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Abstract—In this work, we present a centralized method for
real-time rainfall estimation using Carrier-to-Noise power ratio
(C/N ) measurements from broadband satellite communication
networks. The C/N data of both forward-link and return-
link are collected by the gateway station (GW) from the user
terminals in the broadband satellite communication network and
stored in a database. The C/N for such Ka-band scenarios is
impaired mainly by the rainfall. Using signal processing and
machine learning techniques, we develop an algorithm for real-
time rainfall estimation. Extracting relevant features from C/N ,
we use artificial neural network in order to distinguish the rain
events from dry events. We then determine the signal attenuation
corresponding to the rain events and examine an empirical
relationship between rainfall rate and signal attenuation. Ex-
perimental results are promising and prove the high potential of
satellite communication links for real environment monitoring,
particularly rainfall estimation.

Index Terms—Satellite communication, rainfall estimation,
microwave propagation, Ka-band, Broadband communication,
Artificial neural networks

I. INTRODUCTION

Rain has a significant influence on the global economy. It

is of paramount importance to agriculture since it is the most

effective means of watering. A regular rain pattern is usually

vital to healthy crops; significant variations in rainfall can be

harmful, even devastating them. Thus rainfall influences the

success of harvest, creating inflationary/ deflationary effect on

agricultural produce and societal consumption of the same.

It creates river and flash floods, which may vanish homes

and businesses causing loss of life and property. While river

floods have been monitored, the changes in climate has led to

significant increase in flash floods that can occur at any place.

These have a clear impact on the insurance business since

the sector is tasked with offering damage coverage in case

these unfortunate events occur. Further, rainfall can interrupt

traffic connections, supplies for electricity, gas, water and

medical care bringing economic activity to a standstill [1],

[2]. Given the critical impact of rain, it becomes essential to

manage resources, operations and infrastructure taking rainfall

into account; these include advice on tilling and harvesting,

water management, infrastructure and transportation and steps

for soil conservation. This task requires estimation of rainfall

accurately over the given region of interest.

The measurement of rainfall might appear to be straight-

forward at first. However, rainfall has high spatio-temporal

dynamics; it varies with location and time. This phenomenon

makes it very difficult to measure rainfall satisfactorily. There-

fore, denser measurement networks, that are always on, are

required in order to capture this variability. Creating, operating

and managing a dense measurement network entails high

CAPEX (capital expense)/ OPEX (operating expense) cost;

this is reflected in the current solutions for rainfall measure-

ment discussed below:

1) Rain Gauge: The first known rainfall measurement dates

back to the fourth century BC in India, where people

used a bowl as a rain gauge and the readings were used

for agricultural purpose [3]. Surprisingly, not much has

changed since then from a measurement perspective. It

continues to be the most common and accurate method

for measuring the rainfall. However, it is not practical

to install and maintain large number of closely spaced

rain gauges to cover large areas due to high operational

costs [4].

2) Weather Radar: This technique can measure area of

radius up to 200 Km but suffers from low accuracy in

rainfall measurement. In particular, the sensitive Weather

radars (in C-band and beyond) are unable to detect

the rain cell behind a convective rain cell. Another

drawback of weather radar is its high cost: a new

installation requires CAPEX of e 2.5 million and OPEX

of e 76,000/year [5].

3) Infrared Satellite Imagery: An overview of precipitation

measurements from Space is presented in [6]. This

method could provide global coverage but its accuracy

is known to be very limited and has a large discrepancy

with actual rain gauge measurements [7]. For instance,

STAR Satellite Rainfall Estimates (Hydro−Estimator)

uses infrared data from NOAA’s Geostationary Op-

erational Environmental Satellites (GOES) to estimate

rainfall rates [8]. Further, the CAPEX and OPEX for

such a system are rather high.

4) Microwave Links in Mobile Networks: Although pos-

sibility of rainfall monitoring using microwave (MW)

links is theoretically well established [4], [9]–[11], it

has not been commercially deployed in real world due

to unavailability of enough microwave links for data

collection. In 2006, Messer et al. proposed the use of

commercial MW links in mobile networks for rainfall

monitoring [12]. Thereafter, many investigations have

been conducted using commercial MW links [13]–[17].

Experimental results confirmed the accuracy of this

approach and proved its potential for commercialization.

