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Abstract—Since current widely available network proto-
cols/systems are mainly throughput-oriented designs, meeting
stringent delay requirements of new applications such as virtual
reality and vehicle-to-vehicle communications on cellular network
requires new network protocol/system designs. C2TCP is an effort
toward that new design direction.

C2TCP is inspired by in-network active queue management
(AQM) designs such as RED and CoDel and motivated by lack
of a flexible end-to-end (e2e) approach which can adapt itself
to different applications’ QoS requirements without modifying
any network devices. It copes with unique challenges in cellu-
lar networks for achieving ultra-low latency (including highly
variable channels, deep per-user buffers, self-inflicted queuing
delays, radio uplink/downlink scheduling delays) and intends
to satisfy stringent delay requirements of different applications
while maximizing the throughput. C2TCP works on top of
classic throughput-oriented TCP and accommodates various
target delays without requiring any channel prediction, network
state profiling, or complicated rate adjustment mechanisms.

We have evaluated C2TCP in both real-world environment and
extensive trace-based emulations and compared its performance
with different TCP variants and state-of-the-art schemes includ-
ing PCC-Vivace, Google’s BBR, Verus, Sprout, TCP Westwood,
and Cubic. Results show that C2TCP outperforms all these
schemes and achieves lower average delay, jitter, and 95th
percentile delay for packets.

Index Terms—Ultra low latency, controlled delay, quality of
service, congestion control, cellular networks, TCP.

I. INTRODUCTION

EMERGING applications such as virtual reality, aug-
mented reality, real time remote health monitoring, au-

tomated vehicles and vehicle-to-vehicle communications, real
time online gaming, etc. have brought new requirements in
terms of latency, throughput, and reliability. These new re-
quirements show a clear need for new designs for the network
and its protocols. On the other hand, exponential growth in
the cellular networks’ traffic during recent years (more than
1200% over recent five-year period [1]) , due to the advances
in cellular network technologies, illustrates the important role
of cellular networks in the future Internet. That is why 5G, the
next generation of mobile communication technology, holds
promise of improved latency, throughput, and reliability.

While nearly all of the today’s platfroms are using dis-
tributed TCP protocols, J. Jaffe in [2] has proved that no
distributed congetion control can converge to the operation
point in which both the minimum delay and maximum
throughput are achieved. This result declares the clear trade-
off among throughput and delay for TCP flows. Because e2e
delay has been treated less important than throughputs for
traditional applications, majority of current TCP protocols

are throughput-oriented designs. A simple example is the
dominance of Cubic, a loss-based throughput-oriented TCP
design, as the default TCP scheme in most of the today’s
smartphone and PC platforms. However, these throughput-
oriented designs cannot support next generation applications
with a wide range of delay requirements (e.g. AR/VR appli-
cations require less than 20ms delay [3], delay requirement
of vehicle-to-vehicle communications can be 5-10ms [4], and
video streaming/conferencing applications can tolerate delays
of 50-100ms).

Moreover, cellular networks experience highly variable
channels, fast fluctuating capacities, self-inflicted queuing
delays, stochastic packet losses, and radio uplink/downlink
scheduling delays. These unique characteristics make the prob-
lem of achieving low latency and high throughput in cellular
networks much more challenging than in wired networks.
That is why TCP and its variants (which are mainly designed
for wired scenarios) are known to perform poorly in cellular
networks [5]–[9].

Inspired by in-network AQM designs such as RED [10] and
CoDel [11] and motivated by lack of a flexible e2e approach
which can adapt itself to different applications’ QoS require-
ments (without modifying any network devices) and unique
challenges in the cellular networks for achieving low latency,
we propose C2TCP (Cellular Controlled delay TCP)1. One of
the key ideas behind C2TCP’s design is to absorb dynamics
of unpredictable cellular channels by investigating minimum
packet delay in a moving time window. C2TCP works on top
of a loss-based TCP such as Cubic [13] and accommodates
various target delays. In particular, our contributions in this
paper are:
• Combining the key ideas of in-network AQM schemes

and throughput-oriented transport control protocols at
end-host to provide a flexible e2e solution which allows
applications to choose their level of delay sensitiveness
without modifying any network devices (C2TCP only
needs to be run on the server side). We showed that
achieving good performance does not necessarily comes
from complex rate calculation algorithms or complicated
channel modelings in cellular networks.2

• Collecting over 2 hours of cellular traces representing
various scenarios and environments in New York City
and making them available to the community (detailed in
section VII-A).

