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Abstract—In order to meet the latency requirements of the
Ultra-Reliable Low Latency Communication (URLLC) mode of
the 3GPP Long Term Evolution (LTE) mobile communication
standard, this paper proposes a novel turbo decoding algorithm
that supports an arbitrarily-high degree of parallel process-
ing, facilitating significantly higher processing throughputs and
substantially lower processing latencies than the state-of-the-art
(SOTA) LTE turbo decoder. As in conventional turbo decoding
algorithms, the proposed Arbitrarily Parallel Turbo Decoder
(APTD) decomposes each frame of information bits into a
sequence of windows, where the bits within different windows are
processed simultaneously using forward and backward recursions
in a serial manner. However, in contrast to conventional turbo
decoding algorithms, the APTD does not require the different
windows to be composed of an identical number of bits, which
allows the use of an arbitrary number of windows and hence an
arbitrary degree of parallelism, when decoding information bits
of an arbitrary frame length. Furthermore, conventional turbo
decoding algorithms alternate between simultaneously processing
the windows in the upper decoder and those in the lower decoder.
By contrast, the APTD processes the odd-indexed windows
in the upper decoder at the same time as the even-indexed
windows in the lower decoder and alternates between this and
the reversed arrangement, hence further improving the decoding
throughput and latency. Furthermore, the APTD achieves a re-
duced hardware resource requirement by calculating the extrinsic
information based only on the outputs of the forward recursions,
rather than based on both the forward and backward recursions
of conventional turbo decoding algorithms. We demonstrate that
the proposed APTD achieves superior latency, throughput and
computational efficiency than the SOTA LTE turbo decoder at
all frame lengths, but particularly at the short frame lengths
that are typically used in URLLC approaches. For example, at
a frame length of NV = 504 bits, the proposed APTD achieves
an FER of 107" at the same FE,/N, as I = 8 iterations of a
conventional turbo decoder, but with a computational efficiency
that is 6 times higher than that of the SOTA turbo decoder, while
achieving a latency and throughput that are 0.7 and 1.4 times
those of the SOTA decoder, respectively.

Index Terms—Turbo decoding, FPTD, parallel algorithms,
latency, throughput

I. INTRODUCTION

As one of three pillars of the fifth generation (5G) of
mobile communication, Ultra-Reliable Low Latency Commu-
nication (URLLC) targets a Frame Error Rate (FER) below
1075 with an end-to-end latency within 1 ms. The initial
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roll-out of 5G will be based on the 3rd Generation Part-
nership Project’s (3GPP) non-standalone New Radio (NR),
which is built upon a foundation offered by 3GPP Long
Term Evolution (LTE) [1]. Therefore, the 3GPP is currently
standardising a URLLC mode for the LTE standard for mobile
communication as part of the 5G development [2-5]. Several
enhancements have been proposed in LTE Release 15, aiming
for meeting the latency and reliability requirements [2]. To be
more specific, LTE Release 15 has introduced the shortened
Transmission Time Interval (sTTI) technique, which imposes
a 7-fold reduction upon the signal processing time available
at the User Equipment (UE) and evolved Node B (eNB)
basestation, namely a reduction from 3 ms in Release 14, to
0.43 ms in Release 15 [6,7]. Within this 0.43 ms, several
signal processing tasks must be completed, including receive
buffering, FFT, turbo decoding, IFFT and transmit power
control [4,5]. In order for an eNB to support the process-
ing of multiple users’ transmissions within this processing
time without employing a unique, user-specific set of signal
processing hardware per user, each of these tasks must be
completed in much less than 0.43 ms. In the case of turbo
decoding, it is reasonable to assume that a 7-fold reduction
from the 52 ps latency of the commercial implementations
of 3GPP Release 14 [8] is required, giving a specification of
7.4 ps for 3GPP Release 15. This significant reduction in the
turbo decoding latency requirement motivates the design of
new low-latency turbo decoding techniques.

The latency of a turbo decoder is dictated by the da-
ta dependencies imposed by the Logarithmic Bahl-Cocke-
Jelinek-Raviv (Log-BCJR) algorithm [9], which is typically
employed for the iterative decoding of turbo codes [10-
12]. More specifically, a turbo decoder comprises an upper-
branch and a lower-branch convolutional decoder, which may
operate alternately using the Log-BCJR to generate extrinsic
information exchanged via an interleaver. However, data de-
pendencies of the Log-BCJR algorithm require the processing
to be performed one step at a time, using forward and
backward recursions alternately along the entire length of the
interleaved information frame. This serial nature of the Log-
BCIJR algorithm imposes a bottleneck upon the throughput and
results in processing latencies of hundreds of micro seconds
of the turbo decoding process [9], unless parallel processing
techniques are employed.

Several sophisticated approaches have been proposed for
improving both the throughput and latency of the Log-BCJR



turbo decoder. For example, the forward and backward recur-
sions of the Log-BCJR can be completed simultaneously [13],
rather than one after the other, hence doubling the throughput
and halving the latency. Furthermore, the Radix-4 transform
of [14,15] allows two steps of the Log-BCJR algorithm’s
forward and backward recursions to be completed at a time,
therefore further doubling the throughput and halving the la-
tency, albeit at the cost of significantly increasing the hardware
resource requirements. Meanwhile, the non-sliding window
based technique of [16] decomposes each information frame
of N bits into P number of windows, which can be processed
simultaneously using separate parallel processors. However,
the combination of these techniques requires as many as 4P
extrinsic values to be interleaved at a time. The interleaver
has to simultaneously read and write these extrinsic values
from and to memories associated with the parallel processors,
causing contentions when attempting to make more than one
access to a particular memory at any instant. This contention
problem is solved in the LTE standards by the employment
of the quadratic permutation polynomial interleavers of [17,
18], which inherently avoid contention provided that the P
number of windows in each of the upper and lower decoder
is an integer factor of the information frame length N, hence
ensuring that each window is composed of an equal number
of N/ P bits. Motivated by this, conventional implementations
of the LTE turbo decoder [8] typically employ a parallelism of
P =8, since this is the Greatest Common Divisor (GCD) of
the LTE turbo code’s 188 supported frame lengths N, which
are in the range 40 to 6144 bits. It is using the combination
of techniques described above, that the commercial Field-
Programmable Gate Array (FPGA) implementation of the LTE
turbo decoder of [8] achieves processing latencies of up to
52 us.

