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Abstract

Wireless communication enabled by unmanned aerial vehicles (UAVs) has emerged as an appealing

technology for many application scenarios in future wireless systems. However, the limited endurance of

UAVs greatly hinders the practical implementation of UAV-enabled communications. To overcome this

issue, this paper proposes a novel scheme for UAV-enabled communications by utilizing the promising

technique of proactive caching at the users. Specifically, we focus on content-centric communication sys-

tems, where a UAV is dispatched to serve a group of ground nodes (GNs) with random and asynchronous

requests for files drawn from a given set. With the proposed scheme, at the beginning of each operation

period, the UAV pro-actively transmits the files to a subset of selected GNs that cooperatively cache all the

files in the set. As a result, when requested, a file can be retrieved by each GN either directly from its local

cache or from its nearest neighbor that has cached the file via device-to-device (D2D) communications.

It is revealed that there exists a fundamental trade-off between the file caching cost, which is the total

time required for the UAV to transmit the files to their designated caching GNs, and the file retrieval

cost, which is the average time required for serving one file request. To characterize this trade-off, we

formulate an optimization problem to minimize the weighted sum of the two costs, via jointly designing

the file caching policy, the UAV trajectory and communication scheduling. As the formulated problem

is NP-hard in general, we propose efficient algorithms to find high-quality approximate solutions for it.

Numerical results are provided to corroborate our study and show the great potential of proactive caching

for overcoming the limited endurance issue in UAV-enabled communications.

Index Terms

UAV-enabled communications, proactive caching, trajectory optimization, D2D communications.

X. Xu and Y. L. Guan are with the School of Electrical and Electronic Engineering, Nanyang Technological University,

Singapore 639801 (email: {xuxiaoli, eylguan}@ntu.edu.sg).

Y. Zeng and R. Zhang are with the Department of Electrical and Computer Engineering, National University of Singapore,

Singapore 117583 (email: {elezeng, elezhang}@nus.edu.sg).

This work was supported in part by the NTU-NXP Intelligent Transport System Test-Bed Living Lab Fund S15-1105-RF-LLF

from the Economic Development Board, Singapore.

http://arxiv.org/abs/1712.03542v2


I. INTRODUCTION

Traditionally, wireless communications are mainly designed with fixed terrestrial infrastructure such as

ground base stations (BSs), access points, and relays. To meet the ever-increasing and highly diversified

traffic demand cost-effectively, there have been fast growing interests in providing wireless connectivity

from the sky, by using various aerial communication platforms such as balloons1, helikites [1], and

unmanned aerial vehicles (UAVs) [2] [3]. In particular, thanks to their fast deployment and controllable

mobility, UAV-enabled/aided wireless communications have emerged as an appealing technology for many

practical applications, such as terrestrial BS offloading [4], emergency response and public safety [5],

Internet-of-Things (IoT) communications [6], [7], massive machine type communications [8], etc.

Extensive research efforts have been recently devoted to UAV-enabled communications. In [2], a general

overview of UAV-enabled wireless communications is given, where three typical use cases are envisioned,

namely UAV-aided ubiquitous coverage, UAV-aided relaying, and UAV-aided information dissemination

and data collection. By employing UAVs as quasi-stationary aerial BSs, the UAV placement problem in

two-dimensional (2D) or three-dimensional (3D) space has been extensively studied via exploiting the

unique UAV-ground channel characteristics [9]–[15]. Moreover, another important line of work focuses on

the UAV trajectory optimization [16]–[20], which fully exploits the additional design degrees of freedom

introduced by the UAV mobility for communication performance enhancement.

Despite all the promising benefits, UAV-enabled communications are also faced with new challenges.

In particular, due to the practical size, weight, and power (SWAP) constraints, UAVs usually have very

limited endurance or fly duration over the air. For example, most rotary-wing UAVs in the market typically

have the maximum endurance of about 30 minutes2. This severely hinders the practical implementation

of UAV-enabled communications. In particular, as the existing designs for UAV-enabled communications

are mostly based on the conventional “connection-centric” communication, where a communication link

between the UAV and GN needs to be maintained for information transmission, a service interruption is

caused when the UAV needs to be recalled for battery charging or swap. Some initial attempts have been

made to prolong the UAV endurance or maximize the communication throughput given the limited energy,

e.g., via energy-efficient trajectory designs [17]. However, the fundamental UAV endurance problem

remains unresolved.

In this paper, we propose a novel scheme to overcome the UAV endurance issue, by utilizing the

promising technique of proactive caching at the GNs. Specifically, we focus on content-centric UAV-

1Project Loon, Available online at: https://x.company/loon/.

2DJI Phantom 4 Specs, Available online at: https://www.drone-world.com/dji-phantom-4-specs/

https://x.company/loon/.
https://www.drone-world.com/dji-phantom-4-specs/


enabled wireless communication systems, where a UAV is dispatched to serve a group of GNs with

random and asynchronous file requests, i.e., the same content may be requested by different GNs at

different time. Note that “content-centric” communications have many practical applications nowadays,

such as for video on-demand (VoD) streaming and software download [21]. As shown in Fig. 1, the

proposed scheme operates in a periodic manner, with each period consisting of two phases, namely the

file caching phase and the file retrieval phase. In the file caching phase, the UAV pro-actively transmits

each of the files from a given set of interest to a subset of selected GNs that cooperatively cache all the

files. Next, in the file retrieval phase, each GN that has a file request can retrieve the file either directly

from its own local cache or from its nearest neighbor that has cached the file via device-to-device (D2D)

communications [22]. For the proposed scheme, the UAV is only involved in the file caching phase.

Thus, the required UAV operation time for each period only depends on how fast it can transmit the files

to the selected caching GNs, instead of the random file request pattern of the GNs. This thus offers a

promising solution to overcoming the issue of limited endurance for UAV-enabled communications. For

instance, after completing the file caching, the UAV could return to the depot for battery charging or

swap, and yet without causing any service interruption, thanks to the proactive file caching and D2D file

sharing by the GNs. It is worth noting that the proposed scheme is fundamentally different from the UAV

caching technique studied in [23], where the files are cached at the UAVs (instead of at GNs) based on

the predicted content request distribution and mobility pattern of the users. In that work, the UAV needs

to remain in the air for the entire period, thus leaving the endurance issue unaddressed.

Fig. 1: Proposed scheme of UAV-enabled communication with proactive caching.

Note that caching has received significant interests recently in terrestrial cellular systems. By pre-

loading the popular contents during off-peak hours into cellular BSs, mobile users, or even dedicated

helper nodes [24]–[33], caching offers a promising approach to alleviate the backhaul congestion issue



and reduce latency in cellular networks. In this paper, caching at the GNs is exploited as a new means

to overcoming the endurance issue for the emerging UAV-enabled communications, which, to the best of

our knowledge, has not been reported in prior work.

Different from the caching in cellular networks, the file caching phase of the proposed scheme is via

the UAV-to-GN wireless links, whose quality critically depends on their distances and thus the UAV

trajectory over time. Therefore, the caching policy, which includes the decisions on who are the caching

GNs and which files to be cached at each caching GN, should be jointly designed with the UAV trajectory

and the UAV file transmission scheduling. Furthermore, there exists a fundamental trade-off between the

file caching cost, which is defined as the total time required for the UAV to complete the transmission

of all files to the selected caching GNs, and the file retrieval cost, which is the average time required

for serving one file request [34]. Note that the file caching cost is ignored in [34]. However, due to

the limited endurance of UAV, the file caching strategy should be carefully designed to minimize the

caching cost by UAV as well. Intuitively, with the given finite storage capacity at each caching GN,

the file retrieval cost in general decreases if more files are cached to the GNs. However, this will incur

higher file caching cost, since more time is required for the UAV to complete the file transmissions to

the designated caching GNs. Furthermore, from the perspective of reducing the file retrieval cost, it is

desirable to cache each file to those GNs that are well separated geographically, so that it is more likely

for a GN to find the requested file in a nearby caching GN if the file is not found in its local cache.

