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Abstract

In this paper, an Air-Ground Integrated VEhicular Network (AGIVEN) architecture is proposed,

where the aerial High Altitude Platforms (HAPs) proactively push contents to vehicles through large-

area broadcast while the ground roadside units (RSUs) provide high-rate unicast services on demand.

To efficiently manage the multi-dimensional heterogeneous resources, a service-oriented network slicing

approach is introduced, where the AGIVEN is virtually divided into multiple slices and each slice

supports a specific application with guaranteed quality of service (QoS). Specifically, the fundamental

problem of multi-resource provisioning in AGIVEN slicing is investigated, by taking into account

typical vehicular applications of location-based map and popularity-based content services. For the

location-based map service, the capability of HAP-vehicle proactive pushing is derived with respect to

the HAP broadcast rate and vehicle cache size, wherein a saddle point exists indicating the optimal

communication-cache resource trading. For the popular contents of common interests, the average on-

board content hit ratio is obtained, with HAPs pushing newly generated contents to keep on-board cache

fresh. Then, the minimal RSU transmission rate is derived to meet the average delay requirements

of each slice. The obtained analytical results reveal the service-dependent resource provisioning and
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trading relationships among RSU transmission rate, HAP broadcast rate, and vehicle cache size, which

provides guidelines for multi-resource network slicing in practice. Simulation results demonstrate that

the proposed AGIVEN network slicing approach matches the multi-resources across slices, whereby the

RSU transmission rate can be saved by 40% while maintaining the same QoS.

Index Terms

high altitude platform, mobile edge caching, broadcast-based proactive pushing, network slicing

I. INTRODUCTION

Air-ground integrated networks are expected to provide high capacity with seamless coverage

by exploiting the complementary advantages of dense terrestrial infrastructure and large-coverage

aerial stations [1]. Specifically, the High Altitude Platforms (HAPs), usually airships or balloons

operating in the stratosphere at an altitude of 17-22 km, can provide broadcast services to

effectively relieve the network load on ground [2]. Since the 1990s, HAPs have been proposed

to support the digital video/audio broadcast services, which has been proved to be feasible

and energy efficient compared with the terrestrial systems [3]. As data streaming now becomes

the dominant mobile service, HAP broadcast technologies can facilitate more applications by

exploiting the concentrated requests of popular contents [4].

Equipped with on-board communication modules, vehicles are envisioned as the future

fourth screen raising enriched mobile applications for navigation, entertainment, and road

safety enhancement [5], [6]. In this regard, additional network infrastructures are expected to

be further deployed, since the existing ground networks are insufficient to accommodate these

emerging data-hungry and delay-sensitive applications [7]–[9]. As vehicular mobile

applications are typically location-based and more predictable, the large-coverage HAP

broadcast is a promising solution to relieve the ground mobile traffic, by exploiting the storage

for on-board caching [10].

In this paper, we propose an air-ground integrated vehicular network (AGIVEN) architecture,

whereby the HAPs broadcast popular contents to vehicles a priori to requests while the ground

roadside units (RSUs) provide services on demand through unicast. With contents cached on

board, vehicles can enjoy low latency and enhanced RSU access rate with the reduced traffic load.

Despite the attractive advantages, the AGIVENs demonstrate multi-dimensional heterogeneity of

both resources and traffic demands, posing significant challenges to network management. To
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address this issue, the service-oriented network slicing method is applied. Based on the network

virtualization concept, network slices are constructed on the top of physical resources, where

each slice supports a specific service with the guaranteed quality of service (QoS). In this work,

three slices are constructed for the typical vehicular applications, i.e., high definition (HD) map

for navigation (MaNa) slice, file of common interest (FoCI) slice, and on-demand transmission

(ODT, such as interactive sessions, voice call and web viewing) slice. The MaNa slice has more

strict delay requirement compared with that of the FoCI slice, and both slices are push-enabled

considering the concentrated and predictable requests [11]. The ODT slice is rather elastic, which

is served only by RSUs with the remaining transmission resources.

Two fundamental problems of the AGIVENs are explored, (1) how to slice the multi-resources

to accommodate the three applications efficiently, and (2) how much on-ground traffic can be

self-served with HAP proactive content pushing. The main challenges exist in the service-

dependent heterogeneous resource trading. To address these issues, we analyze the service

capability of MaNa and FoCI slices with respect to HAP broadcast rate, vehicle cache size

and RSU transmission rate, taking into account vehicle mobility and content popularity features.

As the MaNa slice requires location-based services whereas the FoCI slice are served according

to content popularity distribution, the two slices are analyzed separately in different ways.

In the MaNa slice, vehicles cache maps of the successive blocks on the route through the HAP

broadcast, and will turn to the RSUs to download the remaining map segments of the current

block out of the cache. To study the offloading capability of HAPs, we derive the probability

that a vehicle has cached the complete map before entering the corresponding block, defined

as the accomplishment ratio. The accomplishment ratio is proved to be an increasing function

of HAP broadcast rate, where the increasing rate first increases and then decreases. The saddle

point of HAP broadcast rate shows an inversely linear form with respect to the vehicle cache

size, suggesting the optimal match of communication and storage resources in the MaNa slice.

In addition, the RSU service (i.e., remaining map downloading) process is analyzed based on

queueing models, whereby the delay-constrained RSU transmission rate requirement is derived

with a conservative approximation. Analytical results show that the required RSU rate is a convex

decreasing function of the accomplishment ratio, which demonstrates the three-dimensional (3D)

resource trading relationship among HAPs, RSUs, and vehicles.

In the FoCI slice, vehicles cache the most popular contents on board for potential future use.

As contents can generate and expire randomly, HAPs broadcast the newly generated files to
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vehicles to maintain the on-board content hit ratio. The number of valid files cached on-board is

time-varying, which is modeled as a Markovian birth-and-death process to analyze the steady-

state probability. Then, the average content hit ratio is derived, depending on the normalized

file update rate, i.e., the ratio of HAP-assisted vehicle cache update rate to the file expiration

rate. Furthermore, the delay-constrained RSU transmission rate of FoCI slice is also derived

with respect to HAP transmission rate and vehicle cache size, revealing the 3D resource trading

relationship in the FoCI slice. In specific, the performance of the FoCI can fall into two regions:

(1) communication-constrained region, where the low HAP broadcast rate degrades the vehicle

cache utilization, or (2) cache-constrained region, where the HAP broadcast contents cannot be

stored due to cache overflow.

The analytical results of MaNa and FoCI slices both reveal the necessity to optimize slice-

level resource matching in network slicing. Specifically, the resource matching relationships are

service-dependent. For instance, for the given HAP broadcast rate and vehicle cache size, the

optimal RSU transmission rate should increase with vehicle mobility in the MaNa slice, whereas

it varies with the content popularity distribution in the FoCI slice. Extensive simulations are

conducted to validate the theoretical analysis on slice-level resource provisioning, trading and

matching. In addition, numerical results demonstrate that the resources of RSUs required by the

MaNa and FoCI slices can be saved up to 40% with HAP-vehicle proactive content pushing and

caching, through inter-slice resource matching.

