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Abstract—Non-orthogonal multiple access (NOMA) has been
recently considered in millimeter-wave (mmWave) massive
MIMO systems to further enhance the spectrum efficiency. In
addition, simultaneous wireless information and power transfer
(SWIPT) is a promising solution to maximize the energy effi-
ciency. In this paper, for the first time, we investigate the integra-
tion of SWIPT in mmWave massive MIMO-NOMA systems. As
mmWave massive MIMO will likely use hybrid precoding (HP)
to significantly reduce the number of required radio-frequency
(RF) chains without an obvious performance loss, where the fully
digital precoder is decomposed into a high-dimensional analog
precoder and a low-dimensional digital precoder, we propose to
apply SWIPT in HP-based MIMO-NOMA systems, where each
user can extract both information and energy from the received
RF signals by using a power splitting receiver. Specifically, the
cluster-head selection (CHS) algorithm is proposed to select one
user for each beam at first, and then the analog precoding is
designed according to the selected cluster heads for all beams.
After that, user grouping is performed based on the correlation of
users’ equivalent channels. Then, the digital precoding is designed
by selecting users with the strongest equivalent channel gain in
each beam. Finally, the achievable sum rate is maximized by
jointly optimizing power allocation for mmWave massive MIMO-
NOMA and power splitting factors for SWIPT, and an iterative
optimization algorithm is developed to solve the non-convex
problem. Simulation results show that the proposed HP-based
MIMO-NOMA with SWIPT can achieve higher spectrum and
energy efficiency compared with HP-based MIMO-OMA with
SWIPT.

Index Terms—SWIPT, mmWave, massive MIMO, NOMA,
hybrid precoding, power allocation, power splitting.

I. INTRODUCTION

M ILLIMETER-wave (mmWave) massive MIMO has

been considered as one of the promising techniques
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for 5G wireless communications, since it can provide wider

bandwidth and achieve higher spectrum efficiency [1] [2]. It is

well known that in conventional MIMO systems, each antenna

usually requires one dedicated radio-frequency (RF) chain

to realize the fully digital signal processing [3] [4]. In this

way, the use of a very large number of antennas in mmWave

massive MIMO systems leads to an equally large number of

RF chains, which will result in unaffordable hardware cost

and energy consumption [5]. To address this issue, hybrid

precoding (HP) has been proposed to significantly reduce the

number of required RF chains in mmWave massive MIMO

systems without an obvious performance loss [6]. The key idea

of HP is to decompose the fully digital precoder into a high-

dimensional analog precoder (realized by the analog circuit)

to increase the antenna array gain and a low-dimensional

digital precoder (realized by a small number of RF chains)

to cancel interference [7]–[10]. Usually, two typical HP ar-

chitectures are adopted [5]: 1) Fully-connected architecture,

where each RF chain is connected to all antennas; 2) Sub-

connected architecture, where each RF chain is connected to

only a subset of antennas. For general comparison, the fully-

connected architecture can achieve higher spectrum efficiency,

while the sub-connected architecture is expected to achieve

higher energy efficiency [5].

To further increase the spectrum efficiency, non-orthogonal

multiple access (NOMA) has been recently considered in

mmWave massive MIMO systems [11]–[14]. It has been

shown that NOMA can significantly improve the spectrum

efficiency compared to the conventional orthogonal multiple

access (OMA) schemes [15]–[18]. By using NOMA, more

than one user can be supported in each beam with the aid of

intra-beam superposition coding and successive interference

cancellation (SIC) [15] [16], which is essentially different

from conventional mmWave massive MIMO using one beam

to serve only one user at the same time-frequency resources.

Particularly, NOMA was applied to beamspace MIMO for the

first time in [11], which can be regarded as a low-complexity

realization of HP, and power allocation was optimized to

maximize the achievable sum rate. In addition, NOMA was

also utilized in fully-connected HP architecture in [12], and

digital precoding was designed by modifying the conventional

block diagonalization (BD) precoding scheme. Furthermore, a

more sophisticated digital precoding design, i.e., minorization-

maximization (MM) based precoding, was proposed in [13] to

maximize the achievable sum rate. Besides, power allocation

was optimized in [14] to maximize the energy efficiency of

http://arxiv.org/abs/1809.07682v1
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mmWave massive MIMO-NOMA systems, and an iterative

algorithm was proposed to obtain the optimal power allocation.

In addition to improving the spectrum efficiency, energy

efficiency is also one of the key performance indicators (KPIs)

for 5G, which is expected to be 100 times compared with

that of current 4G wireless communications [19]. To this

end, simultaneous wireless information and power transfer

(SWIPT), which was initially proposed in [20], has attracted

great interests in recent years [21]–[25]. The key idea of

SWIPT is that both information and energy could be extracted

from the same received RF signals, which can be realized by

power splitting receivers in practice [26]. With the help of

SWIPT, the battery-powered wireless communication devices

can harvest energy from the RF signals to prolong their

lifetime, which provides the potential to explore more energy-

efficient networks, especially for Internet of Things (IoT)

with millions of wireless devices [27]. However, the trade-off

between information rate and harvested energy level should be

carefully considered to facilitate efficient SWIPT in multi-user

systems, since inter-user interferences are usually harmful for

the information decoding (ID), while they can be useful for

energy harvesting (EH) [21].

In fact, some efforts have been endeavored to address this

problem. Particularly, a joint transmit beamforming and power

splitting optimization was investigated in [28], where the trans-

mit power was minimized under the signal-to-interference-

and-noise ratio (SINR) and EH quality of service (QoS)

constraints for multi-user MIMO systems. In addition, the

joint transceiver and power splitting design for downlink multi-

user MIMO SWIPT networks was also investigated based on

the mean square error (MSE) criterion in [29]. For multi-cell

multi-user downlink SWIPT systems, the joint transceiver and

power splitting design was studied to optimize the energy

efficiency in [30]. Although SWIPT has the potential to

realize energy efficient wireless communications, and has been

investigated in some multi-user systems, the application of

SWIPT in mmWave massive MIMO-NOMA systems has not

been considered in the literature to the best of our knowledge,

where new challenges will arise for the joint transceiver and

power splitting optimization.