However, an issue with this approach is the sparse

network of MW links in rural and remote areas where,
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unfortunately, limited rainfall data is available. Further,

additional effort is needed for data procurement since

MW links are operated by different entities at different

regions.

In addition to these commercially deployed mechanisms,

there are a few other proposals for rainfall estimation which

rely on satellite data, [18]–[23]. In [18]–[20], authors have

investigated rainfall estimations using Ku-band links of broad-

cast television (TV) satellites. The received signal power level

is collected form the satellite TV receiver at user side. In

[21] and [22], authors have considered a similar scenario but

using Ka-band broadband satellite communication links. The

experimental results confirmed feasibility of these approaches

for rainfall estimation with acceptable accuracy. The ITU-R

model, typically used in such papers, has been shown to under-

estimate the rain attenuation in tropics and specific attenuation

coefficients had been derived using measurements values in

[24]–[26]. Impact of rainfall on the satellite communication

links is a well investigated field of research [27]–[33].

However, these schemes can only collect data from single

UT and cannot scale-up which makes these approaches less

suitable for real-world scenarios and commercialization at-

tempts where rainfall data for wider coverage area is needed.

In [23], a hypothesis of 3D rainfall tomography using LEO

satellite was introduced which, however, is far from being

deployed in real-world currently.

Motivated by these challenges, in this paper we propose

a real-time and centralized rainfall estimation approach using

C/N data fed back from the user terminal (UT) to the satellite

gateway (GW) in a broadband interactive satellite system. The

collected C/N data is then processed building on empirical

model relating the rainfall rate to signal attenuation and

machine learning techniques to obtain rainfall estimates. This

approach can be seen as complementary solution to rainfall

estimation method using terrestrial MW links and overcomes

its drawbacks. In addition to the presenting the methodology,

the paper also validates the proposed approach using field

measurement from the satellite operator SES and on-site rain-

gauges.

The key advantages of the proposed method are:

1) Wider Coverage: Satellite UTs are usually distributed

in rural and remote area, therefore the use of satellite

MW links enable the prospect of collecting rainfall data

from these areas. This provides for a dense sampling

of the coverage area. The proposed approach has the

potential to exploit 300, 000 UTs (and growing) across

Europe and more that 2 million UTs around the world.

The dense sampling enhances the spatial accuracy of

estimates.

2) Centralized Estimation: Since the C/N is sourced from

the GW and not from the UTs directly, there is already

an aggregation of large amount of data at each GW.

This allows for a centralized estimation of rainfall over

a wide coverage. Further, there are a few satellite oper-

ators and Internet service providers (ISPs) who further

aggregate data from multiple GWs; this allows for easy

procurement of data unlike in the case of MW links.

Gateway UT1

Satellite

UT2

UT3

Database

Fig. 1. Architecture of a Broadband Satellite Communication Systems. The
C/N data of the FWD and RTN links are collected by the gateway and stored
at a database. We use these data for rainfall estimation.

3) Real Time Data: The average C/N is fed back to the

GW every 5 minutes, with the possibility to achieve

higher temporal resolution with minor modifications to

the system. This coupled with the ease of procuring ag-

gregated data allows for real time estimation of rainfall.

4) Cost: The proposed method exploits available infrastruc-

ture and hence offers a low-cost alternative.

Beside considering above advantages, it deserves consideration

that measurements from UT can be available only if terminals

are switched on and a link has been established. It should be

noted that a high level of link availabilities are guaranteed

through service agreements. The impact of non-operational

or failed devices is lower than rain-gauges due to the high

sampling of the coverage area.

The paper is organized as follows: Section II describes the

broadband satellite communication set-up used in the paper

for collecting the C/N and validates the principle behind the

approach. Section III explains the approach for classifying rain

and dry events as well as estimating the baseline signal in the

case of rain event. In Section IV, two models for mapping

the signal attenuation to rainfall rate are investigated. Finally,

Section V presents the performance of the rainfall estimation

algorithm and compares it with existing approaches in the

literature.

II. RAINFALL ESTIMATION USING BROADBAND

SATELLITE COMMUNICATION SYSTEM

A. Scenario

Broadband satellite systems offer bidirectional communica-

tions between the GW stations and UTs enabling interactive

satellite services (such as internet provisioning), see Fig. 1.

The link from the GW to UTs is called the forward (FWD)

link and the link from UTs to the GW is the return (RTN)

link. In a typical broadband satellite system, content to/from

remote UTs are aggregated at the GW stations; such stations

are operated and maintained typically by satellite operators.

