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Abstract

In this paper, we study the problem of delay minimization in NFV-based networks. In such
systems, the ultimate goal of any request is to compute a sequence of functions in the network, where
each function can be computed at only a specific subset of network nodes. In conventional approaches,
for each function, we choose one node from the corresponding subset of the nodes to compute that
function. In contrast, in this work, we allow each function to be computed in more than one node,
redundantly in parallel, to respond to a given request. We argue that such redundancy in computation
not only improves the reliability of the network, but would also, perhaps surprisingly, reduce the
overall transmission delay. In particular, we establish that by judiciously choosing the subset of nodes
which compute each function, in conjunction with a linear network coding scheme to deliver the result
of each computation, we can characterize and achieve the optimal end-to-end transmission delay. In
addition, we show that using such technique, it is possible to significantly reduce the transmission
delay as compared to the conventional approaches. In fact, in some scenarios, such reduction can
even scale with the size of the network, where by increasing the number of nodes that can compute
the given function in parallel by a multiplicative factor, the end-to-end delay will also decrease by
the same factor. Moreover, we show that while finding the subset of nodes for each computation,
in general, is a complex integer program, approximation algorithms can be proposed to reduce the
computational complexity. In fact, for the case where the number of computing nodes for a given
function is upper-bounded by a constant, a dynamic programming scheme can be proposed to find
the optimum subsets in polynomial times. Our numerical simulations confirm the achieved gain in
performance in comparison with conventional approaches.

Index terms− Delay-computation trade-off, network coding, network function virtualization (NFV),
network optimization, redundancy, reliability.

1 Introduction

Network function virtualization (NFV) is the state-of-the-art architecture for future data networks. NFV
is an enabler to network slicing and cloud over core in 5G which can considerably improve the efficiency
of resource utilization [1–7]. In NFV-based networks, network functions are virtualized and the resulting
vitrual network functions (VNFs) can be computed at any node where they are placed. This modi-
fication in the architecture of data networks leads to high flexibility and improvement in performance
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measures [8]. Consequently, resource management will become a key problem in NFV realizations. In the
resulting network function virtualization resource allocation (NFV-RA) problem, new challenging sub-
problems such as chain composition, forwarding graph embedding, and scheduling will arise and need to
be addressed efficiently [8].

In such networks, the ordering of the functions that are computed in the network is known as the
service function chaining problem [9–11]. The forwarding graph embedding problem is to assign each
VNF to one node, based on the set of requests. This problem is known to be NP-hard [8]. Some
architectures are proposed to address this issue [12–14]. The final stage in the NFV-RA is the problem
of scheduling, where we want to assign the execution of a given VNF to one node of the network, in
addition to setting the execution times of those functions at the network nodes, given the set of the
requests. This problem is formulated in a basic form in [15,16], and some solutions are proposed in [17].
Joint NFV-RA and admission control problem have been recently proposed in the literature to increase
the resource efficiency, e.g., [18].

In this paper, we deal with the same problem of resource allocation in NFV-based networks, with the
objective of minimizing the end-to-end transmission delay. However, we address the problem through
a completely novel analytic approach. The key contribution of this work is to demonstrate that under
certain conditions, it is possible to reduce the end-to-end delay for computation of VNFs over the network
if functions are allowed to be executed redundantly and in parallel over a number of nodes, an assumption
that has not been properly exploited earlier in the literature. Another key observation in this paper is
that by allowing a function to be computed redundantly over a number of nodes, a trade-off between
overall computational power and end-to-end delay is observed. To the best of our knowledge, this is the
first time that such trade-off is investigated in VNF computation. To achieve this trade-off, we rely on
two components: (1) redundancy in computation as mentioned above, (2) network coding in delivery.

It is interesting to note that, recently, the role of coding for achieving fundamental trade-offs between
computation and communication has been investigated in other problems [19–30]. In [19], the authors
consider the framework of Map-Reduce, which is a known framework for distributed computing, and show
that coding techniques can improve the performance of the system significantly. Such improvements in
performance measures via coding theory are also observed in wireless distributed computing problem [22].
The problem of network stragglers is also addressed through use of coding theory for computational tasks.
For example, in the problems of distributed matrix multiplication [20] and coded Fourier transform [21],
the use of coding theory for computational tasks can alleviate the problem of network stragglers. Also in
the problems of distributed optimization, where an optimization problem is divided into sub-optimization
problems to reduce the computational complexity and decrease the delay using parallel servers, the
problem of straggler servers is challenging. To deal with this challenge, recently, encoded distributed
optimization is introduced [25–27]. Another example is to use the coding techniques in distributed
gradient descent algorithm, which is an important algorithm in many problems of machine learning and
data sciences [28–30]. The benefit of gradient coding is also for avoiding the stragglers. Also in the
NFV-based systems, the coding theoretic approaches are recently used in [23, 24] to reduce the effect of
stragglers in VNF computing nodes. In this work, we introduce network coding to NFV-based networks
to achieve optimum transmission delay.

For finding the minimum end-to-end transmission delay analytically, we propose an auxiliary multicast
problem, which captures all the assumptions we have made before. This auxiliary problem shows that,
we can optimize the end-to-end delay by applying the single-source multicast theorem [31] to the model
considered in this paper. Thus, the problem of minimization of the end-to-end transmission delay can be
formulated mathematically using the capacity of the auxiliary multicast problem, which is known to be
equal to the min-cut in the network coding terminology. In this way, we formulate the problem of finding
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the subsets of nodes that must compute functions in each round by an optimization problem, specifically
as an integer programming problem. Following the results of network coding theory, it is shown that the
minimum end-to-end delay can be achieved only via linear codes [32,33]. Actually, there are polynomial
time algorithms for network code construction to exploit the capacity of the system [34]. We also notice
that in our model, we do not assume that the functions have any structure, for example they are linear.
Our results hold for arbitrary functions.

To use these results in practice, as we stated before, a complex integer programming problem needs
to be solved. This problem corresponds to obtaining the set of nodes that will compute any specific
function in parallel. While finding the exact solution of this optimization problem has high computational
complexity in general, we propose an approximation algorithm for finding the solution with a moderate
polynomial complexity. We show that the proposed algorithm outperforms the traditional no-redundancy
approaches via numerical simulations. Furthermore, if we have an upper bound of α on the number of
nodes that compute the given function at each round of function computation, where α does not scale
with the size of the network, an optimal algorithm is also provided with polynomial complexity. This
algorithm is based on the dynamic programming.