In this paper, we propose to integrate SWIPT in HP-

based mmWave massive MIMO-NOMA systems to realize

the spectrum- and energy-efficient wireless communications1.

Particularly, a power splitting receiver is used for each user to

achieve SWIPT by dividing the received signal into two parts

for simultaneous information retrieval and energy storage.

In such an system, we investigate the joint optimization of

transceiver for ID and power splitting for EH, including

user grouping, hybrid precoding design, power allocation, and

power splitting factors design. Specifically, the contributions

of this paper can be summarized as follows.

1) We propose to integrate SWIPT in HP-based mmWave

massive MIMO-NOMA systems, including both the fully-

connected architecture and sub-connected architecture.

To the best of our knowledge, it is the first time to

1Simulation codes are provided to reproduce the results presented in this
paper: http://oa.ee.tsinghua.edu.cn/dailinglong/publications/publications.html.

consider SWIPT in massive MIMO-NOMA systems. On

the one hand, HP architecture at the base station (BS)

can significantly reduce the number of required RF chains

without an obvious performance loss, which can largely

save the energy consumption at the BS, while guarantee

the spectrum efficiency of mmWave massive MIMO

systems. On the other hand, by using SWIPT, users can

harvest energy from the received RF signals to prolong

their life, which makes it more energy-efficient at the

users. Note that although the application of SWIPT in

conventional MIMO systems have been studied [21]–

[23], [28], [29], the introduction of NOMA will result in

additional challenges for the joint transceiver and power

splitting optimization.

2) To enable the HP-based mmWave massive MIMO-

NOMA systems with SWIPT, we investigate the joint

transceiver and power splitting optimization. Specifically,

the cluster-head selection (CHS) algorithm is proposed

to select one user for each beam, and then the analog

precoding is designed to obtain the antenna array gain

according to the selected cluster heads for all beams.

After that, user grouping is performed based on the

equivalent channel correlation of the remaining users

and the cluster-heads. Then, the digital precoding is

designed to cancel the inter-user interference by selecting

users with the strongest equivalent channel gain in each

beam. Finally, the achievable sum rate is maximized by

jointly optimizing power allocation as well as power

splitting factors, which is very difficult to obtain the

optimal solutions due to the coupling of different users’

power allocation factors as well as the power splitting

factors. To address this issue, an iterative optimization

algorithm is developed to solve the non-convex problem,

and the convergence and computational complexity are

also analyzed.

3) The performance in terms of both spectrum efficiency

and energy efficiency of the proposed HP-based mmWave

massive MIMO-NOMA systems with SWIPT is evaluated

by simulations. The convergence of the developed itera-

tive optimization algorithm for joint power allocation and

power splitting is validated, and it is shown that only 10

times of iteration are required to make it converged. Fur-

thermore, we show that the proposed mmWave massive

MIMO-NOMA systems with SWIPT can achieve higher

spectrum and energy efficiency than those of mmWave

massive MIMO-OMA systems with SWIPT.

The rest of this paper is organized as follows. The system

model of HP-based mmWave massive MIMO-NOMA system

with SWIPT is introduced in Section II. User grouping and

hybrid precoding design are discussed in Section III. In Section

IV, the joint power allocation and power splitting optimization

problem is formulated to maximize the achievable sum rate,

under the achievable rate QoS and EH QoS constraints for

each user. Furthermore, an iterative optimization algorithm is

proposed to solve the non-convex problem. Simulation results

are provided in Section V. Finally, conclusions are drawn in

Section VI.

http://oa.ee.tsinghua.edu.cn/dailinglong/publications/publications.html
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Notation: We use upper-case and lower-case boldface letters

to denote matrices and vectors, respectively; (·)T , (·)H , (·)−1,

and ‖ · ‖p denote the transpose, conjugate transpose, matrix

inversion, and lp norm operation, respectively. E {·} denotes

the expectation. |Γ| denotes the number of elements in set

Γ. A(i, :)i∈Γ denotes the submatrix of A that consists of

the ith row of A for all i ∈ Γ, while A(:, j)j∈Γ denotes the

submatrix of A that consists of the jth column of A for all

j ∈ Γ. We use the notation CN (m,R) to denote the complex

Gaussian distribution with mean m and covariance R, and

U (a, b) to denote the uniform distribution in the range (a, b).
⊗ denotes the kronecker product. Finally, IN is the N × N
identity matrix, and Φ denotes the empty set.

II. SYSTEM MODEL

In this paper, we consider a single-cell downlink mmWave

massive MIMO-NOMA system, where the BS is equipped

with N antennas and NRF RF chains to simultaneously serve

K single-antenna users [12]–[14], and each user is equipped

with a power splitting receiver for SWIPT.

Fig. 1 shows three architectures of mmWave massive MIMO

systems, i.e., the fully digital MIMO as shown in Fig. 1 (a),

the fully-connected HP architecture as shown in Fig. 1 (b),

and the sub-connected HP architecture as shown in Fig. 1 (c).

From Fig. 1, we can see that for the fully digital MIMO, each

antenna requires one dedicated RF chain, and thus the number

of RF chains is equal to the number of antennas, which results

in unaffordable energy consumption and hardware cost. On the

contrary, the number of RF chains in HP architectures is less

than the number of antennas, which can be realized by a high-

dimensional analog precoder and a low-dimensional digital

precoder. Specifically, for the fully-connected HP architecture

in Fig. 1 (b), each of the NRF RF chain is connected to all

N antennas by finite-resolution phase shifters, where NNRF

phase shifters are required, and thus the full array gain can

be exploited by every RF chain. For the sub-connected HP

architecture in Fig. 1 (c), each RF chain is connected to only

a subset of N BS antennas, so only N phase shifters are

required. In general, the sub-connected architecture is easier

to be implemented and will likely be more energy efficient,

while it may suffer some performance loss compared to the

fully-connected architecture. In this paper, both of the fully-

connected and sub-connected architectures will be considered.