1An earlier version of this work titled “Cellular Controlled Delay TCP
(C2TCP)” was published in IFIP Networking conference [12]

2It is already a known fact that predicting cellular channels is hard [7],
[14]
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• Implementing C2TCP in latest Linux Kernel, on top of
Cubic, and conducting extensive experiments using both
real-world tests and trace-driven evaluations (in a re-
producible environment using real-world cellular traces)
detailed in sections VI and VII. We have compared per-
formance of C2TCP with several TCP variants (including
Cubic [13], TCP Westwood [15]) and state-of-the-art
schemes including PCC-Vivace [16], Google’s BBR [17],
Sprout [5], and Verus [7]. Highlights include: on average,
Sprout, Verus, BBR, and PCC-Vivace have 1.94×, 3.82×,
2.44×, and 10.05× higher average delays and 1.64×,
3.22×, 2.31×, and 10.52× higher 95th percentile delays
compared to C2TCP, respectively. This great delay per-
formance comes at little cost in throughput. For instance,
compared to BBR (which achieves the highest through-
put among those 3 state-of-the-art schemes), C2TCP’s
throughput is only about 20% less.

Rest of this paper has been organized as follow: We discuss
our main motivations and design decisions in the next section.
Section III explains the design of C2TCP and its components.
In sections IV and V, we have analyzed C2TCP’s steady state
behavior and discussed the main reasons behind performance
improvements achieved by C2TCP. Sections VI and VII in-
clude our macro-evaluations in which we have focused on the
macro-level performance metrics (delay and throughput). In
particular, we present the results of our in-field evaluations
in section VI and our extensive trace-driven evaluations in
section VII. Later, in section VIII, we perform micro-level
evaluations and dig deep into the C2TCP’s characteristics
including TCP friendliness, impact of buffer size on its per-
formance, and compare it with CoDel [11], an AQM scheme
that requires modification on carriers network, and show that
C2TCP can work very close to CoDel and even in some cases
outperform its delay performance.

II. MOTIVATIONS AND DESIGN DECISIONS

Flexible e2e Approach: One of the key distinguishing
features of cellular networks is that cellular carriers generally
provision deep per-user queues in both uplink and downlink
directions at the base station (BS) to increase network relia-
bility [5]. This leads to issues such as self-inflicted queuing
delay [5] and bufferbloat [9], [18]. A traditional solution
for these issues is using AQM schemes like RED [10];
however, correct parameter tuning of these algorithms to meet
the requirements of different applications is challenging and
difficult. Although newer AQM algorithms such as CoDel [11]
can solve the tuning issue, it comes with a new design
for the underlining switches and a need of deploying them
in the network causes huge CAPEX cost. In addition, in-
network schemes lack flexibility. They are based on “one-
setting-for-all-applications” concept and do not consider that
different types of applications might have different delay and
throughput requirements. Moreover, with emerging architec-
tures, such as mobile content delivery network (MCDN) and
mobile edge computing (MEC) [19], content is being pushed
close to the end-users. So, from the latency point of view,
the problem of potential large control feedback delay of e2e

Fig. 1. A big picture of C2TCP’s design

solutions diminishes if not disappears. Motivated by these
shortcomings and new trends, we seek a “flexible e2e” solution
which will let various server applications running inside differ-
ent systems/virtual-machines/containers (in the cloud/mobile
edge) have different desired target delays.

Simplicity: Cellular channels often experience fast fluctua-
tions and widely variable capacity changes over both short
and long timescales [7]. This property along with several
complex lower layer state machine transitions [8], complicated
interactions between user equipment (UE) and BS [20], and
scheduling algorithms used in BS to allocate resources for
users through time which are generally unknown for end-
users make cellular channels hard to be predictable if not un-
predictable [7], [14]. These complexities and unpredictability
nature of channels motivates us to avoid using any channel
modeling/prediction or adding more complexity to cellular net-
works. We believe that performance doesn’t always come from
high complexity. Therefore, we seek “simple yet effective”
approaches to tackle the congestion issue in cellular networks.

Network as a Black-Box: In cellular networks, source
of delay is vague. The e2e delay could be due to either
self-inflicted queuing delay in BS, delays caused by BS’
scheduling decisions in both directions, or downlink/uplink
channel fluctuations. Although providing feedback from the
network to users can guide them to detect the main source
of delay and react to it, it needs to have a new design for
cellular networks. However, this comes at the CAPEX cost
for cellular carriers. Therefore, we will look at the cellular
network as a “black-box” which doesn’t directly provide us
with any information about itself.

III. C2TCP’S DESIGN

A. Big Picture
One of the major goals of any TCP scheme is to determine

how many inflight packets can exist at different times in the
network. This will be done by setting a so-called congestion
window (Cwnd) at different times of a TCP session. C2TCP
works as an add-on on top of loss-based TCP so that it can
inherit the stability, friendliness, and throughput performance
of well studied and widely used loss-based approaches such as
Cubic. The big picture of the C2TCP’s structure on the server
side is shown in Fig. 1.3 C2TCP consists of two parts: 1-

3C2TCP only needs to be run on the server and it does not require any
changes at the client.
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Fig. 2. The Good, the Normal, and the Bad conditions

An unmodified loss-based TCP (such as Cubic). 2- A window
refining module that runs in parallel with the loss-based TCP
in part 1 and refines the Cwnd. The window refining module
further consists of three logical blocks: Condition Detector,
Action Enforcer, and Tuner.