The main contributions of this paper are as follows:

1) An air-ground integrated vehicular network framework is proposed, where the HAPs exploit

the content information and offload ground traffic through broadcast;

2) Network slicing problem is investigated with the multi-dimensional heterogeneous resources

(i.e., HAP broadcast rate, RSU unicast rate, and vehicle cache size) and differentiated services

(location-based MaNa, and popularity-based FoCI);

3) The offloading capability of HAP pushing is derived in closed form for the MaNa and

FoCI slices, respectively; and the delay-constrained RSU, HAP, and vehicle resource trading

relationships are obtained in an analytical way;

4) The obtained results reveal the optimal resource matching and sharing among the MaNa,

FoCI, and ODT slices, which can be applied for cost-effective AGIVEN deployment and

management in practical systems.

The remaining of this paper is organized as follows. Section II reviews the state-of-the-art
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research on HAPs, pushing and caching, and network slicing. Section III introduces the system

model of AGIVENs, based on which the MaNa and FoCI slices are analyzed in Sections IV and

V, respectively. Section VI provides simulation results, and Section VII draws conclusions.

II. LITERATURE REVIEW

Located quasi-statically in the stratosphere, the HAP-based stations enjoy large coverage area,

high-probability Line of Sight (LoS) links, flexible and dynamic deployment. Thus, constructing

HAP-based airborne networks has been considered as a promising solution to enhance the ground

communication systems in both coverage and capacity. To exploit these advantages, extensive

studies have been conducted from aspects of the Air-to-Ground (A2G) channel modeling [12],

aerial network architecture design [13]–[16], aerial network deployment [17], and resource

management [18]–[20]. Chandrasekharan et al. have proposed to implement LTE-A in aerial

platforms to provision Internet access during temporary events and emergencies [13]. Dong et al.

have further investigated the cost-efficient HAP constellation deployment, aiming at maximizing

network capacity under the QoS constraints [14]. In addition, a multi-tier heterogeneous aerial

network consisting of HAPs and Low Altitude Platforms (LAPs) (like drones) has been designed

in [15], where the HAPs form the core of airborne and conduct functions like congestion control.

As an extension of [15], Alzenad et al. have leveraged all types of flying platforms including

HAP, Middle Altitude Platform (MAP), and LAPs to provide communication services through

free-space optics (FSO) based A2G links [16]. HAP resource management schemes have been

designed for interference cancellation [18], spectrum sharing [19], and power allocation [20].

However, these studies focused on the HAP unicast, while HAP broadcast has been mainly

applied to Digital Video/Audio Broadcast (DVB/DAB) [21]. Different from the existing works,

this paper proposes to apply HAP broadcast-based proactive pushing and vehicle caching to

support differentiated vehicular mobile applications, through multi-dimensional heterogeneous

network slicing and sharing.

Mobile edge caching exploits the storage resources of base stations or access points to

relieve the backhaul transmission, which can reduce end-to-end delay and overcome backhaul

constraints [22]. Furthermore, proactive content pushing exploits the storage resource of end

users to reduce duplicated wireless transmission, which provides an effective way to improve

network capacity, energy efficiency, and QoS [23]–[25]. In fact, mobile edge caching and

proactive content pushing both trade communication resources with storage resources, and the
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theoretical relationship has been analyzed for the ground cellular networks [26]–[28]. Although

insightful, the existing works still focus on single service, and do not consider to balance

communication and storage resource among different traffic demands. To address this issue,

the network slicing method can be implemented [29], [30]. The network slicing approaches

have been studied for ground radio access networks (RANs), which can be classified into four

levels (i.e., spectrum-level, infrastructure-level, network-level, and flow-level) [29]. A cellular

base station is sliced with resource reservation to maximize the total revenue while satisfying

the specific requirements of each slice [31]. Network slicing also enables RAN sharing among

multiple operators [32], [33], wherein flow control and resource allocation schemes have been

designed to guarantee fairness with QoS isolation. The very recent work [34] has considered

content caching in network slicing design, where the virtual resource allocation and in-network

caching have been jointly designed by solving an optimization problem, aiming at maximizing

the aggregate network utility. Compared with the existing works, this paper goes one step

further on network slicing, considering the multi-dimensional heterogeneous resource and

differentiated services requirements. In addition, the advanced proactive HAP pushing and

vehicle caching are employed to effectively reduce duplicated on-ground transmissions.

III. SYSTEM MODEL

A typical AGIVEN scenario is illustrated in Fig. 1, which consists of sparse aerial HAPs

and dense ground RSUs. Each HAP can form multiple cells through advanced beamforming

technologies, for efficient spatial spectrum reuse [35], [36]. The HAPs are considered to have

ideal uplink with ground stations and can update contents timely, yet the downlink broadcast rate

is constrained due to the intensive traffic demand and limited bandwidth. RSUs are uniformly

distributed on the ground, where each covers a block and provides unicast service upon vehicle

user requests. Three typical on-road mobile applications are supported, i.e., the delay-sensitive

MaNa, FoCI of medium delay requirement, and the ODT which prefers higher data rates.

To support the differentiated services, a software defined network (SDN) based hierarchical

controller is built to construct and manage virtual slices on-the-top of network resources [37].

Local controllers are placed at all HAPs and RSUs to conduct resource virtualization, whereby

the physical resources (e.g., channels and power) are abstracted as logical resources (e.g.,

transmission rate) based on the measured channel conditions. Meanwhile, the local controllers

monitor mobile traffic demand, and send reports to the central controller. The main role of central
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Fig. 1: Service-oriented network slicing in AGIVENs.

controller is two-fold, i.e., to determine the logical resources slicing through the southbound

interface, and to meet the QoS requirement of each slice through the northbound interface. The

slicing decisions are transmitted to local controllers for physical resource and user scheduling.

Then, the central controller can adjust the slicing decision based on the QoS performance of

each slice. In this work, we design the multi-resource slicing algorithm at the central controller,

considering the downlink performance within one HAP cell coverage. Specifically, the HAP

broadcast rate, RSU unicast rate, and vehicle cache size are jointly sliced, aiming at maximizing

the rate of ODT slice while satisfying the delay requirements of MaNa and FoCI slices.

A. MaNa Slice Modeling

The Manhattan mobility model is adopted for vehicle mobility [38], where each road block

generates a map file of the same size Lm. The HAP broadcasts the maps of all blocks within

coverage through radio resource sharing, while each vehicle only downloads the maps on demand.

Consider a vehicle driving on route [B1, B2, ...BJ , ...], where BJ denotes the J th block. Denote

by Cm the normalized vehicle cache size for the map, i.e., the maximal number of maps can be

cached on board. The map downloading process is illustrated in Fig. 2. Due to the constrained

cache size, the vehicle only maintains the maps of Cm proceeding blocks on route to avoid cache

overflow. Therefore, the vehicle starts to cache the map of BJ when it enters BJ−Cm , and stops

downloading under either of the two conditions: (1) the map of BJ has been downloaded into

cache completely, and (2) the vehicle enters BJ . Notice that there exists a valid HAP downloading
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Fig. 2: An illustration of MaNa service process: each vehicle can cache map files of two blocks.

window for each block, as shown in Fig. 2. Accordingly, the vehicle downloads the maps of

[BJ+1, BJ+2, ..., BJ+Cm ] from the HAP when driving on BJ .

