
max,cc m(x), and “=" holds if and only if (7(z)).er is a
uniform distribution.

Remark: Therefore, if the ML chaff always stays in the same
cell (the cell with the maximum steady-state probability), then
it is better to use a sufficiently large number of IM chaffs.

C. Tracking Accuracy under OO

Under the OO strategy, the chaff’s trajectory is designed to
yield the minimum tracking accuracy. Therefore, its tracking
accuracy is upper-bounded by the tracking accuracy under any
suboptimal strategy.

1) Auxiliary Strategy: To bound the tracking accuracy
under the OO strategy, we introduce a suboptimal strategy
whose tracking accuracy can be analyzed in closed form. This
strategy, referred to as the constrained maximum likelihood
(CML) strategy, greedily maximizes the likelihood of the
chaff’s trajectory under the constraint that the chaff cannot
co-locate with the user. That is, given the user’s trajectory x,
the chaff’s trajectory xo is computed by

D) att =1, 221 = argmax,cp\ (4, ,} 7(2);

2) att > 1, xop = argmaX,cp\ 4, .} P(z|za1—1).

Note that CML is actually an online strategy as it never
requires the future trajectory of the user.

SWe ignore ties as they occur with an exponentially decaying probability
(except for i.i.d. uniform mobility).

sub-chain1  sub-chain 2 sub-chain w

1 2 w!w+l w2 2w w+l 2we2 3w

Fig. 3. Decomposing a chain into w sub-chains.

2) Analysis of Auxiliary Strategy: Under the CML strat-
egy, the chaff’s trajectory is always disjoint from the user’s
trajectory, and thus the eavesdropper correctly tracks the user
if and only if the ML detector is correct, which occurs only
if the user’s trajectory has a likelihood no smaller than that of
the chaff’s trajectory. That is, the tracking accuracy under the
CML strategy satisfies

Pon < Pr{p(x1) = p(x2)}, (13)
where x5 is generated according to the CML strategy.
As p(x) = 7(z1) H?:z P(x¢|z¢—1), we can define
c1(x1,1,22,1) :=logm(z11) —logm(z21), (14)
ci(1,0, Toe, 1,0-1, T2,1—1) = log P(z1,4|z1,0-1)
—log P(za4|x2t—1), t>1, (15)
and convert Pr{p(x1) > p(x2)} to
T
PT{01($1,17332,1)+Z ci(1,0, Toe, 1,4-1,T2,0—1) > 0}. (16)
t=2

The tracking accuracy under the CML strategy is then upper-
bounded by (16).

To bound @]) we consider a new MC formed by y; :=
(21,t, ©2,+). This MC is induced by the original MC describing
the user’s mobility, with a transition probability

Pz 4|x14-1) if zos=f(x14,T24-1),
P(yt|yt—1){0 ( 1,t| 1,t 1) o ‘f],t f( 1,t, 42t 1) (17)
where f(z14,T24-1) = arg MAX, e o\ (2, ,} P(z|xgi—1) is

the chaff location at time ¢ under the CML strategy. With
a little abuse of notation, let m(y;) denote the steady-state
distribution of the MC {y:}$2,. For any € > 0, let t,(€)
denote the e-mixing time of {y:}72, [27]. For the ease of
notation, we shorten c; (1 ¢, a1, 1,t—1, T2,t—1) 1O Cq.

Our idea is to apply concentration bounds to show that
diminishes with T if E[¢;] < 0. However, since ¢, is
a function of y; and y;_1, ¢;’s are correlated, which makes
existing concentration bounds inapplicable. To address this
challenge, we decompose  , ¢; into w summations . Cruw+i
(¢ =1,...,w) such that each summation is over a sub-chain
consisting of elements that are w steps apart, as illustrated
in Fig. 3] Intuitively, if w is sufficiently large, correlation
within a sub-chain will be sufficiently weak such that the usual
concentration bounds hold for summation over the sub-chain.