In a traditional classic loss-based TCP design, it is assumed
that an AQM design in the network is responsible to do the
queue management and drop the packets if needed4. TCP will
then detect the loss and react based on that. Although different
AQM designs have different logic, the main idea behind them
is the same: They all try to determine when it is a good
condition in which they can serve packets and when it is a bad
condition in which they should drop packets. Here, we push
this classic observation/assumption further by moving the key
responsibility of AQM design (i.e. detecting various network
conditions) from the network to the host itself. This design
decision will let us have tremendous flexibility compared to a
fixed in-network solution.

More specifically, in C2TCP, Condition Detector acts as an
AQM design and tries to figure out the current condition of
the network. Based on detected condition, when it is required,
Action Enforcer block adjusts the Cwnd of the loss-based TCP.

The key insight behind the logic of Action Enforcer comes
from the following question:
If we had an in-network AQM algorithm able to detect a bad
condition, what would have it done to inform a loss-based
TCP and what would be the reaction of the loss-based TCP?

The answer is a classic straightforward one. It would have
simply dropped the packets and caused TCP to time-out (detect
the loss) and do a harsh back-off by setting Cwnd to one.
So, the key idea of Action Enforcer is to make such an
impact by overwriting the Cwnd calculated by loss-based TCP,
when condition detector detects a bad condition (an imaginary
packet drop).

Meanwhile, the Tuner gets the desired average target delay
(called Target) from the application using socket option fields
and uses the statistics gathered by C2TCP such as average
packet delay to dynamically tune the Condition Detector
and increase/decrease its sensitivity for identifying network
condition.

In the following sections the details of each block in Fig. 1
(Action Enforcer, Condition Detector, and Tuner) and intuition
behind their design decisions will be explained.

4Let’s consider FIFO as a naive AQM approach too

B. Condition Detector
1) The Good, The Normal, and The Bad Conditions: RTTs5

of packets in cellular networks are noisy (due to channel
fluctuations, scheduling in uplink/downlink directions at BS,
etc.). So, tracing RTT itself won’t help to detect network’s
condition or whether it is congested. However, local minimum
RTT observed in a moving time window can work like a
filtered version of the noisy RTT. The insight here is that
as long as we have a consistent delay for the packets in the
network, no matter what the source of delay is (scheduling
delay at BS, wireless channel fluctuations, layer 2 packet re-
transmission at wireless link, etc.), this dealy can be detected
by tracing the minimum RTT in a moving time window (called
minRTT from now on). If minRTT is increased across the
moving windows, it most likely reflects a consistent delay in
the network, while if minRTT is decreased across the moving
windows, it most likely shows a good delay response of the
network. Using that insight, we define three conditions for the
network as follow:
We define RTT(t) as the measured RTT based on an acknowl-
edgment packet received at time t and Interval as our moving
monitoring time window. Now, Given any moment t and a
desired minRTT called Setpoint, we define:
Bad-Condition: The network is in bad condition, if
min(RTT(t′)) ≥ Setpoint for (t− Interval) ≤ t′ ≤ t.
Normal-Condition: The network is in normal condition,
if RTT(t) ≥ Setpoint and min(RTT(t′)) < Setpoint for
(t− Interval) ≤ t′ ≤ t.
Good-Condition: The network is in good condition, if
RTT(t) < Setpoint.

For instance, consider Fig. 2 which shows sample RTTs
of packets through time. Before t0, RTT of a packet is less
than the Setpoint value. After t0, RTT goes higher than the
Setpoint while for any time t, t0 < t < t1(t1 = t0 + Interval),
minRTT(t) < Setpoint. So, in [t0, t1] the network is in Normal
condition. After t1, minRTT goes higher than the Setpoint and
a Bad-Condition is detected which lasts till t3 when RTT(t3)
goes below Setpoint indicating detection of a Good-Condition.

Note that the delay responses of packets in [t2, t3] and
[t5, t6] periods are identical. However, since the history of their
delay is different at t2 and t5, those two periods have been
identified differently (the first one is in a Bad-Condition, while
the second one is in a Normal-Condition). This example shows
how we can use our definition to qualitatively get a sense of
the history of the packet’s delay without recording the whole
history of delay for all packets.