We further assume that the UTs do not experience interference

from each others’ transmissions; this is feasible, e.g., if they

are provisioned on different resources (time, frequency).

To maintain a certain level of quality of service for users,

GW stations continuously monitor the FWD and RTN links
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(enabled by the bidirectional link). The C/N parameter mea-

sures quality of the communication link and received signals.

For the FWD link, the UTs estimate this parameter and send

it back to the GW station using the standard air-interface

protocol. Additionally, the GW also measures the C/N using

the transmissions from the RTN link. Thus the GW has access

to end-to-end C/N on both the links. Further, it is generally

assumed that the link between GW and the satellite (feeder

link) is ideal. This is due to the fact that the transmit/receive

antenna gain of the GW is very high. Moreover, in the case

of heavy fading at the feeder link, site diversity is used for

fade mitigation. Therefore, the end-to-end C/N of FWD and

RTN links is dominated by the C/N of the user link (links

between satellite and UTs). As a result, it can be assumed

that variations of the end-to-end C/N are mainly caused by

the user links.

B. Rainfall Estimation Concept

In the considered scenario where UTs do not interference,

the C/N parameter is highly dependent on the link conditions

and is mainly affected by the rain attenuation at the operational

Ka-band frequencies (broadband satellite) [34]. Therefore,

there is a clear correlation between the C/N variations and

amount of the rainfall. Towards this, we first present an

experimental set-up to illustrate the correlation. Subsequently,

this correlation will be exploited in the proposed approach to

estimate the amount of rainfall.

In order to illustrate our proposed method, we have ex-

ploited the experimental system installed at SES Techcom

in Betzdorf, Luxembourg. The system includes a broadband

satellite UT and a weather station equipped with rain gauge.

The UT receives broadband services from ASTRA 2F satellite

located at the orbital position of 28.2 E. The links from

satellite to UT operate at K-Band (19.70− 20.20 GHz) while

the links from UT to satellite is at Ka-Band (29.40 − 30.00
GHz). The Elevation and Azimuth angles of the links are 29.4◦

and 151.8◦, respectively.

Average C/N for both FWD and RTN links are available

at the GW station every five minutes. These measurements, in

fact, correspond to C/Naveraged over the 5 minute duration

and stored in a database. Simultaneously, a co-located weather

station reports the average rain intensity (mm/h) every minute.

In order to have consistent temporal resolution, we aggregate

the rain intensity data and transform them to a five minute

average rain intensity represented by r(n).
We use weather station data for labeling the C/N mea-

surements with dry or rain label. It is important to note that

C/N signals represent a path-averaged process impacted by

the rainfall over the satellite slant path while weather station

corresponds to an in-situ point process. Therefore, it is possible

that some C/N measurements are labeled incorrectly which

will lead to some errors in the classification. Theoretical

explanation of mislabeling impact on classification is a huge

topic in itself and is outside of the scope of this paper.

Interested readers can refer to following survey paper [35]. In

subsequent sections, we present the features for classification

and elaborate on the classification errors in Section V. For the
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Fig. 2. Sample data from the dataset: (a) FWD link C/N in dB, (b) RTN
link C/N in dB and (c) rain intensity in mm/h, r(n). Location, Betzdorf,
Luxembourg.

experiment, we have collected C/N and rain intensity data

for almost 3 months: from November 2016 to February 2017
for training the rainfall estimation algorithm and data of June

2017 for testing it. This corresponds to about K = 27500
labeled training data points and 8200 labeled test data points.

Fig. 2 shows a sample data from the training dataset. It can

clearly be observed that during the rain event, C/N parameter

drops indicating the correlation.

III. BASELINE (REFERENCE LEVEL) ESTIMATION

A. Components of C/N

The first step towards estimating the rainfall from C/N
measurements is to determine the amount of signal attenuation

caused by rainfall during the rain event. Central to this, is

an understanding of the various components constituting the

C/N and the impact of rainfall on them. To this end, let

us denote C/N for FWD and RTN links by CF (n) and

CR(n), respectively, where n is the index of measurement

(data sample). It should be noted that data indexing starts

from midnight and has a resolution of 5 minutes, i.e. n = 2
represents 00 : 05 AM of the first day of data collection.