According to Fig. 2, the available HAP window size to download the map of BJ is

T+
J =

J−1∑
j=max{1,J−Cm}

tj, (1)

where tj is the dwelling time on BJ . Then, the remaining map downloaded from the RSU on

BJ is given by

L−J = max{0, Lm −RHMT
+
J }, (2)

where RHM is HAP broadcast rate. Note that L−J is a random variable, since the window size

T+
J has two-dimensional randomness of block number J and dwelling time tj .

Suppose vehicles enter the road following Poisson process of parameter λv, reflecting the inter-

vehicle headway and speed [39]. The dwelling time on one block can be modeled as Erlang

distribution of parameter K and µ, i.e., E(K,µv). Accordingly, the mean and variance of block-

level dwelling time are K/µv and K/µv
2, respectively [40], [41]. By adjusting parameters λv,

K and µ, the Erlang model of dwelling time can simulate specific scenarios such as rural rush

hours (by increasing λv and K, or reducing µ). As vehicles enter a block following Poisson

process and request to download the remaining map files out of cache, the service process of the

corresponding RSU can be modeled as an M/G/1 queue. The service rate is RRM/L
−
J , where

RRM is the RSU transmission rate for the MaNa slice. The average delay of map downloading

(consisting of both queueing and transmission) should be guaranteed no larger than a threshold

for driving safety and efficiency. To this end, sufficient resource should be provisioned, and

detailed analysis will be presented in Section IV.
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B. FoCI Slice Service and Modeling

In the FoCI slice, vehicles cache the most popular contents. When a vehicle requests a content,

it will be self-served if the content is on board, and otherwise, send a request to the associated

RSU for service. Define the on-board content hit ratio as the probability that the vehicle can

be self-served, which is a key performance metric of the FoCI slice. In practical systems, the

cached contents may expire as new contents generate. HAP-assisted cache update is conducted,

where the HAP broadcasts newly generated popular contents at rate RHP. Suppose the life time

of a popular file follows the exponential distribution of mean 1/µp [28]. Denote by Lp the file

length, and Cp the cache size normalized by file length. The number of valid files in vehicle

cache varies with random file expiration and update. The process is modeled as a Markovian

chain as shown in Fig. 3. The state denotes the number of valid files in cache, and the time to

update a file is considered to follow exponential distribution [28]. The average hit ratio can be

obtained based on the steady-state probability analysis of Markovian chain.

Assume that FoCI requests arrive following Poisson process of rate λp, and are served in

a First-in-First-Out (FIFO) manner with a constant rate RRP. The service process of FoCI at

the RSU can be modeled as an M/D/1 queue with arrival rate of λp(1 − Phit), where Phit is

the on-board hit ratio. Accordingly, the on-board hit ratio reflects the offloading capability of

HAP-vehicle caching, and the delay performance of FoCI will be analyzed in Section V.

C. Resource Slicing and Sharing Modeling

As the utility of ODT slice increases with the transmission rate, the AGIVEN slicing problem

can be formulated as:
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max{
Cm, RHM, RRM,

CP, RHP, RRP

} RR −RRM −RRP (3a)

s.t. W̄M ≤ T̂m, (3b)

(P1) W̄P ≤ T̂p, (3c)

LmCm + LpCp ≤ Lv, (3d)

NblockRHM +RHP ≤ RH, (3e)

where RR and RH are the abstracted transmission rates of an RSU and HAP cell, respectively,

W̄M and W̄P are the average delays of MaNa and FoCI slices, respectively, T̂m and T̂p are

the required average delays of the MaNa and FoCI slices, respectively, Lv is the vehicle cache

size in bit, and Nblock denotes the number of blocks covered by the HAP cell. The objective

function of (P1) is to maximize the RSU transmission rate available to the ODT slice; the

constraints (3b) and (3c) guarantee the average delay performance of the MaNa and FoCI slices,

respectively; the constraints (3d) and (3e) are due to the constrained vehicle cache size and HAP

transmission rate, respectively. Note that the average delay of the MaNa slice W̄M depends on

the allocated multi-resources of Cm, RHM, and RRM, while the average delay of the FoCI slice

W̄P depends on Cp, RHP, and RRP. The challenges of problem (P1) are two-fold: (1) slice-level

delay-constrained multi-resource provisioning, i.e., constraints (3b) and (3c); and (2) cross-slice

multi-resource sharing and balancing to maximize the objective function. We focus on the first

issue and conduct in-depth analysis, as presented in Sections IV and V. Based on the analytical

results, the second problem can be addressed, and we show numerical results as illustrations.

IV. MANA SLICE ANALYSIS AND PROVISIONING

This section investigates the performance of MaNa slice with respect to multi-resource

provisioning. Specifically, we analyze the accomplishment ratio, i.e., the probability that a

vehicle can complete map downloading within the HAP downloading window. In addition, the

average delay at RSUs is obtained by applying the M/G/1 model analysis. Furthermore, the

upper bounds of RSU delay are also provided through M/D/1 model approximation, revealing

the 3D resource trading among HAP broadcast, RSU unicast, and vehicle cache size.
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A. Accomplishment Ratio of HAP-Vehicle Map Pushing

The accomplishment ratio of block BJ is given by

Pacc,J = P
{
T+
J RHM ≥ Lm|J

}
, (4)

where T+
J is the HAP window size of BJ given by Eq. (1). As tj follows Erlang distribution

of parameter (K,µv), T+
J also follows Erlang distribution of parameter (K min{Cm, J − 1}, µv)

according to Eq. (1). Thus, T+
1 = 0, and the probability distribution function of T+

J for J ≥ 2

is given by

PT+
J

(t) =
µv

KJ ′tKJ
′−1e−µvt

(K(J ′ − 1)− 1)!
, (5)

where J ′ = min{J − 1, Cm}. The accomplishment ratio of BJ is the tail distribution of T+
J :

Pacc,J = 1− γ(KJ ′, x)

(KJ ′ − 1)!
, (6)

where x , µvLm

RHM
, and γ(·, ·) is the lower incomplete gamma function defined as

γ(s, x) =

∫ x

0

ts−1e−tdt. (7)

The physical meaning of x/K is the average normalized HAP window size (measured in

blocks) needed to download the complete map in the cache. As γ(s, x) increases with x, the

accomplishment ratio increases with the HAP rate RHM, and decreases with vehicle speed µv.

As vehicle moves, the long-term average accomplishment ratio is given by

Pacc =

∞∑
J=1

GJPacc,J =

Cm∑
J=2

GJ

(
1− γ(K(J − 1), x)

(K(J − 1)− 1)!