2) Persistence of Bad Condition: Fig. 3 shows the state
machine of the Condition Detector and Algorithm 1 represents
its pseudo code. At the start of each Bad Condition, Action
Enforcer will be called to act accordingly. So when a Bad
Condition continues, it becomes an alarming situation which
requires more frequent reactions from the sender. In other
words, when minRTT consistently is high, the sender should
proceed with more caution regarding changing its sending
rates. Therefore, when a Bad Condition is detected, C2TCP
reduces the Interval by a factor of 1√

N
(where N is the

5We use words RTT and e2e delay interchangeably in this paper.
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Fig. 3. State machine of Condition Detector executed upon receiving an Ack
packet

number of consecutive detected Bad Conditions) and uses the
new Interval to detect the probable next consecutive Bad-
Condition.

Why 1√
N

? On the one hand, as mentioned in section III-A,
detection of each Bad condition in C2TCP resembles an
imaginary packet drop (by an imaginary AQM scheme in the
network). In other words, having an increase in the rate of
detecting Bad conditions in C2TCP is similar to having an
increase in the rate of packet drops by an AQM algorithm. On
the other hand, the well-known relationship of drop rate in the
network and the loss-based TCP’s throughput is that “the drop
rate in the network is proportional to the inverse square of the
throughput of loss-based TCP” (for an example derivation of
this relation, check [21], [22]). Therefore, similar to [11],
to get a linear decrease in TCP’s throughput, we increase the
rate of detecting consecutive Bad conditions, which is equal
to increasing rate of imaginary packet drops, proportional to
the square root of N. That explains why we reduce Interval by
a factor of 1√

N
.

Notice: As Fig. 3 and Alogithm 1 show, during Good
Condition, Action Enforcer will be called after receiving every
Ack packet. However, Action Enforcer will be called just at
the start of each Bad Condition. Also, note that as Algorithm 1
declares, Condition Detector’s implementation intentionally
does not require any timer and does not directly calculate
local minRTT during each Interval. This greatly simplifies the
implementation of Condition Detector.

3) Setpoint and initial Interval values: In the mechanisms
described for detecting network conditions, Setpoint and initial
Interval values are coupled together. When we want to detect
minRTT with a Setpoint value of 100ms, if we set initial
Interval to values way smaller than 100ms, C2TCP will react
very fast and report a lot of false Bad-Conditions. In contrast,
when we set initial Interval to values way larger than 100ms,
C2TCP will have a lot of false Good-Conditions. Considering
this and the fact that initial Interval and Setpoint should not
be smaller that intrinsic minimum RTT of the network, we
choose initialInterval = Setpoint = α × MINRTT in
which MINRTT represents the global minimum RTT (from
the start of the session to current time).

The key parameter α determines the level of sensitivity for
distinguishing Good and Bad conditions in Condition Detector,
the heart of C2TCP. Value of α will be controlled dynamically
by Tuner (detailed in section III-D).

Algorithm 1: Condition Detector’s Logic
1 Function pkts acked() // process a new received Ack
2 rtt←− current rtt
3 now ←− current time
4 action required←− false
5 if rtt < MINRTT then
6 MINRTT = rtt
7 Setpoint = α×MINRTT
8 if rtt < Setpoint then
9 Interval = Setpoint

10 condition = Good
11 first time = true
12 N = 1 // N: Num. of consecutive backoffs
13 action required = true
14 else if first time then
15 condition = Normal
16 next time = now + Interval
17 first time = false
18 else if now > next time then
19 condition = Bad
20 next time = now + Interval√

N

21 N + +
22 action required = true
23 if action required then
24 Action Enforcer(condition, rtt, Setpoint)

Algorithm 2: Action Enforcer’s Algorithm
1 Function Action Enforcer(condition,rtt,Setpoint) //
2 switch condition do
3 case Good do
4 Cwnd += Setpoint

rtt
× 1

Cwnd

5 case Normal do
/* Do nothing! */

6 case Bad do
/* setting ssthresh using default TCP
function which normally recalculates
it in congestion avoidance phase */

7 ssthresh←− recalc ssthresh()
8 Cwnd←− 1

C. Action Enforcer

Based on detected condition by Condition Detector, Action
Enforcer block adjusts the Cwnd of the loss-based TCP. Action
Enforcer’s pseudo code is shown in Algorithm 2. As discussed
in section III-A, detection of Bad condition is similar to
an imaginary drop of packet in the network. So, when Bad
Condition is detected at source, Action Enforcer overwrites
the decision of loss-based TCP and sets Cwnd to one (similar
to having a timeout in loss-based TCP).

