
1

Impact of Adaptive Consistency on Distributed
SDN Applications: An Empirical Study

Ermin Sakic, Student Member, IEEE, and Wolfgang Kellerer, Senior Member, IEEE

Abstract—Scalability of the control plane in a Software Defined
Network (SDN) is enabled by means of decentralization of the
decision-making logic, i.e. by replication of controller functions to
physically or virtually dislocated controller replicas. Replication
of a centralized controller state also enables the protection
against controller failures by means of primary and backup
replicas responsible for managing the underlying SDN data
plane devices. In this work, we investigate the effect of the
the deployed consistency model on scalability and correctness
metrics of the SDN control plane. In particular, we compare
the strong and eventual consistency, and make a case for a novel
adaptive consistency approach. The existing controller platforms
rely on either strong or eventual consistency mechanisms in
their state distribution. We show how an adaptive consistency
model offers the scalability benefits in terms of the total request-
handling throughput and response time, in contrast to the
strong consistency model. We also outline how the adaptive
consistency approach can provide for correctness semantics, that
are unachievable with the eventual consistency paradigm in
practice. The adaptability of our approach provides a balanced
and tunable trade-off of scalability and correctness for the SDN
application implemented on top of the adaptive framework.
To validate our assumptions, we evaluate and compare the
different approaches in an emulated testbed with an example of
a load balancer controller application. The experimental setup
comprises up to five extended OpenDaylight controller instances
and two network topologies from the area of service provider
and data center networks.

Keywords - consistency models, RAFT, SDN, distributed
control plane, scalability, OpenDaylight

I. INTRODUCTION

The SDN paradigm aims at centralizing the network logic
in a decision-making entity known as the SDN controller.
The concept of knowledge centralization has recently gained
traction for its potential advantages in the abstraction and
added simplicity of network control and management oper-
ations [1]. The centralization of the controller’s knowledge
state, however, introduces two new challenges: the single-
point-of-failure (SPOF) and the scalability of the control plane
[2]. A number of approaches have been proposed in literature
to alleviate the SPOF [3]–[6] issue, with the major approaches
relying on direct state- and function-replication across the
replicas of the SDN controller cluster.

With the concept of state replication, the SDN controller
instances replicate their data store contents to other members
that take part in a logical controller cluster, using a state distri-
bution protocol of choice (e.g. RAFT [7], [8]). When a failure
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of a controller is suspected, another replica from its cluster is
able to take over and continue to serve future application’s
requests. The selection of the consistency model leveraged
by the replication process affects the incurred synchronization
overhead in terms of the resulting packet load, the experienced
commit response times and the processing order of commits.

In the Strong Consistency model (SC), each consecutive
operation that modifies the internal state of the controller
is serialized and confirmed by a quorum of replicas, before
forwarding the state and processing subsequent transactions.
In the leader-based SC approaches (e.g. in RAFT), all requests
are serialized by a cluster leader, in order to provide for a
consistent data store view across all cluster followers. Thus,
with SC, a large distributed system consisting of multiple
controller replicas, is effectively constrained into a monolithic
system where each data store modification incurs a minimum
of two message rounds and a linear message complexity (in the
case of a stable leader) in order to synchronize the controller
views [8]–[10].

In the Eventual Consistency (EC) model [3], [11], [12],
state transitions may be delayed or reordered for an arbitrary
period of time. In EC, message updates are advertised in a
single round and with linear message complexity. From SDN
controller perspective, each controller instance in EC is able
to autonomously service the client requests. The updates to
the internal data store are thus non-blocking and are executed
without incurring an additional delay in SDN application’s
processing time [9]. However, in the EC the missing constraint
of state serialization potentially leads to write conflicts and
inefficient decision-making [11].

Recent works have introduced the paradigm of Adaptive
Consistency (AC) [13], [14]. In general, AC realizes the
state synchronization as a non-blocking task. However, after
exceeding a configurable number of maximum concurrent
per-replica state-modifications, an AC system blocks further
updates until all replicas have synchronized to a common state
[14]. If the system detects that the staleness constraints of
an SDN application may be violated by a concurrent state-
modification, it blocks the future state modifications until the
state consistency across all replicas is reestablished. Addition-
ally, AC autonomously adapts the consistency level metric of
the system. This adaptation advocates an asynchronous state
synchronization at a dynamically decided frequency across the
controller cluster. Hence, the maximum number of allowed
concurrently executed per-replica transactions varies based on
the current SDN application performance observed during run-
time. The adaptation mechanism thus optimizes the trade-off
between the correctness and scalability in SDN application’s
decision-making logic.

Until now, the AC paradigm has lacked an experimental
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implementation and a proof of its practicability. Furthermore,
from the simulation results presented in [14], the overhead of
the AC’s state-update blocking and state-update distribution
during controller operations in the congestion periods lacked
a proper analysis. In this paper, we provide the insights
into the realization of an AC framework that internalizes the
concept presented in [14], and directly compare the developed
framework with the SC and EC model realizations w.r.t.: i)
the response time; ii) the distribution overhead; and iii) the
correctness metrics. Furthermore, we present various means
and design paths that can be followed to realize its adaptive
component, and compare the different design options. For the
comparative study, we leverage the built-in SC APIs exposed
by the open-source implementation of RAFT consensus [7]
in the OpenDaylight (ODL) controller [15]. We implement
our AC/EC framework as an additional registry component in
ODL. The framework can thus be deployed as an alternative
or an addition to the existing SC framework.

We organize the paper as follows: Sec. II elaborates the
system model. In Sec. III we briefly introduce the SC and
EC state synchronization models. In Sec. IV, we outline the
architecture of our AC framework. Sec. VI motivates the
coexistence of different consistency models. Sec. V discusses
the building blocks and algorithms of the AC framework. Sec.
VII outlines the exemplary load balancer implemented for the
purpose of consistency evaluation. It also discusses the system
setup and the evaluation methodology. Sec. VIII discusses the
results of the qualitative comparison of SC, EC and AC. Sec.
IX discusses the related work. Sec. X concludes this paper.

II. SYSTEM MODEL

We assume a distributed control plane model, where multi-
ple SDN controller replicas interconnect in order to form a log-
ical cluster. Each replica in our system includes a default set
of decision-making applications, e.g. those that make resource
reservations based on routing or load balancing decisions. The
replicated SDN applications and hence the controller replicas
expose a set of northbound interfaces (NBIs), allowing for the
acceptance of client requests. Depending on the requirements
of the data synchronization, the applications hosted in different
replicas are also able to process the computations given a client
request in either concurrent or serialized manner. Therefore,
two possibilities exist: i) processing a client request is possible
only on a single replica at a time; ii) processing a client
request is possible in concurrent manner in any available
replica. The first method guarantees for the true serialization
of resource reservations, as the decision-making is coupled
with the resource state reservations. The latter method instead
relies on the isolated state synchronization and convergence
of resource reservation updates after the potentially concurrent
decisions were made in isolated replicas. Obviously, in the first
scenario, a serialized decision-making may lead to processing
bottlenecks in a highly-loaded system [9]. In contrast, we con-
sider a more scalable method, allowing for each reservation-
state-update to initiate concurrently and asynchronously at
an arbitrary controller replica. It is left up to the deployed
consistency model and the state-distribution mechanism to
decide the actual ordering of updates.

We consider a healthy replica an active, non-corrupt (non-
buggy) controller replica that, given the latest up-to-date state,
will make correct decisions in-line with the expected SDN
application design. In contrast, a failed replica is an inactive
(downed) replica that is both: a) unable to acknowledge the
acceptance of state update commits distributed by remote
replicas; b) unable to service new application requests. While
tolerated by design, we do not evaluate partial controller fail-
ures (i.e. resulting in incorrect decision-making or faulty data
store updates) but decide to focus on correctness disadvantages
stemming from desychronization of controller instances. Our
design does not consider Byzantine faults.