In order to achieve the 7-fold improvement to turbo de-
coding latency required for URLLC, the parallelism may be
increased to P = 64, as in the state-of-the-art (SOTA) turbo
decoder of [16]. However, this decoder is only able to fully
exploit this parallelism for the longest frame lengths and
disables up to 56 of the parallel processors at the short frame
lengths that are common in URLLC applications, leading to
poor hardware efficiency.

Recently, a Fully-Parallel Turbo Decoder (FPTD) has been
proposed for significantly increasing the grade of parallelism
in the LTE turbo decoder to p = N, hence reducing the
latency [19]. The employment of odd-even interleavers [20,
21] in LTE allows the FPTD to alternate between processing
all odd-indexed bits in the upper decoder at the same time
as all even-indexed bits in the lower decoder, and vice-versa,
hence completing each decoding iteration in two clock cycles.
However, the hardware requirement of the FPTD is dictated by
the longest supported frame length, leading to poor hardware
efficiency at short frame lengths.

The low hardware efficiency of SOTA non-sliding window
based techniques [16] and the FPTD [19] motivates the
novel Arbitrarily Parallel Turbo Decoder (APTD) concept
we propose in this paper for achieving both high processing
throughputs and low processing latencies, while maintaining a
high grade of hardware efficiency flexibility across all frame

lengths.

« First, our APTD algorithm allows the parallel operation of
an arbitrary number P of processors, which is not limited
to an integer factor of IV, nor to N itself. The first of two
versions of the proposed APTD decomposes the frame
into the highest possible number of windows that can
support equal window lengths, where some processors are
disabled as in the non-sliding window based and FPTD
algorithms, respectively, when processing a frame length
of N. For many frame lengths, this facilitates a grade of
parallelism in excess of 64, which is the highest achieved
previously in the literature owing to the requirement for
P having to be a common divisor of many supported
frame lengths NN. In this first version of the APTD, the
processors operate on the basis of windows of equal
length, benefitting from the contention-free property of
the LTE quadratic permutation polynomial interleaver.
However, in a second version of the APTD, all processors
are activated for all but the shortest of frame lengths.
Here, the different processors operate on windows of
slightly different lengths for frame lengths N. This breaks
the contention-free property of the LTE quadratic permu-
tation polynomial interleaver [17, 18], but we show that
contention can be avoided by rescheduling the interleaver
operation independently from the generation of extrinsic
information, hence achieving even higher throughputs.

o Furthermore, rather than operating the upper and lower
decoder alternately like in conventional turbo decoding
algorithms, the arbitrarily parallel turbo decoding algo-
rithm employs odd-even operation, in a similar fashion
to the FPTD. More specifically, the APTD alternates be-
tween processing the odd-indexed windows of the upper
decoder at the same time as the even-indexed windows
of the lower decoder, and vice versa. We will show that
for short frame lengths, this odd-even operation gives
superior FER performance compared to the upper-lower
operation.

o As a further contribution, we conceive and compare two
techniques for providing systematic information to the
APTD, namely the interleaved, and the non-interleaved
systematic approaches. In the interleaved systematic ap-
proach, the systematic information is entered into the
upper decoder, but additionally it is also interleaved and
entered to the lower decoder. By contrast, in the non-
interleaved systematic approach, the systematic infor-
mation is only entered directly into the upper decoder,
but it is also added into the upper decoder’s extrinsic
information, which is then interleaved and entered into
the lower decoder. The benefit of the latter is that this
reduces the number of interleavers that are required at
the cost of a slightly degraded FER performance.

« Finally, while conventional turbo decoders compute their
extrinsic information in both the forward and backward
recursions of the Log-BCJR algorithm in the proposed
design, the extrinsic information is calculated only in
the forward recursions of the APTD. We will show
that this further reduces the proposed APTD’s decoding



complexity and its interleaving complexity, albeit at the
cost of requiring slightly more decoding iterations to
maintain the same FER performance.

When combining the proposed techniques described above,
the proposed APTD achieves superior latency, throughput and
computational efficiency than the SOTA LTE turbo decoder at
all frame lengths, but particularly at the short frame lengths
that are typically used in URLLC approaches. For example, at
a frame length of N = 504 bits, the proposed APTD achieves
an FER of 1075 at the same Ey/Ny as I = 8 iterations
of a conventional turbo decoder, but with a computational
efficiency that is 6 times higher than that of the SOTA turbo
decoder, while achieving a latency and throughput that are
0.7 and 1.4 times those of the SOTA decoder, respectively.
Note however that this is achieved at the cost of increasing
the computational complexity by 2.3 times compared to the
SOTA decoder of N = 504.

The proposed APTD algorithm offers particular benefits at
short frame lengths. This is because the conventional approach
to parallel processing is limited by the greatest common
divisor of the QPP or ARP interleaver lengths, which tends to
be low for short frame lengths. For example, the information
frame lengths supported by the LTE turbo code in the range of
40 to 512 bits are all multiples of 8 bits, limiting the degree of
parallel processing to 8 in conventional implementations. By
contrast, the proposed APTD can usefully apply significantly
higher degrees of parallel processing, leading to significant
improvements in throughput and latency.

Furthermore, in [22], a 6144-bit FPTD was found to occupy
a chip area of 109 mm?, when using TSMC 65 nm process
technology. However, this design has only limited flexibility
to support shorter block lengths and it may be expected that a
significantly greater chip area would be required to support all
188 block lengths of the LTE turbo code. Hence, the chip area
requirements of the FPTD may be deemed excessive for LTE
applications. In contrast to this, the proposed APTD allows
the degree of parallelism to be arbitrarily flexible between
fully-serial and fully-parallel turbo decoding. In this way, the
parallelism of the proposed APTD may be carefully selected
in order to meet the strict latency and throughput requirements
of URLLC LTE, but with minimum chip area.