To formalize this intuition, we prove the following lemma.
Define (noting that c; is determined by y; and y;—1)

9(yi-1) == Elcilyi] =Y Pyilye—1)er (18)
Yy €L2
Lemma V.2. For any € > 0, if w = t,,,(¢) + 1, then
E[ckw+ilchwtis VO < k' < k] — Elcguwii]| < €6 (19)




for all k¥ > 0 and ¢ € {1,...,w}, where & :=
min(}>, 2 [9(y)], 2maxyecz [9(y)])-

To use the result in Lemma |[V.2} we need a concentration
bound for possibly correlated random variables with bounded
conditional expectations. We prove the following bound.

Lemma V.3. Let X,..., X, be random variables with range
[a, b], and E[X¢| X1, ..., Xs 1] € [u—e€ p]forall 1 <t <n
(e>0). Let S, := >} ; X;. For all A >0,

Pr{S, > n(u+ A)} < e 218%/0=at)® (0

Remark: This bound generalizes the Chernoff-Hoeffding
bound [28]], as the original bound requires X; € [0, 1] and
E[X¢|X1,...,X¢—1] = u for all ¢.

We are now ready to bound (I6). We will need the following
constants. Let ¢y be the maximum value of ¢y, and cpin
(Cmax) be the minimum (maximum) value of ¢; for t > 1.
Specifically, given the user’s transition matrix P and steady-
state distribution 7, let 7y, and 7o denote the largest and
the second largest steady-state probabilities, pmax and pmin
denote the maximum/minimum (positive) transition probabil-
ities, p2(z’) denote the second largest transition probabilities
among {P(z|z’) : x € L}, and py := ming g pa(z’).
Then ¢y = log(wmax/ﬂQ)’ Cmin — log(pmin/pmax)v and
Cmax = log(pmax/pQ)-

Theorem V4. Let E[c;] := —p (¢ > 1). If Je > 0 such that
p—ed—co/(T —w) >0 for w and § defined in Lemma [V.2]
then the tracking accuracy under the CML strategy (and thus
the OO strategy) satisfies

(—ed — TC_OU,)2
Cmax — Cmin + 266)2 .

2n

T
POOSPCMLSw'eXp (2(1>
w (

Remark: A few remarks are in order:

i) In contrast to the previous strategies (IM, ML) where
the tracking accuracy is always non-zero, we see that when
the condition in Theorem [V.4] holds, the CML strategy (and
hence the OO strategy) can reduce the tracking accuracy to
zero exponentially fast in time.

ii) For a sufficiently large 7', the condition in Theo-
rem holds if and only if E[c;] < 0, which has an
information-theoretic interpretation: By definition, E[¢;] =
H(X24|X2-1) — H(X1,4|X1,4-1), where H (X1 4| X14-1)
(H(X2,4|X24-1)) is the conditional entropy of the user’s
(chaff’s) movement. Thus, the tracking accuracy decays to
zero if H(X1 4| X1,-1) > H (X2, X2,:-1), i.e., the user has
a higher entropy than the chaff (under the CML strategy).

D. Tracking Accuracy under MO

We first analyze the per-slot tracking accuracy under the
MO strategy at time 7', denoted by Pyo(T). Recall that ¢;
(t > 1) is the per-slot difference in log-likelihoods defined in
(T4 [13), co is the maximum value of ¢;, and ¢pin (Cmax) 1S
the minimum (maximum) value of ¢; fOIE] t>1.

As in CML, the MO strategy only moves the chaff to the ML or the second
ML location, and thus the values of cg, ¢min, and cmax remain the same as
in Theorem @

Under the MO strategy, the user is tracked correctly at time
T only if 207 = x1,7 or yp > 0, where v, (t = 1,...,T)
is defined in Section According to MO, zo 7 = 21,1
l’él:r and yr_1 + log P(z1 7|lri7-1) —
log P(:cg)T|:r27T,1) > 0 (wél)T and xéQ)T are computed as
in Section [IV-D2), which holds only if y7_; > —Cmax-
Meanwhile, y7 > 0 holds only if y7_1 > —cmax. Therefore,

only if 1T =

T—1
PMO(T) < Pr{’YT—l > _Cmax} = PT{Z Ct > _Cmax}- (22)
t=1

We follow steps similar to Section to bound (22).
First, we define a new MC with state z; := (v, 21,4, Z2,+) and
transition probability