In HP-based mmWave massive MIMO systems, the number

of beams cannot exceed the number of RF chains, and each

beam can only support one user at most [7]. Therefore, to

fully achieve the multiplexing gain, we assume that the number

of beams G is equal to the number of RF chains NRF, i.e.,

G = NRF. On the contrary, each beam can support more than

one user by using NOMA. Let Sg for g = 1, 2, · · · , G denote

the set of users served by the gth beam with |Sg| ≥ 1, and we

have Si ∩ Sj = Φ for i 6= j as well as
G∑

g=1
|Sg| = K . Then,

the received signal at the mth user in the gth beam can be

⋮

⋮

⋮

RF chain

RF chain

Low-

dimensional 

digital 

precoder 

⋮⋮

(b)

⋮

⋮

RF chain

RF chain

Low-

dimensional 

digital 

precoder 

⋮

(c)

⋮

⋮ ⋮

High-

dimensional 

digital 

precoder 

RF chain

RF chain

RF chain

(a)

Fig. 1. System models of mmWave MIMO architectures: (a) Fully digital
MIMO; (b) Fully-connected HP architecture; (c) sub-connected HP architec-
ture.

modeled as

yg,m =h
H
g,mA

G∑

i=1

|Si|∑

j=1

di
√
pi,jsi,j + vg,m

=h
H
g,mAdg

√
pg,msg,m

︸ ︷︷ ︸

desired signal

+ h
H
g,mAdg





m−1∑

j=1

√
pg,jsg,j +

|Sg |∑

j=m+1

√
pg,jsg,j





︸ ︷︷ ︸

intra−beam interferences

+ h
H
g,mA

∑

i6=g

|Si|∑

j=1

di
√
pi,jsi,j

︸ ︷︷ ︸

inter−beam interferences

+ vg,m
︸︷︷︸

noise

,

(1)

where sg,m is the transmitted signal with E{|sg,m|2} = 1,

pg,m is the transmitted power for the mth user in the gth

beam, vg,m is the noise following the distribution CN
(
0, σ2

v

)
,
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dg is the NRF×1 digital precoding vector for the gth beam, A

of size N ×NRF is the analog precoding matrix, and we have

‖Adg‖2 = 1 for g = 1, 2, · · · , G. Particularly, for the fully-

connected architecture, the analog precoding matrix A
(full)

can be expressed as

A
(full) =

[

ā
(full)
1 , ā

(full)
2 , · · · , ā(full)NRF

]

, (2)

where the elements of ā
(full)
n ∈ N×1 for n = 1, 2, · · · , NRF

have the same amplitude 1/
√
N but different phases [6]. For

the sub-connected architecture, the analog precoding matrix

A
(sub) is

A
(sub) =









ā
(sub)
1 0 · · · 0

0 ā
(sub)
2 0

...
. . .

...

0 0 · · · ā
(sub)
NRF









. (3)

Without loss of generality, we assume that M = N/NRF

is an integer, and each RF chain is connected to M anten-

nas in the sub-connected architecture. Then, the elements of

ā
(sub)
n ∈ M×1 for n = 1, 2, · · · , NRF have the same amplitude

1/
√
M [7] [8].

For the N×1 channel vector hg,m of the mth user in the gth

beam, we consider the widely used mmWave MIMO channel

model as shown below [6]–[8]:

hg,m =

√

N

Lg,m

Lg,m∑

l=1

α(l)
g,ma

(

ϕ(l)
g,m, θ(l)g,m

)

, (4)

where Lg,m denotes the number of paths for the mth user

in the gth beam. α
(l)
g,m is the complex gain of the lth path.

ϕ
(l)
g,m and θ

(l)
g,m are the azimuth angle of departure (AoD) and

elevation AoD of the lth path, and a(ϕ
(l)
g,m, θ

(l)
g,m) presents

the N × 1 array steering vector. Particularly, for the typical

uniform linear array (ULA) with N1 elements in horizon and

N2 elements in vertical, where N = N1N2 [7], we have

a (ϕ, θ) = aaz (ϕ)⊗ ael (θ) , (5)

where aaz (ϕ) = 1√
N1

[
ej2πi(d1/λ) sin(ϕ)

]

i∈J(N1)
, ael (θ) =

1√
N2

[
ej2πj(d2/λ) sin(θ)

]

j∈J(N2)
, J (n) = {0, 1, · · · , n− 1},

λ is the signal wavelength, d1 is the horizontal antenna

spacing, and d2 is the vertical antenna spacing. In mmWave

communications, we usually have d1 = d2 = λ/2 [7].

With the aid of power splitting receiver, the received signal

at each user will be divided into two parts. One part is

forwarded to the information decoder for ID, and the other

is processed for EH [29]. Let βg,m, where 0 < βg,m < 1,

denote the power splitting factor for the mth user in the gth

beam, then the signal for EH can be represented as

yEH
g,m =

√

1− βg,myg,m, (6)

and the harvested energy is [29]

PEH
g,m = η (1− βg,m)





G∑

i=1

|Si|∑

j=1

∥
∥h̄

H
g,mdi

∥
∥
2

2
pi,j + σ2

v



 , (7)

where h̄
H
g,m = h

H
g,mA is the equivalent channel vector, and

0 ≤ η ≤ 1 is the energy conversion efficiency. In the

meanwhile, the signal for ID at the mth user in the gth beam

can be expressed as

yIDg,m =
√

βg,myg,m + ug,m, (8)

where ug,m is the noise caused by the power splitter following

the distribution CN (0, σ2
u).

By using NOMA in each beam, intra-beam superposition

coding at the transmitter and SIC at the receiver are performed.