In congestion avoidance phase [23], loss-based TCP only
increases Cwnd by 1

Cwnd after receiving each Ack packet so
that after one RTT, Cwnd can increase by 1 packet. However,
detection of a Good Condition illustrates that there is an
opportunity to send more packets into the network and use
the current available capacity at a little cost of an increase in
self-inflicted queuing delay. So, in Good Condition, in addition
to the increase done by the loss-based TCP, Action Enforcer
increases the Cwnd so that after one RTT, Cwnd increases by
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Setpoint
RTTcurrent

more packets (equation 1 (line 4 in Algorithm 2)).
The choice of this additive increase is to follow the well-
known AIMD (Additive Increase Multiplicative Decrease)
property to ensures that C2TCP’s algorithm still achieves
fairness among connections [24]. We have examined C2TCP’s
fairness in more detail in section VIII-A.

Cwndnew = Cwndrecent +
Setpoint

RTTcurrent
× 1

Cwndrecent
(1)

When Normal Condition is detected, Action Enforcer performs
no further action and doesn’t change the Cwnd calculated by
the loss-based TCP. Therefore, the loss-based TCP decides the
final Cwnd in Normal Condition and adjusts the final Cwnd
based on its logic.

D. Tuner

Delay constraints for various classes of delay-sensitive ap-
plications differ from each other. However, the overall picture
is that for each class of applications there is usually a desired
delay performance. One of the important design features of
C2TCP is that it can adapt itself to the application’s delay
constraint. The Tuner block is responsible for handling this
feature. Applications can provide C2TCP with their desired
average delay called Target. The Target can be set through a
socket option field at the time of creating the TCP socket and
can even be changed during the lifetime of that socket.

The Tuner periodically uses the statistics of the average
delay of packets and employs the Target given by the ap-
plication to adjust the α parameter of the Condition Detector
block. The overall intuition here is that decreasing α (i.e.,
decreasing Setpoint) will push Condition Detector toward
being more delay-sensitive, while increasing α (i.e., increasing
Setpoint) will push it toward being more relaxed and gain
higher throughput. The big picture of Tuner’s logic and its
pseudo code are shown in Fig. 4 and Algorithm 3, respectively.

Our sensitivity analysis indicates that a tuning cycle of half
a second gives reasonable results, so we used that as our
tuning cycle. Tuning cycles much larger than 0.5 seconds will
miss channel fluctuations and cause C2TCP to react slowly
to them. On the other hand, tuning cycles much smaller than
0.5 seconds make C2TCP too aggressive and could overreact
to the good or bad network conditions. This is similar to the
observations in [7] for choosing a profile update rate.

Every 0.5 seconds, Tuner looks into the average delay of
packets. Considering Fig. 4, if the average e2e delay (D1)
is bigger than Target, Tuner decreases α (lines 10-13 in

Algorithm 3: Tuner’s Algorithm
1 Function Tune()

/* Every 0.5 second tune α using following:

*/
2 avg rtt←− average rtt during previous Tuning Cycle
3 min α←− 1
4 max α←− 10
5 if avg rtt < Target then
6 α += Target−avg rtt

2avg rtt

7 if max α ≤ α then
8 α = max α
9 else if Target < avg rtt then

10 α −= 2(avg rtt−Target)
Target

11 if α ≤ min α then
12 α = min α

Algorithm 3) to push the average e2e delay of next tuning
cycle toward point D2. On the other hand, if average delay
is less than Target (D3), Tuner increases α (lines 6-9 in
Algorithm 3) to push the average e2e delay of next tuning
cycle toward point D4. As illustrated in Algorithm 3, the
amount of change in α is proportional to the distance of
average e2e delay from the desired Target. We will discuss the
reasons behind these adjustments in more details in section IV.

IV. ANALYSIS OF C2TCP’S BEHAVIOR

In this section, we use average analysis to investigate the
behavior of a single long-lived C2TCP flow and show that
C2TCP can upper bound the average e2e delay of packets in
the steady state. To simplify the analysis, we model the net-
work as a single queue representing the network’s bottleneck
link queue as shown in Fig. 5 where horizontal direction is
time, vertical direction shows bandwidth, and green rectangles
represent packets. When a packet hits the bottleneck link,
it is squeezed in bandwidth and stretched out in time (to
have constant area/size). Squeezed out packets reach receiver
and receiver sends Ack packets accordingly to the sender.
Reception of Acks gives room to the sender for sending more
packets. Using that model we define followings:

e2eDelay: e2e delay representing the delay between the time
of sending a data packet (at sender) and the time of receiving
its corresponding Ack packet (at sender)6.
bw: Average pipe7 bandwidth (packet per second)
P: Number of packets that fill the pipe without causing any

queuing delay. Pipe is fully filled without causing queuing
delay (e2eDelay = MINRTT) when arrival rate to the queue
(i.e., sender’s throughput) is equal to pipe’s BW. Therefore:

When Arrival Rate = bw ⇒ Cwnd
MINRTT

= bw ⇒
P = Cwnd = bw ×MINRTT (2)

6Notice: e2e delay consists of propagation delay, transmission delay, and
queuing delay in both directions. Propagation delay is usually way smaller
than other delays especially when the servers are located at mobile edge
network. Moreover, due to the larger size of the data packets compared to the
Ack packets (about 25×), transmission time of the data packets is way larger
than the Ack packets. So, putting all together, e2e delay will be dominated
by the delay of the data packets in the downlink direction.