At the final stage, we present some numerical simulations and show the gain of the proposed scheme
in several cases, specially in comparison with no-redundancy scheme. This is observed, both theoretically
and numerically, that we have a trade-off between the end-to-end delay and the processing cost which
means the maximum number of nodes that can compute a given function in parallel. It is interesting to
note that, in fact, there are some scenarios that by increasing the number of nodes that can compute a
given function in parallel by a multiplicative factor of α, the end-to-end delay will also decrease by the
same factor. To the best of our knowledge, it is the first time in the literature that such trade-off is
addressed. Note that a natural question about our method is whether it is possible to bound the gain
of redundant computing by a constant multiplicative factor for all networks. As a contribution, we have
developed some examples in which the gain of redundant computing concatenated with network coding
scales with the size of the network. Hence, such constant does not exist.

The rest of this paper is organized as follows. In Section 2, we define the problem mathematically. In
Section III, we state the main result. The proposed algorithms can be found in Section IV. We present
the numerical simulations in Section V and finally, Section VI concludes the paper.

Notation. For any positive integer K, we define [K] := {1, 2, . . . ,K}. Also, vectors are denoted by
bold letters, like x.

2 Problem Statement

Consider a communication network modeled by a directed weighted graph. We represent the set of nodes
in this network by V and the set of directed links by E ⊆ V × V. For any directed link e = (u, v) ∈ E ,
its communication capacity is denoted by w(e). This means that it is possible to send a packet of length
bTw(e)c bits from v to u via this link, during T time slots and assuming that the links are error free.
Let us denote this network by G = (V, E , w(.)), which corresponds to the network function virtualization
infrastructure (NFVI) in the literature.

There is a library of functions denoted by F which indicates the set of VNFs in our model. We
assume that each function1 f ∈ F is a deterministic mapping from the set {0, 1}Uf to the set {0, 1}Lf , for
some positive integers Uf and Lf , respectively. We denote the set of nodes that have ability to compute
a function (or equivalently a VNF) f ∈ F by Vf ⊆ V for any f ∈ F . This means that in the placement

1In this paper, we utilize VNF and function interchangeably.
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Figure 1: A responding scheme. There are K + 1 rounds of data transmission, sequentially from one set
to the next. In any set Sk, a similar function computing task is performed in all of the nodes of the set,
simultaneously and in parallel. Also in any transmission round k, there exists the infrastructure graph G
such that a common data must be delivered from the set Sk−1 to Sk using it. The networks, which are
shown by clouds in the figure, are K + 1 copies of the infrastructure graph.

phase of VNFs, we place any function f into a subset of the network nodes, denoted by Vf ⊆ V. In this
setup, we assume that Vf is predetermined and the run-times of a function (or VNF) at different nodes
are not different, i.e., the processors are assumed to be homogeneous.

In our model, we does not put any restriction to the number of functions that a node can compute.
However, for simplicity, we assume that any node can compute at most one function, i.e., Vf ∩ Vg = ∅
for any distinct functions f and g. This assumption does not affect the generality of the problem. Note
that, for any node v ∈ V that can compute k > 1 distinct functions (VNFs), we can replace it by k
new nodes ṽ1, ṽ2, . . . , ṽk that can run exactly one of the k functions and form a new directed weighted
graph as follows. All the links from or to v in the previous network are considered from or to ṽ1 in the
new network. Also, for any distinct k1, k2 ∈ [K], we connect ṽk1 to ṽk2 by a directed link with infinite
capacity, i.e., w(ṽk1 , ṽk2) = ∞. The other nodes, links and weights are remained unchanged. With this
modification, the resulting network and the original network are equivalent in terms of delay and the
achievable scheme. This shows that the condition is not restrictive.

There is a request tuple R = (s, d,x, (f1, f2 . . . , fK)) for the computation in network which is defined
as follows. The transmitter node or source node s ∈ V has the data packet x ∈ {0, 1}L0 , where L0 is
an arbitrary positive integer. For any k ∈ [K], fk ∈ F is the function that must be computed in the
kth round of the function computation problem. The receiver or destination node d ∈ V is interested
to be delivered the sequentially computed result fK(fK−1(. . . (f1(x)) . . .)). We assume that the chain is
predetermined and the order cannot be changed. Note that the output of the kth function fk must match
in the size with the input of the (k + 1)th function fk+1. This shows that there is a sequence of positive
integers L0, L1, L2, . . . LK , such that for any k ∈ [K] we have fk : {0, 1}Lk−1 → {0, 1}Lk . Throughout
this paper, we assume that each Lk is large enough. This is essential to establish the results2.

The problem is as follows. Given the network graph G = (V, E , w(.)), the library of functions F , a
request tuple R = (s, d,x, (f1, f2 . . . , fK)) and the sets {Vfk}k∈[K], how can the network use its resources
to response R, in order to minimize the end-to-end delay? First the notions of responding to a request
and end-to-end delay must be clarified.

Considering a request R = (s, d,x, (f1, f2 . . . , fK)), in our model, a responding scheme to this request

2 Based on the concepts of network coding theory, it is necessary for the message size (or equivalently Lk) to be large
enough, in order to ensure existence of a capacity achieving network code. See [34] and references therein for more details.
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consists of two steps. In the first step, a sequence of non-empty sets (S1,S2, . . . ,SK) must be selected,
where Sk ⊆ Vfk for any k ∈ [K]. For any k, Sk is the set of the nodes that will compute the function fk in
the kth round of the function computation problem. In other words, all of the nodes in Sk must compute
the function fk. Apparently |Sk| ≥ 1. Later, we will see why it may be beneficial to have |Sk| > 1. Also
for the simplicity in notation, we define S0 = {s} and SK+1 = {d}.