Radio-wave propagation (and C/N ) on Earth-Space links

in millimeter wave frequencies is impacted by different tropo-

spheric effects [29], [31] including (i) Gaseous absorption due

to oxygen and water vapour, (ii) cloud attenuation, (iii) rain

attenuation and (iv) scintillations. Of the four effects above, the

one with considerable variation is rain attenuation. It is worth

mentioning that C/N is affected by interference terms like

co-channel interference. Such perturbations have high spatio-

temporal dynamics and can affect the sensitivity of C/N to

rain attenuation. However, recalling from I. interference in the

considered scenario is limited and the same is reflected in

the measurement set-up. Fig. 2 confirms the impact of rain

attenuation on the C/N variations.

It can also be seen from Fig. 2 that C/N has a low frequency

component that varies slowly over the time even during clear

sky. This is due to the fact that the satellite is not in a perfectly
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geostationary orbit; its orbit is slightly inclined with respect

to equatorial plane and has quasi-circular (elliptic) orbit. The

cycle duration of this component is 24 hours or 288 C/N
samples.

Therefore, we can decompose the C/N (in dB) as,

Cz(n) = Bz(n)−Az(n) + sz(n), (1)

where z ∈ {F,R} denotes the choice of FWD or RTN

links. Here, sz(n) characterizes the impact of quasi-circular

orbit, Bz(n) is the baseline (reference level) that corresponds

to the expected C/N in dry (no-rain) situation assuming a

fixed UT position (excluding sz(n)). It should be noted that

Bz(n) also includes impact of Gaseous absorption, cloud

attenuation, scintillations and noise in the MW link. Az(n)
shows the impact of rain attenuation; naturally, this is zero in

dry situations.

1) Impact of Elliptic Orbit: The component, sz(n) is

deterministic since the satellite orbit is predetermined. Using

Discrete Fourier Transformation (DFT), we can find this

component for FWD and RTN links respectively as,

sF (n) = 0.81 sin(2π(n̂− 46)/T0), (2)

sR(n) = 0.39 sin(2π(n̂− 46)/T0), (3)

where T0 = 288 is the number of Cz(n) samples in one cycle

duration (24 hours) and n̂ ≡ n ( mod 288) (index of data

sample with respect to just concluded midnight). Fig. 3 depicts

sF (n) and sR(n) along with corresponding Cz(n) from which

its mean value, mz , is deducted for better illustration. It can

be seen that sF (n) and sR(n) capture the main variation of

the C/N due to inclined orbit.

2) Baseline C/N in dry case: Since the components

sF (n), sR(n) are independent of the tropospheric effects, we

can remove them from the C/N measurements in order to

have a better estimation of the variations caused solely by

rainfall. Therefore, we define C̄z(n) as,

C̄z(n) = Cz(n)− sz(n) = Bz(n)−Az(n). (4)

It is worth mentioning that C̄z(n) is a known signal but Bz(n)
and Az(n) need to be estimated. We observe that baseline

can be estimated as Bz(n) = C̄z(n) during dry events since,

Az(n) = 0. However, it is challenging to determine the

baseline during rain event. One possible way is to estimate

it from baseline obtained from the closest observed dry event.

Particularly, we can have,

Bz(n) =

{

C̄z(n) for dry period

C̄z(nd) for rain period
(5)

where C̄z(nd) represents the closest observed dry event.

Therefore, in order to calculate the baseline we first need to

distinguish the rain event from dry events. In the sequel, we

introduce an algorithm that can classify the event in real-time.

B. Rain-Dry Event Classification Algorithm

In this section, we detail the proposed classification algo-

rithm which is based on Artificial Neural Network (ANN).
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Fig. 3. Variation of C/N due to inclined GEO orbit in clear sky condition
where mz is the mean of Cz over the entire duration.

The first step towards efficient classification is to define a

set of features that capture the distinguishing aspects between

different events.