SDN controller replicas exchange their applied state-updates
for the purpose of achieving high availability of the control
plane. The duration of the state convergence is governed by
the selection of the state synchronization protocol and the
corresponding consistency model. The formation of the cluster
is independent of the controllers’ placement, hence spatial
optimization for objectives of e.g. minimized control plane
response time is orthogonal to the synchronization issue.

To guarantee a successful synchronization of the commit-
ted state-updates across all replicas, we assume a system
with enabled partial synchrony and an eventual synchronous
communication model. Thus, to make progress in SC and in
AC (during blocking period) systems, a guaranteed eventual
delivery of each state-update to all healthy replicas is assumed.
Commiting an update in these systems requires confirmations
of the majority of cluster replicas [8]. Therefore, the SC system
is unable to move forward in the case of the outstanding
replica confirmations. We assume a fair and robust control
channel, where given a non-partitioned network, messages sent
infinitely often are delivered infinitely often [12].

For replica failures, the eventual propagation of updates to
all nodes after a controller failure (i.e. the sender’s failure)
can be achieved by persisting the updates to an in-memory
data store and deploying a replica recovery mechanism (e.g.
a watchdog mechanism) that reinitializes the controller [8]).
This assumption holds for the fail-recovery [16] process ab-
stractions, which we assume in the remainder of this work. The
controller instances are allowed to fail and rejoin the controller
cluster arbitrarily. Before re-enabling the recovered controller,
a mechanism for synchronization of missing state updates
from healthy replicas (e.g. using anti-entropy or pulling of
log snapshots) [12]) must have completed successfully.

Fig. 1 presents our envisioned controller design. It depicts a
number of controller replicas, interconnected for the purpose
of achieving high-availability of the controller-switch and
controller-client connections. Each controller executes a num-
ber of SDN applications (i.e. routing, load-balancing). Fig. 1
depicts the case where each controller instance executes a copy
of each application. For the remainder of the paper, we hold
to this assumption. Thus, we allow each controller replica to
execute an instance of each available SDN application (control
functionality) individually. The SDN controller applications
base their decisions on the current content of either one or
more in-memory data store implementations which leverage
different consistency models. The total controller data state
in an SC cluster is partitioned into a number of data-shards.
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Fig. 1. The internal controller model comprising data stores with varying
degrees of state consistency. The controller designer should be allowed to
select the appropriate data quality based on their application correctness and
throughput requirements. In the case of SC, leaders are elected at a per-
shard granularity. EC and AC state instances represent exemplary EC map
realizations for the ONOS [5] EC approach and our AC approach, respectively.

The ”sharding” of the full data store state into the data-shards
is configurable at an arbitrary granularity. In OpenDaylight’s
realization of the SC model, an individual instance of RAFT
consensus and thus the controller cluster leadership is main-
tained for each shard. In the remainder of the paper, for the SC
model, we assume a single default data-shard replicated across
each controller instance, and thus a single instance of RAFT
consensus responsible for distribution of state updates. Failures
of a shard leader lead to an unavailability of the read and
write operations during the re-election period for the particular
shard previously under the failed leader’s controller. EC maps,
on the other hand, are data structures whose synchronization
is enforced in the background using a gossiping/broadcast
primitive. In ONOS [5], for example, EC maps are replicated
to all controller instances that are members of a common
cluster. Finally, the replication of the AC data structures
presented henceforth is handled on a per data-state instance
basis, so to allow for granular guarantees on the minimum
synchronization interval of the observed data-state.

III. STRONG AND EVENTUAL CONSISTENCY MODELS

For completeness, we henceforth give a brief overview of
the two common consistency models implemented in the SDN
controller platforms ONOS [5] and OpenDaylight [15].

A. Strong Consistency (SC) Model

In leader-based Strong Consistency (SC) consensus algo-
rithms (e.g. RAFT [7], Paxos [17]), each replica is assigned
either a follower, leader or a candidate role. Whenever a data
store update is initiated by a cluster client at any active replica,
the receiving controller proxies the received client request
to the current cluster leader. The leader is the controller
instance that orders the incoming state-update requests, so as
to allow for a serialized history of updates and thus ensure
the operational state consistency during runtime. Following a
committed state-update at the leader, the update is propagated
to the cluster followers. It is committed to their data store
only after half of the followers have agreed on the update.
A number of distributed consensus protocols were proposed

in the past [7], [17]–[21]. Currently, OpenDaylight [15] and
ONOS [5] are the most attractive open-source SDN controller
platforms with the largest user-/tester-base. They both provide
for white-box testing and insights related to their consensus
implementations. As of the time of writing this document, they
both implement RAFT as the only consensus protocol. Hence,
RAFT was selected as a valid implementation representative
for our measurement-based study of the SC model.

In contrast to the correctness benefits of the serialization of
state-updates, RAFT possesses the disadvantage of an added
overhead in the expected response time and lower availability
[8] compared to using the eventual consistency primitives.
Namely, a single data store update initiated at a follower
replica requires a round trip to the leader for confirmation;
as well as reaching consensus among the majority of replicas
[9]. This leads to an added blocking period and an overhead in
confirmation of transactions. Furthermore, quorum-based con-
sensus algorithms can tolerate a maximum of F = dC/2− 1e
failures in a cluster of C controllers. This limitation relates
to the requirement of ensuring data consistency in the case of
network partitions, an invariant feasible only when a majority
of nodes are involved in confirming the transactions [22], [23].
In the best case, the cluster operates at the speed of the leader,
and in the worst case, at the speed of the slowest follower [8].

B. Eventual Consistency (EC) Model

Eventual consistency (EC) claims that replicas eventually
converge to the same final values independent of the applied
order of operations, assuming that users (i.e. applications)
eventually stop submitting new operations [24]. In EC, all
reads and writes are performed locally at the processing speed
of the local replica. Hence, applications written on top of the
EC primitives proceed their operation without a penalty of
confirmation time. The state-updates in EC are propagated in
the background. In ONOS, state distribution across the EC
replicas occurs using an update-push distribution process and
the anti-entropy, where replicas continuously compare their
local state and eventually converge the deltas. Furthermore,
updates to the states may be marked with local timestamps,
hence allowing for global ordering of updates. EC favors
the performance at the expense of consistency, potentially
leading to correctness issues if the applications rely on the
non-staleness of the local state for their correct operation [11].

IV. ADAPTIVE CONSISTENCY (AC) MODEL

In order to emphasize on the novelties introduced in this
work, we now briefly summarize the concept and describe
our realization of an Adaptive Consistency (AC) framework.

The AC framework allows for the create, remove, update,
delete operations on the granular state instances (such as
counters, registers, maps etc.). The operations are eventually
synchronized between the controller replicas. However, in
contrast in contrast the EC model introduced in Sec. III-B, that
allows for enqueueing of an unbounded number of buffered
unconfirmed operations, the maximum number of enqueued
manipulations in an AC framework is limited by the size of
an update distribution queue and a timeout-based automated
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Fig. 2. High-level architecture of the AC framework. The PI block is
responsible for the inspection of the negative effect of the state synchronization
on the quality of decision-making and the generation of a corresponding
inefficiency ratio. The OCA block takes this variable as an input for the
adaptation of the consistency level currently applied for the monitored state.

distribution of the enqueued updates. The maximum size of
the state-update distribution queue and the maximum timeout
duration are governed by the currently applied consistency
level (CL). The maximum distribution queue size and the
timeout are maintained at the granularity of an observed data
store state. Given an application ”inefficiency” metric and the
optimization target, the AC framework decides on the optimal
CL that is to be applied for upcoming operations.