The rest of this paper is structured as follows. Section II
gives a brief overview of LTE turbo decoding, including
both the SOTA turbo decoder, also known as the non-sliding
window decoders, and of the FPTD. Following this, both
versions of the APTD are proposed in Section III. Section IV
characterises the FER performance associated with the tech-
niques employed by the APTD, both individually and in
combination. Then the SOTA LTE turbo decoder, the FPTD
and the proposed APTD are compared in terms of latency,
throughput, complexity and hardware resource requirement in
Section V. Finally, our conclusions and future work ideas are
discussed in Section VI.

II. LTE TURBO DECODING OVERVIEW

This section provides an overview of turbo decoding and de-
fines the notation employed in the following sections. Section

II-A describes the decoding process of the SOTA LTE turbo
decoder, while our previously proposed FTPD is highlighted
in Section II-B.

A. State-of-the-art LTE turbo decoder

In an LTE transmitter, each frame of information bits has
one of 188 legitimate lengths IV in the range of 40 to 6144
bits, which are turbo encoded before being modulated and
transmitted over the wireless channel. After demodulation in
the receiver, soft information pertaining for the turbo encoded
bits is provided to the turbo decoder in the form of Loga-
rithmic Likelihood Ratios (LLRs). Here, we define the LLR b
pertaining to a bit b € {0,1} as

Pr(b = 1y)

b=ln—— ")
" Pr(b=0ly)’
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where y is the received signal vector.
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Fig. 1. Schematic of the SOTA turbo decoder.

As depicted in Figure 1, the upper and lower decoder each
comprises a row of N algorithmic blocks. Each block in the
upper decoder is associated with the corresponding one of the
parity a priori LLRs [E;:]szl and the corresponding one of
the systematic a priori LLRs [1_7;2]27:1 which are provided
by the demodulator. Likewise, the demodulator provides each
block in the lower decoder with the corresponding one of
the parity a priori LLRs [Elzrlk]ff:l Note that the demodulator
also provides LLRs pertaining to twelve termination bits [23],
although we do not discuss these further for the sake of
simplicity.

The upper and lower decoders operate alternately, where
each algorithmic block generates the corresponding one of the
extrinsic LLRs [l_)‘fZ]iV:l or [I_Jll’fk]szl, which are interleaved
to provide a priori LLRs [by"2]2_; or [by]i; for the next
operation of the other decoder. All algorithmic blocks in Fig-
ure 1 operate in an identical manner, as detailed in [19]. The
SOTA turbo decoder performs this processing by activating P
parallel processors, where each alternates between processing
the corresponding window of L = N/P algorithmic blocks
in the upper and lower decoder, as shown in Figure 1. For
example, the first processor performs the processing for the
first L algorithmic blocks of the upper decoder, then performs
the processing for the first L algorithmic blocks of the lower
decoder, before repeating the process in each successive de-
coding iteration. Here, we define the time required for one of
the algorithmic blocks as one clock cycle. Although the SOTA
LTE turbo decoder comprises p = 64 parallel processors in



total, different numbers P of these p processors are activated
for different frame lengths N, according to [16].

8, N € [40,48, 56, ..., 504];

16, N € [512,528,544, ..., 1008); @
32, N € [1024,1056, 1088, ..., 2016];

64, N €[2048,2112,2176, ...,6144].

Note that some of the p = 64 parallel processors are unused
when shorter frame lengths are decoded, in order to ensure
that all windows have an equal length L. This is necessary for
exploiting the contention-free property of the LTE interleaver
[1, 17]. More specifically, if all windows have an equal length,
their processing can then be scheduled so that none of the
parallel processor is provided with more than one a priori LLR
at a time by the LTE interleaver. This allows the processors
to have simple input/output interfaces.

In addition to the LLRs described above, each processor
is provided with a vector of forward state metrics o _;
or &}, , as well as a vector of backward state metrics 3

P=

or BL which are used for initiating forward and backward
processing recursions, respectively. The scheduling of these
recursions over several successive clock cycles is depicted in
Figure 2 for the non-sliding window technique of [16]. During
the forward recursion, each successive algorithmic block in
a left-to-right ordering is processed in each successive clock
cycle. Simultaneously, the backward recursion processes the
successive algorithmic blocks in a right-to-left ordering in the
successive clock cycles. Each successive algorithmic block
passes a vector of state metrics &, dﬁc, Bz_l or BL_l values
to the next algorithmic block in the forward or backward
recursion, respectively. The requirement to exchange these
state metrics between successive algorithmic blocks imposes
data dependencies, which requires the forward and backward
recursions. Furthermore, once the two recursions have crossed
over, as shown in Figure 2, the algorithmic blocks generate the
extrinsic LLRs mentioned above, based on both the forward
and the backward state metrics. Each iteration comprises a
total of 2N/ P clock cycles, with N/P clock cycles used by
each of the upper and lower decoders. Here, 8 iterations may
be required in order to achieve iterative decoding convergence
towards the best possible FER, corresponding to hundreds or
thousands of clock cycles.

The Radix-4 [14, 15] further improves both the throughput
and latency of the SOTA LTE turbo decoder, by merging the
trellis stages within each pair of adjacent algorithmic blocks
and processing them at the same time, as shown in Figure
3 (b). Therefore, in contrast to the Radix-2 operation depicted
in Figure 3 (a), where fwo extrinsic LLRs are calculated si-
multaneously once the forward and backward recursions have
crossed over, the non-sliding window technique calculates four
LLRs at a time once the forward and backward recursions
have crossed over, when we employ Radix-4 technique. In
this way, the Radix-4 technique further doubles the throughput
and halves the latency, although at the cost of significantly
increasing the hardware resource requirement.

As shown in Figure 4 (a), the extrinsic LLRs b} and Bllek
may be scaled in order to improve the FER when employ-
ing the Max-Log-MAP algorithm [22,24]. Here, typically a

Algorithmic block k

~

1 processor

clock cycle T'
D Upper component decoder

D Lower component decoder

Fig. 2. Schedule of the forward and backward recursions for the non-sliding
window technique, which uses equal window lengths, upper-lower processing
Radix-4 operation, and calculates four extrinsic LLRs at a time once the
forward and backward recursions have crossed over.