Without loss of generality, we assume that ‖h̄H
g,1dg‖2 ≥

‖h̄H
g,2dg‖2 ≥ · · · ≥ ‖h̄H

g,|Sg|dg‖2 for g = 1, 2, · · · , G. Then,

the mth user in the gth beam can remove the interference from

the jth user (for all j > m) in the gth beam by performing

SIC [15], and the remaining received signal for ID at the mth

user in the gth beam can be rewritten as

ŷIDg,m =
√

βg,m



h̄
H
g,mdg

√
pg,msg,m + h̄

H
g,mdg

m−1∑

j=1

√
pg,jsg,j

+h̄
H
g,m

∑

i6=g

|Si|∑

j=1

di
√
pi,jsi,j + vg,m



+ ug,m.

(9)

Then, according to (9), the SINR at the mth user in the gth

beam can be written as

γg,m =

∥
∥h̄

H
g,mdg

∥
∥
2

2
pg,m

ξg,m
, (10)

where

ξg,m =
∥
∥h̄

H
g,mdg

∥
∥
2

2

m−1∑

j=1

pg,j +
∑

i6=g

∥
∥h̄

H
g,mdi

∥
∥
2

2

|Si|∑

j=1

pi,j

+ σ2
v +

σ2
u

βg,m

.

(11)

As a result, the achievable rate at the mth user in the gth

beam is

Rg,m = log2 (1 + γg,m) . (12)

Finally, the achievable sum rate is

Rsum =

G∑

g=1

|Sg |∑

m=1

Rg,m, (13)

which can be improved by carefully designing user group-

ing, analog precoding matrix A, digital precoding {dg}Gg=1,

power allocation {pg,m}G,|Sg|
g=1,m=1, and power splitting factors

{βg,m}G,|Sg |
g=1,m=1. Since it is very difficult to simultaneously

obtain the optimal solutions for all these design parameters,

we consider to design user grouping and hybrid precoding at

first as described in the next section. Then, joint optimization

of power allocation and power splitting will be introduced in

Section IV.

III. USER GROUPING AND HYBRID PRECODING

We know that the number of users K is larger than the

number of RF chains NRF in the considered system, while

only NRF different analog precoding vectors are available at

the same time [8]. Therefore, to enable hybrid precoding, we
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propose the CHS algorithm to select one user for each beam

(there are G = NRF beams), and then the analog precoding

is designed to obtain the antenna array gain according to the

selected cluster heads for all beams. After that, user grouping

is performed based on the equivalent channel correlation

between the remaining users and the cluster-heads. Then, the

digital precoding is designed to cancel inter-user interference

by selecting users with the strongest equivalent channel gain

in each beam.

A. The proposed CHS algorithm

To improve the system performance, we propose to select

the cluster head for each beam by minimizing the channel

correlation of the selected cluster heads. In this way, users in

different beams will enjoy low channel correlation, which is

beneficial for inter-beam interference cancellation.

In the proposed CHS algorithm, an adaptive threshold δ is

introduced to measure the channel correlation of the cluster

heads. Specifically, the user with the highest channel gain

is selected as the cluster head for the first beam, and then

users whose channel correlation with the first selected user

is less than the threshold δ will be considered as the cluster

head candidates for other beams. Particularly, the user with

the highest channel gain out of the cluster head candidates is

selected as the cluster head for the second beam. After that,

the cluster head candidates will be updated by selecting users

whose channel correlation with the second selected user is less

than the threshold. This procedure is repeated until there is no

candidate. Next, the threshold is updated by adding a small

increment, and then the cluster head candidates are obtained by

selecting users whose channel correlations with the previously

selected cluster heads are less than the threshold. The threshold

will be adaptively updated until the cluster heads are selected

for all G beams. The details of the proposed CHS algorithm

are described in Algorithm 1, and the set of the selected

cluster heads is denoted as Γ.

The proposed CHS algorithm enjoys the polynomial com-

plexity. Specifically, in each iteration, the maximum complex-

ity is (2 + 2(K − 1))(K − 1) from step 9 to step 14, while

the maximum complexity is 2(K − 1) from step 15 to step

18. Therefore, the complexity of Algorithm 1 is O(GK2).

B. Analog precoding

In this paper, we consider the typical two-stage HP pro-

posed in [9]2. The key idea of this scheme is to divide the

HP design into two step, i.e., analog precoding and digital

precoding. Particularly, for analog precoding, only quantized

phase changes can be applied due to the practical constraints

of phase shifters [10]. Considering B bits quantized phase

shifters, the non-zero elements of the fully-connected analog

precoding matrix A
(full) belong to

1√
N

{

ej
2πn

2B : n = 0, 1, · · · , 2B − 1
}

, (14)

2Note that more sophisticated HP schemes can be considered to further
enhance the performance of mmWave massive MIMO-NOMA systems.

Algorithm 1 Proposed CHS algorithm

Input:

The number of users K , and the number of beams G;

Channel vectors: hk for k = 1, 2, · · · ,K;

The initial threshold: δ.

Output:

The cluster head set Γ.

1: Λ = [a1, a2, · · · , aK ], where ak = ‖hk‖2;

2: h̃k = hk/ak for k = 1, 2, · · · ,K;

3: [∼,O]= sort (Λ,′ descend′);
4: Γ = O (1);
5: Γc = O/Γ;

6: Ω = Γc;

7: g = 2.

8: while g ≤ G do

9: if Ω == Φ then

10: while Ω == Φ do

11: δ = δ + (1− δ)/10;

12: Ω =
{

i ∈ Γc
∣
∣
∣

∣
∣
∣h̃

H
i h̃j

∣
∣
∣ < δ, ∀j ∈ Γ

}

.

13: end while

14: end if

15: Ω =
{

i ∈ Ω
∣
∣
∣

∣
∣
∣h̃

H
i h̃j

∣
∣
∣ < δ, ∀j ∈ Γ

}

;

16: Γ = Γ ∪ Ω (1);
17: Γc = O/Γ;

18: g = g + 1.