The high-level process flow of the AC is depicted in Fig.
2. During the Application Design phase, the designer writes
an SDN application built atop of the AC framework and
parametrizes the adaptation functions. During this phase, the
developer must present an ”inefficiency” metric related to his
application logic (e.g. the optimality of routing decisions [14]),
as well as to parametrize the adaptation thresholds/efficiency
targets. The specification parameters of the adaptation target
vary with the choice of the adaptation function. We discuss
the threshold- and PID-based functions in Sec. V-D.

At time tL, the Performance Inspection (PI) block triggers
on an eventually delivered state-update U , initiated by a remote
SDN controller replica CR. In the PI block, each controller
replica CL locally decides its own view of the real history of
state-updates, by ordering the updates based on the time-stamp
of updates. Let tU denote the time when update U was initiated
at CR. Then, after deciding the global order of updates, each
replica CL evaluates the effect of being late-notified of the
update U . To do so, it compares two histories: i) The set
of results associated with the actual actions taken during the
period [tU , tL]; ii) The set of results associated with the actions
that would have been taken during the period [tU , tL] if the
update U had been serialized and known to CL at tU . Thus,
two sets of results are stored, the set of real (i.e. suboptimal)
decisions, and the set of ideal (i.e. optimal) decisions.

An inefficiency metric (i.e. an approximation factor), esti-
mates the ratio between the suboptimal and optimal decision,
and thus the cost of eventual state-update delivery. The latest
measured inefficiency is fed into the Online Consistency

Adaptation (OCA) block. In order to decide on the most-
fitting CL for the observed state, the OCA block considers
the latest inefficiency report as well as, optionally, the history
of previous inefficiency reports. The OCA block then decides
upon the new best-fitting CL and disseminates this decision
to all cluster replicas. In our AC realization, the overhead
of the OCA block is centralized at a single controller that
collects the remote replica’s inefficiency metrics and decides
on the most-fitting CL. PI and OCA blocks are pipelined for
a particular state, but are parallelized for updates on different
state instances, thus enabling scalable consistency adaptation.

V. REALIZATION OF AN AC FRAMEWORK

In this section, we present the mechanisms behind our proto-
type realization of the AC framework, comprising: i) a CRDT-
based in-memory data store; ii) a generalized load balancer
SDN controller application (SDN-LB); iii) the corresponding
PI block; iv) the OCA block comprising the threshold- and
PID-based adaptation functions; v) the mechanism for cluster-
wide data store state-updates synchronization.

A. CRDT model for state-updates

Convergent Replicated Data Types (CRDTs) [25] are a
novel approach to handling conflict-free distributed updates
on a set of eventually consistent data structures. The useful
property of the CRDTs is that the isolated views of a single
CRDT at different replicas eventually converge to the same
value, independent of the order of updates. Thus, CRDTs
preserve the correctness invariant, even in the case of an
increased network latency and packet loss. With CRDTs,
updates monotonically advance according to a partial order,
subsequently converging towards the least upper bound of
the most recent value. An example of a replicated counter
datatype is a PN-Counter (Increment/Decrement Counter),
whose increment and decrement manipulations commute. Our
take on a PN-Counter realization is presented in Alg. 1. We
have also leveraged CRDT register and set structures in our
framework. However, for brevity we present here only the PN-
Counter, and refer to [25] for an overview of other data-types.

In our model, individual state-updates are synchronized
across the SDN controller replicas, and are stored in a log-
tree, together with their initiation time-stamp, for the purpose
of later reference during the steps taken in the PI block. The
accepted updates to a CRDT-modeled state are synchronized
across the controller replicas, while rejections result in data
store update failures and a subsequent notification to the
requesting application. The admission control for new updates
is based on the properties of the queue distribution (i.e. the
maximum queue size), governed by the currently applied CL
associated with the target CRDT (ref. Section V-E).

Alg. 1 presents our PN-Counter realization. Upon a new
client request to modify a particular data store object (realized
as a counter CRDT instance), the local controller executes the
admission control (Lines 3-9). If the update is accepted, the
controller MERGEs the update with its local CRDT (Lines 13-
17). It then enqueues the update for a cluster-wide distribution
(ref. Section V-E). On receiving the update initiated by a
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remote controller, the local controller executes the MERGE
function (Lines 22-28). Each CRDT additionally implements
the QUERY function, allowing to read its current state.

Algorithm 1 Distributed CRDT PN-Counter
Notation:
CR Remote controller replica
CL Local controller replica
Bj Client requesting a CRDT state-update
Ctrk PN-Counter targeted for update
SCLCtr Set of PN-Counters stored in CL’s AC data store
UCtrk Update request for state Ctrk
B[Bj , Ctrk] Update-log for client Bj and state Ctrk

1: upon event client-update< Bj , UCtrk > do
2: if Ctrk ∈ SCLCtr then
3: success := evalAddToDistributionQueue(UCtrk )
4: if success == True then
5: B[Bj , Ctrk]← B[Bj , Ctrk] ∪ UCtrk
6: merge(UCtrk )
7: notify(Bj , update-success < UCtrk >)
8: else
9: notify(Bj , update-failed < UCtrk >)

10: else
11: notify(Bj , update-failed < UCtrk >)

12:
13: function MERGE(UCtrk )
14: if UCtrk .operation == DECREMENT then
15: Decr[Ctrk]← Decr[Ctrk] ∪ UCtrk .amount
16: else if UCtrk .operation == INCREMENT then
17: Incr[Ctrk]← Incr[Ctrk] ∪ UCtrk .amount
18:
19: function QUERY(Ctrk)
20: return(

∑
j Incr[Ctrk]j −

∑
j Decr[Ctrk]j)

21:
22: upon event remote-update< CR, < Br, UCtrk >> do
23: if Ctrk /∈ SCLCtr then
24: notify(CR, update-failed < UCtrk >)
25: else if Ctrk ∈ SCLCtr then
26: B[Br, Ctrk]← B[Br, Ctrk] ∪ UCtrk
27: merge(UCtrk )
28: notify(CR, update-success < UCtrk >)

B. Performance Inspection (PI)

The adaptation of the CLs of a particular state is based on
a provided application inefficiency metric. We define the inef-
ficiency metric as the approximation ratio between the series
of observed and optimal results of an SDN controller applica-
tion’s decisions. The optimal result comprises the decisions the
application would have made if each update in the system had
been serialized (i.e. consensus-based). The observed result is
the one the local replica has achieved in an online manner,
based on its own local state, and without consideration of
the status of other replicas. For a replica to compute the
optimal result, the knowledge about the content and timing
of the eventually delivered updates must be available. The
timing characteristics are necessary for the total ordering of
the observed and eventually delivered state-updates.

The generalized calculation of the inefficiency metric is
depicted in Alg. 2. In Lines 6-8 the PI block identifies the
previously executed operations on the observed state, in the

period before the remote update UCtrremotek
initiation at the

remote replica CR. Thus, Line 8 yields an array of consistent
entries which correspond to a part of the serialized true
history of updates SUcnst . Lines 10-12 identify the set of
client requests that have resulted in potentially suboptimal
decisions, made in the past by the local replica CL, without
the consideration of the eventually delivered remote state-
update. Lines 14-16 then derive the application-specific op-
timal decisions, given the identified optimal history SUcnst ,
the serialized remote update UremoteCtrk

and a set of client
requests RUincnst , previously served in a suboptimal manner.
The method CompInefficiency() in Line 20 takes as an
argument the consistent (optimal) history of decisions SUcnst ,
and the actual, potentially suboptimal, history of decisions
SUincnst . It then returns the inefficiency (approx. ratio) φ given
the two series of decisions.