Fig. 3. Trellis diagram of (a) Radix-2 computation, and (b) Radix-4 compu-
tation.

scaling factor of f = 0.75 is selected, owing to its ease of
implementation when using fixed point numbers to represent
the LLRs. Figure 4 (a) also shows that the upper decoder
can benefit from the systematic LLRs B};Z by adding them
into the a priori LLRs 71{2 A similar approach can be
used for ensuring that the lower decoder can benefit from
these systematic LLRs. However, since the upper decoder’s
operations are processed before the lower decoder in the SOTA
turbo decoder, the systematic LLRs ngz can be delivered to
the lower decoder by adding them into the upper decoder’s
extrinsic LLRs l_fllz which are interleaved to become the
lower decoder’s a priori LLRs Ell”ak. This avoids the hardware
requirement to employ a separate interleaver to interleave the

u,e

systematic LLRs 53 1> S0 that they can be added to the a priori
LLRs of the lower decoder 611’1, as shown in Figure 4 (b).

B. Fully-parallel turbo decoder

In the SOTA LTE turbo decoder of [16], the data de-
pendencies of the forward and backward recursions require
the turbo-encoded bits to be processed serially, spread over
numerous consecutive clock cycles. As a result, hundreds
or thousands of clock cycles are required for completing
the iterative decoding process, hence limiting the achievable
processing throughput and latency. In order to address this
problem, we have previously proposed a FPTD algorithm
[19], which dramatically increases the grade of parallelism in



(a) (b)

Fig. 4. (a) Non-interleaved systematic LLRs. (b) Interleaved systematic LLRs.

the decoding process, which is achieved by dispensing both
with the recursions of the Log-BCJR algorithm and with the
associated data dependencies, allowing a much higher number
of parallel processors to be used. Indeed, the FPTD algorithm
is capable of processing all LLRs corresponding to both the
upper and lower decoders at the same time.

While a dedicated processor could be employed for each of
the 2N algorithmic blocks, our previous work demonstrated
that the same processing throughput and latency can be
achieved using just IV parallel processors. More specifically,
in contrast to the alternated operation of the upper and lower
decoders in the non-sliding window technique of the SOTA
turbo decoder, the FPTD exploits the odd-even property of
the LTE interleaver to enable an odd-even processing schedule
for the algorithmic blocks. To be more specific, the LTE
interleaver of all 188 supported frame lengths only connects
the algorithmic blocks of the upper decoder having an odd
index k to algorithmic blocks in the lower decoder that also
have an odd index k. Likewise, even-indexed algorithmic
blocks in the upper decoder are only connected to algorithmic
blocks with even indices in the lower decoder. As a result,
the algorithmic blocks can be grouped into two sets, where no
two blocks in the same set have connections to each other. To
be more explicit, the first set consists of all the odd-indexed
blocks in the upper decoder, along with all even-indexed
blocks in the lower decoder. Likewise, the second set is
composed of the remaining blocks, namely of the even-indexed
blocks in the upper decoder, together with the odd-indexed
blocks in the lower decoder. Accordingly, the exchange of
extrinsic LLRs and state metrics among the whole set of 2V
algorithmic blocks in the iterative decoding process can now
be considered as an iterative exchange process between the
two sets. This allows the processing of the 2N algorithmic

blocks to be mapped onto N processors, which alternate
between the processing of the two sets. In this odd-even FPTD
operation, each iteration requires only two clock cycles, but
more iterations are needed than by the conventional Log-
BCIJR decoders in order to achieve the same FER. However,
the total number of clock cycles required in order to achieve
iterative decoding convergence decreases from the hundreds
or thousands in the SOTA LTE turbo decoder to just tens of
clock cycles.
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Fig. 5. Schematic of the FPTD.

III. ARBITRARILY PARALLEL TURBO DECODER

As discussed in Section II, both the SOTA turbo decoding
algorithm and the FPTD algorithm have their own restrictions.
To be more specific, a large number of processors remain idle
when decoding short frame lengths N in the SOTA turbo
decoder. Meanwhile, a frame having a length of N must
be decoded using N numbers of FPTD processors, which
limits flexibility. Motivated by this, we propose a novel APTD
algorithm in this section, which can employ an arbitrary
number p of processors and exploit them flexibly across all of
the LTE interleaver lengths. Two versions of the APTD will
be proposed separately in Section III-A and III-B, respectively.
The first version of the APTD decomposes the frame into the
highest number of windows that can support equal window
lengths, exploiting the contention-free property of the LTE
interleaver, as it will be detailed in Section III-A. However,
some idle processors still remain for some frame lengths in this
version. By contrast, the second version of Section III-B does
not rely on the contention-free property of the LTE interleaver,
allowing different windows to adopt different lengths. This
enables all processors to be exploited for all but the shortest
frame lengths, which is achieved by decomposing the frame
into the same number of windows as there are processors.

A. APTD employing equal window lengths

The first version of the APTD employs an arbitrary number
p of processors in total, but activates only a subset P of
these depending on the frame length N. When decoding
frames of length NN, the number of activated processors P
is given by the greatest integer factor (gif) of N that is
also smaller than the number of processors p, which can
be expressed as P = gif(N,p). Figure 6 (a) illustrates the
relationship between the number of activated processors P
and the frame lengths N when employing a total number of



p = 64 or p = 128 processors, as compared to the SOTA turbo
decoders and FPTD discussed above. Each processor alternates
between processing a window from the upper decoder and
the corresponding window from the lower decoder. Likewise,
Figure 6 (b) shows the relationship between the window length
L= N/P = N/gif(N,p) and the frame length N, for p = 64
and p = 128. Note that for shorter frame lengths N < p, the
APTD operation becomes identical to that of the FPTD, where
each window effectively has a length L of one bit.

Like the FPTD, the APTD relies on odd-even operation,
as depicted in Figure 7. However, rather than alternating
the operation of odd- and even-indexed algorithmic blocks,
the odd-even operation is performed at the window level in
the APTD algorithm. To be more specific, the odd-indexed
windows in the upper decoder and the even-indexed windows
in the lower decoder operate at the same time. This alternates
with operating the even-indexed windows in the upper decoder
at the same time as the odd-indexed windows in the lower de-
coder. A total number of 2L clock cycles have to be completed
in one iteration. The forward state metrics @\, &} and the
backward state metrics 3, _,, B),_, are calculated according
to the forward and backward recursions that are synchronised
among all windows processed at the same time. Note that the
odd-even operation ensures that the end of the recursions of
the odd-indexed windows seamlessly leads to the beginning
of the adjacent even-indexed windows, and vice versa. This
allows information to more quickly propagate along the upper
and lower decoder than in the upper-lower operation. Radix-4
operation [14, 15] is also employed in the proposed APTD,
which further doubles the decoding throughput. However,
since the Radix-4 operation processes a pair of trellis stages
at a time, a special solution is required when the window
length L is not an even integer. More specifically, the final
algorithmic block in each window may be processed using
Radix-2 operation.