1) Feature Extraction: The features considered in this work

along with the motivation for their choice are mentioned

below:

1) Feature 1: Local Standard Deviation: It can be observed

from Fig. 2 that during the rain event, variation of the

C/N signal is high and scale of variations depends on

intensity of the rain. Hence, local variation of the C/N
signal can be a useful feature for identifying rain/dry

events. These variations can be encapsulated by the local

standard deviation [20], [36] which is defined as follows,

Sz
Wn

(n) =

[

1

NW

∑

k∈Wn

(

C̄z(k)−mWn

)2

]
1
2

, (6)

where Wn = [n−NW+1, n] is the moving time window

with NW observation samples. Also mWn
is the local

average of C̄z(n) and defined as,

mWn
=

1

NW

∑

k∈Wn

C̄z(k). (7)

2) Feature 2: Deviation from Mean: Besides high variation

of C/N signal during rain events, it is expected that

its value drops considerably with respect to long-term

average C/N . This characteristic can be represented by

dz , defined as follows,

dz(n) = Cz(n)−mz(n), (8)

where mz(n) is the long-term average of Cz(n) and

defined as,

mz(n) =
1

n

n
∑

i=1

Cz(i). (9)

Based on the aforementioned choice and the availability of

C/N measurements for both RTN and FWD links, we can
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Fig. 4. Feed-Forward Artificial Neural Network for rain/dry classification

define a K × 4 matrix X whose rows are the feature vectors

as follows,

X(n, :) =
[

SF
Wn

(n), SR
Wn

(n), dF (n), dR(n)
]

. (10)

These features are chosen in order to facilitate the differenti-

ation of rain and dry events. Recalling that r(n) denotes the

rain intensity, we define the labels (rain or dry) for each data

sample as follows,

y(n) =

{

1 if r(n) > 0

0 if r(n) = 0
. (11)

For the training set, we label the data based on rain intensity

measured by the rain-gauge in the vicinity of the UT. We also

define the label vector y = [y(1), y(2), · · · , y(K)]T . The input

and output dataset (X,y) can then be used for training the

ANN classification algorithm to perform classification in test

scenarios.

2) Artificial Neural Network: We have deployed artificial

neural network for solving the resulting classification problem

since it outperforms other techniques like SVM (Support

Vector Machine) as size of the training dataset increases.

Specifically, we have considered a feed-forward neural net-

work [37] comprising three layers as depicted by Fig. 4.

Dimension of the input layer is 4, equal to the dimension of

the feature vector. The hidden layer consists of 7 units, a value

obtained by the general practice of having the number of hid-

den units to be less than twice the size of the input layer [38].

Θ
(j) is the matrix of weights which shows the mapping from

layer j to layer j + 1 where input, hidden and output layers

are labeled as 1, 2 and 3 respectively. Further, a
(j)
i (n) is the

activation of the unit i in layer j for input sample n. Let us

define nth input vector x(n) = [x0(n), x1(n), · · · , x4(n)]
T

and a(j)(n) = [a
(j)
0 (n), a

(j)
1 (n), · · · , a

(j)
7 (n)]T where x0

and a
(j)
0 are the bias units not shown in Fig. 4. Note that

a(1)(n) = x(n). Note that for ease of reading we drop the

sample index n. For the considered network we have following

relation,

a(j+1) = g
(

Θ
(j)a(j)

)

, (12)

R
h

s
h

s
L



UT

Fig. 5. Geometry of the satellite slant path

where g(·) is the element-wise sigmoid (logistic) activation

function defined as,

g(z) =
1

1 + e−z
. (13)

The output of the ANN can be written as hΘ(x) = g
(

a
(3)
1

)

that estimates the posterior probabilities of rain event. In order

to find the network weights, Θ
(1) and Θ

(2), we train the

algorithm using nprtool from Neural Network toolbox of

MATLAB [39]. Having the network weights, we can readily

find the posterior probability of rain for any input vector x

by hΘ(x). Then Rain-Dry classification rule is simple: we

declare an input vector x corresponds to a

• Rain event if hΘ(x) ≥ pT

• Dry event if hΘ(x) < pT.

Here pT is a predefined threshold which is determined con-

sidering requisite operating point. Recall that the output of the

ANN is 1 if the event is classified as rain and 0 otherwise.

Now that we can discriminate between rain and dry events,

signal attenuation can be estimated using (4) and (5) as,

Az(n) =

{

0 for dry period

C̄z(nd)− C̄z(n) for rain period
(14)

Note that for rainfall estimation we will use signal attenuation

at FWD link, AF (n), since it provided better result than

AR(n). From now on we denote AF (n) by A for simplicity.

IV. RAINFALL ESTIMATION

In this section, we will investigate two approaches for

mapping the signal attenuation into rainfall rate. First we will

study the model recommended by ITU, then will consider the

model obtained by curve fitting using observed data.