)
+

∞∑
J=Cm+1

GJ

(
1− γ(KCm, x)

(KCm − 1)!

)
,

(8)

where GJ is the probability that a vehicle is passing the J-th block. GJ depends on the macro-

scope vehicle mobility, and we do not constrain the form GJ for general analysis. For instance,

GJ = (1− ψ)ψJ−1 models the case that the route length follows geometric distribution, where

a vehicle parks on a block with probability 1− ψ and continues driving with probability ψ.
The accomplishment ratio reflects the offloading capability of HAP-vehicle pushing, and the

influence of RHM and Cm should be analyzed to achieve efficient resource provisioning. However,
the analysis is intractable due to the complex addictive form of Eq. (8). To reveal insights, the
accomplishment ratio is analyzed approximately, based on the upper and lower bounds:

P̌acc =

( ∞∑
J=Cm+1

GJ

)(
1− γ(KCm, x)

(KCm − 1)!

)
, (9a)

P̂acc = 1− γ(KCm, x)

(KCm − 1)!
, (9b)
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where Eq. (9a) comes from the second term of Eq. (8), and Eq. (9b) holds since γ(s,x)
(s−1)!

decreases

with s. The differences between P̌acc and P̂acc is
(∑Cm

J=1 GJ

)(
1− γ(KCm,x)

(KCm−1)!

)
. Therefore, the

upper and lower bounds can be quite tight if the route length is relatively large compared with

cache size Cm, i.e.,
∑Cm

J=1GJ → 0. Based on (9), the relationships between accomplishment

ratio, RHM and Cm is demonstrated as Proposition 1.

Propositon 1. The accomplishment ratio of HAP map pushing increases with the HAP

broadcast rate. The increasing rate1 firstly increases but then decreases, and the saddle point

is given by R∗HM = 1
KCm+2

Lmµv if
∑Cm

J=1 GJ → 0.

Proof. Please refer to Appendix A.

According to Proposition 1, the accomplishment ratio increases super-linearly with the HAP

broadcast rate if RHM < R∗HM, and increases sub-linearly if RHM > R∗HM. This result indicates

that the HAP broadcast should be kept in a region around R∗HM considering resource efficiency.

Note that RHM = R∗HM is equivalent to µvLm

KRHM
= Cm + 2

K
. The left side is the expected number

of blocks passed to complete map downloading from the HAP, while Cm is the valid HAP

window size measured in blocks, shown as Fig. 2. The saddle point indicates that the cache

size should match with the downloading speed. When RHM < R∗HM, the vehicle cannot fill

the cache within the downloading window, degrading the utilization of vehicle cache. In this

case, increasing transmission rate can improve the accomplishment ratio significantly. When

RHM > R∗HM, the vehicle can complete map downloading quickly, while further increasing RHM

no longer improves accomplishment ratio.

Remark 1. The HAP broadcast rate should be set around saddle point R∗HM, which is an

inversely linear function of the vehicle cache size.

The important insight is that the cache size can trade communication resources in the linear

rational manner. In practical systems, KCm can be much larger than 2. Therefore, the HAP

broadcast rate can be considered to decrease linearly with the inverse of cache size Cm.

Furthermore, the vehicle mobility also influences the accomplishment rate. As Pacc increases

with K and decreases with µv, the accomplishment ratio decreases with the vehicle speed

K/λ. Increasing K or decreasing λv is equivalent to increasing the window size of HAP map

downloading, and thus improves the accomplishment ratio. Specifically, the average duration of

1The increasing rate is the derivative of the accomplishment ratio with respect to the HAP broadcast rate.
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window size can be approximated as KCm/λv. As the transmission rate can be also traded with

cache size, low vehicle mobility can help to reduce the resource consumption of MaNa slice.

Remark 2. The HAP broadcast rate or vehicle cache size provisioned for the MaNa slice can

be reduced during traffic jams or in the busy downtown regions.

B. RSU Service Delay Analysis of MaNa slice

The mean and variance service time are needed when applying the M/G/1 model to analyze

the average waiting time. The average service time of the RSU to serve one vehicle with the

remaining map is given by

h̄ =
1

RRH

∞∑
J=1

GJE[L−J ]. (10)

For the given J , if J ≥ Cm + 1, the average remaining map size of Eq. (2) is

E[L−J |J ≥ Cm + 1] = 0 · Pacc +

Lm
RHM∫
0

(Lm − tRHM)PT+
J

(t)dt, (11)

where the first term corresponds the vehicles which have cached the whole map before entering
BJ . Substituting Eq. (5) into Eq. (11), we obtain

E[L−J |J ≥ Cm + 1]

= Lm(1− Pacc,J)−RHM

Lm
RHM∫
0

t · µv
KCmtKCm−1

(KCm − 1)!
e−µvtdt,

= Lm(1− Pacc,J)− RHM

µv

Lm
RHM∫
0

µv
KCm+1tKCm

(KCm − 1)!
e−µvtdt,

= Lm
γ(KCm, x)

(KCm − 1)!
− RHM

µv

γ(KCm + 1, x)

(KCm − 1)!
(12a)

= Lm

[
γ(KCm, x)

(KCm − 1)!
− KCmγ(KCm, x) + xKCme−x

x(KCm − 1)!

]
(12b)

= Lm

[
(1− KCm

x
)
γ(KCm, x)

(KCm − 1)!
+
xKCm−1e−x

(KCm − 1)!

]
,

where (12a) is according to the definition of Eq. (7), and (12b) is based on the property of lower

incomplete gamma function. Similarly,

E[L−J |J ≤ Cm] = Lm

[
(1− K(J − 1)

x
)
γ(K(J − 1), x)

(K(J − 1)− 1)!

+
xK(J−1)−1e−x

(K(J − 1)− 1)!

]
.

(13)
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Combining Eqs. (12) and (13), the average service time of the RSUs is obtained:

h̄ =
1

RRM

∞∑
J=1

GJE[L−J ] =
Lm

RRM

∞∑
J=1

{
G1 +

J=Cm∑
J=2

GJ [

(
1− K(J − 1)

x

)
γ(K(J − 1), x)

(K(J − 1)− 1)!
+

xK(J−1)−1e−x

(K(J − 1)− 1)!

]
+( ∞∑

J=Cm+1

GJ

)[(
1− KCm

x

)
γ(KCm, x)

(KCm − 1)!
+
xKCm−1e−x

(KCm − 1)!

]} (14)

Apparently, the average service time increases linearly with the map size Lm and the inverse of

RSU transmission rate RRM. Furthermore, the average service time is proved to depend on the

HAP broadcast resource and vehicle mobility, demonstrated as Proposition 2.

Proposition 2. The average service rate of the RSU for remaining map downloading increases

with the HAP broadcast rate RHM and decreases with vehicle speed 1/µv.

Proof. Please refer to Appendix B.