19: end while

20: return Γ.

while the non-zero elements of the sub-connected analog

precoding matrix A
(sub) belong to

1√
M

{

ej
2πn

2B : n = 0, 1, · · · , 2B − 1
}

. (15)

Based on the cluster head set Γ obtained in the previous

subsection, the analog precoding can be designed according to

the channel vectors of users in Γ. More particularly, the analog

precoding vectors can be obtained by maximizing the array

gains |hH
Γ(g)ā

(full)
g |2 for the fully-connected architecture and

|hH
Γ(g)ā

(sub)
g |2 for the sub-connected architecture, separately,

where g = 1, 2, · · · , G. As a result, the ith element, where i =
1, 2, · · · , N , of the fully-connected analog precoding vector

ā
(full)
g can be expressed as

ā
(full)
g (i) =

1√
N

ej
2πn̂

2B , (16)

where

n̂ = argmin
n∈{0,1,··· ,2B−1}

∣
∣
∣
∣
angle

(
hΓ(g) (i)

)
− 2πn

2B

∣
∣
∣
∣
. (17)

Similarly, the ith element of the sub-connected analog pre-

coding vector ā
(sub)
g , where i = (g − 1)M + 1, (g − 1)M +

2, · · · , gM , is

ā
(sub)
g (i) =

1√
M

ej
2πn̂

2B , (18)

where n̂ is the same as that in (17).
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C. User grouping

After obtaining the analog precoding, the equivalent channel

vectors for all K users can be written as

h̄
H
k = h

H
k A, (19)

where k = 1, 2, · · · ,K . Then, user grouping can be realized

according to the correlation of equivalent channels. Specifi-

cally, user m (m /∈ Γ) can be classed as the ĝth beam, where

ĝ = argmax
g∈{1,2,··· ,G}

∣
∣h̄

H
mh̄Γ(g)

∣
∣

∥
∥h̄m

∥
∥
2

∥
∥h̄Γ(g)

∥
∥
2

. (20)

In this way, users in the same beam will enjoy high correlation

of equivalent channels, while the equivalent channels of users

in different beams have low correlation owing to the proposed

CHS algorithm, which is conducive to the inter-beam interfer-

ence cancellation and thus the improvement of multiplexing

gains.

D. Digital precoding

After analog precoding and user grouping, the equivalent

channel vector for the mth user in the gth beam can be

denoted as h̄
H
g,m as introduced in Section II. Then, the

design of digital precoding actually becomes a conventional

MIMO-NOMA precoding problem to eliminate inter-beam

interference. Without loss of generality, the low-complexity

zero-forcing (ZF) precoding is adopted for digital precoding,

according to the equivalent channel vectors of users having

the highest equivalent channel gain in each beam [11] [12].

Specifically, assuming that the mgth user has the highest

equivalent channel gain in the gth beam, we have

H̄ =
[
h̄m1 , h̄m2 , · · · , h̄mG

]
. (21)

Then, the digital precoding matrix of size NRF×NRF can be

generated by

D̄ =
[
d̄1, d̄2, · · · , d̄G

]
= H̄

(
H̄

H
H̄
)−1

(22)

After normalizing, the digital precoding vector for the gth

beam can be written as

dg =
d̄g

∥
∥Ad̄g

∥
∥
2

. (23)

Afterwards, the users in each beam will be reordered such

that ‖h̄H
g,1dg‖2 ≥ ‖h̄H

g,2dg‖2 ≥ · · · ≥ ‖h̄H
g,|Sg|dg‖2 for g =

1, 2, · · · , G, which is assumed in Section II for SIC.

Up to now, user grouping and hybrid precoding have been

carefully designed to obtain antenna array gains and multi-

plexing gains. In the next Section, the joint optimization of

power allocation and power splitting will be investigated to

maximize the achievable sum rate in (13).

IV. JOINT OPTIMIZATION OF POWER ALLOCATION AND

POWER SPLITTING

Although power allocation has been studied in existing

MIMO-NOMA systems [17], [34]–[36], the joint optimiza-

tion of power allocation and power splitting has not been

considered. The introduction of power splitting factors will

result in additional challenges for the joint optimization in

mmWave massive MIMO-NOMA systems with SWIPT, since

there exists not only the coupling of power allocation factors

from different users, but also the coupling of power allocation

and power splitting factors. On the other hand, the existing op-

timization methods for solving the joint optimization problem

of power allocation and power splitting in MIMO systems with

SWIPT cannot be directly used in MIMO-NOMA systems

with SWIPT, where there are multiple groups and multiple

users in each group, since both inter-group and intra-group

interferences exist. Therefore, it is very difficult to obtain

the optimal solutions. To solve this intractable problem, an

iterative optimization algorithm is developed in this Section to

obtain the sub-optimal solutions. Specifically, the joint power

allocation and power splitting optimization problem can be

formulated as

max
{pg,m},{βg,m}

G∑

g=1

|Sg |∑

m=1

Rg,m

s.t. C1 : pg,m ≥ 0, ∀g,m,

C2 :
G∑

g=1

|Sg |∑

m=1

pg,m ≤ Pt,

C3 : Rg,m ≥ Rmin
g,m, ∀g,m,

C4 : PEH
g,m ≥ Pmin

g,m , ∀g,m,

(24)

where Rg,m is the achievable rate of the mthe user in the

gth beam as defined in (12), the constraint C1 indicates that

the power allocated to each user must be positive, C2 is the

transmitted power constraint with Pt being the maximum total

transmitted power by the BS, C3 is the data rate constraint for

each user with Rmin
g,m being the minimum data rate for the

mthe user in the gth beam, and C4 is the EH QoS constraint

for each user with Pmin
g,m being the minimum harvested energy

for the mthe user in the gth beam. Note that the optimization

problem (24) is non-convex due to the non-convexity of the

objective function, and the constraints C3 as well as C4.