7We use words pipe and bottleneck link interchangeably.
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Ws: Queuing delay that leads to e2eDelay = Setpoint
(Ws = Setpoint−MINRTT)
Qs: Corresponding queue length when queuing delay is Ws

Inflight: Number of inflight packets in the network
We assume that the startup phase of loss-based TCP has

been passed and it is already in congestion avoidance (CA)
phase [23]. Also, to simplify the analysis in steady state, we
assume that the average bottleneck link BW (bw) remains
constant. Now, we follow the variations of Cwnd and queue
length shown in Fig. 68 and calculate the average e2e delay
of the C2TCP flow in steady state (we are ignoring the one
RTT delay between the time of having a specific queue length
and the time of C2TCPs reaction to that specific queue length
since the timescale of the Cwnd growth is long compared to
an RTT). Considering Fig. 6:

[0, t0): Before t0, since Cwnd < P , there is no queuing
delay. Hence, e2eDelay = MINRTT ≤ Setpoint. So, C2TCP
is in Good condition and overall Cwnd growth rate is (1 +
Setpoint

RTT ) packets per RTT (Loss-based TCP increases Cwnd by
1 (in CA phase) and Action Enforcer by Setpoint

RTT packets (check
equation 1)).

[t0, t1): At t0, Cwnd (=Inflight) equals P and queue length
starts growing (mismatch of pipe size and Cwnd).

[t1, t2): At t1, queue length reaches Qs. So, after t1, queuing
delay becomes higher than Ws and e2eDelay > Setpoint.
Therefore, at t1, C2TCP detects Normal condition and Cwnd
growth rate returns to normal loss-based TCP rate: 1 packet
each RTT. Using equation 2, Qs can be calculated as follows:

Qs =Ws × bw = (Setpoint−MINRTT)× bw
= (α− 1)×MINRTT× bw = (α− 1)× P (3)

[t2, t3): At t2 = t1 + Interval (an Interval after t1), C2TCP
detects Bad condition, because for the entire period of (t1, t2],

8Without loss of generality, we assume at time 0 (arbitrary time) in Fig. 6
queue length is zero.

minimum RTT was larger than Setpoint (queue Length >
Qs ⇒ queue delay > Ws ⇒ e2eDelay > Setpoint).
Therefore, Cwnd is set to 1 by C2TCP. At t2, queue length
(Qb) can be calculated as follows:{

Cwnd growth rate during (t1, t2) = 1 packet per RTT
Setpoint = Interval = α×MINRTT ⇒

Qb = Qs + Interval/RTT ≤ Qs + α (4)

Due to the primary principle of Cwnd-based TCPs, at any
arbitrary time, sender only allows to send (Cwnd − Inflight)
packets to the network and when Cwnd is less than Inflight,
no new packet will be sent to the network. After detecting
Bad condition at t2, we have Cwnd = 1 which is smaller
than Inflight = Qb + P . So, no new packet will be sent to
the network (wavy patterned areas in Cwnd graph of Fig. 6).
Therefore, queue length starts decreasing until it reaches Qs
again at time t3. Using equation 4 we have:

t3 − t2 =
Qb −Qs
bw

≤ α

bw
(5)

Druing [t2, t3), although Action Enforcer does not increase
Cwnd, loss-based TCP still increases it at the rate of 1 packet
per RTT. So, at t3, using equations 5, 2, and 3 and the fact
that (P > 1)9:{

Cwnd = 1 + t3−t2
RTT ≤ 1 + α

RTT×bw ≤ 1 + α
P

Inflight = Qs + P = α× P ⇒

Cwnd < Inflight (6)

The important result from equation 6 is that no new packet
is sent to the network during (t2, t3). This means that queue
length will come below Qs after t3.
[t3, t4): At t3, queue length becomes Qs and e2eDelay =

Setpoint. So, C2TCP enters the Good condition and Cwnd
growth rate increases (equation 1). At t4, where Cwnd =
Inflight, C2TCP starts sending new packets which causes
queue length to increase.
[t4, t5): Increase of queue length continues.
[t5, t6): During [t5, t6), C2TCP behaves similar to [t1, t2).

So, at t6, a Bad condition is detected, Cwnd is set to 1, and
C2TCP’s behavior during [t2, t6] repeats.