The variance of service time is given by

h̄2 − (h̄)2 =
1

RRM
2

∞∑
j=1

E[L−J
2
]− (E[L−J ])2, (15)

where h̄2 is the mean square of service time, and E[L−J
2
] can be analyzed in the same way as

E[L−J ]. For the given J ≥ Cm + 1,

E[L−J
2
] =

Lm
RHM∫
0

(Lm − tRHM)2 PT+
J

(t)dt

= Lm
2

[
γ(KCm − 1)

(KCm − 1)!
− 2

γ(KCm + 1, x)

x(KCm − 1)!
+
γ(KCm + 2, x)

x2(KCm − 1)!

] (16)

For the given J ≤ Cm, E[L−J
2
] can be obtained by replacing Cm with J − 1 in (16). Then, the

close form of (15) can be obtained.

According to the Pollaczek–Khinchine formula which states the relationship between the queue

length and service time distribution Laplace transform for an M/G/1 queue [42], the average

waiting time of an M/G/1 system is given by

W̄M = h̄+
λvh̄2

2(1− λvh̄)
, (17)

where the first term denotes the service time and the second term is the queueing time. By

substituting h̄ and h̄2, the total delay of map downloading at the RSU can be obtained.
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C. Delay-Constrained Resource Trading of MaNa Slice

The M/G/1 model based analysis can provide the numerical results for the given system

parameters. Furthermore, we introduce M/D/1 based approximated analysis to derive the upper

bound of the average map downloading time. The arrival rate of the M/D/1 queue is set as

λ′v = λv(1 − Pacc), i.e., the RSUs only serve vehicles without the complete map in cache.

The service time is set as ĥ = Lm

RRM
. As the service time in the M/G/1 queue is no larger

than ĥ, the M/D/1 model corresponds to the case where all vehicles without the complete map

need to download the whole map file from the RSU. Therefore, the M/D/1 based analysis is a

conservative approximation of the reality.

According to the M/D/1 queueing model, the map downloading delay is given by

ŴM = ĥ+
λ′vĥ

2

2
(

1− λ′vĥ
) =

Lm

RRM

+
λ′v

(
Lm

RRM

)2

2
(

1− Lm

RRM
λ′v

) . (18)

Then, the constraint (3c) of the problem (P1) can be strengthened as ŴM ≤ T̂m. Furthermore, the

RSU transmission rate requirement RRM can be derived in closed form, given by Proposition 3.

Proposition 3. The average map downloading delay at RSUs can be guaranteed if the RSU

transmission rate RRM satisfies:

RRM ≥
λ′vT̂m

1 + λ′vT̂m −
√

(λ′vT̂m)2 + 1

Lm

T̂m

, (19)

where λ′v = λv(1− Pacc) denoting the arrival rate of vehicles without complete map in cache.

Proof. Please refer to Appendix C.

Proposition 3 reveals the resource provisioning for the MaNa slice. For the given HAP

broadcast rate and vehicle cache size, the accomplishment ratio Pacc can be obtained with Eqs. (6)

and (8). Substituting the result into Eq. (19), we obtain how much RSU transmission rate is

required. More importantly, Proposition 3 also explains the 3D resource trading relationship

among the RSU transmission rate, HAP broadcast rate, and vehicle cache size. By setting

Pacc = 0, Eq. (19) provides the RSU transmission rate demand for the MaNa slice without

HAP proactive pushing or vehicle caching. As the rate RRM decreases with Pacc, Eq. (19) in

fact reflects how much RSU transmission rate can be saved with respect to HAP broadcast rate

and vehicle cache size.
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Proposition 4. The RSU transmission rate requirement of the MaNa slice is a convex

increasing function of (1 − Pacc)λvT̂m, i.e., the normalized remaining traffic load at the RSU

with HAP-vehicle proactive pushing.

Proof. Please refer to Appendix D.

Although the RSU transmission rate can be reduced by increasing accomplishment ratio,

the marginal gain will diminish with Pacc due to the convexity. Consider an extreme case of

Pacc → 1, where almost all vehicles can download the complete map from the HAP and the RSU

is extremely lightly loaded. The queueing delay approaches to zero, and vehicle only experience

the service delay. Yet, the RSUs still need to provision resources with RRM > Lm

T̂m
. Therefore,

the multi-resources should be matched appropriately at the MaNa slice for efficient utilization.

V. FOCI SLICE ANALYSIS AND PROVISIONING

This section focuses on the resource provisioning of the FoCI slice. Specifically, the on-board

content hit ratio is analyzed to investigate the effectiveness of HAP-vehicle pushing in the FoCI

slice. In addition, the RSU transmission rate saving is obtained for the given delay requirement.

A. On-board Hit Ratio Analysis

In the FoCI slice, the status of vehicle cache is illustrated in Fig. 3. Denote by i the number

of valid files stored on-board, where i = 0, 1, · · · , Cp. State-i transits to state-(i + 1) when the

vehicle downloads a new file into the cache, and transits to state-(i−1) when a file expires. The

system steady-state probability [r0, r1, · · · , ri, · · · , rCp ] can be derived based on the condition:
RHP

Lp

ri = µpri+1, (20)

for i = 0, 1, ..., Cp − 1. Denote by ρ = µpLp

RHP
the inverse of normalized file update rate. ρ < 1

indicates constrained vehicle cache resource, corresponding to the case that the file update rate

is larger than the file expire rate. In contrast, ρ > 1 indicates that the HAP broadcast rate is

constrained, which may degrade the cache utilization. ρ = 1 achieves rate balance. Therefore,

the normalized file update rate reflects the resource matching status. By substituting Eq. (20)

into
∑Cp

i=0 = 1, the steady-state probability can be obtained

ri =


1−ρ

1−ρCP+1ρ
Cp−i, if ρ < 1,

1−ρ−1

1−ρ−CP−1

(
1
ρ

)i
, if ρ > 1,

1
Cp+1

, if ρ = 1,

(21)
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where ri has the same form in cases of ρ > 1 and ρ < 1. Thus, the content hit ratio is:

Phit =

Cp∑
i=1

ri

(
i∑

f=1

pf

)
=

Cp∑
i=1

pf

Cp∑
i=f

ri

=


∑Cp

f=1 pf
1−ρCP−f+1

1−ρCP+1 , if ρ 6= 1,∑Cp

f=1 pf
Cp−f+1

Cp+1
, if ρ = 1.

(22)

According to (22), the content hit ratio mainly depends on the normalized file update rate, and

the influences of system parameters are summarized in Propositions 5 and 6.

Proposition 5. The on-board content hit ratio increases with the vehicle cache size for the

given normalized file update rate.

Proof. Notice that

1− ρa+1

1− ρA+1
− 1− ρa

1− ρA
(1− ρ)(ρa − ρA)

(1− ρA)(1− ρa)
≥ 0, for ρ 6= 1, (23)

and
Cp − f + 1

Cp + 1
= 1− f

Cp + 1
, (24)

increases with Cp. Therefore, Phit increases with Cp for the given ρ.

Proposition 6. The on-board content hit ratio increases with the normalized file update rate.

Proof. Please refer to Appendix E.