The APTD calculates two extrinsic LLRs at a time alongside
the forward recursion, when using Radix-4 operation. During
the first half of each forward recursion, the B values calculated
during the previous iteration are recalled and are used for
calculating the extrinsic LLRs. Once the forward and back-
ward recursions have crossed over in the second half of the
recursions, the B values calculated during the first half of the
backward recursion are used. This is in contrast to the SOTA
LTE turbo decoder, which calculates four LLRs at a time,
during the second half of the forward and backward recursions
once they have crossed over. Our approach requires only two
extrinsic LLR calculators and two interleavers that are used all
the time, rather than four LLR calculators and four interleavers
that are only used in the second half of the recursions, which
is less efficient.

Note that a particular extrinsic LLR in an odd-indexed
window of one component decoder may become an a priori
LLR for an even-indexed window of the other component
decoder or vice versa in the proposed FPTD. Since these
windows are processed at the same time in the FPTD, some
interesting interactions may arise. In some cases, the extrinsic
LLR may be generated and interleaved before it is used as

an a priori LLR in the same iteration, depending on the
position of these LLRs in the windows. This is advantageous
compared to the classic upper-lower operation, which must
always wait until the next half iteration before an interleaved
LLR can be exploited. Other times, however, the extrinsic LLR
may be delivered too late to be used in the same iteration,
but can be saved for use in the next iteration. This is a
disadvantage compared to the upper-lower operation, since the
delay before the interleaved LLR can be exploited is extracted
in this case. Overall, the advantage of sometimes being able to
exploit an interleaved LLR immediately and the disadvantage
of sometimes having to wait until the next iteration may be
expected to cancel out. However, the advantage of quicker &
and 3 propagation can be exploited in the APTD versions, as
we will demonstrate for short frames in Section IV.
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Fig. 7. Schedule of the forward and backward recursions for the first version
of the APTD, which uses equal windows lengths, Radix-4 operation, odd-even
processing and calculates two extrinsic LLRs at a time alongside the forward
recursion.

In addition to the non-interleaved systematic approach
discussed in Section II-A, we also consider an interleaved
systematic approach, as shown in Figure 4 (b). As described
in Section II-A, the non-interleaved systematic approach has
the advantage of avoiding the requirement for a separate
interleaver for the systematic LLRs l_)gz In the upper-lower
schedule, there is no disadvantage compared to the non-
interleaved systematic selection, since the lower decoder is
not activated until after the systematic LLRs 53; are combined
with the extrinsic LLRs E‘fz and passed through the interleaver
by the upper decoder. However, in the case of our odd-even
schedule, some blocks in the lower decoder are activated in
the first half of the first iteration, before the systematic LLRs
can be passed through the interleaver by the upper decoder.
This motivates the consideration of the interleaved systematic
approach, which improves the FER by providing systematic
LLRs for these blocks in the lower decoder at the start of the
iterative decoding process, albeit at the cost of requiring an
additional interleaver.

B. APTD employing unequal window lengths

In a second version of the APTD algorithm, frame lengths
N that are not divisible by the number of processors p are
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Fig. 8. Schematic of the second version of the proposed APTD with unequal window lengths.

handled in a different way. Rather than activating only a subset process proceeds. More specifically, the forward recursion of
P of the processors, so that each process has an equal window the last processor for the shorter windows does not seamlessly
length, this second version activates all processors for frame lead into the forward recursion of the first processor for the
lengths IV > p, where some process windows having a slightly  longer windows, since a one-clock-cycle delay exists between
shorter length, while others process windows have a slightly the two groups. Likewise, the backward recursion does not
longer window. More specifically, the first [P — mod(N, P)] seamlessly flow across the boundary between the processors of
windows have a length of L = |[N/P| trellis stages, while the shorter windows and those of the longer windows. Instead,
the remaining mod(N, P) windows have a length of L. +1 = the boundary state metrics may be written into memory when
[N/P], as shown in Figure 8. Indeed, for frame lengths N  generated by a processor on one side of the boundary, and
lower than the number of processors p, this version of the read from that memory later upon initialising a recursion on
APTD also operates identically to the FPTD, as discussed in the other side of the boundary.
Section III-A.
Since not all window lengths are identical in the second
Figure 9 illustrates the scheduling of the forward and version of the APTD algorithm, interleaving the extrinsic
backward recursions in the second version of the APTD. Each LLRs b\, Ell’ek according to the schedule at which they
processor alternates between processing the corresponding are genefated does not benefit from the LTE interleaver’s
window in the upper decoder and the corresponding window contention free property. More specifically, some processors
in the lower decoder. As in the first version of the APTD, would be provided with more than one a priori LLR in
the extrinsic LLRs are calculated alongside the forward recur- some clock cycles by the LTE interleaver, hence requiring a
sions. Note that the windows having length L are grouped complex input/output interface. However, we note that when
together and are scheduled independently of the windows interleaving the LLRs according to this schedule, many of
having lengths L + 1, because they require different numbers the resultant a priori LLRs 13‘1‘,:, 611”2; do not get used by the
of clock cycles to complete each iteration. As a result, the two  other decoder for a number of clock cycles later, when they are
groups of windows become de-synchronised as the decoding reached by the forward or backward recursions. This illustrates
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sion of the APTD, which uses unequal window lengths, odd-even processing
and calculates two extrinsic LLRs at a time alongside the forward recursion.

that the interleaving of some extrinsic LLRs can be delayed
by a number of clock cycles without having any effect on the
operation of the turbo decoder. Note however that the operation
is adversely affected if the interleaving of an extrinsic LLR is
delayed beyond the time when the resultant a priori LLRs
are first used by the other decoder, requiring it to instead
use an out-of-date LLR from a previous iteration. Motivated
by this, our future work will address the contention problem
in the second version of the APTD algorithm by designing
schedules for the interleaving of the extrinsic LLRs, so that
only one extrinsic LLR is delivered to each processor at a time,
enabling the employment of a simple input/output interface. In
the meantime, Section IV will investigate the effect of delaying
the interleaving of the extrinsic LLRs in the second version
of the APTD.