However, this will increase the file caching cost since the UAV needs to travel longer distance in order

to transmit the same file to those more separated caching GNs. In this paper, we will investigate this

new fundamental trade-off in detail, by jointly designing the caching strategy, UAV trajectory and file

scheduling. Note that the problem we consider is fundamentally different from that studied in [35] where

the UAV trajectory is optimized for broadcasting one common file to all the GNs. The file caching strategy

and the file scheduling at the UAV, which are essential design parameters for our proposed scheme, are

irrelevant to the simple broadcasting problem considered in [35].

The main contributions of this paper are summarized as follows.

• Firstly, we propose a novel scheme for UAV-enabled communication by utilizing proactive caching

at the GNs to overcome the endurance issue. Furthermore, to characterize the fundamental trade-off

between file caching and file retrieval costs, we formulate an optimization problem to minimize

the weighted sum of the two costs via jointly optimizing the caching policy, UAV trajectory and

communication scheduling.

• Secondly, as the formulated optimization problem is NP-hard, we propose an efficient greedy based

approach to find high-quality approximate solutions for it. The proposed algorithm starts from the



case with no file cached, and then adds each caching file sequentially that leads to the maximum

reduction in weighted sum cost. To minimize the file caching cost for any given caching policy, the

UAV trajectory is designed by optimizing the waypoints based on the concept of virtual base station

(VBS) placement, together with the linear programming (LP) for the speed optimization.

• Thirdly, to further reduce the complexity of the proposed greedy solution, we propose an efficient

approximation for estimating the file caching cost directly, without the need of solving trajectory

optimization problem at each iteration. With this low-complexity scheme, the UAV trajectory and

communication scheduling only needs to be optimized once after determining the caching policy.

• Lastly, extensive numerical results are provided to validate the performance of the proposed scheme

and illustrate the trade-off between the file caching and retrieval costs. Furthermore, as compared to

the benchmark schemes with separate caching policy and UAV trajectory designs, it is shown that

the proposed scheme with joint caching and trajectory optimization achieves significant performance

gains in terms of file caching and retrieval costs.

The rest of this paper is organized as follows. Section II presents the system model and proposes the

novel scheme for UAV-enabled communication with caching. The problem formulation is also given in

this section. In Section III, a greedy based solution is proposed for the formulated problem. Furthermore,

a low-complexity scheme is proposed to further reduce the complexity of the proposed greedy solution

by estimating the file caching cost directly. Section IV provides the numerical results, and finally we

conclude this paper in Section V.

Notations: In this paper, scalars are denoted by italic letters. Boldface lower-case and upper-case

letters denote vectors and matrices, respectively. RM×1 denotes the space of M -dimensional real-valued

vectors. Z represents the set of non-negative integers. For a vector a, ‖a‖ represents its Euclidean norm.

log2(·) denotes the logarithm with base 2. E[·] denotes the statistical expectation and Pr(·) represents

the probability. For a time-dependent function q(t), q̇(t) denotes the first-order derivative with respect

to time t. For a set K, |K| denotes its cardinality. For two sets K1 and K2, K1 ⊂ K2 denotes that K1 is

a subset of K2. K1
⋃

K2, K1
⋂

K2 and K1 \ K2 denote the union, intersection and set difference of K1

and K2, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a UAV-enabled wireless communication system, where a UAV is dispatched to serve a

group of K GNs. The horizontal location of GN k is denoted as wk ∈ R
2×1, k ∈ {1, 2, ...,K}. Differ-

ent from the existing literature that mostly considers the traditional “connection-centric” UAV-enabled

communications [2]–[20], we consider the “content-centric” UAV-enabled communications. Specifically,



we assume that within each period of duration Tp seconds, the K GNs are interested in the same set of

N files, which are denoted as F = {f1, ..., fN}. Note that in practice, Tp depends on how fast the file

library needs to be updated, which is usually at relatively large time scale (say one day). We assume

that the probability for GN k to request file fn is denoted by P
(k)
f (n), where k = 1, ...K, n = 1, ..., N

and 0 ≤ P
(k)
f (n) ≤ 1. For the special case when all the GNs have the same interest on the files, the file

request probability can be represented by the file popularity, such as the Zipf distribution given by

P
(k)
f (n) =

1/nκ

∑

n 1/n
κ
, n = 1, ..., N,∀k (1)

where κ represents the skewness of the distribution and usually takes values in [0.5, 1.5] [36]. For the

special case when κ = 0, all the files are of equal popularity. As κ increases, the popularity of different

files becomes more diverged.

In practice, different GNs may request the same file at different time. A straightforward way to satisfy

such asynchronous file requests on demand is via direct UAV-GN transmission. However, such a scheme

requires the UAV to remain over the air for all time, similar to the conventional terrestrial BSs at fixed

locations on the ground. However, in practice, UAVs have limited endurance and thus this scheme is

practically infeasible. To overcome this issue, we propose a novel scheme for UAV-enabled wireless

communication based on proactive caching by the GNs.

A. Benchmark Scheme: Direct UAV-GN File Transmission Without Caching

We first consider a benchmark scheme with direct UAV-GN file transmission without caching, where

the UAV resembles a conventional ground BS, but hovers above a certain location (e.g., the geometric

center of the locations of all GNs) or flies along some optimized trajectory to directly serve the file

request on demand. As illustrated in Fig. 2, the file requests (including the requesting GN and the index

of the requested file) from the GNs are put in a request queue at the UAV based on their generated time.

All such requests are sequentially served by the UAV via direct file transmissions. In practice, the GNs

may have the file request at any time. Thus the UAV needs to remain in the air throughout the mission

operation time (say several hours or even a day). This is challenging to be practically implemented due to

the limited UAV on-board energy and hence endurance. Moreover, such a scheme is also quite inefficient

when the file requests from the GNs are highly sporadic, for which the UAV needs to remain in the air

even when there is temporarily no file request. Therefore, in the following, we propose a new scheme

for UAV-enabled communication based on the promising technique of proactive caching at the GNs.
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Fig. 2: Benchmark scheme using direct UAV-GN file transmission without caching.

B. Proposed Scheme with Proactive Caching

With the proposed scheme, each GN is assumed to have a cache with storage capacity of Q files. As

illustrated in Fig. 1, the proposed scheme consists of two phases: file caching phase and file retrieval

phase, explained as follows.

• File caching phase: The file caching phase occurs at the beginning of each operation period, for

which the UAV selects a subset of the K GNs to pro-actively cache the N files. To ensure non-zero

probability of successful file retrieval for all files, each of the N files should be cached by at least

one of the selected caching GNs. Furthermore, due to the limited storage capacity at each GN and

the incurred file caching cost by transmitting the files from the UAV to their designated caching

GNs, the files to be cached at each caching GN should be carefully optimized, jointly with the UAV

trajectory and the file transmission scheduling from the UAV to the caching GNs.

• File retrieval phase: With all the N files cooperatively cached by the selected caching GNs, the file

retrieval phase then only involves the D2D communication among the GNs. In this case, each file

request could be served by considering two possible scenarios. If the requested file is already cached

locally at the requesting GN itself, it can then be simply retrieved from the local cache; otherwise,

the file requesting GN will broadcast the file request, and those caching GNs who have cached the

requested file will respond. We assume that the GN will then download the file from the nearest

GN that has cached this file via D2D communication.

Note that with the proposed scheme, the UAV is only involved in the file caching phase. Thus, its

operation time/cost at each period only depends on how fast the UAV can complete the transmission of



all files to their respectively selected caching GNs, thus independent of the random file request pattern of

the GNs. Thus, regardless of the period duration Tp, the proposed scheme only requires that the UAV’s

endurance to be greater than the duration of the file caching phase, since the UAV can then replenish its

energy during the file retrieval phase.