Let σRu and σRo denote the cost of suboptimal and optimal
decisions for a request R in general case, respectively. Then,
the binary value of XR

subopt denotes an inefficient result,
induced by the staleness (caused by delayed synchronization):

XR
subopt =

{
1 when σRu > σRo
0 when σRu ≤ σRo

CompInefficiency() and AppLogic() functions are
application-specific implementations. In the next section we
present an exemplary CompInefficiency() realization
for a generalized online load balancer [26]. Its AppLogic()
realization is assumed to optimally assign each incoming client
request to the replicated server instances based on its current
local view of the server resource utilizations. We evaluate the
algorithm in implementation in Sec. VII.

C. Computation of the inefficiency metric for a generalized
online load balancer SDN application

For a set of defined data store states S and a state-update
U(t − n), timestamped at time t − n, let T (t − n) be the
matrix of observations of the states encompassing the period
[t− n .. t]. Then, T (t− n) is a matrix of |S| x n elements.

Let S(i) be the ith vector of the observed state values at
time t− n+ i, so that:

S(i) = (s1(i), s2(i)..sm(i)) : S(i) ∈ T (t− n) s.t. Nres(i) = |S(i)|

First, let SUincnst contain the suboptimal (real) history of
state-updates. Let SUcnst accordingly hold the computed ideal
(optimal) history of state-updates (computed as per Lines 18-
19 of Alg. 2). Then, for each vector (time-point) i of observed
state values SUincnst and SUcnst we can compute the costs
of optimal and suboptimal decisions at time i, σRio and σRiu
respectively, using standard deviation metric:

σRio =
√

1
Nres(i)

∑Nres(i)
j=1 (sj(i)− µSRicnst)

2 where sj(i) ∈ SUcnst(i)

σRiu =
√

1
Nres(i)

∑Nres(i)
j=1 (sj(i)− µSRiincnst)

2 where sj(i) ∈ SUincnst(i)

where
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Algorithm 2 Inefficiency calculation for a distributed CRDT
Input:
CR Remote controller replica
CL Local controller replica
UremoteCtrk

Reported remote update request for state Ctrk
U localCtrk

Local update request for state Ctrk
SCtrU

k
Set of previously logged updates for state Ctrk

U(T ) Timestamp of the state-update U at CR
U(R) Client request that resulted in the update U

1: procedure HANDLE NEW COUNTER UPDATE
2: upon event update < CR, UCtrremote

k
> do

3: SUcnst := ∅
4: SUincnst := ∅
5:
6: for all U localCtrk

∈ SCtrU
k

do
7: if U localCtrk

(T ) < UremoteCtrk
(T ) then

8: SUcnst ← SUcnst ∪ U localCtrk

9:
10: for all U localCtrk

∈ SCtrU
k

do
11: if U localCtrk

(T ) >= UremoteCtrk
(T ) then

12: RUincnst ← RUincnst ∪ U localCtrk
(R)

13:
14: for all RU ∈ RUincnst do
15: U localOptCtrk

:= AppLogic(RU , SUcnst)
16: SUcnst ← SUcnst ∪ UCtrlocalOpt

k

17:
18: SUcnst ← SUcnst ∪ UremoteCtrk

19: SUincnst ← SCtrU
k
∪ UremoteCtrk

20: φ = CompInefficiency (SUincnst , SUcnst)
21:
22: reportIneff(φ)

µSRi =

∑Nres(i)
j=1 s(j)

Nres(i)
(1)

represents the mean utilization of resources at time-offset i,
and Ri represents the client request at time-offset i.

Finally, after having computed the costs of optimal- and
suboptimal decisions, the average inefficiency ΦT for the
observation interval T (t− n) can be computed as:

ΦT =

∑‖T‖
i=0 σ

Ri
u∑‖T‖

i=0 σ
Ri
o

D. Online Consistency Adaptation (OCA)

The OCA block is responsible for the collection of com-
puted inefficiency values and their online evaluation. The
output of the OCA block is the adapted CL for the observed
state instance. The computed inefficiency value φ is input into
the OCA block and the adaptation function reportIneff()
is called, as depicted in Fig. 2 and Alg. 2, respectively.

We present two methodologies for adapting the applied CL,
given a historical set of inefficiency reports:

1) Threshold-based CL adaptation: If the observed mean
inefficiency over a window of inefficiency observations of
size W is below, above or in between the lower and upper
thresholds, the adaptation function decides to raise, lower or

keep the currently applied CL, respectively. Threshold-based
CL adaptation is specified in Alg. 3.

2) PID-based CL adaptation: In addition to the integral
part, the PID-based feedback compensator also considers
proportional and differential parts of the recent inefficiency
reports. Each part can be assigned a corresponding weight,
thus allowing to favor either a fast adaptation response or
long-term adaptation accuracy. For the PID-based adaptation
we additionally configure the single target value the function
aims to achieve at runtime. Alg. 4 describes the procedure.

Algorithm 3 Threshold-based Consistency Level Adaptation
Input:
CLCtrk Currently applied CL for counter Ctrk
S
Ctrk
φ Set of previously stored inefficiency reports
TU Upper adaptation trigger for the threshold metric
TL Lower adaptation trigger for the threshold metric
W Window size of considered inefficiency observations

1: procedure HANDLE NEW INEFFICIENCY REPORT
2: function REPORTINEFF(φ)
3: S

Ctrk
φ ← S

Ctrk
φ ∪ φ

4: SRlv := S
Ctrk
φ [|SCtrkφ | −W : |SCtrkφ |]

5: µSRlv :=
∑|SRlv|
i=0 SRlv(i)

|SRlv|
6:
7: if µSRlv ≥ TU then
8: raiseCL (CLCtrk )
9: else if µSRlv ≤ TL then

10: lowerCL (CLCtrk )

Algorithm 4 PID-based Consistency Level Adaptation
Input:
CLCtrk Currently applied CL for counter Ctrk
SCtrkφ Set of previously stored inefficiency reports
TO Target oscillation value
Ig, Pg, Dg Integral, proportional and differential gains
W Window size of considered inefficiency observations

1: procedure HANDLE NEW INEFFICIENCY REPORT
2: function REPORTINEFF(φ)
3: S

Ctrk
φ ← S

Ctrk
φ ∪ φ

4: Pterm := Pg ∗ (TO − SCtrkφ [|SCtrkφ |])

5: Iterm := Ig ∗
∑|SCtrk

φ
|

i=|SCtrk
φ

|−W
(S
Ctrk
φ i

− TO)

6: Dterm := Dg ∗ [(S
Ctrk
φ [|SCtrkΦ |] − TO) −

(S
Ctrk
φ [|SCtrkφ | − 1]− TO)]

7:
8: T := Pterm + Iterm +Dterm
9: if T > TO then

10: raiseCL (CLCtrk )
11: else if T < TO then
12: lowerCL (CLCtrk )

E. State synchronization strategies

To restrict the staleness, i.e. to limit the amount of unseen
updates for a particular state on diverged controller replicas,
AC ensures that a reliable distribution of a bounded set of
updates has occurred before a new data store transaction
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for the target state is allowed in the system. Each time a
client requests a new state-update, we evaluate the number
of previously submitted unconfirmed state-updates on the
local replica. If this number is above the maximum queue
size governed by the currently applied CL, the transaction
is rejected. Otherwise, the state-update is enqueued in a per-
state FIFO queue. Depending on the distribution strategy, we
distinguish two abstractions of update-state distribution. These
abstractions have their trade-offs in terms of response time and
the generated update distribution load in the control plane,
but they both ensure the property of limited staleness by
bounding the maximum number of enqueued isolated updates
per replica:

1) Fast-Mode State Distribution: The first procedure of
Alg. 5 realizes this distribution abstraction. If the actual
occupancy of the state distribution queue is below the CL-
governed threshold, the state-update is admitted for processing
(Lines 3-6), otherwise it is dropped (Lines 7-8). If admitted,
the update is prepared for the distribution to the other members
of the cluster. The unconfirmed updates in the system are
first enqueued in the distribution queue. Any new update is
merged at the tail of the queue (Line 4). The distribution
procedure then serializes all outstanding unconfirmed updates
and distributes these to the remote replicas (Line 5). The
sender replica then waits on the asynchronous confirmations
for the individual updates. After all active cluster members
have acknowledged the state-update(s), the sender removes
the acknowledged updates from the distribution queue (refer
to procedure ”On Acknowledgment of distribution”).