The second step consists of K + 1 transmission rounds. In the first round, the data packet x must
be delivered from the source node s to all of the nodes of the set S1 simultaneously, using the network
links. After this round, all of the nodes of the set S1 compute the function f1(x) simultaneously and
in parallel manner. Now f1(x) is available in all of the nodes of the set S1. In the second round, f1(x)
must be delivered from the set of nodes S1 to each node of the set S2, separately. Therefore, in the
kth round, the nodes of the set Sk−1 have fk−1(fk−2(. . . (f1(x)) . . .)) and they must deliver this common
data to each node of the set Sk, using the network links. Note that by this definition, the functions
must be computed independently and sequentially. In other words, the order of function computing is
important. Also, for any k ∈ [K], the value of fk(fk−1(. . . (f1(x)) . . .)) cannot be computed, unless the
value of fk−1(fk−2(. . . (f1(x)) . . .)) is available at a node that can compute fk.

More formally, in the second step, the sets (S1,S2, . . . ,SK) are available. The data must sequentially
be delivered from one set to another. Hence, we assume that a responding scheme must include a sequence
(D1,D2, . . . ,DK+1) of delivery schemes. For any k ∈ [K + 1], Dk is a transmission policy of the common
content fk−1(fk−2(. . . (f1(x)) . . .)), from the set Sk−1 to the set Sk. Notice that all of the nodes of the set
Sk−1 have the common data fk−1(fk−2(. . . (f1(x)) . . .)) and they want to deliver this common data to the
nodes of the set Sk where all of the nodes in Sk must be delivered the content fk−1(fk−2(. . . (f1(x)) . . .)).
In this paper, we consider a multistage graph where in each stage, i.e., between Sk−1 and Sk, there
exists the infrastructure network G (see Figure 1). Therefore, in Figure 1, there exist K + 1 copies of
infrastructure network for K + 1 stages where each cloud is utilized to demonstrate this copy of G for
each stage.

For a responding scheme which corresponds to (S1,S2, . . . ,SK) and (D1,D2, . . . ,DK+1), the end-to-
end delay is defined as follows. For any k ∈ [K+ 1], assume that the delay of the transmission round k is
denoted by Dk which depends on the request and the responding scheme. More precisely, Dk is a function
of the sets Sk−1 and Sk, and the delivery scheme Dk. The end-to-end transmission delay D is defined as
the summation of the transmission round delays, i.e., D :=

∑K+1
k=1 Dk. In this paper, our objective is to

minimize D, subject to the network considerations and the request. The design parameters are the sets
{Sk}k∈[K] and the delivery schemes {Dk}k∈[K+1].

Note that in the traditional responding schemes, any set Sk is a one-element set which means that fk
is computed at exactly one node. We call this scheme as no-redundancy approach. In this paper, we omit
this restriction and allow the responding schemes to compute a function redundantly in several nodes of
the network in parallel. We will show that via redundancy in function computing, the network delay can
decrease, compared to the no-redundancy schemes. We note that this approach for responding a request,
however, may increase the delay in the first round of the data transmission, because the content x must
be delivered to more than one nodes. On the other side, for the second round of data transmission, the
content f1(x) is available in more than one nodes. This means that redundantly function computing may
decrease the delay in the second round of data transmission. Similarly, this phenomenon is observed in
all rounds of computation. This shows a trade-off for choosing one-element sets or larger sets.
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3 Main Results

In this section, we state the main results of this paper. In particular, we propose a scheme that minimizes
the end-to-end delay D. Furthermore, we prove that the proposed scheme is optimal, for the objective
of delay minimization. First we give some examples to explain the method.

3.1 Illustrative Examples

Example 1. Consider the network in Figure 2 (a) and the request tuple R = (s, d,x, (f1, f2)). We notice
that the data x is available in the source node s. There are two functions f1 and f2. The destination node
d is interested in receiving the computed result of f2(f1(x)). We assume that the functions f1 and f2 can
be computed in the nodes Vf1 = {v11, v12} and Vf2 = {v21, v22}, respectively. The capacity of each link
is equal to one, i.e., w(e) = 1 for any link e. Also, we assume that L0 = L1 = L2. One can see that using
no-redundancy scheme for function computation, the normalized delay of D/L0 = 3 is achievable (see
Figure 2 (b)). Furthermore, it is obvious that using only one-element sets for S1 and S2, we cannot have
an end-to-end transmission delay which is smaller than 3L0. On the other side, if we redundantly compute
the functions f1 and f2, we can achieve a more small delay. In particular, consider S1 = {v11, v12} and
S2 = {v21, v22}, which means that the functions f1 and f2 are computed in two nodes simultaneously
and in parallel. In this case, we can prove that the total delay decreases (see Figure 2 (c)). It is shown
in Figure 2 (c) that using this method, the normalized delay of D/L0 = 2 is achievable. This means that
in this example, redundantly function computation outperforms the traditional no-redundancy method,
by a factor of 3/2.

Remark 1. Note that in Example 1 and also in the next example, there is a bipartite graph between
nodes computing fk and nodes computing fk+1. However, in the rest of this paper, we consider a general
scheme where we assume existence of an arbitrary network between nodes in layer k and layer k+1 which
may not be necessarily one-hop (see the clouds in Figure 1). In other words, we do not restrict ourselves
to a specific network topology.

Example 2. Consider the network in Figure 3 (a) and the request tuple R = (s, d,x, (f1, f2, . . . , fK)).
Similar to Example 1, there is a data packet x, available in the source node s. The destination node
d is interested in receiving the computed result of fK(fK−1(. . . f1(x) . . .))). Assume that any function
fk can be computed in the nodes Vfk = {vk1, vk2, . . . , vkN}. In addition, let w(e) = 1 for any link e.
In this example, assume that L0 = L1 = . . . = LK . Similar to Example 1, D/L0 = K + 1 is the best
achievable normalized delay using no-redundancy approaches for the function computation (see Figure 3
(b)). However, one can compute the functions redundantly in the nodes. In particular, assume that to
respond the request, any function fk is computed in all of the nodes which are capable to compute it,
i.e., Sk = Vfk . Via this approach, the network delay decreases. From Figure 3 (c), the normalized delay
of D/L0 = (1 + K/N) is achievable by this method. This shows that using the proposed approach for
function computation, the end-to-end delay decreases by a factor of 1+K

1+K/N . For large values of K, we

have 1+K
1+K/N ≈ N . This means that the gain of the redundantly function computing can increase as the

size of the network increases.