Propositions 5 and 6 indicate how to increase the on-board content hit ratio through HAP

proactive pushing in the FoCI slice. Specifically, the vehicle cache size and the normalized

file update rate are the two critical parameters which directly determine the HAP offloading

capability. Accordingly, the insights are two-fold: (1) sufficient vehicle cache resource should

be provisioned to guarantee the on-board content hit ratio, for the given HAP file update rate;

and (2) the HAP broadcast rate should adapt to the file life time, so as to keep the files cached

on-board fresh.

B. RSU Delay Analysis of FoCI Slice

Denote by λp the arrival rate of the FoCI slice, among which Phitλp requests can be self-

served on board. The remaining λ′p = (1− Phit)λp requests are served by the RSU, which can
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TABLE I: Simulation parameters

Parameter Value Parameter Value

K 5 µv 0.2 /s

Lm 5 Gb Lp 1 Gb

λv 1.2 /s λp 4 /s

F 1000 ν 0.56

Lv 200 Gbps RR 10 Gpbs

be modeled as an M/D/1 queueing system at service rate of RRP/Lp. The average delay of FoCI

is given by

W̄P =
Lp

RRP

+
λ′p

(
Lp

RRP

)2

2
(

1− λ′p
Lp

RRP

) . (25)

The item λ′pLp

RRP
is the normalized RSU load, which should be smaller than 1 for system stability.

Proposition 7. The delay-constrained RSU transmission rate in the FoCI slice is given by

RRP ≥
Lpλ

′
p

T̂pλ′p + 1−
√

(T̂pλ′p)2 + 1
, (26)

where T̂p is the required delay, and λ′p = λp(1−Phit) is the downloading request arrival rate at

each RSU.

Proof. Proposition 7 can be proved in a similar way of Proposition 3.

Remark 3. Proposition 7 demonstrates the 3D resource trading relationship in the FoCI slice.

According to Eq. (26), RRP can be proved to decrease with Phit. As the hit ratio Phit has been

proved to increase with Cp and RHP, the required minimal RSU transmission rate decreases

with vehicle cache size and HAP broadcast rate. Substituting Phit = 0 (Cp = 0, RHP = 0) into

Eq. (26), we obtain the minimal RSU transmission rate without HAP-vehicle proactive pushing.

As Cp and RHP increase, the variation of RRP in Eq. (26) indicates how much RSU transmission

rate can be traded with HAP broadcast and vehicle cache resources.

VI. SIMULATION AND NUMERICAL RESULTS

This section provides numerical results to validate the analytical results of the MaNa slice and

FoCI slice, from the aspects of HAP offloading capability, multi-resource trading, and important
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Fig. 4: MaNa performance improvement with HAP-vehicle proactive pushing and caching, (a)

accomplishment ratio of HAP-vehicle map pushing, (b) average delay at RSU, Cm denotes the

vehicle cache size normalized by the map file size.

system parameters. In addition, the network performance is illustrated under different slicing

schemes, demonstrating multi-resource matching across slices in dynamic resource sharing.

The simulated scenario consists of one HAP cell covering 10 four-lane blocks, where each

block is of length 1 km and generates an HD map of size 5 Gb. The large scale vehicle mobility

is considered to be memoryless. The vehicles are considered to arrive destination with probability

ψ, and continue to next block with probability 1 − ψ in each block. The dwelling time of a

vehicle on each block follows Erlang distribution with K = 5 and µv = 0.2 /s, corresponding to

an average speed of 40 km/h. Zipf distribution is adopted for the content popularity distribution

in the FoCI slice [43]:

pf =
1/f ν∑F
u=1 1/uν

, (27)

where ν ≥ 0 is a constant parameter indicating the skewness of popularity distribution. Parameter

ν can be set as 0.56 to depict the video streaming services [43], which can be even higher for

the driving-related mobile applications considering the similarity of location-related requests.

Important parameters are listed in Table I [44].

A. MaNa slice

Figure 4 shows the offloading capability of HAP-vehicle proactive pushing and caching

in the MaNa slice. Fig. 4 (a) demonstrates the accomplishment ratio of HAP-vehicle map
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(a) (b) (c)

Fig. 5: QoS-constrained transmission and storage resource provisioning in the MaNa slice,

(a) accomplishment ratio of HAP-vehicle map pushing, (b) average delay at RSUs, (c) RSU

transmission rate requirement.

downloading, i.e., how many vehicles can finish map downloading in the HAP download window.

The simulation results reveal that the accomplishment ratio increases with HAP broadcast rate,

where the increasing rate firstly increases but then decreases. In addition, almost all vehicles

can complete map downloading before entering the corresponding block through the HAP map

pushing, if the resources of broadcast and cache are sufficiently provisioned. The results also

indicate the trading relationship between HAP communication and vehicle storage resources.

For example, to guarantee 40% accomplishment ratio, the HAP broadcast rate is required to

be 20 Mbps when each vehicle can cache 10 maps, which will be doubled when each vehicle

can cache 5 maps. Fig. 4 (b) shows the average delay at RSUs, where the RSU transmission

rate is set as 10 Gpbs. Similarly, the average map downloading delay is shown to decrease with

HAP broadcast rate and vehicle cache size. When the HAP broadcast rate and vehicle cache

size are sufficiently high, the traffic load of RSUs approximates zero, and the file downloading

delay is shown to level off and asymptotically go to zero. The resource trading relationship can

also be found in Fig. 4 (b), where the required HAP broadcast rate will significantly increase

as the cache size decreases, for the given delay requirement. The results of Figs. 4 (a) and (b)

are consistent. As the accomplishment ratio increases, the traffic load of RSUs decreases, which

can help to reduce the service delay.

Figure 5 provides more details on the communication and cache resource trading from different

perspectives. Fig. 5 (a) shows the accomplishment ratio of HAP-assisted map downloading, and
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Fig. 6: Influence of vehicle mobility on MaNa slice provisioning, with the low-mobility speed

of 20 km/h and high-mobility speed of 40 km/h.

Fig. 5 (b) demonstrates the average delay at RSUs, with respect to HAP broadcast rate and

vehicle cache size. Fig. 5 (c) shows the RSU transmission rate requirement of the MaNa slice,

which is normalized by the rate without HAP-vehicle pushing or caching. The results of Fig. 5

reveal three insights. Firstly, the QoS performance of HAP proactive pushing can be improved by

increasing either HAP broadcast rate or vehicle cache size, yet the effectivenesses are different.

Secondly, the HAP communication resource and vehicle cache resource should be matched to

effectively enhance the offloading capability of HAPs. For example, few vehicles can accomplish

map downloading from HAPs even at high HAP broadcast rate (e.g., 50 Mbps), if the cache size

is insufficient (e.g., Cm=3). The saddle-point effect also exists in Fig. 5, indicating the optimal

HAP and vehicle resource provisioning for the MaNa slice. Thirdly, the offloading capability of

HAP-vehicle pushing cannot be further improved when the broadcast rate and cache size are

sufficiently large, depicted as the saturate region. In this case, the resources can be reallocated

to other slices to improve the overall network performance, through dynamic network slicing

and sharing.