2) Batched-Mode State Distribution: The second procedure
of Alg. 5 realizes this distribution abstraction. The transmis-
sion of a series of unconfirmed updates on each new update has
the advantage of the lowered response time and reliability in
the case where some of the previously sent out packets are lost.
Nevertheless, generation of a new frame for each new state-
update may cause unnecessary load if the response time is not
the optimization criterion. For such scenarios, we have realized
a batching queue that collects a number of state-updates (Line
4), up to the maximum amount defined by the applied CL for
the particular state, and distributes these in a batch to the peer
replicas (Line 7). For infrequently updated state-instances, we
introduce an asynchronous timer that triggers the state-update
distribution whenever a non-empty queue is not distributed for
the duration of time specified by the applied CL (Lines 14-17).

VI. COEXISTENCE OF THE CONSISTENCY MODELS

A number of use cases speaks for coupling the SC and AC
in a single system, specifically in the case where SC invariants
may not be invalidated for only a subset of the deployed SDN
controller operations. On the other hand, AC may benefit from
SC when consensus is useful for a particular non-frequent AC
procedure. We henceforth name some use cases:

1) Policy handling with consistency invariants: Sometimes,
the properties of the AC model alone are insufficient because
of the strict invariant requirements. For instance, handling
a routing or security policy in a consistent manner may be
required when a possibility of temporary incorrect configura-
tion exists (e.g. black holes and forwarding loops [27], [28]).

Algorithm 5 Fast and batched distribution of state-updates
Input:
U localCtrk

Local update request for state Ctrk
CL

Ctrk
QS Max. distribution queue size for the applied CL

CL
Ctrk
TO Distribution timeout for the applied CL

QECtrk Distribution queue for the unacknowledged state-updates
committed at the local replica

QCCtrk List of local state-updates acknowledged by all remote
replicas

C The set of remote controller replicas

1: procedure FAST-MODE DISTRIBUTION
2: function EVALADDTODISTRIBUTIONQUEUE(U localCtrk

)
3: if occupied(QECtrk ) < CL

Ctrk
QS then

4: enqueue(QECtrk , U
local
Ctrk

)
5: distribute(C,QECtrk )
6: return True
7: else if occupied(QECtrk ) ≥ CL

Ctrk
QS then

8: return False
9:
1: procedure BATCHED-MODE DISTRIBUTION
2: function EVALADDTODISTRIBUTIONQUEUE(U localCtrk

)
3: if occupied(QECtrk ) < CL

Ctrk
QS then

4: enqueue(QECtrk , U
local
Ctrk

)

5: if occupied(QECtrk ) == CL
Ctrk
QS then

6: TCtrk == null
7: distribute(C,QECtrk )

8: if TCtrk == null then
9: TCtrk := init-timer(CLCtrkTO )

10: return True
11: else if occupied(QECtrk ) ≥ CL

Ctrk
QS then

12: return False
13:
14: upon event expired < TCtrk > do
15: TCtrk == null
16: if occupied(QECtrk ) > 0 then
17: distribute(C,QECtrk )

1: procedure ON ACKNOWLEDGMENT OF DISTRIBUTION (FAST-
AND BATCHED-MODE)

2: upon event acknowledged < QCCtrk > do
3: for all U localCtrk

∈ QCCtrk do
4: QECtrk .remove(U localCtrk

)

Similarly, when optimal decision-making based on the current
data store state is a requirement, a globally up-to-date view in
each replica must be ensured at all times.

2) Exactly-once semantics: Ensuring the exactly-once se-
mantics, when multiple replicas are notified of an external
event, requires consensus in order to elect the executing con-
troller instance [6]. Multiple triggers may lead to such events,
e.g. switch state-change notifications. AC could process such
events in the RSM-manner (as a Replicated State Machine
[29]) and subsequently re-configure the switches, so that the
result of the computations in the RSM instances are both
compared and applied in the switch. This, however, induces
complexity that requires extended switch functionalities [6],
[12], [30]. Optionally, with a hybrid SC/AC deployment, SC
mechanisms [7] could provide for the leadership semantics for
the exactly-once processing on the leader, while AC would
handle the subsequent state-update distribution.
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3) AC/SC-based CL notification distribution: Following a
CL adaptation in the AC, an agreement between the replicas
is necessary to ensure the consistent global re-configuration
of the CL in each controller. The agreement in all nodes
can be ensured by reaching a consensus about the newly
applied CL. Noted, the OCA block may execute at a single
node at any point in time (e.g. the actual cluster leader) or
each replica in distributed manner. The latter variant requires
the nodes reaching a consensus on the new applied CL after
collecting the remote replicas’ respones (e.g. using a PBFT-
like signalling protocol [19]). In any case, the OCA block does
not represent an SPOF in the system.

VII. EVALUATION METHODOLOGY

A. Application model
To present the trade-offs in deploying either Strong Consis-

tency (SC), Adaptive Consistency (AC) or Eventual Consis-
tency (EC) in a multi-controller testbed, we have implemented
and evaluated a distributed load balancer application (SDN-
LB) as a component of a modified OpenDaylight [15] dis-
tribution. The SDN-LB allows for the embedding of isolated
independent services via a YANG-modeled REST interface,
characterized by the type and cost (i.e. comprising a capacity
requirement). Each SDN controller replica runs data store im-
plementations for all three consistency models, and is enabled
to accept new embedding requests.

A data-plane SDN-LB has already been investigated in
the past in the context of the link-load distribution scenarios
[11], [30]. However, we generalize the goals of the SDN-
LB to support allocation of any type of resources (i.e. band-
width/CPU/memory) on the selected optimal service node,
given a subset of the feasible candidate nodes and their current
utilizations in terms of the mappable resource as the inputs.
The algorithm then decides to assign the service request,
under consideration of hard resource constraints, on the node
deemed as optimal w.r.t. total balance of resource utilization.
We adapt the algorithm defined in [26] to facilitate immediate
scheduling, i.e. an online resource mapping process.

We model the state of the current reservations and the
available resources as in-memory state instances in our data
store realizations. SDN-LB decisions are made based on the
current value of these states. Upon each successful embedding,
the current node utilization is updated to include the cost of the
latest request. The controller is then in charge of disseminating
the local reservation update using the update-distribution and
commit mechanism implemented by the underlying data store.