P(.’L’l’t
P(Zt|Zt71):

1) if 2o = fi(ze—1,21,4),
Tt = fz(Zt—l,JUl,u%z,t),
0 0.W.,

(23)

where f1(z,—1,21,) is the chaff’s location at time ¢ given by
MO for state (Zt—17xl7t)’ and fg(Zt_l,xl)t,l‘Q)t) = Y1 +
log P(z1,|21,1—1) —log P(z2,|z2,1—1). The MC {2} cap-
tures the system evolution under the MO strategy. Let 7'(z;)
denote the steady-state distribution and ¢/, (¢) (Ve > 0) the
e-mixing time of {z;}72;.

Next, define ¢'(z) as in by replacing P(y:|y:—1) by
the new transition probability (23) (note that ¢; is determined
by z; and z,_1). Lemma @] still holds, with w replaced by
w' =1t (e)+1 and ¢ replaced by ¢’ := 2max crxc2 |¢'(2)]-

mix

Arguments similar to Theorem [V.4]lead to the following result.

Theorem V.5. Let E[¢)

strategy. If Je > 0 such that p/ — e’ — ©E%ax > 0 for
w’ and ¢’ defined above, then the tracking accuracy at time T
under the MO strategy satisfies

:= —u' (¢t > 1) under the MO

T—w — 1) (1 —€d' — getomar)?

! (cmax — Cmin + 266/)2
(24

Remark: As in Theorem [V.4] Theorem [V.5] implies that the
MO strategy can drive the per-slot tracking accuracy to zero
if El¢] < 0, ie., the chaff’s movement has a lower entropy
(or a larger average log-likelihood) than the user’s movement,
except that now the chaff follows the MO strategy.

Finally, using Theorem [V.5] we can bound the time-average
tracking accuracy as follows.

Poo(T) <w' -2
(T) <w exp( ( "

Corollary V.6. Suppose that the condition in Theorem
holds for T'. Let Ty < T be the smallest value for which the
condition holds, and

2(// — €8 — LotCmax )2

To—w’'—1
= . 25
“ w,(cmax — Cmin + 266/)2 ( )

The overall tracking accuracy under the MO strategy satisfies

w/ea(w'Jrlng) )

1
P < T (Tg -1+ (26)

Remark: Compared to the exponential decay under the CML
(or OO) strategy in Theorem [V.4] we see that the MO strategy



yields a slower decay of O(1/T) according to the bound.
However, its actual performance is not necessarily worse, as
verified through simulations (see Section [VII).

VI. ROBUSTNESS TO ADVANCED EAVESDROPPER

We have assumed that the eavesdropper always applies the
ML detector (I) regardless of the chaff control strategy of the
user. If he is aware of the user’s strategy, however, he may
use a different detector. The question is: how robust is a chaff
control strategy to an eavesdropper aware of the strategy?

A. Robustness Analysis

1) Robustness of IM: Under this strategy, each chaff fol-
lows a trajectory that is statistically identical to the user’s
trajectory, and thus the eavesdropper has to randomly guess
a trajectory even if the strategy is known to him. Therefore,
the IM strategy is fully robust, i.e., an advanced eavesdrop-
per knowing the strategy has the same accuracy as a basic
eavesdropper without such knowledge (as in Section [V-A).

2) Robustness of ML: Intuitively, any deterministic strategy
will perform poorly if the eavesdropper knows the strategy.
Specifically, knowing that the user uses the ML strategy, the
eavesdropper can compute the chaff’s trajectory according
to this strategy (if any tie, suppose the tie breaker is also
known) and ignore any observed trajectory that matches the
chaff’s trajectory. This eavesdropper can always track the user
correctly, as the user’s trajectory will either coincide with the
chaff’s trajectory (and be trivially tracked), or deviate from
the chaff’s trajectory at some point and be detected.