IV. PERFORMANCE ANALYSIS

In this section, we characterise the error correction perfor-
mance associated with the different techniques of Section III
individually, as well as in combination with the techniques
employed by the two versions of the APTD, which include
odd-even operation, non-interleaved systematic LLRs and the
calculation of the extrinsic values alongside the forward re-
cursion.

The error correction performance achieved is characterised
in Figures 10 and 11, which present a range of capacity
bounds that provide references for the attainable performance
of turbo codes. More specifically, given a code rate of R = 1/3
and QPSK modulation, upon communicating over an AWGN

channel, the Continuous-input Continuous-output Memory-
less Channel (CCMC) capacity of E,/Ny = —0.49 dB is
obtained according to [25]. The corresponding modulation-
specific Discrete input Continuous-output Memoryless Chan-
nel (DCMC) capacity of E,/Ny = —0.51 dB was derived in
[26]. Additionally, the EXtrinsic Information Transfer (EXIT)
chart capacity band of —0.07 dB derived in [27] is the
lowest Ej, /Ny value for which an open tunnel can be created
between the two mutual information curves of the pair of
convolutional decoders in the EXIT chart. We note that in all
cases considered, the various turbo decoders do not present
any error floors above an FER of 1073, indicating that the
quality of service requirements of URLLC LTE are indeed
met.

Figure 10 (a) compares the FER performance of the APTD
for the LTE turbo code employing P = 64 processors,
I = 8 iterations, Radix-4 operation, odd-even (O-E) and the
conventional upper-lower (U-L) operation, in cases of short,
medium and long frame lengths of N = 64,512 and 6144
bits, where the non-interleaved systematic LLRs (NIn) are
employed and the extrinsic LLRs are calculated four at a time,
once the forward and backward recursions have crossed over
(Ext on Both). Note that the combination of U-L, NIn and
Ext on Both is as employed in the SOTA approach. For the
short frame length of NV = 64 bits, Figure 10 (a) shows that
a 2dB gain is achieved at a FER of 10~° by employing O-E,
rather than U-L. However, this gain decreases as the window
length L = N/P is increased. This is because the advantage
offered by having the recursions of one window seamlessly
leading into those of its neighboring window becomes less
significant, when the windows are longer. Furthermore, Figure
10 (a) shows that NIn degrades the FER performance by 0.2 dB
associated with O-E compared to In in the case of short frame
lengths N, but no degradation is observed for longer frame
lengths. This represents a small price to pay for the benefit of
eliminating the requirement for an additional interleaver. Note
that In and NIn attain an identical FER performance for U-L,
as discussed in Section III.

Recall from Section III, that the proposed APTD algorithm
calculates the extrinsic LLRs two at a time alongside the
forward recursions (Ext on F), hence resulting in a significant
reduction in hardware resources, compared to schemes that
calculate the extrinsic LLRs four at a time, once the forward
and backward recursions have crossed over (Ext on Both).
However, this hardware reduction is achieved at the cost of a
slight FER degradation for medium and long frame lengths,
as shown in Figure 10 (b). Note that the FER degradation
associated with Ext on F is higher when employing U-L,
demonstrating a further benefit of O-E.

Based on Figure 10, we may conclude that the combination
of O-E, Nin and Ext on F results in an attractive APTD algo-
rithm, since it achieves significantly reduced complexity at the
cost of only slight FER performance degradation, compared
to the SOTA LTE turbo decoder. In the following discussions,
we will employ this combination for investigating the FER
performance of the two versions of the APTD algorithms.

In order to better demonstrate the difference in operation
between the two versions of the proposed APTD algorithm,
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we employ p = 56 processors in the following discussions,
rather than p = 64 as in our discussions above. Since 56 is
not divisible by the frame lengths of N = 64,512 or 6144,
this choice will result in different schedules between the two
versions of the APTD. More specifically, the first version will
activate P = 32,32 and 48 of the p = 56 processors, when
N = 64,512 and 6144, respectively, in order to ensure that
each of the P windows has the same length L. By contrast, the
second version will activate all p = 56 processors for all frame
lengths N by employing windows having different lengths.
Figure 11 (a) shows that the second version achieves the best
FER performance among the four different turbo decoders at
the same number of clock cycles T', especially for the short
frame lengths. We can see that while the conventional and
SOTA decoder suffer from bad reliability, which may result in
poor quality of service (QoS), the second version is capable
of achieving the URLLC FER requirement of 10~°. Note that
when a frame length of N = 6144 is employed, the SOTA
turbo decoder slightly outperforms both versions of the APTD.
However, this gain is negligible compared to the gap between
the FER performance and the capacity bounds.

In order to facilitate the practical implementation of the
second version of the APTD, it is necessary to solve the con-
tention problem, which occurs when more than one processor
attempts to pass LLRs through the interleaver to the same
processor at the same time. A measure that may be taken
to avoid contention in the second version of the APTD is
to reschedule the operation of the interleaver, by delaying
the interleaving of some LLRs that would otherwise cause
contention. This approach is motivated since many a priori
LLRs are not used in O-E until a number of clock cycles after
they are generated. However, in some cases, the contention
may only be eliminated by delaying the interleaving of some
LLRs until after they would have otherwise been used. In this
case, the LLRs generated in the most recent previous iteration

may be used instead, albeit at the cost of degraded FER. In
our investigations, we found that 1/3 of the LLRs must be
rescheduled, in order to avoid contention in the second version
of the APTD. However, in order to investigate the worst-case
FER degradation that may be imposed, we quantify the impact
of delaying the interleaving of all LLRs, rather than just that of
the subset which causes contention. Figure 11 (b) characterises
the FER when w clock cycles of delay is imposed on the
interleaving of the LLRs. By comparing Figures 11 (a) and
11 (b), it may be seen that the second version of the APTD
offers superior FER over the first version, even if 1 or 2 clock
cycles of delay are applied to all LLRs. Since contention can
be eliminated by delaying only a subset of the LLRs, we may
conclude that the second version is superior.