In the case of the SC model, every single update in the
data store, to each service node, is serialized by the RAFT
leader, using the consensus abstraction. In the EC and AC
framework, each new resource reservation necessitates an
increment or decrement update to the respective CRDT PN-
Counter object (ref. Alg. 1). Combined with the commuta-
tive increment/decrement operations, the PN-Counter ensures
eventual convergence for both EC and AC models and thus
represents a good data structure fit for resource tracking
realization. In AC, the state-updates to the PN-Counter are
queued and distributed across the cluster based on the CL-
timer and maximum queue-distribution thresholds, governed

by the currently applied CL. Indeed, the adaptation function
(ref. Sec. V-D) adapts the CL, and thus manipulates the worst-
case time required to synchronize the value of the counters.
Thus, the adaptation affects the quality of the embedding
decisions made by the replicas running the AC framework. The
inefficiency metric provided as an input for the consistency
adaptation φ maps to the approximation ratio introduced in
Sec. V-C. Finally, in the case of EC, state-updates are queued
in the state-specific FIFO distribution queue and are distributed
as fast as possible (i.e. excluding any waiting period).

B. Data Store Realizations

To empirically compare the effects of deploying the different
consistency models, we have implemented and integrated in
OpenDaylight the three data store variations:

1) Strong Consistency: The evaluated SC data store is
realized using the unmodified RAFT [7] implementation atop
of Java and Akka.io1 concurrency framework included in
the OpenDaylight Boron-SR4 distribution. We have modeled
the data-models required by the generic SDN-LB application
using YANG2 modeling language. We then synthesized these
models into REST APIs using ODL’s YANG Tools3 compiler.

2) Adaptive Consistency: The implementation abstractions
of the AC framework are based on the algorithms presented
in Sec. IV. The framework is implemented as a set of Java
bundles, and has been integrated in the OpenDaylight’s OSGi
environment as an in-memory data store in parallel to the SC
data store. In the AC environment, similar to above, we expose
the data-model for the SDN-LB application using the YANG
and REST APIs. Additionally, the CL adaptation as well as
the distribution of the CRDT state-updates (Sec. V-E) require
a new protocol definition. We have used Google Protobuf4

to describe the corresponding data structures, as well as to
serialize the on-the-wire transmissions. Asynchronous replica
acknowledgments are sent out to the senders in order to
acknowledge the successful state-/CL-updates at the receivers.

3) Eventual Consistency: The EC implementation is based
on the AC framework implementation. In the AC realization,
the update-distribution queue thresholds are derived from the
specification of the currently applied CLs. In EC, however,
the CLs hold no relevance for the state distribution, hence
the maximum queue sizes of the distributed state-updates are
unbounded and can thus theoretically grow infinitely for very
high service request arrival rates.

C. On topology and parameter selection

We base our evaluation of the consistency models using an
in-band OpenFlow control plane and an emulated forwarding
plane, consisting of a number of interconnected Open vSwitch
(OVS) instances instantiated and isolated in individual Docker
containers. We have emulated the Internet2 Network Infras-
tructure Topology as a representative of an ISP network, as

1Akka Clustering and Remoting - https://akka.io/
2YANG - A Data Modeling Language for the Network Configuration

Protocol (NETCONF) - https://tools.ietf.org/html/rfc6020
3Yang Tools - https://wiki.opendaylight.org/view/YANG Tools:Main
4Google Protocol Buffers - https://developers.google.com/protocol-buffers/

https://akka.io/
https://tools.ietf.org/html/rfc6020
https://wiki.opendaylight.org/view/YANG_Tools:Main
https://developers.google.com/protocol-buffers/
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well as a standard fat-tree data-center topology, controlled by
a 5- and 4-controller cluster, respectively. To reflect the delays
incurred by the length of the optical links in the geographically
scattered Internet2 topology, we assume a travel speed of light
of 2 ∗ 106km/s in the optical fiber links. We derive the link
distances and hence the propagation delays from the publicly
available geographical Internet2 data5. The links of the fat-
tree topology were modeled to incur a variable propagation
and processing delays averaging 1ms. In the ISP topology we
leveraged a controller placement that targets the maximized
robustness against the controller failures and a minimization
of the probability of occurrence of switch partitions, as per
the optimal placement presented in [31], [32]. The resulting
controller placement is depicted in Fig. 3a. SDN controller
replicas in the data-center topology are assumed to run on
the leaf-nodes, deployed as virtual machines (VMs) (Fig. 3b),
similar to the controller placement presented in [33].

(a) Internet2 topology [31] (b) Fat-tree topology [33]

Fig. 3. Exemplary network topologies and controller placements used in the
evaluation of the SC, AC and EC frameworks. Elements highlighted in green
and blue represent the forwarding and compute devices, respectively. Red
elements are the OpenDaylight controller instances placed as per [31], [33].

We model the arrival rates of the incoming service embed-
ding requests using a negative exponential distribution [34].
To emphasize the effects of the EC on the quality of decision-
making in the SDN-LB application, we distribute the total
request load non-uniformly across the controller replicas. The
arrival rates and the per-replica load distribution weights are
included in Table I. The Docker- and OVS-based topology
emulator, as well as the 5 controller replicas, were deployed
on a single commodity PC equipped with a recent multi-core
AMD Ryzen CPU and 32 GB of RAM.

VIII. RESULTS

A. Correctness of the SDN Application’s Decision-Making

Fig. 4 visualizes an exemplary adaptation process in the AC
framework. In particular, blue, green and cyan lines depict
the CL applied for the SDN-LB-related CRDT PN-Counter
instances on three different controller replicas. Red and black
lines correspond to the actual capacity assignments managed
by the SDN-LB instances on the different replicas. The re-
sources are assigned on two different servers providing for
the utilizable capacity. Indeed, in case of a strongly consistent
SDN-LB (SC), the black and the red lines would continuously
overlap as the state of reservations would be serialized and
an optimal placement executed for each incoming service
embedding request. Fig. 4b highlights the adaptation of the CL

5Pareto Optimal Controller Placement (POCO) -https://github.com/lsinfo3/
poco/tree/master/topologies

Parameter Model Value Comment
Number of

Replicas SC, AC, EC [4∗, 5+] Internet2+ and fat-tree∗

Consistency Levels
(Granularity) AC [1..10] Ref. Alg. 3 and 4

CL
Ctrk
QS

AC [3..15] Ref. Alg. 5

CL
Ctrk
TO

AC [100..1000] Ref. Alg 5
Initially applied

CL AC 3 N/A

Pg AC 0.2 Ref. Alg. 4
Ig AC 0.2 Ref. Alg. 4
Dg AC 0.1 Ref. Alg. 4
TO AC 2 Ref. Alg. 4
W AC 5 Ref. Alg. 3 & 4
TL AC 1.5 Ref. Alg. 3
TU AC 3.5 Ref. Alg. 3

SDN − LB#C SC, AC, EC 2 SDN-LB - No. service types
SDN − LB#S SC, AC, EC 2 SDN-LB - No. servers
SDN−LBCCost SC, AC, EC [500..600] SDN-LB - Service cost

CWeights SC, AC, EC [1, 1, 2, 1, 5]+

[1, 2, 2, 5]∗
Req. load for Internet2+

and fat-tree∗ topologies
TABLE I

PARAMETRIZATIONS USED DURING OUR STUDY.

at the time point 905000 us, where the imbalance and thus the
inefficiency of the SDN-LB lead to an adaptation trigger and
a steep decrease of the utilized CL from 10 (the most relaxed
CL) to 0 (the most strict CL). The consistency adaptation func-
tion modifies the maximum available queue capacity CLCtrkQS

for any new state-updates as well as the worst-case timeout
CLCtrkTO , as per Table I. With the strictness of the applied CL,
the SDN-LB resource assignment discrepancy decreases, but
the overhead of blocking time for new state-updates increases.