In the following, the file caching and retrieval phases are modeled in detail.

1) File Caching: We denote by X in bits the size of each of the N files3. Furthermore, we assume

that each file is divided into Ȳ = X/Rp packets, with Rp denoting the packet size in bits. We further

assume that a packet-level erasure correction code such as the fountain code [37] or random linear code

[38] is applied for each file, so that a file can be recovered from any Y = (1+ ǫ)Ȳ coded packets, where

ǫ ≪ 1 is the coding overhead.

For the file caching phase, the UAV needs to determine the file caching policy, which includes the

subset of the K GNs for file caching as well as a subset of the N files to be cached at each selected

caching GN. This can be mathematically represented by the KN binary indication variables Ik,n as

Ik,n =











1, file fn is cached at GN k

0, otherwise.

(2)

Due to the storage limitation, the total number of files cached at each GN should not exceed its storage

capacity Q, i.e.,
N
∑

n=1

Ik,n ≤ Q, k = 1, ...,K. (3)

Furthermore, since each file should be cached by at least one GN to ensure non-zero successful file

retrieval probability, we have
K
∑

k=1

Ik,n ≥ 1, n = 1, ..., N. (4)

With the file caching policy {Ik,n} determined, the UAV needs to transmit the files to their designated

caching GNs following certain trajectory and file transmission scheduling. Assume that the UAV flies at

a constant altitude, which is denoted as H in meter. Furthermore, denote by q(t) ∈ R
2×1, 0 ≤ t ≤ TU ,

the UAV’s flying trajectory projected on the ground, where TU ≪ Tp is the total time required for the

UAV to complete the file caching transmission. Let Vmax denote the maximum UAV speed in meter per

second (m/s). We then have the constraint ‖q̇(t)‖ ≤ Vmax. The time-dependent distance between the

UAV and the GNs can then be written as

dk(t) =
√

H2 + ‖q(t)−wk‖2, 0 ≤ t ≤ TU , k = 1, ...,K. (5)

3For simplicity, we assume that all files have the same size X , while the results of this paper can be extended to the case of

unequal file sizes with only minor modification.



For ease of exposition, the time horizon TU is discretized into M equal time slots, i.e., TU = Mδt,

with δt denoting the elemental slot length such that the distances between the UAV and the GNs are

approximately constant within each slot. As a rule of thumb, we may choose δt such that δtVmax ≪ H .

Then the UAV trajectory q(t) can be approximated by the M -length sequence {q[m]}Mm=1, where q[m]

denotes the UAV’s horizontal location at the mth time slot. Denote by δd , δtVmax the maximum traveling

distance of the UAV for one slot duration δt. The UAV speed constraint can then be discretized as

‖q[m]− q[m− 1]‖ ≤ δd, m = 2, ...,M. (6)

The time-dependent distance between the UAV and the GNs can be written as

dk[m] =
√

H2 + ‖q[m]−wk‖2, 1 ≤ m ≤ M,k = 1, 2, ...,K, (7)

where ‖q[m]−wk‖ is the horizontal distance.

Preliminary channel measurement results show that UAV-to-ground channel typically consists of strong

LoS links [39]. Therefore, for simplicity in this paper we assume that the channel between the UAV and

each GN is dominated by the LoS link. As a result, the channel power gain from the UAV to GN k at

slot m can be modeled as

βU
k [m] = βU

0 d
−2
k [m] =

βU
0

H2 + ‖q[m]−wk‖2
, (8)

where βU
0 denotes the UAV-to-ground channel power gain at the reference distance of d0 = 1 m.

Denote by PU the transmission power of the UAV. The received signal-to-noise ratio (SNR) by GN k

at the mth time slot is given by

γk[m] =
PUβ

U
k [m]

σ2
=

γU0
H2 + ‖q[m]−wk‖2

, (9)

where σ2 is the additive white Gaussian noise (AWGN) power and γU0 ,
PUβU

0

σ2 is the SNR at the

reference distance of d0 = 1 m.

We assume that the UAV’s transmission rate throughout the file caching phase is fixed, which is denoted

as RU in bits per second (b/s). As a result, the time required to complete one packet transmission is

tUp ,
Rp

RU
. With the slot duration fixed as δt, the total number of packets that can be transmitted by the

UAV within each time slot is L = δt
tUp

= δtRU

Rp
. For convenience, we assume that L ≥ 1 is an integer.

For each time slot m, define Jm,n as the number of packets that are transmitted by the UAV for file

fn. At each time slot m, the total number of packets transmitted by the UAV cannot be larger than L.

Therefore, we should have
N
∑

n=1

Jm,n ≤ L, m = 1, ...,M. (10)

With the UAV’s transmission rate fixed as RU , a packet sent by the UAV at slot m can be successfully

received by GN k if and only if γk[m] ≥ γUth, where γUth , (2RU/BU −1)Γ with BU denoting the channel



bandwidth and Γ denoting the SNR gap between a practical modulation and coding scheme and the

theoretical Gaussian signaling. By using (9), this condition is equivalent to that the horizontal distance

between UAV and GN k should be no greater than a certain threshold, i.e., ‖q[m]−wk‖ ≤ DU , where

DU =

√

γU0
γUth

−H2. (11)

It is not difficult to see that the UAV transmission rate RU should be chosen such that γUth ≤ γU0 /H
2.

For each GN k, define Mk ⊆ {1, ...,M} as the subset of all time slots such that the horizontal distance

between the UAV and GN k is no greater than DU , i.e.,

Mk , {m : ‖q[m]−wk‖ ≤ DU}. (12)

We refer to Mk as the set of contacting time slots for GN k with the UAV. Hence, the total number

of coded packets that can be successfully received by node k for file fn is given by
∑

m∈Mk
Jm,n. If

GN k is selected to cache file fn, i.e., Ik,n = 1, it needs to receive a total of Y coded packets to recover

fn. Thus, the UAV trajectory q[m] and the file transmission scheduling Jm,n should satisfy the following

constraint,
∑

m∈Mk

Jm,n ≥ Y,∀{(k, n) : Ik,n = 1}. (13)

In this paper, we define the file caching cost CU as the total time required for the UAV to complete

the dedicated file transmissions to the selected caching GNs, i.e.,

CU = TU = Mδt. (14)

Specifically, for any given file caching policy {Ik,n}, CU is the required file caching time such that

there exists a feasible UAV trajectory {q[m]} and file transmission scheduling {Jm,n} that satisfy the

constraints (6), (10), and (13).

2) File Retrieval: Next, we consider the file retrieval phase. After the file caching phase with the

policy specified by {Ik,n}, for each file fn, denote by Kn the set of GNs that have cached file fn, i.e.,

Kn , {k : Ik,n = 1}. In the file retrieval phase, when a GN k requests any file fn, there are two

possible scenarios. In the first scenario, file fn is already cached by GN k itself, i.e., k ∈ Kn, then the

file can be retrieved directly from its own local cache. In this case, the cost for file retrieval is essentially

zero. Otherwise, when k /∈ Kn, GN k will retrieve file fn from its nearest peer that has cached fn via

D2D communication, which requires additional time/delay due to D2D transmissions and thus incurs a

non-zero cost. For any pair of k and n such that k /∈ Kn, let the file retrieval distance for GN k to

retrieve fn be denoted as Dk,n. We have

Dk,n = min{dkj : j ∈ Kn}, (15)

where dkj , ‖wk −wj‖ is the distance between GN k and j.



As a result, the average channel power gain for GN k to retrieve file fn can be modeled as

βG
k,n = βG

0 D
−α
k,n, (16)

where βG
0 denotes the channel power gain at the reference of d0 = 1 m, and α ≥ 2 is the path loss

exponent for the D2D channels between GNs.