3.2 Main Results

In the previous subsection, the main idea of redundant function computation has been discussed. For
the statement of the main result for general networks, first we need a definition.
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v12 v22

Vf1 Vf2

d

v21v11

s

(a) The network of Example 1.

s

v12 v22

Vf1 Vf2

v11 v21

d

(b) The node s transmits x through the directed link to the node v11. The node v11 is delivered x after L0 time
slots, and then computes f1(x). Similarly, v11 transmits f1(x) to the node v21 using the directed link between them.
The node v21 receives f1(x) after L1 time slots and then computes f2(f1(x)) and transmits it to the destination
d. Hence, using one-element sets S1 = {v11} and S2 = {v21}, one can achieve the normalized delay of D/L0 = 3.
Note that the capacity of each link is set to one.

s

Vf1 Vf2

v11 v21

d

v12 v22

(c) The proposed scheme for function computation in network. Assume that in the first round, the source node s
sends x to the nodes v11 and v12 simultaneously. This means that after L0 time slots, two nodes v11 and v12 are
delivered the data x and can compute f1(x). Now assume that f1(x) = (y1,y2), where y1 contains the first L1/2
bits of f1(x) and y2 contains the second L1/2 bits of f1(x). In the second round of the data transmission, the node
v11 transmits y1 through the directed links to v21 and v22. Simultaneously, the node v12 transmits y2 through
the directed links to the nodes v21 and v22. Using this approach, after L1/2 time slots, the nodes v21 and v22 are
delivered f1(x) entirely. This means that by this approach, the second round of data transmission takes only L1/2
time slots. Similarly, one can see that the third round can be performed after L2/2 time slots. This shows that
the total delay is D = L0 + L1/2 + L2/2 = 2L0, and hence, the normalized delay of D/L0 = 2 is achievable.

Figure 2: The network of Example 1 and the proposed method for function computation.
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v12 v22

Vf1

v1N v2N

vK2

vKN

s

v11 v21 vK1

d

Vf2 VfK

(a) The network of Example 2. For any n, n′ ∈ [N ] and any k ∈ [K − 1], (vkn, v(k+1)n′) is a directed link in the
network. Also, for any n ∈ [N ], the the source node s is connected to the node v1n and the the node vKn is
connected to the destination node d. It is assumed that the capacity of any link is set to one.

v12 v22

v1N v2N vKN

vK2

VfKVf2Vf1

d

vK1v21v11

s

(b) The source node s transmits x to the node v11 in the first round of data transmission. This round has the
delay of L0 time slots. In the second round, node v11 computes f1(x) and sends it to node v21 in L1 time slots.
Similarly, the computation and transmission tasks sequentially continue, and finally, the node d is delivered the
computed result of fK(fK−1(. . . f1(x) . . .))) after L0 + L1 + . . .+ LK = L0(K + 1) time slots.

VfKVf2Vf1

d

vK2

vK1

vKNv2Nv1N

v12 v22

v21v11

s

(c) The node s transmits the data packet x to all of the nodes that can compute f1 in the first round. This round
lasts L0 time slots. Next in the second round, f1(x) is available in all of the nodes {v11, v12, . . . , v1N}. Now divide
f1(x) into N equal fragments. Assume that each node v1n transmits the nth fragment of f1(x) to all of the nodes
that have a directed link from v1n. Using this approach after L1/N time slots all of the nodes of S2 are delivered
the content f1(x) entirely. This means that the second round of transmission lasts L1/N time slots. Using similar
approach for the other rounds, one can see that the end-to-end delay of L0 +L1/N + . . .+LK/N = L0(1 +K/N)
is achievable.

Figure 3: The network of Example 2 and the proposed scheme for function computation.
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Definition 1. (Cut) For a directed weighted graph G = (V, E , w(.)), and any S ⊆ V, cut(S) is defined as

cut(S) =
∑

e=(u,v)∈E
u∈S;v/∈S

w(e).

In the next theorem, we state a tight lower bound on Dk.

Theorem 1. For any k ∈ [K+1], any Sk−1 ⊆ Vfk−1
, and any Sk ⊆ Vfk , the delay of the kth transmission

round can be lower bounded as follows

Dk ≥
Lk−1

min
Sk−1⊆S⊆V
Sk 6⊆S

cut(S)
. (1)

Moreover, the lower bound is tight, i.e., there exists a transmission scheme Dk that achieves the lower
bound.

Proof. See appendix A.

Remark 2. To prove Theorem 1, we utilize the results from network coding, specifically the capacity of
the single multicast problem [31]. We show that the delivery problem in each round can be reduced to a
single-multicast problem where the capacity is equal to the min-cut, and can be achieved by linear codes.

Remark 3. The above result shows that routing is not generally optimum. In particular, for delivery
network coding should be applied.

Corollary 1. From Theorem 1, for a given sequence of sets (S1,S2, . . . ,SK), the end-to-end delay is
lower bounded by

D ≥
K+1∑
k=1

Lk−1
min

Sk−1⊆S⊆V
Sk 6⊆S

cut(S)
. (2)

In addition, the lower bound is achievable.

Theorem 2. The optimum end-to-end delay of the problem, denoted by D∗, is equal to

D∗ = min
∀k∈[K]:Sk⊆Vk

{K+1∑
k′=1

Lk′−1
min

Sk′−1⊆S⊆V
Sk′ 6⊆S

cut(S)

}
. (3)

In addition, the optimum sets (S∗1 ,S∗2 , . . . ,S∗K) are arguments of the above optimization.

Proof. See appendix B.

Remark 4. To achieve D∗, we let S1 = S∗1 ,S2 = S∗2 , . . . ,SK = S∗K and we develop linear codes in
delivery rounds.

Remark 5. Via Theorem 2, the minimum achievable end-to-end delay of the problem for a general
network is characterized. However, to achieve this minimum delay, a complicated optimization problem
must be solved to obtain the sets {Sk}k∈[K]. Solving this optimization problem is not straight-forward.
In the next section, we propose some approximation algorithms to solve this problem.
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We note that the size of the set Sk corresponds to the processing cost of fk. Hence, it is rational to
have constraint on the cardinality of each set Sk. The following corollary states the optimization problem
with the processing power constraint on the sets. This means that we restrict the optimization to the
cases that each set Sk has a bounded size.