V. COMPLEXITY ANALYSIS

This section compares the proposed APTD employing p =
64 processors to the conventional LTE turbo decoder of [8]
employing p = 8 processors, to the SOTA LTE turbo decoder
of [16] employing p = 64 processors, and to the FPTD of
[19] employing p = 6144 processors, both in terms of the
number of clock cycles required for achieving a low FER
and in terms of the complexity of each processor. These are
used for characterising the latency, throughput and hardware
resource requirements that may be expected by these turbo
decoder algorithms.

Table I summarises our comparisons of the proposed APTD
with the conventional LTE turbo decoder, with the FPTD, and
with the SOTA LTE turbo decoder. In contrast to the Radix-
2 operation of the FPTD, the conventional turbo decoder,
the SOTA LTE turbo decoder and the APTD use Radix-4
processing [14, 15], allowing two algorithmic blocks to be

'The number of activated processors P for different frame lengths N of
the SOTA LTE turbo decoder is given in (2).
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Fig. 11. (a) FER performance of the conventional and SOTA LTE turbo decoder and both versions of the proposed APTD for the N = 64,512 and 6144

bits LTE turbo code that employs 7" = 16, 256 and 4096 clock cycles, respectively. The proposed APTD employs P = 56 processors, Radix-4 operation,

Nin systematic approach, O-E operation, and the extrinsic values are obtained from forward recursions only (Ext on F); (b) FER performance for second

version of the APTD algorithm for N = 64, 512, 6144, with T" = 16, 256 and 4096 clock cycles, respectively, activating P = 56 processors when different

delays are imposed. Here, Nin systematic and O-E operation are employed and the extrinsic values are obtained from forward recursions only (Ext on F).

TABLE I
COMPLEXITY ANALYSIS OF DIFFERENT TURBO DECODERS
Conventional SOTA FPTD APTD N € [40,6144]
N € [40,6144] | N € [40,6144] | N € [40,6144] | Version 1 Version 2
Window length (L) N/8 N/P! 2 Wf}’vp) [N/P] or [N/P]
Overall latency (T') Tc Ts Tr N Ta2
1 €L L 1 L
(C)veralll t}'lroughput 1/7) = T e T T
omplexity per processor
per clock cycle (C) 320 320 155 320
Interleaved LLRs by each
PE at a time 4 4 ! 2
Overall complexity (T'C'P) 25607¢ 32075 P 1557 N 3207, P 320T A0 P
Computational efficiency 1 1 1 1 1
(1/TCp) 320Tcp 320T5p 155Tkp 3207 A, p 320720

processed per clock cycle. For example, in the case of a frame
length of N = 504 bits, the conventional and the SOTA LTE
turbo decoder decomposes the frame into P = 8 windows
and processes them using 8 processors. In the case of the
SOTA decoder, its other 56 processors remain disabled. Here,
each window in the conventional or the SOTA LTE turbo
decoder comprises L = 63 bits, requiring 63 clock cycles
to complete the processing of the whole frame length, when
using Radix-4 processing. By contrast, when N = 504, the
first and the second version of our APTD activate P = 63 and
64 processors, respectively. In both schemes, 8 clock cycles
are used for processing the entire 504 bits once, which is

perform sufficient iterations to achieve a FER of 10~° at the
same Ej /Ny as the conventional turbo decoder using I = 8
iterations. Meanwhile, the overall throughput is proportional to
the reciprocal of the decoding latency. Figures 12 (a) and (b)
characterise the latency and the throughput as functions of
frame length N € [40, 6144] for both versions of the proposed
APTD and compare them to those of the conventional, FPTD
and the SOTA turbo decoders. In the case of N = 504 bits,
a total of T = Ts = 1008 clock cycles are required for
the conventional and SOTA LTE turbo decoder to complete
I = 8 iterations. By contrast, the first and second version of
the APTD require 320 and 296 clock cycles, respectively. The

an eight-fold delay reduction. Indeed, the second version of ~APTD achieves this latency improvement of at least 2.23 times

the APTD activates all processors for all frame lengths that
satisfy NV > P, hence avoiding wasted hardware, as discussed
in Section III-B. Since the FPTD processes the entire frame
simultaneously, alternating between the odd- and even-indexed
algorithmic blocks, its window length L is consistently 2,

regardless of the frame length N.

The overall latency may be compared in terms of the
number of clock cycles required for each turbo decoder to

by activating all of its 64 processors, while the conventional
and SOTA decoder activate only 8 processors at N = 504.
In a hardware implementation operating at the same clock
frequency of 250 MHz used in the commercial LTE turbo
decoder implementation of [8], the corresponding processing
latency of the APTD would become around 3.6 us, achieving

a 14-times improvement compared to the 52 us demonstrated
in [8]. Hence, the proposed APTD is capable of meeting the
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Fig. 12. (a) The number of clock cycles required for all frame lengths N € [40, 6144] to achieve a FER of 102 at the same Ej /Ny as the conventional turbo
decoder using I = 8 iterations in different turbo decoders; (b) The reciprocal of the number of clock cycles required for all frame lengths N € [40, 6144] in
different turbo decoders; (c) The overall complexity in different turbo decoders as a function of the frame length IN; (d) The overall computational efficiency

in different turbo decoders as a function of the frame length N.

7.4 ps latency requirement of LTE URLLC, even in the case
of the longest N = 6144-bit frames. Meanwhile, at the longest
frame length of N = 6144 bits a total of 12288 clock cycles
are required for the conventional turbo decoder to complete
I = 8 iterations, while the proposed APTD requires only 890
clock cycles to achieve the same FER performance.

The computational complexity may also be used for char-
acterizing both the energy consumption and the hardware
resource requirement of a practical hardware implementation.
In [19], the complexity C' per processor per clock cycle im-
posed by the SOTA LTE turbo decoder and by the FPTD was
given as 320 and 155 Add Compare Select (ACS) operations,
respectively. For the conventional LTE turbo decoder and
both versions of the APTD algorithm, the number of ACS
operations performed per processor per clock cycle is also
C = 320, as in the SOTA turbo decoder, since they also
employ Radix-4 processing.