Denote by RG in b/s the transmission rate of each GN for the D2D file sharing phase. Therefore, the

time required to complete one packet transmission is tGp ,
Rp

RG
. Different from the UAV-to-GT channels

that are typically dominated by LoS links, the terrestrial channels between different GNs are usually

subject to additional fading with random variations. We assume quasi-static fading channels, where the

instantaneous channel coefficients between the GNs remain unchanged for each packet duration tGp , and

may vary across different packets. Therefore, the instantaneous channel gains for GN k to retrieve the

ith packet for fn can be modeled as

hk,n[i] =
√

βG
k,ngk,n[i], (17)

where βG
k,n is the distance-dependent path loss component given by (16), gk,n[i] is a random variable

with E
[

|gk,n[i]|
2
]

= 1 accounting for the fading component of the terrestrial channels, which are

assumed to be independently and identically distributed (i.i.d.). Without loss of generality, denote by

F (x) the complementary cumulative distribution function (ccdf) for the fading channel power, i.e.,

F (x) , Pr
(

|gk,n[i]|
2 ≥ x

)

.

Denote by PG the D2D transmit power for the file sharing phase. Then, the instantaneous SNR for

GN k to download the ith packet for file fn is given by

γGk,n[i] =
PG|hk,n[i]|

2

σ2
=

PGβ
G
k,n

σ2
|gk,n[i]|

2 =
PGβ

G
0

σ2Dα
k,n

|gk,n[i]|
2 =

γG0
Dα

k,n

|gk,n[i]|
2, (18)

where σ2 is the noise power and γG0 ,
PGβG

0

σ2 is the average SNR at the reference distance d0 = 1 m.

With the GNs’ transmission rate fixed as RG, a packet sent by the nearest caching GN of file fn to the

requesting GN k can be successfully received if the instantaneous SNR is no smaller than the threshold

γGth , (2RG/BG − 1)Γ, where BG denotes the channel bandwidth for the D2D communications and Γ is

the SNR gap. Hence, the probability for GN k to successfully receive the ith packet of file fn is given

by

psucck,n = Pr
(

γGk,n[i] ≥ γGth
)

= Pr

(

|gk,n[i]|
2 ≥

γGth
γG0

Dα
k,n

)

= F

(

γGth
γG0

Dα
k,n

)

. (19)

Note that F (x) is a decreasing function and hence the successful packet reception probability psucck,n



decreases with the file retrieval distance Dk,n, as expected.

Recall that to recover each file, the GN should successfully receive at least Y coded packets. For

each given pair of GN k and file fn, we define the file retrieval cost ck,n as the expected number of

required packet transmissions so that on average Y packets are received by the file requesting node k. If

Ik,n = 1 such that fn is already available in its own cache, no packet transmission is needed and hence

we have ck,n = 0. Otherwise, GN k will retrieve file fn from its nearest GN with each transmitted packet

having success probability psucck,n . Therefore, we set ck,n = Y
psucc

k,n

, which measures the average number of

transmitted packets (or transmission time normalized to one packet duration tGp ) to ensure the successful

decoding of file fn. In summary, with the caching policy Ik,n, the file retrieval cost for each given pair

of GN k and file fn is

ck,n =











0, Ik,n = 1

Y
psucc

k,n

, otherwise.

(20)

Note that if a file is not cached at any GN, the result retrieval cost of this file is infinity for any GN

according to (20), which hence implies the constraint that all the files should be cached. In practical

implementation, such constraint can be easily removed by defining a finite cost value for not caching a

file.

We define the average file retrieval cost CG as the average time required for serving one file request,

where the average is taken over all the K GNs and all N files based on their popularity, i.e,

CG =

(

1

K

N
∑

n=1

K
∑

k=1

P
(k)
f (n)ck,n

)

tGp , (21)

where P
(k)
f (n) is the probability of GN k requesting file fn as defined in (1). Note that CG can also

be interpreted as the average delay for a typical GN to retrieve a file given constant transmission rate

between the GNs. As more file requests are served via D2D communication, more files will be available

at the GNs and hence the file retrieval cost may gradually reduce as the time goes. The cost defined

in (21) corresponds to the worst-case file retrieval cost at the beginning of the file retrieval phase, by

only considering the file availability at the GNs after proactive caching enabled by the UAV. If the

GNs can adjust their transmission rates based on the communication distance, the file retrieval cost can

also be defined as the average transmission time required for retrieving a file at the maximal achievable

communication rate, which is clearly a increasing function of the distance between the requesting GN

and its nearest caching GN with the file.



C. Problem Formulation

Based on the above discussions, it can be seen that both the file caching cost CU defined in (14) and

average file retrieval cost CG defined in (21) are closely coupled with the file caching policy {Ik,n}.

Intuitively, the file retrieval cost decreases if more files are cached, due to the higher probability of finding

the requested file in the local cache as well as the decreased retrieval distance on average when D2D

file transmission is needed, as can be inferred from (15), (19), (20) and (21). However, this is usually

achieved with increased file caching cost, since more time is required for the UAV to complete the file

transmissions to the designated caching GNs. Moreover, to reduce the file retrieval cost, each file should

be cached to those GNs that are as widely separated as possible given the same number of caching GNs,

so as to reduce the maximum file retrieval distance when D2D file transmission is needed. However, this

will also increase the file caching cost since the UAV needs to transmit the same file to more distant

GNs by traveling longer distance. Therefore, there exists a fundamental trade-off between file caching

and file retrieval costs for the proposed scheme.

To characterize this new trade-off, we define a weighted sum cost as

Cθ = (1− θ)CU + θCG,

= (1− θ)Mδt + θ

(

tGp
K

N
∑

n=1

Pf (n)

K
∑

k=1

ck,n

)

(22)

where 0 ≤ θ ≤ 1 is the weighting factor to balance between the average file retrieval cost CG and the

file caching cost CU .

The complete trade-off between CU and CG can be obtained by minimizing Cθ for different θ values,

via jointly optimizing the design variables including the file caching policy {Ik,n}, UAV operation time

M , UAV trajectory {q[m]}, and file transmission scheduling {Jm,n}. For any given θ, the problem can



be formulated as

P1: min
M,{Ik,n,q[m],Jm,n}

Cθ (23a)

s.t., M,Jm,n ∈ Z,q[m] ∈ R, (23b)

Ik,n ∈ {0, 1}, k = 1, ...,K;n = 1, ..., N, (23c)

N
∑

n=1

Ik,n ≤ Q, k = 1, ...,K, (23d)

K
∑

k=1

Ik,n ≥ 1, n = 1, ..., N, (23e)

‖q[m]− q[m− 1]‖ ≤ δd, m = 2, ...,M, (23f)

∑

m∈Mk

Jm,n ≥ Y, ∀{(k, n) : Ik,n = 1}, (23g)

N
∑

n=1

Jm,n ≤ L, m = 1, ...,M, (23h)

where (23d) corresponds to the caching capacity constraint at each GN; (23e) ensures that each file is

cached by at least one GN; (23f) corresponds to the maximum speed constraint of the UAV; (23g) ensures

that all the caching GNs receive sufficient number of packets for their designated caching files from the

UAV; and (23h) specifies the maximum number of packets that can be transmitted by the UAV during

each time slot.

III. PROPOSED SOLUTION

Before solving the general problem P1, we first consider its two extreme cases with θ = 1 and θ = 0,

respectively, to gain important insights. Then the general problem P1 with arbitrary θ values is solved

with a greedy algorithm.