Corollary 2. The problem of minimization of the end-to-end delay, subject to limit on processing power
in each round is formulated as

min
∀k∈[K]:Sk⊆Vk
|Sk|≤αk

{K+1∑
k′=1

Lk′−1
min

Sk′−1⊆S⊆V
Sk′ 6⊆S

cut(S)

}
, (4)

where αk denotes the maximum processing cost of fk.

Remark 6. Note that the above formula for the end-to-end delay shows that by increasing the processing
costs, i.e., αk’s, the end-to-end delay can decrease, because the set of feasible solutions of the optimization
enlarges. This shows that there is a trade-off between end-to-end delay and processing cost of each request.

For the rest of this section, we explain the results of redundantly function computation in a special
case of complete graphs. The main goal of this example is to demonstrate that there are also fully
connected networks (not necessarily one-hop like Example 2) that the gain of the proposed scheme, i.e.,
redundantly computation and network coding in delivery, scales with the size of the network. Also, we
attend to demonstrate the achieved trade-offs between computation and delay via this example.

3.3 Another Example

Consider the network G = (V, E , w(.)) where V is a finite set of nodes and E contains all of the distinct
pairs of the nodes, i.e., the graph is fully connected. In this network, assume that there exists a request
of computation as R = (s, d,x, (f1, f2, . . . , fK)), and for any k ∈ [K], Vfk = {vk1, vk2, . . . , vkN} is a set
containing N nodes for a positive integer N . This means that the network consists of K × N function
computing nodes, in addition of other nodes as relays. Suppose that we have at least N + 1 relays. Also,
two nodes s and d cannot compute any function.

In this case, for any e = (u, v) ∈ E we define

w(e) =

{
ε if u ∈ Vfk for some k ∈ [K], or u = s,

1 otherwise,

where ε is a small enough positive3. In this fully connected network, let us assume that there is an upper
bound on processing cost as |Sk| ≤ α where α ≤ N . Now we apply results of Theorem 2 and Corollary 2
to this network.

We want to compute the lower bound in Corollary 2. Note that we have

cut(Sk) = ε× |Sk| × (|V| − |Sk|), (5)

for any k ∈ [K] ∪ {0}. To derive D∗ from Theorem 2, in this setup, we introduce the following lemma.

3 The need for ε to be small enough is due to such requirement for the proof of Lemma 1.
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Lemma 1. Assuming small enough ε, for the mentioned network we have

min
Sk−1⊆S⊆V
Sk 6⊆S

cut(S) = ε× |Sk−1| × (|V| − |Sk−1|), (6)

for any k ∈ [K + 1].

Proof. See appendix C.

Now based on Theorem 1, we write (1) as

Dk ≥
Lk−1

min
Sk−1⊆S⊆V
Sk 6⊆S

cut(S)
(7)

(a)
=

Lk−1
ε× |Sk−1| × (|V| − |Sk−1|)

, (8)

where (a) follows by Lemma 1. Therefore

D ≥
K+1∑
k=1

Lk−1
ε× |Sk−1| × (|V| − |Sk−1|)

. (9)

The R.H.S. of (9) is minimized when Sk is an arbitrary subset of Vfk with size α for any k ∈ [K]4. Hence,
we have

DOptimum × ε =
L0

|V| − 1
+

1

α× (|V| − α)

K∑
k=1

Lk. (10)

Consider L0 = L1 = . . . = LK . In this case, we conclude that by redundantly function computation,
one can achieve the normalized delay of DOptimum × ε/L0 = 1

|V|−1 + K
α×(|V|−α) . Also, if we utilize no-

redundancy approach, we achieve the normalized delay of DNo-redundancy × ε/L0 = K+1
|V|−1 , where we have

|Sk| = 1 for any k ∈ [K] in this approach 5. If K is large, and also α � |V|, then we conclude that the
improvement is approximately equal to α, i.e.,

DNo-redundancy

DOptimum
≈ α.

We notice that while the parameter α indicates the available processing cost of each function, in this
example, it can simultaneously model the reliability measure. In other words, if we set α to be larger,
then any function is computed in more nodes of the network and hence, the system is more reliable
against the node failures in functions computation. This means that as α increases, the system becomes
more reliable.

Now we notice that for this example, the fundamental trade-offs among end-to-end delay, reliability
and processing cost are obtained. In Figure 4, we plot the normalized delay in two cases; the no-
redundancy approach and the proposed method. Here, an order-wise improvement in the normalized
end-to-end delay is observed. Note that in this plot, α represents the processing cost and simultaneously
it models the reliability in the function computation.

4 This is due to the fact that the function f(x) = x(|V| − x) for x ∈ {1, 2, . . . , α} is increasing since α ≤ |V|/2.
5 This fact is due to equation (9).
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4 Algorithms

In this section, we propose our algorithms for solving the optimization problems (3) and (4). First
we propose an approximation algorithm for solving (3), called greedy algorithm. Then, we propose an
algorithm for solving (4) in polynomial times. This algorithm is called α−optimal algorithm. The third
algorithm is the same as the greedy algorithm, except it aims to solve (4). We note that all the proposed
algorithms are based on dynamic programming.

4.1 Greedy Algorithm

In this part, we propose our algorithm for solving the following optimization problem

D∗ = min
∀k∈[K]:Sk⊆Vk

{K+1∑
k′=1

Lk′−1
minSk′−1⊆S⊆V

Sk′ 6⊆S
cut(S)

}
. (11)

In this optimization problem, our aim is to find the sets {Sk}k∈[K] in order to minimize the end-to-end
delay. First we note that the optimization problem

mincut(Sk−1;Sk) := min
Sk−1⊆S⊆V
Sk 6⊆S

cut(S), (12)

is known as Max-flow problem. This problem can be solved via efficient known algorithms such as
Ford-Fulkerson algorithm [35]. Therefore, the optimization problem (11) can be rewritten as

min
∀k∈[K]:Sk⊆Vk

{K+1∑
k′=1

Lk′−1
mincut(Sk′−1;S ′k)

}
. (13)
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Algorithm 1 Greedy Algorithm