A. ITU-R Model

The relation between rainfall rate and attenuation of MW

signals is well established. The well-known model is proposed

by Olsen et al. [11] which was adopted by ITU in its

recommendations, [40], [41]. According to this model, specific
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Fig. 6. Curve fitting using training data in order to find a empirical relation
between rainfall rate and signal attenuation. ITU-R model is also shown.

attenuation γ (dB/Km) and rainfall rate (mm/h) have a power-

law relationship,

γ = kRα. (15)

The coefficients k and α depend on the frequency and po-

larization of the link. For the considered experimental setup

at FWD link, these values can be calculated following ITU-R

P.838-3 [40] as follows: k = 0.0939 and α = 1.0199. The

specific attenuation is defined as γ = A/Ls where A is the

signal attenuation at FWD link defined in (14). Here Ls (in

Km) is the slant path length of satellite FWD link which is

depicted in Fig. 5 and can be calculated as,

Ls = (hR − hs)/ sin θ, (16)

where hs is height of the UT above the mean sea level, (hs =
0.28 km for Betzdorf). It should be noted here, for simplicity, a

homogeneous rainfall rate along a slant path up to the average

rain height advocated by ITU-R P.839-4 [42] is assumed. The

mean annual rain height above mean sea level, hR, can be

calculated using ITU-R P.839-4 [42] as,

hR = h0 + 0.36 . (17)

For the region of interest, Betzdorf, the value of h0 can be

calculate from ITU-R P.839-4 [42] that leads to h0 = 2.339 km

or equivalently hR = 2.699 km. Using (16), we finally have

Ls = 4.9276 km. The relation between rainfall rate and signal

attenuation can be rewritten as,

R = 2.1295A0.9805. (18)

B. Curve Fitting

It can be seen from (18) and Fig. 6 that the expression

obtained using ITU-R recommendation indicates a nearly

linear relation between rainfall rate R and signal attenuation

A.

Remark: We can notice from Fig. 6 that ITU-R model

is not appropriate for the considered training dataset. One

reason might be that in our dataset signal attenuation is a

path averaged measurements but rainfall rate data represents a

point process. However, in ITU-R model, both rainfall rate and

signal attenuation correspond to path averaged measurements.

Further understanding of the non-applicability of ITU-R model

for considered data set is left for future investigation.

In view of this, we examined an empirical relationship

between signal attenuation and rainfall rate assuming the latter

to be homogeneous. In Fig. 6, the measurements are denoted

with blue points for the training dataset. Considering the

power-law relationship in (15), we can find the model that fits

best the data in terms of least square error. By taking natural

logarithm of both side of (15), it turns into a linear regression

problem which can be solved readily. The derived expression

can written as,

R = 0.1583A2.192, (19)

which is depicted by a red line in Fig. 6. Note that this

expression corresponds to the region of interest, Betzdorf.

For any other given location, the slant path length would be

different which could be calculated using (16). Let us define

slant path length corresponding to new location by L′

s = βLs.

Therefore, rainfall rate at any given location can be calculated

by,

R = 0.1583 (A/β)2.192. (20)

Henceforth, we use this expression in order to map the

signal attenuation to rainfall rate.

V. PERFORMANCE EVALUATION AND DISCUSSION

In this section, we evaluate the performance of the proposed

rainfall estimation approach. We used data from 17th of

November 2016 to 20th of February 2017 for training the rain-

dry classification algorithm and constructing a mapping model

based on curve-fitting. We then used data from 1st of June to

29th of June, as test data to evaluate our approach. All the data

were collected from the set-up mentioned in Section II-B. We

first evaluate the proposed classification algorithm and then

discuss the possible sources of error in rainfall estimation.

Fig. 7 presents the ROC (receiver operating characteristic)

curve for the classification algorithm on the test dataset. It

delineates two types of error as we change the threshold pT
defined in Section III-B2. The false positive rate is fraction

of dry measurements that are falsely classified as a rain event.