Fig. 5 depicts the measured inefficiencies in the SDN-LB’s
assignment for the case of the AC- and the EC-based models in
the fat-tree topology. The AC model uses the threshold-based
adaptation of the CLs, and depicts a faster convergence in the
case of the fast-mode based AC update distribution, compared
to the EC case. Indeed, the fast-mode converges first to the
worst-case inefficiency for all depicted request arrival rates.
The batched-mode shows a lower average inefficiency than the
EC model in the case of the request arrival rates of 2 ms. For
the case of less frequent 5 ms arrivals, batched-mode state-
update distribution shows higher mean inefficiency than the
EC case. This is explained by the fact that the batched-mode
distribution of the state collects and distributes the outstanding
state-updates only after a queue-threshold has exceeded or a
scheduled CL-governed timer has expired. However, the time
duration taken to fill up the distribution queue for the batched-
mode is inversely proportional to the rate of update arrivals.
Hence, compared to EC, for slow request arrivals the staleness
caused by delaying the updates’ distribution offsets the benefits
of bounding the total number of state-updates.

Fig. 6 portrays the comparison of threshold- and PID-based
AC consistency adaptation, as well as the EC consistency
model in the case of the Internet2 topology. Similar to the
result in Fig. 5, the usage of bounded state-update distribution
queues leads to a bounded worst-case inefficiency metric
with both evaluated AC adaptation functions. Interestingly,
threshold-based adaptation depicts a lower average- and worst-
case performance for the estimated inefficiency, compared to
the PID-based model. This behavior could be caused by the
tendency of the PID-model to relax the frequency of state
synchronization more often, thus leading to a slightly higher
inefficiency, at the benefit of a higher transaction throughput.

https://github.com/lsinfo3/poco/tree/master/topologies
https://github.com/lsinfo3/poco/tree/master/topologies
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(a) PID-based CL adaptation
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(b) Threshold-based CL-adaptation

Fig. 4. PID-based (a) and threshold-based (b) adaptation of consistency levels. The PID-based approach is more volatile compared to a rather resistant
threshold-based approach. As per Alg. 3 the threshold-based approach keeps the current CL unmodified, as long as the measured inefficiency stays in a
specific range (i.e. between the specified upper and lower thresholds). The PID-based approach, on the other hand, oscillates around the specified target
inefficiency value. For brevity, we only depict the historical data for C = 3 controllers here (of a total of C = 5).
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Fig. 5. CDFs of reported inefficiencies (approx. ratios) for various deployed
consistency models and request arrival rates in the fat-tree topology (ref. Sec.
3b). High inefficiency values indicate a more unbalanced performance of the
distributed SDN-LB instances. Compared to the EC model, the AC model with
the threshold-based adaptation converges faster to the worst-case with both
depicted distribution modes. The fast-mode configurations result in the lowest
worst-case inefficiency values. For the batched-mode distribution, the system
has a similar average inefficiency as the EC. This is related to the delayed
distribution of the state-updates, which is initiated only once the distribution
queue is fully utilized. In the case of less frequent request arrivals (i.e. for
1/λ = 5ms), the distribution queue takes the longest to fully fill up.

Fig. 7 further emphasizes the effect of the design of CL
configurations on the average-case measured inefficiency. The
experienced worst-case inefficiency scales with the number
of allowed isolated state-updates at a single replica. Hence,
careful parametrization of the CL mappings to the maximum
state-update distribution queue sizes and the timer durations
is necessary to ensure the right trade-off between inefficiency
and synchronization overhead.

B. The overhead of distribution of state-updates

We define the update commit-time as the time duration
required to accept, distribute and confirm a single new state-
update in the underlying distributed controller data store. Fig.
8 depicts the box-plots for the measured commit times in the
case of SC and AC models.
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Fig. 6. CDFs of the reported inefficiencies (approx. ratios) for the Internet2
topology. The average- and the worst-case inefficiencies of the EC model
are larger than in the case of the fat-tree topology, as a result of the larger
controller-to-controller network delays in the geographically spaced Internet2
network. The AC model deployment does not suffer from this issue because
of the limited amount of incurable staleness, guaranteed by the maximum
amount of unsynchronized updates. Threshold-based adaptation model shows
a better performance than PID-based adaptation, possibly having to do with
the higher probability of the relaxation of CLs in PID-mode (refer to Fig. 4).

AC (local) showcases the time required to apply an update to
the local replica and return a corresponding acknowledgement
at the requesting application. The AC (W=3) case corresponds
to the time duration needed to converge the state-update
request at 3 of 5 replicas. Thus, in the case of failure of 2
controller replicas, the remaining replicas can still eventually
converge on the latest state value.

The analogue case for the SC replicas is depicted in the
two right-most box-plots. An SC cluster of 5 replicas tolerates
a maximum of 2 controller failures (because of the majority
constraint imposed by the CAP theorem [22]). Compared to
the AC (W=3) case, the SC model offers the advantage of the
serialized data stores updates. This benefit, however, comes at
a high cost of minimum, average and worst case commit times,
especially when state-update requests are received at one of
the follower replicas. Indeed, an incoming state-update request
at a leader replica leads to the faster commit confirmations,
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Fig. 7. The measured mean inefficiency for the different CL
Ctrk
QS

parametrizations for the most-relaxed CL configuration. The larger the max-
imum allowed state-update queue size, the larger the sojourn time of the
locally admitted state-updates without enforced data store synchronization.
Thus, the inefficiency of the system scales with the number of unseen state
modifications. In the case of AC - qmax15, up to 15 state-updates may be
enqueued for a particular controller state without enforced synchronization.
This case depicts a similar inefficiency as the EC case (without any staleness
bounds). This is a result of a limited processing power of our testbed, where,
at this point, clients are either unable to request a higher number of parallel
concurrent REST-based SDN-LB-requests, or the controller instances are
unable to concurrently process a higher number of individual updates than
the 15 depicted in this case. We expect the maximum inefficiency for the EC
case to deviate further in the scenarios of more scalable testbeds.

as one less uni-directional packet-transmission delay from the
followers to the leader is required. The worst-case commit
time in the AC (W=5) case is similar to the optimistic SC
case. It results in a relatively high commit time, because of
the geographical separation of the controllers, native to the
Internet2 topology. The AC (W=5) case, however, tolerates a
total of 4 controller replica failures and thus offers a higher
availability compared to the SC deployment that would require
a minimum of 2∗4+1 = 9 controller instances to tolerate the
same amount of controller failures. The SC (Follower) case
considers the update requests received at one of the follower
controller replicas that require transmission and subsequent
serialization at leader, as well as the majority consensus to
commit the update. In the geo-replicated scenarios such as in
the case of Internet2 topology, this case may not be neglected.

Table II portrays the incurred message load in controller-to-
controller communication for the transmission of state-updates
resulting from 1000 subsequent SDN-LB mapping requests,
distributed uniformly across all instances. The portrayed re-
sult considers the average per-instance overhead in a cluster
of five replicas. The batched-mode in the AC framework
incurs the lowest message overhead because of its useful
property of aggregation of the state-updates. The SC mode
depicts a lower number of frames transmitted during the per-
second measurement intervals. However, the average frame
size of the SC-transmitted messages is larger compared to
the AC/EC deployment. The total time taken to serve 1000
SDN-LB embedding requests in the SC deployment takes
a longer time as each write and read request is serialized,
and no concurrent state modifications are allowed to take
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Fig. 8. The commit times using the AC and SC data stores. The average
response time corresponds to the AC (local) case. The AC framework
configuration that replicates to W=3 replicas AC (W=3), depicts a better worst-
case commit-time performance, while tolerating the same availability as a
comparable SC configuration (with a total of 5 controllers, and W=3 during
blocking writes). The worst-cases AC (W=3) and AC (W=5) blocking periods,
however, only occur when the state-update queue is filled and a distribution
is necessary to ensure the staleness bound. On the other hand, the throughput
of the SC cluster suffers specifically in the case where updates are committed
on the RAFT nodes assigned a follower role. This confirms the results of [9].