1: procedure Greedy(G, s, d, {Lk}Kk=0{Vfk}k∈[K])
2: for k ∈ [K + 1] ∪ {0} do
3: Pk ← ∅
4: Bk ← {S ⊆ Vfk : |S| = 1}
5: end for
6: D ←∞
7: while 1 do
8: OPT ({s})← {s}
9: C({s})← 0

10: for k ∈ [K + 1] do
11: for S ∈ Bk do
12: Ŝ ← argminT ∈Bk−1

{C(T ) +
Lk−1

mincut(T ;S)}
13: C(S)← C(Ŝ) +

Lk−1

mincut(Ŝ;S)
14: OPT (S)← (OPT (Ŝ),S)
15: end for
16: end for
17: if D ≤ C({d}) then
18: break
19: end if
20: (P0,P1, . . . ,PK+1)← OPT ({d})
21: D ← C({d})
22: for k ∈ [K + 1] ∪ {0} do
23: Bk ← {S ∪ Pk : S ⊆ Vfk ; |S| = 1}
24: end for
25: end while
26: return OPT ({d})
27: end procedure

Let us define

C(Sk) := min
∀k′∈[k−1]:Sk′⊆Vfk′

{ k∑
k′′=1

Lk′′−1
mincut(Sk′′−1;Sk′′)

}
, (14)

for any Sk ⊆ Vfk and any k ∈ [K]. Considering C({s}) = 0 and D∗ = C(SK+1) = C({d}) from (14), we
achieve the following recursive equation

C(Sk) = min
Sk−1⊆Vfk−1

{
C(Sk−1) +

Lk−1
mincut(Sk−1;Sk)

}
, (15)

for any k ∈ [K + 1]. The recursive equation (15) shows that the problem of finding the optimum subsets
is in the form of dynamic programming and can be solved recursively [36, Chapter 6].

Now for estimation of the solution of (13), first we use dynamic programming, according to the above
discussions, to obtain one-element sets with minimum delay. In other words, we initiate the algorithm
by choosing optimum one-element sets. Then, we enlarge the sets in a greedy manner as long as the
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overall delay decreases. More precisely, at each round, we choose one function computing node from all
the function computing nodes which have not been selected yet, and then, add it to the corresponding
subset when this change decreases the end-to-end delay. This procedure is performed, again, via dynamic
programming (see lines 8-16 of Algorithm 1) and ends when there is not any function computing node
that adding it to the subsets decreases the delay (see line 17 of Algorithm 1). See Algorithm 1 for the
details.

Here, we provide more explanation about Algorithm 1. The parameter D shows the end-to-end delay
calculated for each round of greedy algorithm. OPT ({d}) denotes the optimum subsets, chosen from
Bk’s, k ∈ [K + 1]∪{0}, resulting the minimum delay. The sets Bk for k ∈ [K + 1]∪{0}, at first, include
one-element subsets, and then enlarge in a greedy manner via Algorithm 1. Finally at the round that
the algorithm does not have any improvement (line 17), the program terminates. The final output of the
algorithm is the resulting subsets in the final round.

The complexity of the greedy algorithm is A × O((K + 1)|V|3) where A is the complexity of the
algorithm which is used to obtain the value of min-cuts. This can be briefly explained as follows. At
each round of dynamic programming based algorithm (see lines 8-16 of Algorithm 1), the function C(.)
must be computed for each layer k, k ∈ [K + 1]. This is due to the fact that, finally, we want to
compute C({d}). This procedure ends after at most (K + 1) × |V| × |V| times of min-cut computation
(see lines 10-16 of Algorithm 1). In addition, due to the greedy addition of nodes, the aforementioned
procedure may be repeated at most |V| times in the algorithm. Hence, the complexity of the algorithm
is A×O((K + 1)|V|3).

4.2 α−optimal Algorithm

In this part, we aim to solve the following optimization problem

min
∀k∈[K]:Sk⊆Vk
|Sk|≤αk

{K+1∑
k′=1

Lk′−1
minSk′−1⊆S⊆V

Sk′ 6⊆S
cut(S)

}
. (16)

Without loss of generality, assume that αk = α for any k. This is just for simplicity in notation and
the proposed algorithm can be considered for the general case.

To solve (16), we propose an algorithm in this part, which is called α−optimal algorithm. This
algorithm is based on dynamic programming to obtain the sets {Sk}k∈[K]. The algorithm searches
among all the subsets of Vfk with at most α elements, for any k, and chooses the best set to minimize
the end-to-end delay, according to the recursive equation of dynamic programming. Similar to (15), the
recursive equation of (16) is given by

C(Sk) = min
Sk−1⊆Vfk−1

|Sk−1|≤α

{
C(Sk−1) +

Lk−1
mincut(Sk−1;Sk)

}
. (17)

The α−optimal algorithm computes the function C(.) for each set with at most α elements by dynamic
programming. The details can be found in Algorithm 2. The notations used in this algorithm are also
the same as Algorithm 1.

We note that the complexity of the α-optimal algorithm is A × O((K + 1)|V|2α) where A is the
complexity of the algorithm which is developed to find the min-cuts. The remarkable feature of Algorithm
2 is that it is an optimal algorithm with polynomial complexity of the network size. Let us provide more
explanation about the complexity of this algorithm.
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Algorithm 2 α-optimal Algorithm

1: procedure α-optimal(G, s, d, {Lk}Kk=0{Vfk}k∈[K], α)
2: for k ∈ [K + 1] ∪ {0} do
3: Bk ← {S ⊆ Vfk : |S| ≤ α}
4: end for
5: OPT ({s})← {s}
6: C({s})← 0
7: for k ∈ [K + 1] do
8: for S ∈ Bk do
9: Ŝ ← argminT ∈Bk−1

{C(T ) +
Lk−1

mincut(T ;S)}
10: C(S)← C(Ŝ) +

Lk−1

mincut(Ŝ;S)
11: OPT (S)← (OPT (Ŝ),S)
12: end for
13: end for
14: return OPT ({d})
15: end procedure

In this algorithm, we use dynamic programming only once. In that procedure, the function C(.) must
be computed for each layer k, and for each possible Sk, where k ∈ [K + 1]. We note that the number of
subsets of Vfk with at most α elements, for any k, is O(|V|α). Hence, by taking lines 7-13 of Algorithm 2
into consideration, we conclude that it is necessary to compute min-cuts for at mostO((K+1)×|V|α×|V|α)
times. This shows that the complexity of the proposed algorithm is A×O((K + 1)|V|2α).