A. Minimizing File Retrieval Cost with θ = 1

When θ = 1, P1 reduces to minimizing the file retrieval cost CG, while ignoring the corresponding file

caching cost. It follows from (21) that for any given file caching policy {Ik,n}, CG is independent of the

UAV trajectory {q[m]} and file transmission scheduling {Jm,n}. Furthermore, by ignoring the constant

terms in the cost function, P1 reduces to

P1(a): min
{Ik,n}

N
∑

n=1

Pf (n)
K
∑

k=1

ck,n (24a)

s.t., (23c), (23d), (23e) (24b)



Note that the optimization variable Ik,n affects the cost function of P1(a) implicitly via ck,n given in (20).

In the ideal case when each GN has sufficiently large storage capacity, i.e., Q ≥ N , it is not difficult to

see that the optimal solution to P1(a) is Ik,n = 1,∀(k, n), i.e., each GN will cache all the N files. In this

case, for each GN, all the files can be directly retrieved from their local caches once requested. It then

follows from (20) that the optimal value of P1(a) is CG = 0. For the general case with Q < N , problem

P1(a) is difficult to be solved optimally. In [34], a related problem is studied to optimize the file caching

policy to minimize the average file retrieval distance D̄ , 1
K

∑N
n=1 Pf (n)

∑K
k=1Dk,n, which has been

proven to be NP-hard. Since the file retrieval cost ck,n is a deterministic and increasing function of the

file retrieval distance Dk,n, it can be shown that P1(a) is also NP-hard by following the similar proof in

[34].

Therefore, by following a similar globally-greedy heuristic approach in [34], an efficient approximate

solution can be found for problem P1(a) for Q < N . Specifically, at each step, the incremental reduction

of the file retrieval cost for placing file fn at GN k is calculated for all the GN-file pairs. Then, the

GN-file pair that leads to the largest cost reduction is selected as a new cache placement. This process

iterates until the storages of all the GNs are filled. Note that if a file is not cached by any GN, the

retrieval cost is infinity. Therefore, with the globally-greedy approach that maximizes the cost reduction

at each iteration, the constraint (23e) is automatically satisfied, as long as the problem is feasible with

KQ ≥ N .

B. Minimizing File Caching Cost with θ = 0

When θ = 0, we have Cθ = CU and P1 reduces to minimizing the UAV file caching cost CU = Mδt

while ensuring that each file is cached by at least one GN, and ignoring the file retrieval cost. By

discarding the constant terms, P1 reduces to

P1(b): min
M,{Ik,n,q[m],Jm,n}

M (25a)

s.t., (23b) − (23h). (25b)

For the ideal case when each GN has sufficiently large storage, i.e., Q ≥ N , one GN is sufficient to

cache all the N files. In this case, it is not difficult to see that the optimal solution to P1(b) is to cache

all the files in one single arbitrarily selected GN k∗, i.e., Ik∗,n = 1,∀n = 1, ..., N and Ik,n = 0,∀k 6= k∗.

As such, the UAV only needs to hover above the selected GN k∗, i.e., q[m] = wk∗,m = 1, ...,M . In

this case, the minimum caching time is determined by the transmission time for sending all the files to

the single GN selected, i.e., M = Y N .



For the general case with Q < N , problem P1(b) is difficult to be optimally solved. A heuristic

solution to problem P1(b) can be obtained from the proposed solution for solving P1 with general θ

values in the next subsection.

C. General Case with Arbitrary θ

Due to the implicit relationship between the file caching and retrieval costs with respect to the design

variables, including the caching policy {Ik,n}, the UAV trajectory {q[m]} and the file scheduling {Jm,n},

problem P1 for arbitrary θ values is even more challenging to solve compared to the special cases

discussed in the preceding subsections. Therefore, finding the optimal solution to P1 is difficult in general.

In this subsection, we propose a greedy algorithm for solving P1 approximately by jointly minimizing

the file caching and retrieval costs with weighting factor 0 ≤ θ ≤ 1. The main idea of the proposed

greedy approach is as follows: Instead of optimizing over all possible caching policy {Ik,n}, we start

from the case where no file is cached, i.e., Ik,n = 0,∀k, n, and select the best GN-file pair that leads

to the maximum reduction of the weighted sum cost Cθ in P1 at each iteration. This process continues

until the storages of all the GNs are filled or when Cθ cannot be further reduced.

For notational convenience, with K GNs and N files to be cached, we define a set I containing all

the GN-file pairs, i.e., I , {(k, n) : k = 1, ...,K;n = 1, ..., N}. The cardinality of I is thus |I| = KN .

Furthermore, for any particular file caching policy {Ik,n}, we denote by IS , {(k, n) : Ik,n = 1} the

subset of I containing all the selected GN-file pairs (k, n) such that file fn is cached at GN k. At each

iteration, a GN-file pair (k, n) is a candidate pair that could be selected for caching in the next step

only if (k, n) 6∈ IS and the storage of GN k has not been filled yet, i.e.,
∑N

n=1 Ik,n < Q. Therefore, for

any file caching policy {Ik,n}, we further denote by IC , {(k, n) : Ik,n = 0 and
∑N

j=1 Ik,j < Q} the

set of candidate GN-file pairs, considering the current caching status specified by IS . Clearly, we have

IS
⋂

IC = ∅ and IS
⋃

IC ⊆ I for any particular file caching policy {Ik,n}.

With the proposed greedy approach, we start with an empty set IS = ∅, i.e., no file is cached, and at

each step, select the best element in the candidate set IC to move to IS . For notational convenience, we

denote by CU (IS) the file caching cost for the UAV to transmit all the files to the designated caching

GNs as specified in IS , and denote by CG(IS) the average file retrieval cost based on the file placement

corresponding to IS , as defined in (21). The detailed procedures of the proposed greedy algorithm are

described as follows:

1) We start from the case without file placement by initializing IS = ∅ and IC = I . The corresponding

file caching and retrieval cost are CU(IS) = 0 and CG(IS) = ∞ (see (20) and (21)), respectively,

and hence the initial weighted sum cost for θ 6= 0 is Cθ = ∞.



2) At each step with the existing file placement IS , we find the best GN-file pair, denoted as (k∗, n∗),

in the candidate set IC such that the corresponding cost reduction with this new file caching is

maximized. Specifically, denote the new caching policy after moving (k̂, n̂) from IC to IS by ÎS ,

i.e., ÎS , IS
⋃

{(k̂, n̂)}. Then, the corresponding cost reduction of problem P1 is

∆Cθ(k̂, n̂) = θ
(

CG(IS)− CG(ÎS)
)

− (1− θ)
(

CU (ÎS)− CU (IS)
)

. (26)

The first term on the right hand side (RHS) of (26) represents the reduction of the file retrieval cost

with the additional caching (k̂, n̂), while the second term corresponds to the associated increase of

the file caching cost. Therefore, at each greedy step, the following optimization problem is solved

P2: max
(k̂,n̂)∈IC ,M,{q[m],Jm,n}

∆Cθ(k̂, n̂) (27a)

s.t., ‖q[m]− q[m− 1]‖ ≤ δd, m = 2, ...,M, (27b)

∑

m∈Mk

Jm,n ≥ Y, ∀(k, n) ∈ ÎS (27c)

N
∑

n=1

Jm,n ≤ L, m = 1, ...,M. (27d)

Note that as compared to the original problem P1, the file caching placement in P2 is optimized in

a greedy manner, where only one additional cache (k̂, n̂) in the candidate set IC is to be added to

the current caching policy IS . It is worth noting that the storage constraint (23d) is guaranteed due

to the definition of IC , while the constraint (23e) may not be necessarily satisfied for the solution

to P2 in the intermediate steps. However, it is not difficult to see that after the greedy algorithm

converges, the constraint (23e) is also guaranteed, since Cθ is infinity if any file is not cached at

all.

3) Denote the obtained solution for the GN-file to P2 as (k∗, n∗). The subsets IS and IC are updated

as IS = IS
⋃

{(k∗, n∗)} and IC = IC \ {(k∗, n∗)}, respectively. Furthermore, if the storage at

GN k∗ is used up after caching fn∗ , no more files can be cached at GN k∗ in the following steps.