3) Robustness of OO and MO: Under the OO/MO strategy,
the chaff’s trajectory is a deterministic function of the user’s
trajectory; denote this function by I';(x;), where i = OO
for the OO strategy and ¢ = MO for the MO strategy.
Knowing the strategy (and hence I';(-)), the eavesdropper can
compute I';(x) for each observed trajectory x and ignore a
trajectory x' # x if x’ = T;(x); if both trajectories are
ignored, a random guess is made. This eavesdropper makes
a mistake only if x; = I';(x2) (the user appears as a “chaff”
of the chaff), which occurs with an exponentially decaying
probability Tyaxplal.

B. Defense against Advanced Eavesdropper

We see that all the strategies, except for IM, are vulnerable
if the eavesdropper learns the employed strategy. We can,
however, improve their robustness through simple extensions.
One idea is to generate multiple trajectories for chaffs by
introducing random perturbations to the original strategy.

1) Robust ML (RML) Strategy: We perturb the ML strategy
by introducing a set of cell-slot pairs X, = {(I, t) : | €
L, te[T]} (T]:={1,...,T}) for each u = 2,..., N such
that trajectory x, must avoid cell [ at time slot ¢ for each
(I, t) € X,. The perturbed strategy, referred to as the robust
ML (RML) strategy, generates chaffs’ trajectories iteratively:
foreachu=2,..., N,

1) form X, by randomly select a pair from {(z,/ ¢, t) : t €
[T]} foreach v/’ =1,...,u—1;

2) compute x,, by solving for the shortest path from z( to
x741 in G — X, which denotes a subgraph of G defined
in Fig. |2| generated by removing the vertex representing
x from L; for each (z, t) € X,,.

The edge costs in G (see Section [[V-B) imply that each x,
constructed as above is an ML trajectory that avoids X,.

2) Robust OO (ROO) Strategy: Following a similar idea,
we modify the OO strategy to the robust OO (ROO) strategy
by following the same iterative process as in RML, except that
Step 2) is replaced by a variation of the dynamic programming
in Section [[V-C2] with £, replaced by £} := £, \{z : (z,t) €
X} (t € [T,

3) Robust MO (RMO) Strategy: To maintain the online
property of the MO strategy, we replace X, (u = 2,...,N)
by a set of index-slot pairs X, = {(v/,¢) : v’ € [N], t € [T},
where each (v/,t) € X, denotes that we want trajectory x,,
to avoid trajectory X, at time t. The robust MO (RMO)
strategy generates X! beforehand by X! = {(u/,t.,)}"",
where each ¢, is randomly selected from [7']. Then for each
t=1,...,T, it determines the chaffs’ locations sequentially:
foreachu = 2,..., N, x, is determined as in Section[[V-D2]
except that £ is replaced by £ — {z,/; : (v',t) € & }.

Discussion: The above robust strategies fully utilize all the
N — 1 chaffs and randomize their trajectories to prevent them
from being recognized by the eavesdropper. Meanwhile, these
strategies also approximate their original versions in terms of
the performance under the ML detector (see Section [VII).

VII. PERFORMANCE EVALUATION

We use both synthetic and trace-driven simulations to eval-
uate the effectiveness of the proposed chaff control strategies.
We measure the effectiveness of a chaff control strategy by
the eavesdropper’s tracking accuracy; the lower the accuracy,
the more effective the strategy.

A. Synthetic Simulations

1) Simulation Setting: We generate synthetic mobility
traces, where the user follows a MC of L states with transition
probabilities specified below, and the chaffs follow one of the
proposed strategies. We set 7' = 100, L = 10, and vary N
from 2 to 10 (recall that N — 1 is the number of chaffs). The
performance is averaged over 1000 Monte Carlo runs.