4.3 α−greedy Algorithm

We notice that the complexity of the α−optimal algorithm is not equal to a polynomial of α. To solve this
issue, we introduce α−greedy algorithm as an approximation algorithm. This algorithm is exactly like
Algorithm 1, except it does not consider subsets with more than α elements (see lines 23-25 of Algorithm
3). Details of this algorithm can be found in Algorithm 3. We note that the complexity of this algorithm
is at most A×O((K + 1)|V|3), like the greedy algorithm.

5 Numerical Simulations

In this section, we evaluate the performance of the proposed algorithms by numerical simulations. To
this end, we consider a network which is generated at random and then compare the performance of the
proposed algorithms with conventional no-redundancy approach. We note that although random network
construction is not necessarily the same as a given practical scenario, it is a reasonable assumption for
arguing that the algorithms lead to reasonable performance in typical network scenarios.

Our setup for simulations in this section is similar to Example 2 (see Figure 3), except we assume
that the capacities are not equal. The reason that we choose this model for our simulations is that the
performance of our algorithms must be evaluated in the cases that varying the subsets changes the flow
of the network as much as possible. This makes it possible to evaluate the performance, in the worst-case
scenario.

We assume that L0 = L1 = . . . = LK . Also we assume that the capacities of the links are chosen
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Algorithm 3 α-greedy Algorithm

1: procedure α-greedy(G, s, d, {Lk}Kk=0{Vfk}k∈[K], α)
2: for k ∈ [K + 1] ∪ {0} do
3: Pk ← ∅
4: Bk ← {S ⊆ Vfk : |S| = 1}
5: end for
6: D ←∞
7: while 1 do
8: OPT ({s})← {s}
9: C({s})← 0

10: for k ∈ [K + 1] do
11: for S ∈ Bk do
12: Ŝ ← argminT ∈Bk−1

{C(T ) +
Lk−1

mincut(T ;S)}
13: C(S)← C(Ŝ) +

Lk−1

mincut(Ŝ;S)
14: OPT (S)← (OPT (Ŝ),S)
15: end for
16: end for
17: if D ≤ C({d}) then
18: break
19: end if
20: (P0,P1, . . . ,PK+1)← OPT ({d})
21: D ← C({d})
22: for k ∈ [K + 1] ∪ {0} do
23: if |Pk| < α then
24: Bk ← {S ∪ Pk : S ⊆ Vfk ; |S| = 1}
25: end if
26: end for
27: end while
28: return OPT ({d})
29: end procedure

randomly and independently. The capacity of each link is chosen uniformly from the set (1− U, 1 + U),
with probability p, and is set to be zero, with probability 1− p. Here U and p are two parameters. For
the initialization, we assume that N = K = 10 and α = 2. Also we set p = 1 and U = 0.5. In all of
the simulations, we iterate the algorithms 10 times for the independent inputs and then we consider the
average performance as the output.

In Figure 5, we examine the performance of the proposed algorithms versus N . Remember that the
parameter N corresponds to the number of nodes that can compute a specific function. From Figure 5,
we observe that the 2-greedy algorithm approaches the solution of the 2-optimal algorithm. Also, it is
observed that the greedy algorithm can improve the performance of the system when N enlarges. This
fact is also motivated theoretically (see Figure 4).

16



2 3 4 5 6 7 8 9 10
2

4

6

8

10

12

14

16

18

20

N

E
n

d
-t

o-
en

d
D

el
ay

D

No-redundancy

2−optimal algorithm

Greedy algorithm

2−greedy algorithm

Figure 5: End-to-end delay versus N .

In Figure 6, we investigate the performance of the proposed algorithms versus K which is the number
of functions that must be computed in the chain. From Figure 6, the result of the 2-greedy algorithm
approaches to the 2-optimal algorithm. Also, the greedy algorithm outperform one-element sets or two-
elements.
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Figure 6: End-to-end delay versus K.

Figure 7 demonstrates the end-to-end delay versus the parameter α. It is observed that the greedy
algorithm is near optimal, where for large α, the performance of the greedy algorithm is close to the
optimal case.
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Figure 8 demonstrates the performance of the proposed algorithms versus p. Note that p corresponds
to the connectivity of the network. The simulations show that the proposed algorithms have a good
performance, even when the network is sparse (small values for p).
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Figure 8: End-to-end delay versus p.

At the end, we examine the algorithms for the case that the capacities have large variance, i.e., U is
set to be large. It is observed that in this case the performance of the algorithms does not decay and
they have gains near to the theoretical analysis. This shows that the performance of the algorithms is
not sensitive to the homogeneity of the capacities.
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For the end of this section, we note that our proposed greedy algorithms are not optimal in general,
but our simulations reveal that they have acceptable performance for most scenarios.

6 Conclusion and Discussion

In this paper, we investigated the fundamental limits of end-to-end delay minimization in NFV-based
networks. It was observed that traditional no-redundancy approaches are not enough for achieving the
optimum delay since there are some examples that show the inefficiency of them. To exploit the capacity
of such networks, in this paper, it has been assumed that to respond a request, the functions can be
computed redundantly in parallel, in addition to use the network coding in the system. It was showed
that redundantly function computation and using network coding for delivery, not only improves the
reliability measures, but also decreases the transmission delay. In some cases, this gain would also scale
by the size of the network, in comparison with the traditional no-redundancy approaches. The sufficiency
of linear codes to exploit the capacity of the system was also shown. Then, it was observed that the
problem of finding the subsets of the nodes that must compute the functions at each round in general
is related to a complex integer programming problem. To this end, an approximation algorithm was
proposed. The optimal algorithm with polynomial complexity for the case that there is an upper bound
on the number of nodes computing functions in each round was also provided. The performances of the
algorithms were evaluated through numerical simulations in several cases, where this was showed that
they reach order-wise improvements in comparison with no-redundancy approaches.