Now, we drive the average RTT of packets during steady
state ([t2, t6]). Average queue length of [t2, t6] is equal to
average of the area under queue length curve in that period.
By inspection, we have:

Qavg <
(Qb−Qs)(t2−t1)

2 +Qs(t6 − t2) + (Qb−Qs)(t6−t5)
2

(t6 − t2)

⇒ Qavg <
Qb −Qs

2
+Qs (using equation 4)⇒

Qavg < Qs +
α

2
(7)

9P is generally way larger than 1 (e.g., for a typical LTE network
P=40ms×25Mbps=250 packet per sec (for packet size=500B).
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Fig. 7. Delay and throughput performnace of Cubic and C2TCP

Now, using equations 7, 3, and 2:

RTTavg = MINRTT +
Qavg
bw

< MINRTT +
Qs +

α
2

bw

⇒ RTTavg < MINRTT + (α− 1)MINRTT +
α

2bw
⇒

RTTavg < α(MINRTT +
1

2bw
) (8)

Equation 8 shows an upper bound for RTTavg using C2TCP
(in steady state). A more relaxed upper bound can be derived
by considering MINRTT > 1

bw :

RTTavg < 1.5αMINRTT = 1.5× Setpoint (9)

Although equations 8 and 9 declare steady state upperbounds
of RTTavg , channel link fluctuations and scheduling delay
variations can still impact the RTTavg (non steady states).
That is why Tuner block will always try to adjust the α
parameter so that long-term RTTavg remains less than the
desired application Target. More specifically, after one tuning
cycle with Setpoint = Setpoint1, if RTTavg > Target, then
to cancel out increase in RTTavg and to push average e2e
delay toward RTT ′avg = RTTavg − 2(RTTavg − Target) in
the next cycle (Point D2 in Fig. 4), Tuner decreases Setpoint
(smaller upper bound in equation 9) using equation 10 (line
11 in Algorithm 3). On the other hand, if RTTavg < Target,
after one tuning cycle, Tuner tries to conservatively increase
throughput by compensating e2e delay and push e2e delay
toward RTT ′avg = Target − (

Target−RTTavg

2 ) in the next cycle
(Point D4 in Fig. 4). So, Tuner increases Setpoint (larger upper
bound in equation 9) using equation 10 (line 7 in Algorithm 3).

RTTavg < 1.5Setpoint1 ⇒ RTT ′avg < 1.5(
RTT ′avg
RTTavg

Setpoint1)

⇒ Setpointnew =
RTT ′avg
RTTavg

Setpoint1 (10)

V. WHY IT WORKS

To show the improvements achieved by C2TCP and high-
light the reasons, we compare the performance of C2TCP
implemented on top of Cubic with Cubic alone following
instructions described in section VII. Here, Target is set to
50ms. Fig. 7 shows about 2 minutes of varying capacity
of a cellular link (TMobile UMTS network in downlink
direction measured by prior work [5]) and delay/throughput
performance of C2TCP and Cubic.

Avoiding excessive packet sending: Due to variations in
link capacity and deep per-user buffers, Cubic’s delay perfor-
mance is poor, especially when there is a sudden drop in link
capacity after experiencing good capacity (for instance, look
at [5s−25s] and [70s−80s] time periods in Fig. 7). However,
C2TCP always performs very well regardless of the fast link
fluctuations. As results of the analysis in section IV indicate,
the key reason is that C2TCP always keeps proper amount of
packets in the queues so that on the one hand, it avoids queue
buildup and increase in the packet delay and on the other
hand, it achieves high utilization of the cellular access link
when either channel quality becomes good or BS’ scheduling
algorithm allows serving packets of the corresponding UE.10

Absorbing dynamics of channel: Monitoring minimum
RTT in a moving time window allows C2TCP absorb dy-
namics of cellular link’s capacity, scheduling delays, and in
general, different sources of delay in network, without a need
for having knowledge about the exact sources of those delays,
which in practice, are hard to know at end-hosts.

Cellular link as the bottleneck: Based on high demand of
cellular-phone users to access different type of contents, new
trends and architectures such as MEC [19], MCDN (e.g. [25]),
etc. have been proposed and used recently to push the content
close to the end-users. So, cellular access link known as
the last-mile becomes the bottleneck even more than before.
This trend helps C2TCP’s design to concentrate on the delay
performance of the last-mile and boost it.

Isolation of per-user queues in cellular networks: Since
C2TCP targets cellular networks, it benefits from their char-
acteristics. One of the important characteristics of cellular
networks is that usually different UEs get their own isolated
deep queues at BS and there is rare competition for accessing
queue of one UE by flows of other UEs [5], [7], [9]. This
property puts BS’ scheduler in charge of fairness among UEs
using different algorithms such as weighted round robin, or
proportional fairness. This fact helps C2TCP to focus more on
the delay performance and leave the problem of maintaining
fairness among UEs on the last-mile to the scheduler. In
addition, it is usually one critical flow for each UE. C2TCP
benefits from this fact too. 11

What if C2TCP shares a queue with other flows: Al-
though the main bandwidth bottleneck in cellular networks is
the last-mile, there still might be concern about the congestion
before the last-mile access link (for instance, in the carrier’s
network). The good news is that in contrast with large queues
used at BS, normal switches and routers use small queues [26].
So, using well-known AIMD property ensures that the C2TCP
will achieve fairness across connections [24] before the flow
reaches its isolated deep buffer at BS. In section VIII-A, we
show good fairness property of C2TCP in the presence of other
flows in such a condition.