We evaluate four different mobility models for the user: (a)
neither spatially nor temporally skewed mobility, represented
by a MC with randomly generated transition probabilities, (b)
spatially-skewed mobility, represented by a MC with a high
probability of transiting into a certain celﬂ (c) temporally-
skewed mobility, represented by a random walk with a uniform
steady-state distributiorﬂ and (d) both spatially and tempo-
rally skewed mobility, represented by a random walk with a
non-uniform steady-state distributiorﬂ Fig. 4 gives the steady-

7 This is generated by generating an |£| x |£| matrix of random values in
[0, 1], setting the j-th ( = 5) column to 2, and normalizing each row.

8This is generated by giving each cell probability p of moving to the right,
probability g of moving to the left, and probability of 1 — p — g of staying
(p = 0.5, ¢ = 0.25), and then wrapping transitions beyond the boundaries.

9This is a variation of model (c) without wrapping at the boundaries.

In models (c—d), we allow transitions between nonadjacent cells with €
probability (e = 1072).



state distribution under each model; its deviation from the uni-
form distribution measures the spatial skewness. To measure
temporal skewness, we evaluate the average Kullback-Leibler
(KL) distancﬂ between different rows of the transition matrix
(the larger, the more skewed). The distances for models (a—d)
are 0.44, 0.34, 8.18, and 8.48, respectively.
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Fig. 4. Steady-state distributions under various mobility models.

2) Performance under Basic Eavesdropper: We first evalu-
ate the performance of a basic eavesdropper using an ML de-
tector (I); see Fig.[5] We see that: (i) while IM and ML always
lead to non-zero tracking accuracy, OO and MO can drive the
tracking accuracy to zero over a sufficiently long time; (ii) the
more skewed the mobility model (i.e., the more predictable the
user movements), the higher the tracking accuracy; (iii) while
the deterministic strategies (ML, OO, MO) cannot benefit from
using more chaffs, the IM strategy can use more chaffs to
lower the tracking accuracy. We further simulate the auxiliary
strategy CML in Section [V-C| and verify our analysis that the
accuracy under CML/MO decays exponentially if E[c;] < 0;
see Fig. [f] Note that OO is designed to be optimal over T
slots, and is not necessarily optimal for each ¢ < T'. Indeed,
MO achieves a lower accuracy at ¢ < 7" in Fig. 3] (d).

3) Performance under Advanced Eavesdropper: We then
evaluate the performance of an advanced eavesdropper aware
of the strategy. Assume that the advanced eavesdropper first
filters out trajectories matching the chaff’s trajectory and
then performs ML detection on the remaining trajectories.
As expected, the deterministic strategies (ML, OO, MO)
are ineffective against such an eavesdropper (not shown).
We thus focus on the IM strategy and the robust strategies
(RML, ROO, RMO) in Section [VI-B} see Fig. []] We see
that by slightly perturbing the chaff’s trajectory, the robust
strategies not only prevent the chaffs from being recognized
by the eavesdropper but also mimic the performance of their
deterministic counterparts under a basic eavesdropper.

10The KL distance quantifies the difference between two probability distri-
butions [29].
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B. Trace-driven Simulations

1) Dataset: We further evaluate our solutions on real
mobility traces. We use the taxi cab traces from [30], from
which we extract the traces of 174 nodes over a 100-minute
period with location updates every minutﬂ We quantize the
node locations into 959 Voronoi cells based on cell tower loca-
tions obtained from http://www.antennasearch.com
(ignoring towers within 100 meters of others); see Fig. |§| (a).
Modeling the 174 traces as trajectories generated indepen-
dently from the same MC, we compute the empirical transition
matrix and the empirical steady-state distribution (Fig. [§] (b)).
Clearly, this mobility model is spatially-skewed; we have
verified that it is also temporally-skewed.

2) Performance under Basic Eavesdropper: We first evalu-
ate a basic eavesdropper running ML detection. When there is
no chaff as shown in Fig. [9 (a), the eavesdropper can track a
subset of users with much higher accuracy than the baseline of
1/N = 0.6%. For example, user 1 is tracked 52% of the time,

IThe traces have irregular update intervals. We filter out inactive nodes (no
update for 5 minutes) and regulate the intervals through linear interpolation.
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and users 2,...,5 are tracked at least 15% of the time. We
then evaluate the accuracy in tracking the top-K users (K = 5)
after adding a single chaff in Fig. [9] (b). While IM cannot help
these users, ML and OO can significantly lower the tracking
accuracy. Meanwhile, MO performs relatively poorly for these
users, because their trajectories jointly dominate the myopic
trajectory in likelihood for 55% of the time, during which
MO cannot alter the decision of the detector. ML and OO
avoid this problem by not moving to the ML location at the
beginning. Note that this limitation of MO can be overcome by
using more sophisticated solvers to the MDP in Section [[V-D}
detailed evaluations are left to future work.