To solve the non-convex problem (24), an iterative opti-

mization algorithm is developed. Particularly, according to the

extension of the Sherman-Morrison-Woodbury formula [37],

i.e.,

(A+BCD)−1 = A
−1−A

−1
B
(
I+CDA

−1
B
)−1

CDA
−1,

(25)

we have

(1 + γg,m)
−1

=1− pg,m
∥
∥h̄

H
g,mdg

∥
∥
2

2

(

pg,m
∥
∥h̄

H
g,mdg

∥
∥
2

2
+ ξg,m

)−1

,

(26)

where g = 1, 2, · · · , G and m = 1, 2, · · · , |Sg|.
On the other hand, let

ỹg,m =h̄
H
g,mdg

√
pg,msg,m + h̄

H
g,mdg

m−1∑

j=1

√
pg,jsg,j

+ h̄
H
g,m

∑

i6=g

|Si|∑

j=1

di
√
pi,jsi,j + vg,m +

1
√
βg,m

ug,m.

(27)
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If the minimum mean square error (MMSE) detection is used

to solve sg,m from ỹg,m in (27), this detection problem can

be formulated as

cog,m = argmin
cg,m

eg,m, (28)

where

eg,m = E
{

|sg,m − cg,mỹg,m|2
}

(29)

is the mean square error (MSE), and cg,m is the channel

equalization coefficient. Substituting (27) into (29), we have

eg,m =1− 2Re
(
cg,m

√
pg,mh̄

H
g,mdg

)

+ |cg,m|2
(

pg,m
∥
∥h̄

H
g,mdg

∥
∥
2

2
+ ξg,m

)

.
(30)

Then, by solving the partial derivatives of (28) based on (30),

the optimal equalization coefficient cog,m can be obtained by

cog,m =
(√

pg,mh̄
H
g,mdg

)∗(
pg,m

∥
∥h̄

H
g,mdg

∥
∥
2

2
+ ξg,m

)−1

.

(31)

Substituting (31) into (30), the MMSE can be written as

eog,m = 1− pg,m
∥
∥h̄

H
g,mdg

∥
∥
2

2

(

pg,m
∥
∥h̄

H
g,mdg

∥
∥
2

2
+ ξg,m

)−1

,

(32)

which is equal to (1 + γg,m)
−1

in (26), i.e., we have

(1 + γg,m)
−1

= min
cg,m

eg,m. (33)

Then, the achievable rate of the mth user in the gth beam can

be rewritten as

Rg,m = log2 (1 + γg,m) = max
cg,m

(−log2eg,m) . (34)

Note that in (34), the polynomial division has been removed

by using eg,m rather than γg,m, which significantly simplifies

the objective function. Furthermore, to remove the log function

in (34), Proposition 1 is introduced [11] [34].

Proposition 1: Let f (a) = − ab
ln 2 + log2a+

1
ln 2 and a be a

positive real number, we have

max
a>0

f (a) = −log2b, (35)

where the optimal value of a is ao = 1
b
.

According to Proposition 1, we can rewrite (34) as

Rg,m = max
cg,m

max
ag,m>0

(

−ag,meg,m
ln 2

+ log2ag,m +
1

ln 2

)

.

(36)

As a result, the optimization problem (24) can be reformulated

as

max
{pg,m},{βg,m}

G∑

g=1

|Sg|∑

m=1

max
cg,m

max
ag,m>0

(

−ag,meg,m
ln 2

+ log2ag,m

)

s.t. C1, C2, C3, C4.
(37)

To solve (37), the iterative optimization algorithm is in-

troduced to optimize {cg,m}, {ag,m}, and {pg,m} as well

as {βg,m}, separately. Specifically, given the optimal power

allocation solution {p(t−1)
g,m } and the power splitting solution

{β(t−1)
g,m } in the (t − 1)th iteration, the optimal solution of

{c(t)g,m} in the tth iteration can be obtained according to (31),

i.e.,

c(t)g,m

=

(√

p
(t−1)
g,m h̄

H
g,mdg

)∗(
p(t−1)
g,m

∥
∥h̄

H
g,mdg

∥
∥
2

2
+ ξ(t−1)

g,m

)−1

,

(38)

where

ξg,m
(t−1) =

∥
∥h̄

H
g,mdg

∥
∥
2

2

m−1∑

j=1

p
(t−1)
g,j

+
∑

i6=g

∥
∥h̄

H
g,mdi

∥
∥
2

2

|Si|∑

j=1

p
(t−1)
i,j

+ σ2
v +

σ2
u

β
(t−1)
g,m

.

(39)

In the meanwhile, the optimal solution of {a(t)g,m} in the tth
iteration can be calculated by

a(t)g,m =
1

e
o(t)
g,m

, (40)

where

eo(t)g,m

=1− p(t−1)
g,m

∥
∥h̄

H
g,mdg

∥
∥
2

2

(

p(t−1)
g,m

∥
∥h̄

H
g,mdg

∥
∥
2

2
+ ξ(t−1)

g,m

)−1

.

(41)

Then, the optimization problem (37) can be simplified as

min
{

p
(t)
g,m

}

,
{

β
(t)
g,m

}

G∑

g=1

|Sg|∑

m=1

a(t)g,me(t)g,m

s.t. C
(t)
1 : p(t)g,m ≥ 0, ∀g,m,

C
(t)
2 :

G∑

g=1

|Sg|∑

m=1

p(t)g,m ≤ Pt,

C
(t)
3 : R(t)

g,m ≥ Rmin
g,m, ∀g,m,

C
(t)
4 : PEH(t)

g,m ≥ Pmin
g,m , ∀g,m,

(42)

where

e(t)g,m =1− 2Re

(

c(t)g,m

√

p
(t)
g,mh̄

H
g,mdg

)

+
∣
∣
∣c(t)g,m

∣
∣
∣

2 (

p(t)g,m

∥
∥h̄

H
g,mdg

∥
∥
2

2
+ ξ(t)g,m

)

.