As discussed in Section II, the maximum number of LLRs
that must be interleaved at a time by each PE varies among
the decoding algorithms compared in Table I. Since the

proposed APTD algorithm obtains extrinsic LLRs alongside
the forward recursions, its PEs generate two extrinsic LLRs
for interleaving in each clock cycle when using Radix-4
processing. Similarly, the PEs of the FPTD algorithm process
windows comprising only a single trellis stage, and so they
generate only one extrinsic LLR for interleaving at a time. By
contrast, the conventional and the SOTA LTE turbo decoder
generates four extrinsic LLRs at a time once the forward and
backward recursions have crossed over, when using Radix-
4 processing. The requirement for the conventional and the
SOTA turbo decoder to interleave four extrinsic LLRs at a
time represents a significant hardware overhead, causing the
interleaver to occupy 15.3% of the chip area in the turbo
decoder implementation [28].

Combining the above-mentioned design considerations, the
energy consumption of a turbo decoder implementation may
be characterised by its overall computational complexity, as
shown in Table I. The overall complexity is defined as the
product of the number 7" of clock cycles required to achieve a
FER of 1075 at the same FE/Ny as the conventional LTE



turbo decoder using I = 8 iterations, the computational
complexity C' per processor per clock cycle and the number
of activated processors P. Figure 12 (c) shows the overall
complexity associated with all frame lengths N € [40, 6144]
for the various turbo decoders considered in this section. In
the example of N = 504 bits, the overall complexity of the
second version of the proposed APTD employing P = 64 PEs
is 2.3 times that of the conventional and the SOTA LTE turbo
decoders, which employ 8 processors. However, its complexity
is 1.3 times higher than that of the FPTD in this case. Note
that for frame lengths in excess of N = 2048, the number of
activated processors and the overall latency are the same in
the SOTA LTE turbo decoder and both versions of the APTD,
so the overall computational complexity remains identical.

In addition to the computational complexity 7'C' P, we also
compare the decoders in terms of their hardware efficiency
1/(T'Cp). Note that while the computational complexity de-
pends on the number P of activated processors, the hardware
efficiency considers the total number p of processors employed
in the decoder, as summarised in Table I. This is because all
processors occupy a certain chip-area, regardless whether they
are activated or not. Figure 12 (d) characterizes the hardware
efficiency of the three turbo decoders discussed in this paper,
as functions of the frame length N € [40,6144]. In the
example of N = 504 bits, the second version of the APTD
employing p = 64 processors achieves a 7-times efficiency
improvement compared to the SOTA turbo decoder employing
p = 64 processors. Note that for frame lengths in excess of
N = 2048, the computational efficiency is similar in both
versions of the APTD and the SOTA turbo decoder. In the
case of the FPTD, it is assumed that p = 6144 processors
are employed and that P = N processors are activated when
decoding frames of length N. Owing to this, the hardware
efficiency of the FPTD is poor, especially when the frame
length N is small compared to p. In the case of N = 504 bits,
the second version of the APTD employing P = 64 processors
achieves a 22-times efficiency improvement compared to the
FPTD decoder.

VI. CONCLUSIONS

This paper proposed a novel APTD algorithm, which facil-
itates an arbitrarily high degree of turbo decoding parallelism
for the first time, enabling significantly improved throughput,
latency, and computational efficiency in comparison to the
SOTA turbo decoder while meeting the requirements of LTE
URLLC. More specifically, conventional commercial imple-
mentations of the LTE turbo decoder have latencies of up to
52 ps, which are not able to meet the 7.4 us requirements of
LTE URLLC. By contrast, the proposed APTD can achieve the
same error correction performance as the conventional decoder
down to FERs of 1072, but with latencies of no more than
3.6 ps, meeting the requirements of LTE URLLC. Further-
more, the APTD achieves a significant reduction in complexity
in long frame lengths, compared to FPTD. In particular, none
of the processors in our proposed algorithm remain idle for
any frame length N > p, leading to better FER performance

than the SOTA turbo decoder in cases of short frame lengths.
For instance, when p = 56 processors and 16 clock cycles are
employed for decoding a frame length N = 64, our APTD
achieves a coding gain of 3.5 dB compared to the SOTA LTE
turbo decoder at a FER level of 10~2, as shown in Figure
11, whereas only slight improvements can be observed when
decoding a frame length of N = 6144 employing the same
number of p = 56 processors with 4096 clock cycles. We have
proposed an odd-even processing of windows in the upper and
lower decoder, which achieves better FER performance for
short frame lengths, compared to conventional upper-lower
processing. Furthermore, we reduce the interleaving com-
plexity by generating extrinsic LLRs alongside the forward
recursion, at the cost of slightly degraded FER performance.
Like the FPTD, the proposed APTD is capable of achieving
the same error correction performance as a conventional LTE
turbo decoder, at all frame lengths. However, our APTD
achieves this using significantly fewer decoding iterations and
hence a lower complexity at long frame lengths. As shown in
Figure 12 (a), the proposed APTD achieves superior latency,
throughput and computational efficiency than the SOTA LTE
turbo decoder at all frame lengths, but particularly at the short
frame lengths that are typically used in URLLC approaches.
For example, at a frame length of N = 504 bits, the proposed
APTD achieves an FER of 107° at the same E,/Ny as
I = 8 iterations of a conventional turbo decoder, but with
a computational efficiency that is 6 times higher than that
of the SOTA turbo decoder, while achieving a latency and
throughput that are 0.7 and 1.4 times those of the SOTA
decoder, respectively. Note however that this is achieved at
the cost of increasing the computational complexity by 2.3
times compared to the SOTA decoder of N = 504.

Our future work will address the contention-free problem in
the second version of the APTD, which arises when activating
the number of PEs P that is not an integer factor of the
frame length N. We will achieve this by designing schedules
that delay the interleaving of some extrinsic LLRs relative
to the forward recursions in which they are generated. Our
results seen in Figure 11 (b) demonstrate that delaying the
interleaving of extrinsic LLRs in this way has only a negligible
impact upon the FER performance. Furthermore, our future
work will consider the practical hardware implementation
of the proposed APTD algorithm in order to determine the
throughput, latency, energy efficiency and hardware efficiency
that can be achieved in practice.
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