Figure 6 further shows the influence of vehicle mobility on the MaNa slice performance. The

average speed at high mobility is 40 km/h, where the parameters of Erlang dwelling time are set

as K = 5 and µv = 0.2 /s. In comparison, the average speed at low mobility is 20 km/h, where

the Erlang parameters are set as K = 10 and µv = 0.2 /s instead. The results reveal that high

mobility of vehicles calls for additional resource provisioned in the MaNa slice. The reason

is that the available HAP window for a target map is shortened on average due to the high

vehicle mobility, which degrades the accomplishment ratio of HAP-vehicle map pushing. As
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Fig. 7: On-board proactive content caching efficiency of the FoCI slice, (a) vehicle content hit

ratio, (b) vehicle cache utilization ratio.

compensation, vehicles can start downloading the target map ahead of schedule, to enhance the

accomplishment ratio. However, contents may overflow on-board, and real-time content caching

and update schemes need to be designed to address this conflict. A more important insight of

Fig. 6 is that the resource provisioning of MaNa slice should be dynamically adjusted to vehicle

mobility. For example, more caching and communication resources of the MaNa slice can be

relieved and thus reused by other slices during rush hours or traffic jams.

B. FoCI slice

Figure 7 (a) shows the performance of HAP proactive pushing in the FoCI slice, with respect to

the HAP broadcast rate and vehicle cache size. Specifically, the content hit ratio firstly increases

with the content hit ratio super-linearly, but then levels off around some constant. The turning

point, around 1.1–1.2 Mbps, can be defined as saturate rate and set as the upper bound of

broadcast rate for the FoCI slice. Accordingly, the resource provisioning can be divided into two

regions, i.e., communication constrained and cache constrained, as marked in Fig. 7 (a). In the

communication constrained region, the hit ratio can be significantly improved by increasing the

HAP broadcast rate. On the contrary, in the cache constrained region, the content hit ratio can

only be improved by adding more caching resources. Therefore, the communication and caching

resources also need to be matched for the FoCI slice, considering the saturate rate.

The results of Fig. 7 (a) can be explained by Fig. 7 (b) from the perspective of cache utilization,

where the cache utilization rate denotes the ratio of valid contents to cache size. Specifically,
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Fig. 9: Influence of file life time, µp file expire rate.

the cache utilization rate increases with broadcast rate in the communication-constrained region,

but levels off at around 1 in the cache-constrained region. When the broadcast rate is low, the

cached contents cannot be timely updated, resulting in invalid cached contents and low cache

utilization. When the broadcast rate achieves the saturate rate, the broadcast rate is sufficient to

update content timely, whereby the cache can be fully utilized but the HAP broadcast resource

may be underutilized. Therefore, the saturate rate reflects the optimal match of HAP broadcast

rate and vehicle cache size for the FoCI slice resource provisioning.

The performance of proactive HAP pushing can be significantly influenced by the content

request features. Fig. 8 demonstrates the influence of content popularity distribution on the

effectiveness of proactive HAP pushing. The observations are as follows. Firstly, the HAP

proactive pushing is more effective when the content requests are more concentrated (e.g.,

skewness factor ν = 1). This is because the cached content can gain higher hit ratio with

larger ν, and thus improve caching efficiency. Secondly, the content hit ratio gain of cache size
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Fig. 10: Optimal multi-resource slicing, (a) total RSU transmission rate requirement of MaNa

and FoCI slices, (b) optimal vehicle cache resource allocation to the MaNa slice, (c) optimal

HAP transmission rate allocation to the MaNa slice.

can fade with ν, since the hit ratio of less popular contents is lower if the requests concentrate

on the most popular ones. Thirdly, saturate rate is not influenced by the skewness factor ν, but

varies with the file life time as shown in Fig. 9. Specifically, the saturate rate increases with the

file expire rate µp, indicating that the vehicle cache needs to be updated more frequently if the

file life time decreases. The result of Fig. 9 is consistent with the analytical results, where the

normalized file update rate directly determines the content hit ratio.

C. Network slicing and sharing

The simulation results of MaNa and FoCI slices both demonstrate the necessity of matching

broadcast rate and cache size, based on network parameters and traffic features. Therefore, the

resource provisioning for different slices needs to be jointly optimized to fully utilize the multi-

dimensional heterogeneous resources. We study how to balance the multi-resource provisioning

when MaNa and FoCI slices coexist.

The performance of different network slicing schemes are compared, as shown in Fig. 10.

The HAP broadcast rate and vehicle cache size are jointly sliced, the vehicle cache size is

200 Gb, the required downloading delays are 1 s and 5 s for the map and popular contents,

respectively. The optimal slicing is obtained through exhaustive search, the fair-ratio scheme

allocates HAP broadcast rate and vehicle cache size depending on the traffic loads of MaNa and
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FoCI slices, the MaNa-only scheme only enables proactive caching for the MaNa slice, and the

FoCI-only scheme only enables proactive caching for FoCI slice. Fig. 10 (a) shows the required

RSU transmission rate, which is normalized by the one without HAP proactive pushing or

vehicle caching. According to Fig. 10 (a), the transmission rate demand of RSUs can be reduced

by more 40%, with HAP-vehicle proactive pushing and caching. However, the performance is

significantly influenced by the slicing schemes. Specifically, the optimal matching scheme can

bring around 37% RSU transmission rate saving compared with the FoCI-only slicing scheme

with HAP broadcast rate of 200 Mbps, and 10% compared with the MaNa-only or fair-ratio

schemes.

The optimal slicing ratios of vehicle cache and HAP broadcast rate are demonstrated in

Figs. 10 (b) and (c), respectively. The optimal slicing scheme can be divided into three cases,

regarding the HAP broadcast rate. When the broadcast rate is lower than 50 Mbps, the optimal

scheme allocates all caching and HAP broadcast resources to the FoCI slice. In this case, the

map accomplishment ratio approximates to zero when the HAP broadcast rate is low, as shown

in Fig. 4. Accordingly, the FoCI-only scheme performs better than the MaNa-only and fair ratio

schemes, as shown in Fig. 10 (a). As the HAP broadcast rate ranges between 50–80 Mbps,

the optimal scheme allocates all resources to the MaNa slice. The performance of popular file

only scheme levels off, reflecting that the HAP broadcast rate exceeds the saturate rate. In

comparison, the performance of MaNa-only scheme improves significantly and combats the

FoCI-only scheme. This stage corresponds to the slope of Fig. 4 (a), where the accomplishment

ratio increases rapidly with the HAP broadcast rate of the MaNa slice. Finally, as the broadcast

rate exceeds 80 Mbps, the optimal scheme enables both MaNa and FoCI slices to share the vehicle

cache and HAP broadcast resources, which realizes multi-dimensional resource matching.