(43)

Furthermore, we introduce the variables {τ (t)g,m} such that

τ
(t)
g,m ≥ 1

β
(t)
g,m

, and rewrite the objective function in (42) as

min
{

p
(t)
g,m

}

,
{

β
(t)
g,m

}

G∑

g=1

|Sg|∑

m=1

a(t)g,mẽ(t)g,m, (44)
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where

ẽ(t)g,m =1− 2Re
(

c(t)g,mh̄
H
g,mdg

)√

p
(t)
g,m

+
∣
∣
∣c(t)g,m

∣
∣
∣

2




∥
∥h̄

H
g,mdg

∥
∥
2

2

m∑

j=1

p
(t)
g,j

+
∑

i6=g

∥
∥h̄

H
g,mdi

∥
∥
2

2

|Si|∑

j=1

p
(t)
i,j + σ2

uτ
(t)
g,m + σ2

v



 ,

(45)

with the additional constraint

C
(t)
5 : τ (t)g,m ≥ 1

β
(t)
g,m

, ∀g,m. (46)

Intuitively, the objective function (44) becomes convex for

the optimization variables {p(t)g,m} and {τ (t)g,m}. At the same

time, the constraint C
(t)
3 in (42) can be also transformed into

a convex constraint as

C̃
(t)
3 :

∥
∥h̄

H
g,mdg

∥
∥
2

2
p(t)g,m − ωg,m

∥
∥h̄

H
g,mdg

∥
∥
2

2

m−1∑

j=1

p
(t)
g,j

− ωg,m

∑

i6=g

∥
∥h̄

H
g,mdi

∥
∥
2

2

|Si|∑

j=1

p
(t)
i,j − ωg,mσ2

uτ
(t)
g,m

≥ωg,mσ2
v ,

(47)

where ωg,m = 2R
min
g,m − 1. Nevertheless, the constraints C

(t)
4

and C
(t)
5 in (42) are still non-convex due to the multi-variable

coupling. To make it solvable, another variables {µ(t)
g,m} are

introduced such that

C
(t)
6 : µ(t)

g,m ≥ Pmin
g,m

η
(

1− β
(t)
g,m

) , ∀g,m. (48)

Then, the constraint C
(t)
4 in (42) can be rewritten as

C̃
(t)
4 :

G∑

i=1

|Si|∑

j=1

∥
∥h̄

H
g,mdi

∥
∥
2

2
p
(t)
i,j + σ2

v ≥ µ(t)
g,m, ∀g,m, (49)

which becomes a convex constraint.

To deal with the non-convex constraints C
(t)
5 in (46) and

C
(t)
6 in (48), we transform them into matrix form according

to the Schur complement lemma [29], i.e.,

C̃
(t)
5 :

[

τ
(t)
g,m 1

1 β
(t)
g,m

]

≥ 0, ∀g,m, (50)

and

C̃
(t)
6 :




µ
(t)
g,m

√

Pmin
g,m

/
η

√

Pmin
g,m

/
η 1− β

(t)
g,m



 ≥ 0, ∀g,m. (51)

As a result, the optimization problem (42) can be reformu-

lated as

min
{

p
(t)
g,m

}

,
{

β
(t)
g,m

}

G∑

g=1

|Sg |∑

m=1

a(t)g,mẽ(t)g,m

s.t. C
(t)
1 , C

(t)
2 , C̃

(t)
3 , C̃

(t)
4 , C̃

(t)
5 , C̃

(t)
6 ,

(52)

which is a standard convex optimization problem, and can be

solved by numerical convex program solvers [38].

By iteratively solving the optimal values of {cg,m}, {ag,m},

and {pg,m} as well as {βg,m} via (38), (40), and (52), sepa-

rately, we can obtain the final power allocation solution {pog,m}
and power splitting solution {βo

g,m} with the maximum it-

eration times Tmax. Particularly, since the obtained {c(t)m,n},

{a(t)m,n}, and {p(t)m,n} as well as {β(t)
m,n} are optimal solutions

in the tth iteration, iteratively updating these variables will

increase or maintain the value of the objective function in

(37) [34]. As a result, the proposed iterative optimization

algorithm for joint power allocation and power splitting will

converge to at least a local optimal solution.

In the meanwhile, the proposed joint optimization algorithm

enjoys a polynomial complexity. Specifically, in each iteration,

the complexity for obtaining the optimal {cm,n} in (38) and

{am,n} in (40) is linear to the number of users, i.e., O(K). The

convex optimization problem (52) can be solved with a worst-

case complexity of O(TmaxK
4.5log2(1/ε)) given a solution

accuracy ε > 0 [39]. Therefore, the computational complexity

of the proposed iterative optimization algorithm is at most

O(TmaxK
4.5log2(1/ε)).

V. SIMULATION RESULTS

The performance in terms of spectrum efficiency and energy

efficiency of the mmWave massive MIMO-NOMA systems

with SWIPT, including both the fully-connected HP and

the sub-connected HP, proposed in this paper is evaluated

via simulations. Specifically, the simulation parameters are

described as follows: The system bandwidth is assumed to be

1 Hz, which coincides to the achievable rate in (12). The BS

is equipped with an ULA of N = 64 antennas and NRF = 4
RF chains to simultaneously serve K ≥ NRF users. All the

K uses are grouped into G = NRF = 4 beams, and there

are more than one user in each beam. For the mth user

in the gth beam, the channel vector is generated based on

(4), where we assume: 1) Lg,m = 3, including one line-

of-sight (LoS) component and two non-line-of-sight (NLoS)

components; 2) α
(1)
g,m ∼ CN (0, 1), and α

(l)
g,m ∼ CN (0, 10−1)

for 2 ≤ l ≤ Lg,m; 3) ϕ
(l)
g,m and θ

(l)
g,m follow the uniform

distribution U(−π, π) for 1 ≤ l ≤ Lg,m. B = 4 bits quantized

phase shifters are adopted, and the signal-to-noise ratio (SNR)

is defined as Pt

/
σ2
v [8]. The maximum transmitted power

Pt = 30 mW, the minimal achievable rate for each user is

Rfm/10, where Rfm is the minimal achievable rate among

all users by using fully digital ZF precoding, and the minimal

harvested energy for each user is 0.1 mW.