Therefore, the set of candidate GN-file pair IC for subsequent greedy steps is updated as

IC =











IC \ {(k∗, j), j = 1, ..., N}, if
∑N

j=1 Ik∗,j = Q

IC \ {(k∗, n∗)}, otherwise.

(28)

Note that in the first case of (28), all GN-file pairs containing GN k∗ are excluded from IC , whereas

in the second case, only the pair (k∗, n∗) is excluded.

4) Repeat step (2)-(3) until there is no remaining feasible GN-file pair, i.e., IC = ∅, or the incremental

cost reduction becomes negligible.

The remaining task for the proposed greedy scheme is then to solve P2. For any chosen candidate



GN-file pair (k̂, n̂) ∈ IC , P2 reduces to a joint UAV trajectory and transmission scheduling optimization

problem formulated as

P3: max
M,{q[m],Jm,n}

∆Cθ(k̂, n̂) (29a)

s.t., (27b) − (27d) (29b)

Therefore, P2 can be solved by simply comparing all the |IC | possible values to P3, each corresponding

to one feasible (k̂, n̂) in IC . Note that with IS and ÎS given, the reduction of the file retrieval cost

θ(CG(IS) − CG(ÎS)) is a constant value that can be directly calculated from (21). Hence, solving P3

is equivalent to minimizing the file caching cost CU (ÎS) via optimizing the UAV trajectory and file

transmission scheduling given the caching placement ÎS , which is formulated as

P3(a): min
M,{q[m],Jm,n}

CU (ÎS) (30a)

s.t., ‖q[m]− q[m− 1]‖ ≤ δd, m = 2, ...,M, (30b)

∑

m∈Mk

Jm,n ≥ Y, ∀(k, n) ∈ ÎS, (30c)

N
∑

n=1

Jm,n ≤ L, m = 1, ...,M. (30d)

It is worth noting that P3(a) is still a challenging problem since the set of contacting time slots Mk

for each GN k are intricately related with the UAV trajectory q[m], as given in (12). For the special

case when each file is only cached by one GN, P3(a) reduces to a problem for UAV-enabled unicast

communication. On the other hand, when all the files are placed at all the GNs, i.e., Ik,n = 1,∀(k, n) ∈ ÎS ,

the problem reduces to the UAV-enabled multicast problem, which has been studied in [35]. Note that

both the UAV unicast and multicast problems are NP-hard in general. Hence, it is generally challenging

to find the optimal UAV trajectory and transmission scheduling solution to problem P3(a). By following

the similar approach as in [35], we propose an efficient and approximate solution to P3(a) by firstly

designing the UAV flying path via applying the concept of virtual base station (VBS) placement and

convex optimization, and then finding the optimal UAV speed and file transmission scheduling with the

given path by solving a linear programming (LP) problem.

1) Design of UAV Flying Path: First, to satisfy the constraint (30c) of P3(a), the UAV trajectory

needs to be designed such that all the caching GNs, denoted as K̂ , {k : ∃(k, n) ∈ ÎS}, can effectively

communicate with the UAV, i.e., there exists at least one location along the UAV path for each caching

GN such that its distance with UAV is no greater than the required threshold DU . Given the UAV

coverage radius DU , this resembles the classical traveling salesman problem with neighborhood (TSPN).

In the following, we provide an efficient path design for solving the TSPN problem based on the VBS



placement and convex optimization techniques.

Specifically, given the locations of the caching GNs {wk, k ∈ K̂} and the UAV coverage range DU ,

we first solve the VBS placement problem, which aims to find a minimum number of VBSs and their

respective locations, so that each caching GN is covered by at least one VBS. Several efficient algorithms

in the literature can be applied for solving the VBS placement problem, where in this paper we adopt the

spiral placement algorithm proposed in [12]. Let G ≤ |K̂| be the minimum number of VBSs obtained

by applying the spiral placement algorithm, and their locations are denoted as vg ∈ R
2×1, g = 1, ..., G.

An illustrative example for the VBS placement solution is shown in Fig. 3.
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Fig. 3: An illustration of UAV path design with VBS placement and convex optimization.

With the locations of the VBSs found, the standard TSP algorithm can be applied to find the visiting

order of the G VBSs, which gives one feasible UAV path. However, the path can be further improved

since it may not be necessary for the UAV to visit exactly the VBS locations [35]. To this end, convex

optimization technique is further applied to optimize the set of way points. Specifically, with the VBSs

and their visiting order determined, the caching GNs in K̂ are essentially partitioned into G ordered

clusters K̂g, g = 1, ..., G, where K̂g ⊂ K̂ denotes the subset of caching GNs that must be covered by

the gth VBS. Then, the starting and ending points of the UAV flying path intersecting with the gth

cluster can be further optimized by solving a convex optimization problem, as described in [35]. By

connecting the starting and ending points sequentially according to the order of the clusters visited, we

obtain the complete UAV flying path, so that each caching GN is enabled to communicate with the UAV.

An example of the obtained UAV flying path is shown in Fig. 3.



2) UAV Speed and File Scheduling Optimization: With the UAV flying path determined, the locations

along the path where each GN is covered by the UAV can be obtained based on (12). As a result, finding

the UAV trajectory reduces to finding its instantaneous speed along the determined path, for which P3(a)

can be cast as an LP problem. Specifically, we discretize the obtained UAV flying path into S segments,

such that within each segment, the set of caching GNs that are in contact with the UAV remain unchanged.

The length of the sth segment is denoted by ls, s = 1, 2, ..., S. The total UAV traveling distance is thus
∑S

i=1 li. We further denote by ρs the time for the UAV to fly through the sth segment. The total file

caching cost or the total UAV caching time is thus CU =
∑S

s=1 ρs. The speed constraint in (30b) is then

equivalent to

ρsVmax ≥ ls, s = 1, ..., S. (31)

Since the duration for the UAV sending one packet is tUp , the total number of packets that can be sent

when it flies through the sth segment is Ls = ρs/t
U
p . Then, the file transmission scheduling parameters

{Jm,n} can be equivalently transformed to {J̃s,n}, where J̃s,n refers to the number of coded packets

sent by the UAV for file fn during the sth path segment. Corresponding to (30d), we have the following

constraints on the total number of transmitted packets per segment,
N
∑

n=1

J̃s,n ≤ Ls, s = 1, ..., S. (32)

For each GN k, define Sk ⊆ {1, ..., S} as the subset of the segments such that the GN k can successfully

receive the packet sent from the UAV, i.e., their horizontal distance being no greater than DU . Then, the

file recovery constraint in (30c) can be recast as
∑

s∈Sk

J̃s,n ≥ Y,∀{(k, n) : Ik,n = 1}. (33)

Therefore, with any given UAV flying path, problem P3(a) reduces to the following LP problem, which

can be efficiently solved by standard convex optimization techniques.

P4: min
{ρi,J̃s,n}

S
∑

s=1

ρs (34a)

s.t., ρsVmax ≥ ls, s = 1, ..., S, (34b)

∑

s∈Sk

J̃s,n ≥ Y, ∀{(k, n) : Ik,n = 1}, (34c)

N
∑

n=1

J̃s,n ≤ Ls, s = 1, ..., S, (34d)

The pseudo-code for solving problem P3(a) is summarized in Algorithm 1.

With problem P3(a) solved, the pseudo-code of the overall greedy algorithm proposed for problem P1

is summarized in Algorithm 2. Since one GN-file is selected at each iteration and each GN can cache



Algorithm 1 Algorithm for solving Problem P3(a)

1: Input: {wk, k ∈ K̂},DU , Vmax.