Consistency Model Distr.
Time [s]

Avg.
PPS

Avg. Packet
Size [B]

Avg. Load
[B/s]

EC 25.12 3802 124.5 469k
SC 115.12 326.82 2612.6B 844.2k

AC (Batched-Mode) 39.501 3460 105.4 365k
AC (Fast-Mode) 40 3552 102.5 372k

TABLE II
PER-REPLICA LOAD WHEN SERVING 1000 SDN-LB REQUESTS IN A
5-CONTROLLER CLUSTER SYNCHRONIZED USING SC, AC OR EC.

place. Previous measurements of the RAFT implementation
in OpenDaylight [9], [10] have proven that the overhead of
read operations in a consensus-based cluster is similar to that
of the write operations, since cluster-wide reads/writes are
necessary to reach consensus on the latest state values. Lastly,
the distribution time of AC suffers compared to the EC model,
since EC processes transactions as fast as possible and does
not implement the overhead of consistency adaptation.

IX. RELATED WORK

1) On Strong Consistency: Ongaro et al. [18] and Howard
et al. [7] provide the initial experimental performance evalua-
tions of the RAFT consensus algorithm. They focus on the
evaluation of the performance of leader election procedure
during the controller failure scenario. Suh et al. [9], [10]
experimentally measure the throughput and the recovery time
of a RAFT-enabled cluster with up to 5 SDN controllers for
the use case of flow table reconfigurations. These works do not
discuss the effect of failures on the quality of decision-making
in the context of SDN applications nor do they cover the
aspects of RAFT scalability for high-throughput applications.

Ravana [6] is a proposal for a distributed SDN controller
that provides for a total-order of processed control messages,
and ensures exactly-once delivery invariant for switch (re-
)configurations. The focus of Ravana is on ensuring the
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performance guarantees in the face of failures, and not on
leveraging the different consistency models for supporting the
scalability of the distributed SDN control plane.

In our measurements, we continuously assume the avail-
ability of strict serialization and thus the exactly-once and
total-order semantics in the SC model. However, a recent
research [35] has showcased two scenarios where the interplay
of a RAFT-enabled controller cluster and SDN data plane
may introduce inconsistency in the control plane. The authors
formulate and reproduce the problems of the oscillating and
non-converging RAFT leader election, and propose a partial
solution. However, they leave the validation of the solution for
future work. Thus, even if we compare the AC approach to
an idealized SC scenario, we note that RAFT still may lead
to poor correctness/availability performance in some cases.

2) On Eventual Consistency: HyperFlow is an EC publish-
and-subscribe data-broker approach [3]. In HyperFlow, each
controller sends the state-update requests to an external data
store that disseminates the state-updates to other controllers.
HyperFlow centralizes the state collection and distribution
entity in the external data store, thus effectively shifting the
issue of SPOF from the context of an SDN controller to
another centralized instance and not resolving the SPOF itself.
We focus on the internalization of the data store to stay
compatible with the current clustering solutions. SCL [12]
provides a methodology for preserving safety and liveness
invariants without deploying consensus. The authors rely on
the quiescent period where, during a period with no data
plane changes, all controllers eventually converge to same
view to ensure correct operation. This can, however, only
be guaranteed in networks with very limited reconfiguration
dynamics, which is why SCL may occasionally lead to a
disagreement of controller views. Our AC concept does not
rely on quiescent period. Similarly, we do not rely on the
availability of switch agents to guarantee the exactly-once
execution semantics, which in contrast SCL does.

Levin et al. [11] evaluate the impact of an inconsistent
global network view on the load balancer’s performance as-
suming flexible frequencies of synchronization periods. Their
results suggest that an inconsistency in the SDN control
state view across multiple controller instances significantly
degrades the performance of the SDN applications agnostic
to the underlying state distribution. Contrary to our work,
the authors generalize the synchronization procedure to a
periodic task with flexible periods. In the case of SC, we
consider a continuous synchronization model where on-the-
wire transactions must be serialized in order to ensure a total
ordering of decisions. In the EC case, we assume non-periodic
state synchronization, as this provides for a more realistic
and better performance and lower penalty of state staleness,
especially for the case of higher request arrival rates.

3) On Adaptive Consistency: In [14], we have introduced
an AC model that employs the concept of ’strong eventual
consistency’, along with a ’cost-based’ approach for quantify-
ing penalties induced by the successfully detected state-merge
conflicts. We used simulation to evaluate our model on an
example of an SDN routing application and have motivated
the potential performance gains.

In [13], the authors compare an adaptive approach to the
state synchronization between the controllers with an approach
of using the non-adaptive controllers that synchronize state
with a constant synchronization period. The authors deploy
an adaptation module to apply one of the pre-configured fixed
synchronization intervals, which makes the approach inflexible
for frequent network changes (i.e. varying controller request
loads and network congestions). In contrast, we define an
adaptation function which manages the new update admission
in order to preserve the worst-case staleness bounds. Our work
extends the conclusions on the practical applicability of AC by
considering constant re-adaptation of the consistency levels.

TACT middleware [36] enforces consistency bounds among
the replicas of a distributed system. To bound the level of
inconsistency, TACT defines consistency measures, including:
i) the order error, which limits the number of tentative writes
that can be outstanding at any replica; ii) the numerical error,
which bounds the difference between the value delivered to
the client and the most consistent value; iii) and staleness,
which places a probabilistic real-time bound on the delay
of propagating the writes. A well-known arrival rate for
the incoming requests is used to estimate the probabilistic
staleness bound. We distinguish ourselves from TACT by
introducing an admission control mechanism for serving new
state modifications at any randomly selected serving instance.
Thus, we proactively place deterministic bounds on the max-
imum number of allowed isolated local state updates.

A corner case of the exceeded limit values for isolated
PN-Counter state-updates is related to the issue of conflicting
over-reservations, previously discussed in [14]. Balegas et al.
[37], [38] solve this issue by implementing an escrow-based
bounded counter CRDT, so to guarantee that a value of a
counter never exceeds some limit value.

X. CONCLUSION AND OUTLOOK

This works presents a realization of an Adaptive Consis-
tency (AC) framework. On an example of 5-controller SDN
cluster and two realistic network topologies, we highlight its
advantages w.r.t.: i) the control plane response time compared
to the Strong Consistency approach; ii) the decision-making
efficiency compared to the Eventual Consistency approach;
iii) the generated controller-to-controller load compared to the
both approaches. We introduce two distribution abstractions
that enable the controller-to-controller state exchange, while
minimizing the response time and the generated average load.
Furthermore, we present two adaptation functions, that adapt
the system in a closed-loop manner, so that the target inef-
ficiency incurred by the eventuality of state delivery persists
according to the SDN application’s expectations.

Future works should evaluate the AC framework in sce-
narios comprising a larger number of controllers. Large-scale
demonstrations could additionally emphasize the benefits over
the alternative consistency approaches. The adaptation func-
tions take as input the SDN application-triggered inefficiency
reports. The benefit of the consistency adaptation comes at the
expense of an expanded model parametrization space and the
necessity of an SDN application re-design. Further attention
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should thus be given to simplifying the related development
efforts, e.g. by providing sane configuration defaults or by
automating the generation of required parametrizations [39].
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