In this paper, the spectrum efficiency is defined as the

achievable sum rate in (13), and the energy efficiency is

defined as the ratio between the achievable sum rate and the

total power consumption [7], i.e.,

EE =
Rsum

Ptr +NRFPRF +NPSPPS + PBB
(bps/Hz/W),

(53)

where Ptr =
G∑

g=1

|Sg |∑

m=1
pg,m is the total transmitted power, PRF

is the power consumed by each RF chain, PPS is the power
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SWIPT−Fully−Connected HP−NOMA

Fig. 2. Spectrum efficiency of fully-connected architecture against the
number of iterations for the joint power allocation and power splitting
optimization.

consumption of each phase shifter, and PBB is the baseband

power consumption. Particularly, we adopt the typical values

PRF = 300 mW, PPS = 40 mW (4-bit phase shifter), and

PBB = 200 mW [8]. NPS is the number of phase shifters,

which is equal to NNRF for the fully-connected HP and N
for the sub-connected HP.

In the simulations, we consider the following five typical

mmWave massive MIMO systems with SWIPT for compar-

ison: (1) “SWIPT-Fully digital ZF Precoding”, where each

antenna is connected to one RF chain, and ZF precoding

is adopted; (2) “SWIPT-Fully-Connected HP-NOMA”, where

fully-connected HP architecture is used in the proposed

mmWave massive MIMO-NOMA systems with SWIPT; (3)

“SWIPT-Fully-Connected HP-OMA”, where the system model

is similar with “SWIPT-Fully-Connected HP-NOMA”, while

OMA is performed for users in each beam. Particularly, we

represent OMA with FDMA, where users in the same beam are

allocated with equal bandwidth; (4) “SWIPT-Sub-Connected

HP-NOMA”, where sub-connected HP architecture is used

in the proposed mmWave massive MIMO-NOMA systems

with SWIPT; (5) “SWIPT-Sub-Connected HP-OMA”, where

the system model is similar with “SWIPT-Sub-Connected HP-

NOMA”, while OMA is performed for users in each beam.

Fig. 2 and Fig. 3 show the convergence of the proposed iter-

ative algorithm for joint power allocation and power splitting

optimization in Section IV for the fully-connected HP and

sub-connected HP, separately, where the number of users is

set as K = 6, and SNR = 0 dB. As shown in Fig. 2 and Fig.

3, the spectrum efficiency tends to be stable after 10 times

of iteration, which verifies the convergence of the proposed

iterative algorithm as discussed in Section IV. In the following

simulations, the number of iteration times for the proposed

iterative optimization algorithm is set as 10.

Fig. 4 shows the spectrum efficiency against SNR of the

considered five schemes, where the number of users is K = 6.

We can find that the proposed mmWave massive MIMO-

NOMA systems with SWIPT can achieve higher spectrum

efficiency than that of mmWave massive MIMO-OMA systems

with SWIPT, either for the fully-connected HP or the sub-
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Fig. 3. Spectrum efficiency of sub-connected architecture against the number
of iterations for the joint power allocation and power splitting optimization.
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Fig. 4. Spectrum efficiency against SNR.

connected HP, since NOMA can achieve higher spectrum

efficiency than that of OMA [15]. It is intuitive that the fully

digital MIMO can achieve the best spectrum efficiency as

shown in Fig. 4, since N RF chains are used to serve all

users to fully exploit the multiplexing gains. On the other hand,

the fully-connected HP can achieve higher spectrum efficiency

than that of the sub-connected HP as discussed in Section II,

since the full array gain can be exploited by every RF chain

in the fully-connected HP.

Fig. 5 shows the energy efficiency against SNR, where the

number of users is also K = 6. We can find that the proposed

mmWave massive MIMO-NOMA systems with SWIPT can

achieve higher energy efficiency than both mmWave massive

MIMO-OMA systems with SWIPT and fully digital MIMO

systems with SWIPT. Particularly, the number of RF chains

is equal to the number of BS antennas in fully digital MIMO

systems, which leads to very high energy consumption, e.g.,

300 mW for each RF chain. On the contrary, the number

of RF chains is much smaller than the number of antennas

in the proposed mmWave massive MIMO-NOMA systems

with SWIPT. Therefore, the energy consumption caused by

the RF chains can be significantly reduced compared to the

fully digital MIMO systems. In addition, we can see from
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Fig. 5 that the sub-connected HP can achieve higher energy

efficiency than that of the fully-connected HP, since a less

number of phase shifters is adopted in the sub-connected HP.

The performance comparison in terms of energy efficiency

against the number of users is shown in Fig. 6, where SNR

is set as 10 dB. We can see that when the sub-connected HP

is adopted, the energy efficiency of the proposed mmWave

massive MIMO-OMA systems with SWIPT is higher than all

of other schemes even the number of users is very large.

VI. CONCLUSIONS

In this paper, we propose to apply SWIPT in HP-based

mmWave massive MIMO-NOMA systems to achieve a trade-

off between spectrum efficiency and energy efficiency. To en-

able the spectrum- and energy-efficient systems, user grouping,

hybrid precoding, power allocation, and power splitting are

carefully designed. Specifically, the CHS algorithm is first

proposed to select one user for each beam as the cluster head,

and then the analog precoding is designed according to the

selected cluster heads for all beams. After that, user grouping

is performed based on the correlation of users’ equivalent

channels. Then, the digital precoding is designed by selecting

users with the strongest equivalent channel gain in each beam.

Furthermore, the joint optimization of power allocation and

power splitting is proposed to maximize the achievable sum

rate, and an iterative optimization algorithm is developed

to solve the non-convex optimization problem. Simulation

results show that the proposed mmWave massive MIMO-

NOMA systems with SWIPT can achieve higher spectrum and

energy efficiency compared with mmWave massive MIMO-

OMA systems with SWIPT. In the future, we will consider

more sophisticated hybrid precoding design for the proposed

mmWave massive MIMO-NOMA systems with SWIPT to

further improve the performance.
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