2: Find the location of the VBSs vg, g = 1, ..., G to cover all caching GNs in K̂

3: Find the optimal visiting order of the G VBSs using standard TSP algorithm.

4: Optimize the set of way points by solving convex optimization problem in [35].

5: Divide the obtained flying path into segments, within which the UAV contact set remains unchanged.

6: Obtain the file scheduling and average flying speed within each segment by solving P4.

7: Output: {q[m]} and {Jm,n}

at most Q files, the total number of iterations of the proposed greedy algorithm is upper-bounded by

min{KN,KQ}, i.e., when all the files are placed at each GN or when all the GN storages are used up.

Note that the actual number of iterations may be much smaller than this upper bound since the proposed

approach may terminate when the incremental cost reduction is insignificant, i.e., ∆Cθ < ǫ, where ǫ > 0

is a small positive parameter that controls the algorithm termination.

D. Complexity Reduction with File Caching Cost Estimation

Note that at each iteration of Algorithm 2, problem P3(a) needs to be solved for |IC | times. In

this subsection, the complexity of Algorithm 2 is further reduced via efficient estimation for the file

caching cost directly, without the need for solving the optimization problem P3(a) as an intermediate

step. Specifically, for caching file fn at GN k, the file caching cost is estimated by assuming that the

UAV will fly to the location above GN k, and hover at it until file fn is completely transmitted. Then,

the estimated total file caching cost is the sum of the UAV flying time and the transmission time. Due

to the broadcast nature of wireless communications, all the neighbors of GN k with distance no greater

than the UAV coverage, denoted as Nk , {k′, dkk′ ≤ DU}, can overhear the file fn. Hence, if we also

need to cache file fn at any neighbor of GN k in the subsequent iterations, no additional caching cost

will be incurred due to the overhearing.

For notational convenience, we denote the set of GNs that have been visited by the UAV as Kv ⊂

{1, ...,K}. We further denote the overhearing status of all the GNs and all the files by the KN binary

indication function Ok,n as

Ok,n =











1, GN k has overheard file fn

0, otherwise.

(35)



Algorithm 2 Greedy Algorithm for Problem P1

1: Input: {wk, k = 1, ...,K}, {Pf (n), n = 1, ..., N}, Q,DU .

2: Initialize: Selected GN-file pairs IS = ∅, candidate GN-file pairs IC = I , file retrieval cost

CG(IS) = ∞, file caching cost CU (IS) = 0 and ∆Cθ = ∞.

3: while ∆Cθ > ǫ and IC 6= ∅. do

4: for (k, n) ∈ IC do

5: ÎS = IS
⋃

{(k, n)}.

6: Calculate the file retrieval cost CG(ÎS) from (21).

7: Solve P3(a) for the file caching cost CU (ÎS).

8: Calculate the net cost reduction with (26).

9: end for

10: Denote the GN-file pair that leads to the highest cost reduction ∆Cθ as (k∗, n∗).

11: Update file retrieval cost CG(IS) = CG(IS
⋃

{(k∗, n∗)}).

12: Update file caching cost CU (IS) = CU (IS
⋃

{(k∗, n∗)}).

13: Update the selected GN-file pairs I = I
⋃

{(k∗, n∗)}.

14: Update the candidate set IC as in (28).

15: end while

16: Solve P3(a) with IS to obtain the UAV trajectory {q[m]} and file scheduling {Jm,n}.

17: Output: IS, {q[m]} and {Jm,n}

At the beginning of the proposed greedy approach, we have Kv = ∅ and Ok,n = 0,∀k, n. At each

iteration, we need to calculate the increase of file caching cost if we move the GN-file pair (k, n)

from the candidate GN-file pair set IC to the selected GN-file pair set IS , denoted as ∆CU (k, n) ,

CU (ÎS) − CU(IS), as part of the total cost reduction in (26), where ÎS , IS
⋃

{(k, n)}. If GN k

has overheard file fn, i.e., Ok,n = 1, this file placement will not incur additional caching cost, i.e.,

∆CU (k, n) = 0. Otherwise, we assume that the UAV needs to visit GN k. The minimum distance for

UAV to reach GN k from the existing visiting points is approximated as

d(k) = min{dkk′ , k′ ∈ Kv}, (36)

where dkk′ is the distance between GN k and GN k′. Hence, the total additional UAV time required for

the UAV to cache file fn at GN k is given by

∆CU (k, n) =
d(k)

Vmax
+ Y tUp , (37)

where Vmax is the maximum UAV speed, Y is the number of packets per file and tUp is the time required



for the UAV to transmit one packet.

Let the GN-file pair (k∗, n∗) be the best candidate in IC that leads to the highest net cost reduction

for problem P2. If Ok∗,n∗ = 0, the UAV needs to visit GN k∗ for caching file fn∗ , and hence we need to

update Kv as Kv = Kv
⋃

{k∗}. Furthermore, we also need to update the overhearing indication variables

for the neighbors of GN k∗, i.e., Ok,n = 1,∀k ∈ Nk∗ . On the other hand, if Ok∗,n∗ = 1, file fn∗ is

cached at GN k via overhearing, and hence Kv and {Ok,n} do not need to be updated.

Example 1. Consider a toy example shown in Fig. 4 with N = 3 and Q = 1. We assume that the set

of selected GN-file pairs is IS = {(k1, f1), (k2, f2), (k3, f3), (k4, f1)}. Among the 4 GNs with files, k1,

k2 and k3 receive the file by dedicated transmission from UAV, i.e., Kv = {k1, k2, k3}. Next, if we would

like to cache f3 at GN k6, it incurs no additional file caching cost since k6 can overhear f3 when the

UAV transmits it to k3. On the other hand, if we would like to cache f3 at GN k5, the additional file

caching cost is measured by the time for the UAV to visit k5 from the nearest hovering point, i.e., the

location of k1, together with the time for transmitting f3 dedicatedly to k5.
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Fig. 4: A toy example for illustrating the estimation of file caching cost.

In summary, the pseudo-code for solving problem P1 with estimated file caching cost is summarized in

Algorithm 3. Since Algorithm 3 does not need solving any optimization problem at the intermediate steps,

it can be much more efficiently implemented than Algorithm 2. Note that Algorithm 2 and Algorithm 3

are identical when θ = 1.

IV. NUMERICAL RESULTS

In this section, numerical results are provided to evaluate the performance of our proposed scheme

for UAV-enabled communication with proactive caching. We assume that the K GNs are randomly and



Algorithm 3 Greedy Algorithm for Problem P1 with estimated file caching cost

1: Input: {wk, k = 1, ...,K}, {Pf (n), n = 1, ..., N}, Q,DU .

2: Initialize: Selected GN-file pairs IS = ∅, candidate GN-file pairs IC = I , file retrieval cost

CG(IS) = ∞, UAV visiting GNs Kv, Overhearing variables {Ok,n = 0,∀k, n} and ∆Cθ = ∞.

3: while ∆Cθ > 0 and IC 6= ∅. do

4: for (k, n) ∈ IC do

5: Calculate the file retrieval cost CG(IS
⋃

{(k, n)}) from (21).

6: if Ok,n = 1 then

7: ∆CU (k, n) = 0.

8: else

9: ∆CU (k, n) =
d(k,n)
Vmax

+ Y tUp .

10: end if

11: Net cost reduction: ∆Cθ(k, n) = θ(CG(IS)− CG(IS
⋃

{(k, n)})) + (1− θ)∆CU(k, n).

12: end for

13: Denote the GN-file pair that leads to the highest cost reduction ∆Cθ as (k∗, n∗).

14: Update the selected GN-file pairs I = I
⋃

{(k∗, n∗)}.

15: Update the candidate GN-file pairs IC as in (28).

16: Update file retrieval cost CG(IS) = CG(IS
⋃

{(k∗, n∗)}).