For future work, a number of problems might be of interest. First, we note that in this paper, we
proposed a method to decrease the end-to-end delay through a theoretical modeling, and argued that
our algorithms lead to good performance for typical network topologies. In this direction, an important
question is to evaluate performance under more realistic network models. As an example, an interesting
direction is to consider central cloud-edge cloud scenarios where the computing capacities of the nodes
and link capacities may vary significantly, and in some scenarios, lead to less connectivity in the network.
Therefore, it is fair to say that understanding the benefit of redundant computing in specific network
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topologies remains an open problem.
On another direction, we note that in this paper, we have considered the class of networks which are

described by directed graphs. However, undirected network models have also been of interest. A natural
question is that what will be happen if we consider such network models? We note that if the network
consists of two-way links with fixed capacities, then the results of this paper are still valid. However, if
we have constraints on the sum capacities of undirected links, then the problem is challenging and can
be addressed as future work. Another future direction is to consider more than one request which must
be served simultaneously.

We should also note that from a practical point of view, our results suggest that one should consider
the trade-off between delay and computation/communication cost in real-world designs. We suggest that
for each network topology and network functions class, the achievable gain in decreasing the delay, in
terms of computation/communication cost should be evaluated. Also there is a number of challenges
for implementing the redundant computation. For example, we note that in this paper, the servers are
assumed to be synchronized. However, they may have different processing times and this leads to its own
implementation challenges.

Another interesting question that can be investigated in future is how to address the placement
of VNFs, or design of the network infrastructure, in order to potentially achieve high gains through the
proposed model of redundant computation? The answer to such question would naturally have significant
effect on choice of system parameters for a given practical application and the resulting quality of service
and experienced at the user side.
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A Proof of Theorem 1

For the proof of Theorem 1, we use the single-source multicast theorem [31]. First we add an extra node,
denoted by EN , to the infrastructure graph G and form a new directed graph G̃. In G̃, assume that EN
is connected to each node of Sk−1 via directed links with infinite capacity.

Consider a single-multicast problem from EN to all of the nodes in Sk. We claim that the resulting
auxiliary multicast problem is equivalent to the original problem. To show this fact, first we note that
each solution of the auxiliary multicast problem, is also a solution of the original problem. This is due to
the fact that for each solution of the auxiliary problem, the source node EN first sends the data to the
nodes in Sk−1, because they are neighbors of EN in G̃. This procedure does not experience any delay,
because the corresponding links have infinite capacities. Subsequently, the nodes in Sk−1 deliver the data
to the destination nodes Sk. For converse, consider a solution for the original problem. We construct a
solution for the auxiliary problem with the same delay as the original problem. Assume that first the
node EN transmits all the data to each node in Sk−1. Again, note that this procedure does not have any
delay, due to the infinite capacity of links. Consequently, we apply the solution of the original problem
to the auxiliary problem, such that nodes in Sk−1 deliver their common data to each node in Sk. This
completes the proof of the equivalency of two problems.

Now we apply the single-source multicast theorem [31] to the auxiliary problem to compute the
minimum delay. In the network coding terminology, this theorem shows that the capacity of such system
is equal to the capacity of min-cut in G̃. Hence, we have

Dk ≥
Lk−1

min
v∈Sk

mincut({EN}; {v}) (18)

=
Lk−1

min
v∈Sk

min
S⊆V∪{EN}
EN∈S
v/∈S

cut(S)
, (19)

where the notation “mincut” is defined in (12). Now we notice that if Sk−1 6⊆ S, then cut(S) is equal
to infinity since the capacity of directed links between EN and each node in Sk−1 is infinity. Hence, we
have

Dk ≥
Lk−1

min
v∈Sk

min
Sk−1⊆S⊆V∪{EN}

EN∈S
v/∈S

cut(S)
(20)

=
Lk−1

min
Sk−1⊆S⊆V
Sk 6⊆S

cut(S)
. (21)
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This completes the proof. We emphasize that the capacity of the single-source multicast problem can be
achieved using linear codes [32]. This proves the achievability of the lower bound, by using the optimal
linear network codes in the corresponding transmission round. Note that in the single-source multicast
theorem, for achieving the capacity, it is essential to use the network coding and routing is not generally
optimum. In addition, the message size (or equivalently Lk−1) needs to be large enough, in order to
ensure existence of capacity achieving network codes.

B Proof of Theorem 2

Based on Theorem 1, we have

D =
K+1∑
k=1

Dk ≥
K+1∑
k=1

Lk−1
min

Sk−1⊆S⊆V
Sk 6⊆S

cut(S)
. (22)

Also, the above lower bound is tight, by using the achievable scheme of Theorem 1 in all rounds of data
transmission. Hence, the above achievable lower bound on end-to-end delay just depends on the subsets
{Sk}k∈[K]. This means that the optimum delay can be achieved by minimizing the above equation as a
function of the subsets. This completes the proof.

C Proof of Lemma 1

First notice that for S = Sk−1, we have

cut(S) = ε× |Sk−1| × (|V| − |Sk−1|).

In order to prove the lemma, it suffices to show that for any S ⊆ V such that Sk−1 ⊆ S and Sk 6⊆ S, we
have cut(S) ≥ ε× |Sk−1| × (|V| − |Sk−1|).

Note that if |Sk−1| ≤ |S| ≤ |V| − |Sk−1|, then we have

cut(S) ≥ ε× |{e = (u, v) ∈ E : u ∈ S; v 6∈ S}| (23)

= ε× |S| × (|V| − |S|) (24)

≥ ε× |Sk−1| × (|V| − |Sk−1|). (25)

and in this case the proof is completed.
Now consider the case that |S| < |Sk−1| or |S| > |V| − |Sk−1|. The case |S| < |Sk−1| is impossible,

due to the fact that Sk−1 ⊆ S. Hence, we assume that |S| > |V| − |Sk−1| ≥ KN +N + 1−N = KN + 1.
This means that S contains at least one relay node which is distinct of s, such as ũ ∈ S. Since Sk 6⊆ S,
there is a node ṽ ∈ Sk such that ṽ 6∈ S. Let us define ẽ = (ũ, ṽ). Therefore, we write

cut(S) ≥ w(ẽ) = 1
(a)

≥ ε× |Sk−1| × (|V| − |Sk−1|), (26)

where (a) follows from the fact that ε is set to be small enough. This completes the proof.
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