The true positive rate is fraction of rain events that correctly

detected as rain event. Two types of error are linked to ROC

curve as follows:

• Type I Error: false rainfall alarm = false positive rate

• Type II Error: missed rain = 1− true positive rate

ROC curve enables an understanding of the error performance

of classification algorithm at different operating points. Each

point on this curve corresponds to a given value of pT . For

instance when pT = 0.18, the Type I error is 6% and Type

II error will be 9.5%. By changing the value of pT and

calculating the Type I and Type II errors, we could have the

ROC curve. Considering this operating point, we can confirm

that our proposed classification algorithm has comparable

performance to those investigated in [36] and [43]. More
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Fig. 7. ROC curve for the classification algorithm on the test dataset.
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Fig. 8. Five minutes’ average rainfall rate : Comparison between rain gauge
readings and values estimated by our proposed algorithm.

specifically, terrestrial microwave links were used in [43] for

dry and rain events classification and resulted in Type I error

of 6% and Type II error of 14.4%.

Fig. 8 shows the five minutes’ average rainfall rain compari-

son between rain gauge at Betzdorf and estimated by proposed

algorithm. The blue dashed line shows the measured values by

the rain gauge and solid red line present the estimated rainfall

rate. The figure shows a good agreement between two time

series. It can also be observed that there is a time lag between

estimated and measured rainfall rate. This can be justified by

cloud movement and the fact that rain clouds could impact the

satellite slant path (Ls ≈ 5 Km) before reaching to the location

of rain gauge at Betzdorf. Moreover, drop falling velocity can

also contribute to this time lag.

It can also be observed in Fig. 8 that a rain event declared

by the proposed algorithm (pointed by black arrow) but was

not reported by rain gauge measurements. This again could

be due to estimating point measurements (rain gauge values)

by path-averaged measurements on the satellite link. More

specifically, when there are scatter showers along the slant

Jun 28, 00:00 Jun 28, 03:00

-1

0

1

2

3

4

5

6

7

d
B

C/N (FWD)

Baseline

False Positive

True Positive

Fig. 9. C/N(FWD) signal along with estimated baseline signal and output
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Fig. 10. Comparison between estimated and measured daily accumulated rain
for test dataset

path, it will be detected by our proposed approach but might

not be reported by the rain gauge. Fig. 9 reveals more details

about the performance of proposed algorithm regarding the

specific event pointed in Fig. 8.

The C/N(FWD) along with estimated baseline signal and

output of classification algorithm are displayed in Fig. 9. The

red dashed oval denotes the event which was declared as rain

but reported as dry by rain gauge. Therefore, corresponding

data samples were shown as false positive. However, con-

sidering the large signal drop, we can support that proposed

algorithm detected the rain event correctly. This sort of error

contributes to Type I error and can be reduced by better

labeling of the data through employing multiple rain gauges

along the projected slant path.

We can also notice from Fig. 9 that there are some false

positive samples where C/N is very close to the estimated

baseline, resulting in small signal attenuation, refer to (4).

Subsequently, estimated rainfall rate will be negligible for

those samples. Then, even though those samples classified

incorrectly by proposed classification algorithm, very small
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estimated rainfall rate can be used to restore the classification

false positive error.

It is worth mentioning that we assumed that baseline signal

is fixed during the rain event, please refer to (5), as shown

in Fig. 9. However, baseline will change during the rain

event mainly due to wet antenna attenuation (WAA) [44].

Considering WAA impact will improve the accuracy of the

algorithm.

Finally, Fig. 10 shows the estimated and measured daily

accumulated rainfall. It can be seen that all rainy days were

detected accurately by the proposed algorithm and there is a

relative agreement between estimated and measured values.

However, there is still room for improving the performance of

algorithm by better labeling (path-averaged vs. point process

issues) and considering WAA.

VI. CONCLUSION

We introduced and investigated a centralized and real-

time method for rainfall estimation. This approach is based

on opportunistic use of C/N measurements from broadband

satellite communication networks. The proposed algorithm has

two main parts: first, it classifies the events, using an artificial

neural network, into rain or dry which is used for estimating

the baseline C/N value. The measurements classified as

rain-events are subsequently processed using a curve fitting

algorithm to obtain rainfall rate. Performance of the proposed

algorithm is comparable to approaches that use terrestrial MW

links for rainfall estimation. Possible sources of errors, namely

wet antenna attenuation and inaccurate labeling of path-

averaged data, are listed, whose mitigation can further improve

the performance of the proposed method. Incorporation of

non-homogeneous rain rate, dynamic rain height and Drop

Size Distribution are some of the future research directions

for possible improvement. The idea opens up a novel avenue

for the use of satellite data for environmental monitoring as

well as an interesting research field on combining machine

learning with model based processing.
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