17: if Ok∗,n∗ = 0 then

18: Update Kv = Kv
⋃

{k∗} and Ok,n = 1,∀k ∈ Nk∗ .

19: end if

20: end while

21: Solve P3(a) with IS to obtain the UAV trajectory {q[m]} and file scheduling {Jm,n}.

22: Output: IS, {q[m]} and {Jm,n}

uniformly distributed in a square area of side length equal to 3000 m and all the GNs have the same

interest on a set of N files. Unless otherwise stated, the numerical setup of the simulations is given in

Table I.

Fig. 5 shows the convergence behavior of the proposed Algorithm 2 and Algorithm 3 for the example

network in Fig. 3 with cost weighting factor θ = 0.6. It is observed that as the number of selected

GN-file pairs (or the number of iterations) increases, the average file retrieval cost decreases, while the



TABLE I: System setup for simulations.

Number of nodes K 100

Number of files N 30

File size 300 kb

GN cache storage Q 3

Packet size Rp 1000 bits

Number of coded packets required Y 300

Zipf distribution parameter κ 1

Channel bandwidth BU = BG 100 kHz

GN transmission power PG 20 dBm

GN transmission rate RG 10 kb/s

Ground channel fading characteristics Rayleigh

Ground channel path loss component 2.7

SNR gap Γ 7 dB

UAV altitude H 100 m

UAV to ground path loss component 2

UAV transmission power PU 10 dBm

UAV transmission rate RU 100 kb/s

Maximum UAV speed Vmax 30 m/s

UAV caching cost generally increases. The caching policy returned by Algorithm 2 requires caching

time 518.5 s and the resultant average file retrieval time is 54.92 s. On the other hand, the caching

policy returned by Algorithm 3 results in file caching time 485.7 s and file retrieval time 73.39 s. Note

that Algorithm 3 generally converges to smaller file caching cost but larger file retrieval cost compared

with Algorithm 2. This is as expected, since the estimated file caching cost used for selecting the best

GN-file pair in Algorithm 3 is usually larger than the actual file caching cost with optimized UAV

trajectory and file transmission scheduling with Algorithm 2. Hence, the file caching cost is somewhat

over-emphasized by Algorithm 3 in the weighted sum cost, compared to that in Algorithm 2 under the

same cost weighting factor. Furthermore, we compare the resultant file caching policy obtained using

Algorithm 2 and Algorithm 3, denoted by {I
(1)
k,n} and {I

(2)
k,n}, respectively. Algorithm 2 and Algorithm 3

terminate after selecting 300 and 292 GN-file pairs, respectively. The discrepancy between these two file

caching policies, defined as 1
NK

∑N
n=1

∑K
k=1 |I

(1)
k,n − I

(2)
k,n|, is found to be within 10%.

Fig. 6 depicts the trade-off between the file caching and retrieval costs for the proposed design by

using different values for the weighting factor θ. As expected, the file caching cost increases with θ while

the file retrieval cost decreases with θ. When θ = 1, the file caching cost is ignored and the proposed



0 50 100 150 200 250 300

Iterations

0

500

1000

1500

2000

2500

3000

tim
e 

(s
ec

)

File retreival time (Algorithm 1)
File caching time (Algorithm 1)
File retreival time (Algorithm 2)
File caching time (Algorithm 2)

Fig. 5: The convergence of the file caching and retrieval costs for the proposed greedy algorithms.
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greedy algorithm returns the minimum file retrieval time, as in problem P1(a), which is 46.9 s. The

corresponding UAV caching time is 558 s, which is consistent for Algorithm 2 and Algorithm 3. For

θ < 1, Algorithm 2 achieves better performance than Algorithm 3, thanks to the optimization of the

UAV trajectory and transmission scheduling at each iteration. Therefore, in the following, Algorithm 3 is

used for performance comparison with other benchmark schemes, since it generally gives a performance



lower bound for Algorithm 1 with reduced complexity.
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Fig. 7: File caching repetition versus file popularity.

In Fig. 7, the number of caching repetitions for each file, namely the number of caching GNs that have

cached the same file, is plotted together with the file popularity. The simulation results are obtained by

averaging over 100 random realizations of the GN locations. As expected, the more popular files are in

general cached by more GNs so that they can be retrieved with higher chance from local cache or shorter

distances for D2D transmission. Note that the locations of the caching GNs also affect the average file

retrieval distance. Hence, we observe that the number of caching repetitions does not necessarily strictly

decrease with the file popularity.

Last, to further illustrate the performance gain of the proposed joint design of caching policy, UAV

trajectory and transmission scheduling, the following two benchmark schemes are considered:

• Benchmark scheme 1: In this scheme, only the UAV trajectory is optimized, while the caching policy

is determined based on the random proportional caching strategy [28]. Specifically, each GN selects

its caching file by independently generating the random file indices with probability proportional to

the file popularity Pf (n). Then, with the file caching policy obtained, the proposed UAV trajectory

and transmission scheduling optimization in Section III-C are applied for the UAV to transmit all

the files to their designated caching GNs.

• Benchmark scheme 2: In this scheme, only the file caching policy is optimized and the UAV trajectory

follows the conventional TSP solution with the selected caching GNs. Specifically, the caching policy

is determined by minimizing the file retrieval cost via solving P1(a). Then, the UAV flying path is



designed by solving the conventional TSP with the caching GNs as waypoints. The transmission

scheduling design follows the proposed scheme in Section III-C2.

• Benchmark scheme 3: In this scheme, the file placement follows the optimal probabilistic caching

policy proposed in [33], and the UAV trajectory is optimized based on the proposed algorithm.

Specifically, each GN selects its caching file by independently generating the random file indices

with probabilities that are optimized to minimize the file retrieval cost. Then, with the file caching

policy obtained, the proposed UAV trajectory and transmission scheduling optimization are applied

are applied for the UAV to transmit all the files to their designated caching GNs.

The simulation results obtained by averaging over 100 random realizations of the GN locations are

shown in Fig. 8. It is firstly observed that each of the two benchmark schemes only result in one singleton

cost trade-off point in Fig. 8. This is expected since they either optimize the file caching cost or the file

retrieval cost only, thus no flexible trade-off between the two costs can be achieved, as in our proposed

joint design. It is also observed that benchmark scheme 1 with random proportional caching strategy

leads to comparable minimal file caching cost as the proposed joint design scheme with θ = 0.07, but it

results in higher file retrieval cost. Benchmark scheme 3 with the optimal probabilistic caching policy

achieves lower file retrieval cost than the random proportional caching strategy. However, it still under-

performs the proposed caching strategy given the same amount of file caching cost. This illustrates the

performance gain of the proposed caching policy over the random caching strategy. On the other hand,

the second benchmark scheme with optimized file caching policy by solving P1(a) achieves the same

minimum file retrieval cost as the proposed scheme, but it requires much higher file caching cost as

compared with the proposed scheme. This is mainly attributed to the performance gain brought by the

optimized UAV trajectory design.

V. CONCLUSION

In this paper, we have proposed a novel scheme to overcome the issue of limited UAV endurance for

UAV-enabled wireless communications, by utilizing the promising technique of proactive caching. With

the proposed scheme, the UAV is only required in the file caching phase while it can replenish its energy

during the file retrieval phase, thus resolving the endurance issue. We have investigated the fundamental

trade-off between the file caching cost and retrieval cost for the proposed scheme, by formulating and

solving the optimization problem to minimize the weighted sum of the two costs, via jointly designing

the file caching policy, UAV trajectory and UAV file transmission scheduling. In practical applications,

the weighting factor can be flexibly set to achieve a good balance between affordable UAV endurance
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Fig. 8: Performance comparison of the proposed scheme with benchmark schemes.

and D2D transmission delay/channel occupation according to the system requirement. The extension of

the proposed scheme to multiple UAVs and/or multiple file sets of interest will be left for future work.
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