VII. CONCLUSIONS AND FUTURE WORK

Under the proposed AGIVEN architecture, this paper has an in-depth investigation on the

multi-dimensional heterogeneous resource provisioning and resource trading for MaNa, FoCI and

ODT slicing. In the MaNa slice, the trading relationship between HAP broadcast and vehicle

cache size has been analyzed based on the derived accomplished ratio, which has suggested

that the optimal HAP broadcast rate can decrease with the vehicle cache size in an inversely

proportional manner. In the FoCI slice, the on-board content hit ratio has been derived with

respect to the normalized file update rate and cache size, where the communication-/cache-
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constrained conditions has indicated the optimal resource provisioning in capacity enhancement.

The offloading capabilities of HAP-vehicle pushing have been derived for the MaNa and FoCI

slices, respectively, which has shown the service-dependent 3D trading relationships among

HAPs, RSUs, and vehicles. The 3D trading relationship has been applied in network slicing,

whereby up to 40% of RSU transmission rate can be saved to enhance the performance of

the ODT slice. The current work mainly targets on the large-scale slice-level multi-resource

provisioning, based on the statistic information of vehicle mobility, content popularity, and traffic

requests. For the future work, we will exploit the small-time-scale information to design dynamic

network slicing and sharing schemes to further enhance resource utilization.

APPENDIX A

PROOF OF PROPOSITION 1

Taking the derivative of P̂acc with respect to x, we have

∂P̂acc

∂x
= − xKCm−1e−x

(KCm − 1)!
, (28)

and
∂2P̂acc

∂x2
= − KCm − x

(KCm − 1)!
xKCm−1e−x. (29)

As x = Lmµv
RHM

, we can derive

∂P̂acc

∂RHM

=
1

Lmµv

xKCm+2e−x

(KCm − 1)!
> 0, (30)

and
∂2P̂acc

∂RHM
2 =

1

Lmµv

xKCm+1e−x [(KCm + 2)− x]

(KCm − 1)!

(
−µvLm

RHM
2

)
= −

(
1

Lmµv

)2
xKCm+3e−x

(KCm − 1)!
[(KCm + 2)− x] < 0, if x < KCm + 2

> 0, if x > KCm + 2,

(31)

which completes the proof of Proposition 1.
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APPENDIX B

PROOF OF PROPOSITION 2

We first prove that E[L−J ] increases with x. Suppose J ≥ Cm + 1, and take the derivative of

h̄ with respect to x,

∂E[L−J ]

∂x
= Lm

[
γ(KCm, x)

(KCm − 1)!

KCm

x

]2

+ Lm

(
xKCm−1e−x

(KCm − 1)!

)2

+ Lm
γ(KCm, x)

(KCm − 1)!

xKCm−1e−x

(KCm − 1)!

(
1− KCm + 1

x

)
= Lm

(
γ(KCm, x)

(KCm − 1)!

KCm

x
− xKCm−1e−x

(KCm − 1)!

)2

+ Lm
γ(KCm, x)

(KCm − 1)!

xKCm−1e−x

(KCm − 1)!

(
1 +

KCm − 1

x

)
.

(32)

As KCm ≥ 1, ∂E[L−J ]

∂x
> 0. In addition, ∂E[L−J ]

∂x
> 0 can be proved in the same way for J ≤ Cm.

As E[L−J ] increases with x for any given J , h̄ increases with x and Proposition 1 can be proved.

APPENDIX C

PROOF OF PROPOSITION 3

According to (18), ŴM ≤ T̂m can be written as

λ′v

(
Lm

RRM

)2

− 2
[
1 + λ′vT̂m

] Lm

RRM

+ 2T̂m ≥ 0, (33)

which is equivalent to

Lm

RRM

≤ 1

λ′v

(
1 + λ′vT̂m −

√(
λ′vT̂m

)2

+ 1

)
, (34)

or
Lm

RRM

≥ 1

λ′v

(
1 + λ′vT̂m +

√(
λ′vT̂m

)2

+ 1

)
. (35)

As λ′vLm ≤ RRM is required for the system stability, (34) needs to be guaranteed. Thus, the

RSU transmission rate requirement is given by Proposition 3.
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APPENDIX D

PROOF OF PROPOSITION 4

Denote by ŘRM the minimal RSU rate requirement in Eq. (19) (i.e., the right side), and

z , λ′vT̂m = (1− Pacc)λvT̂m. Taking derivative of ŘRM, we have

∂ŘRM

∂z
=

√
z2 + 1− 1(

1 + z −
√

1 + z2
)2

1√
1 + z2

Lm

T̂m

,

=
1− 1√

z2+1

(1 + z −
√
z2 + 1)2

Lm

T̂m

> 0,

(36)

since z > 0. In addition,

∂2ŘRM

∂z2
=
z(1 + z2)−

3
2 (1 + z −

√
1 + z −

√
1 + z2)

(1 + z −
√

1 + z2)3

+2
(

1√
1+z2
− 1
)(

1− (1 + z2)−
1
2 z
)

=
(z + 1)

[
−(2z2 − z + 2) + 2(z + 1)

√
1 + z2

]
(1 + z −

√
1 + z2)3(1 + z2)

3
2

.

(37)

As (
2z2 − z + 2

)2 −
[
2(z + 1)

√
1 + z2

]2

= 4z2 + 5 > 0,

(38)

and z > 1, ∂2ŘRM

∂z2
< 0. Proposition 3 is proved.

APPENDIX E

PROOF OF PROPOSITION 6

We prove the content hit ratio decreases with ρ when ρ < 1. For notation simplicity, define

function ζ(ρ) = 1−ρa
1−ρA , where ρ 6= 1 and A > a > 0. Take derivative of ζ(ρ):

∂

∂ρ
ζ(ρ) =

Aρa−1

1− ρA

[
1− ρa

1− ρA
ρA−a − a

A

]
. (39)

Take derivative of 1−ρa
1−ρAρ

A−a:

∂

∂ρ

(
1− ρa

1− ρA
ρA−a

)
=

(A− a)− Aρa + aρA

(1− ρA)2
ρA−a−1 > 0, (40)

as ∂
∂ρ

[
(A− a)− Aρa + aρA

]
= Aaρa−1

(
ρA−a − 1

)
≤ 0, and lim

ρ→1
(A − a) − Aρa + aρA = 0.

Therefore,

min
ρ

1− ρa

1− ρA
ρA−a = lim

ρ→0

1− ρa

1− ρA
ρA−a = 0, (41)
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and

max
ρ

1− ρa

1− ρA
ρA−a = lim

ρ→1

1− ρa

1− ρA
ρA−a

= lim
ρ′→0

1− (1− ρ′) a
A

ρ′
= lim

ρ′→0

d
(
1− (1− ρ′) a

A

)
d (ρ′)

= lim
ρ′→0

a

A
(1− ρ′)

a
A
−1

=
a

A
,

(42)

where ρ′ = 1 − ρA. Therefore, ∂
∂ρ
ζ(ρ) is negative for 0 < ρ < 1. Similarly, we can prove

∂
∂ρ
ζ(ρ) < 0 for ρ > 1, and the details are omitted due to page limit.
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