0.6
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w
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(a) no chaff (b) a single chaff
Fig. 9. Accuracy of basic eavesdropper before/after adding chaff
(missing bars denote zero accuracy).

3) Performance under Advanced Eavesdropper: We further
evaluate the performance of an advanced eavesdropper under
two chaffs. As shown in Fig. [I0] the original strategies (IM,
ML, OO, MO) are ineffective against this eavesdropper. In
contrast, the robust strategies RML and ROO can substan-
tially reduce the tracking accuracy. Note that RMO performs

poorly for reasons similar to those for MO under the basic
eavesdropper.

accuracy

user! user2 user3 user4 user5

Fig. 10. Accuracy of advanced eavesdropper under 2 chaffs.

VIII. CONCLUSION AND DISCUSSIONS

We studied the problem of protecting the location privacy
of a mobile user using chaff services. Assuming that a cyber
eavesdropper tracks the user by performing ML detection
among observed service trajectories, we examined a range
of chaff control strategies, from a baseline strategy to an
optimal strategy. We proved that the optimal strategy and its
online variation can reduce the tracking accuracy to zero when
the entropy of the user’s mobility is sufficiently high, while
other straightforward strategies cannot. We further extended
our strategies to improve their robustness against an advanced
eavesdropper. Our evaluations highlighted the dependency of
the eavesdropper’s tracking accuracy on the user’s mobility
model, and verified the efficacy of our chaff-based defense
mechanism in protecting the user’s location privacy, even for
users with highly predictable mobility.

Discussions: We used chaff services as the defense mecha-
nism to protect the user against untrusted MECs. Admittedly,
running chaff services is expensive (see Section [[I-B] for how
we model the cost). While an ideal solution is to secure the
entire system to eliminate the possibility of cyber eavesdrop-
ping, our solution provides additional protection when perfect
security cannot be guaranteed (e.g., due to openness of MECs
[10]], [16]]) or the consequence of successful eavesdropping is
severe (e.g., in tactical applications). While current solutions
ignore the costs of running/migrating chaff services, our
formulation can be extended to include constraints on such
costs, and we leave a detailed study of the cost-privacy tradeoff
to future work.
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APPENDIX

Proof of Lemma [V.1]

Proof. Let x* := arg max,, 7(z). Then
2 _ — 2 _ * _ *
3 7o)~ magne) =3 le) ~ a1~ (o)

:Z m(x)(r(z) — m(x*)) < 0. (27)

rHET*
O

Proof of Lemma

Proof. First, we bound E[ckw |y (k—1)w+i)- Let Pt(yly') de-
note the ¢-step transition probability of {y;}72,. By definition,

ElckwtilYk—1)wril =
> P kw1 Y- 1w 9 WUkwrio1), (28)

Yhwti—1EL2

and  E[cgwsi] has a  similar  expression  with
P (ypwri—1|Yk—1)w+:) replaced by 7 (ypw4i—1). Thus,

‘E[Ckw+i‘y(k—l)w+i] — Elckwi]| <
> gl - ‘Pw’l(ylyw_mm) —7(y)|. @9
yeL?
Since w — 1 = t,,(e), we know by the definition of

mixing time that [P !(:[y_1ywti) — 7l < € for all
Y(k—1)w+i» Where || - ||y denotes the total variation distance
[27]. This implies that |P*~!(y|yk_1)w+i) — 7(y)| < € and
>y 1P (Yly—1ywsi) — 7(y)| < 2¢. Thus, the righthand
side of is upper-bounded by both 2emax, |g(y)| and
€2, l9(y)l, ie., by €d.

Then, by the law of total expectation, we have

E[Ckw+i|ck/w+i,v0 < kK < k} =

E[Elckuily 1wl v YO S K < k|, G30)

which is bounded within [E[cgy 4] — €8, E[cgw+i] + €8] based
on the above result. O

Proof of Lemma

Proof. Define a new random variable Y; := X; +
pw — E[X¢X1,...,Xt—1]. Then E[YiYy,...,Yiq] =
E[E[Y:| X1, .., X¢e-1]|Y1,...,Yi—1] = p for all t. Further
define Z; := (Y —a)/(b—a+ ¢€). Then Z; € [0, 1] and
E[Zi|Z1,.., Zooa] = (n—a)/(b—a+€) = p..

Let SY denote the sum of Y7,...,Y, and S denote the
sum of Zy,...,Z,. Then

Pr{S, > n(u+ A)} < Pr{SY > n(u+ A)}

nA
b—a+e
< ef2nA2/(b7a+6)27

€1y

}
(32)

=Pr{S? > nu, +

where (31) is because Y; > X, and (32) is by applying the
Chernoff-Hoeffding bound [28] on S7. O

Proof of Theorem [V.4]
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Proof. By definition of ¢;, we have

—CO}

T T
Py, < Pr{th >0} < Pr{th >

w+l

< Z PI{Z Chw+i = — },

where the last step is by the union bound. Here T; := [(T —
i)/w]+1>T/w-1.

By Lemma we know that E[ckyti|crrwri, VO < K <
k] € [ — €5, —p + €d]. Since p — €§ — co/(WT;) > p —
€d —¢o/(T —w) > 0, we can apply Lemma to bound
Pr{Zki:_ol Chw+i = _CEO} by

(33)

C C
Pr{}" chusi > ~Ti(u — ) + Ti(u o)t
(n—ed — )
< —2T; Wi
=P < (Cmax — Cmin + 266)2
T (1 =T

< -2(=-1 “ . 34

= &P < (w ) (Cmax — Cmin + 265)2> ( )
Plugging (34) into (33) yields the final bound. O

Proof of Theorem
Proof. The proof is analogous to that of Theorem [V.4] First,

T-1 T-1
T)< Pr{z ¢ > —Cmax} SPr{d_ ¢ > —co — Cmax}
=1 t=2
w41 T;—1 o+ ¢
<> Pr{z Churi 2 ——— ), (35)
=2
where T; := [ L= 41> 1= Z“U“,_l.

By Lemma ﬁ 'V.2| (with w replaced by w’ and d replaced by

8", we have that E[cgy1i|crrw i, V0 < K < k] € [—p/ —
€d/, — ' +€d']. Since pi —ed/ — LFlmax > ) — e — Lotpax >

0, we can apply Lemma [V.3] to obtaln

co + Cmax}
w/

(’u/ _ 65/ _ co;’ifﬂm/ax)2
— Cmin + 266/)2

PI"{ Z Chw'+i = —

k=0

< exp <_2Ti

T _ ,_1 /_66/_c0+c,/nax 2
< exp (—2( ;U/ ) (1 T-w 71) . (36)

(Cmax

(Cmax — Cmin T 265/)2
Plugging (36) into (33) yields the final bound. O
Proof of Corollary [V.6]

Proof. Note that Theorem holds for any value of 7" and
hence fort = 1,...,T. For t > Ty, the bound in Theorem [V.3]

applies, implying
t—w —1 (# — e — ;o+cl,,ix1)2
Puo(t) < w'-exp | —2( ) v
MO( ) =W exp < w’ (Cmax Cmin + 266/)2

710’71)01. (37)

For t < Tj, the bound does not apply, but we still have
Pyo(t) < 1.
. 1 T
The overall tracking accuracy Py, := = > ,_; Puo(t) thus
satisfies

T
1 /
Py < T <T‘() 1+ Z wle(w +a | e—at>
t=Top
1 w ea(w +1-Tp)
O
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