Letting loss-based TCP do the calculations: Another
helpful insight behind C2TCP is that in contrast with delay-

10When there is no signal or when downlink capacity is close to zero (e.g.
[7s− 10s] and [20s− 25s] in Fig. 7), any algorithm including C2TCP will
experience delay.

11If not, users can simply prioritize their flows locally, and send/request the
highest priority one first.
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based TCPs, C2TCP does not directly use the delay of packets
to calculate the congestion window, but let loss-based TCP,
which is basically designed to achieve high throughput [13],
[27]–[29], do most of the job. So, instead of reacting directly
to every large RTT, the idea of identifying Bad Condition helps
C2TCP detect persistent delay problems in a time window and
react only to them.

VI. IN-FIELD EVALUATIONS

In this section, we evaluate the performance of C2TCP in
the real-world environment by considering three main macro-
level performance metrics: delay, jitter, and throughput. We
have implemented C2TCP in Linux Kernel 4.13, on top of Cu-
bic as the base loss-based TCP and used this implementation
in all experiments (source code is available to the community
at: https://github.com/soheil-ab/c2tcp). We perform our real-
world evaluations on T-Mobile LTE network in New York
City and use 4 Motorola Moto E4 smartphones in our tests. To
make sure that all phones are connected to the BS using the
same band, we force all of them to use the LTE B4 band. The
topology of real-world tests is depicted in Fig. 8. We tether
phones’ LTE connections to laptops and use them as our LTE
clients. Moreover, we use 4 servers equipped with very high
bandwidth and very low network latency located in the same
rack in our lab to send traffic to the clients. Having them in the
same rack reduces the chance of having different path latency
and throughput for different server-client connections.

To emulate contention and having competing traffic at
BBU, we simultaneously send three UDP streams from three
different servers to three clients and at the same time start
sending TCP traffic from a server to one of the clients under
the test. Specifically, we consider the following scenarios:

1) Three servers each sending a UDP stream and one server
sending C2TCP flow (C2TCP’s client-server applica-
tion)

2) Three servers each sending a UDP stream and one server
sending Google’s BBR flow (Iperf3 traffic)

3) Three servers each sending a UDP stream and one server
sending Cubic flow (Iperf3 traffic)

4) Three servers each sending a UDP stream and one server
sending Verus flow (Verus’ client-server application)

We use three different Target values (50, 100, 180 ms) for
C2TCP experiments12. For each Target value, we run above
scenarios for 30 seconds and repeat each test 5 times. More-
over, we make sure that all phones have the same quality of
channel and connected to the same BS during the experiment.
All tests are done at the same time and at the fixed location
(evening in stationary position in a residential building). Av-
erage e2e delay and average throughput for all experiments
are shown in Fig. 9. The overall averaged throughput and e2e
delay and overall averaged jitter (defined as mean deviation
(smoothed absolute value) of delay) over all runs are shown
in Fig. 10 and Fig. 11, respectively.

As Fig. 10 shows, C2TCP can control the average delay of
packets based on the Target very well. As expected, increasing
Target decreases the average delay performance, while it
allows the sender to achieve higher throughput performance.
Also, increasing Target to larger values will push C2TCP
toward the performance of Cubic and as expected, make it
more throughput hungry. C2TCP’s jitter performance follows
the same pattern. As Fig. 11 shows, C2TCP can achieve very
low jitters for small Target delays such as 50ms and its jitter
performance becomes similar to jitter performance of Cubic
when large Targets are selected.

VII. TRACE-DRIVEN MACRO-EVALUATION

Here, we evaluate the performance of C2TCP using exten-
sive trace-driven emulation and compare its performance with
existing protocols under a reproducible network condition. We
use Mahimahi [31] as our trace-driven emulator.

A. Cellular Traces
To cover the wide range of environments, we have collected

8 new traces using the traffic generator tool (Saturator) pro-

12minimum RTT in this setup is around 20ms

https://github.com/soheil-ab/c2tcp
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vided by prior work [5] on T-Mobile network in New York
City. We have considered two main scenarios: 1-When UE is
moving, and 2-When UE is not moving but the environment is
changing. For the moving Scenario, we have collected traces
when riding a subway in New York City. For the second
scenario, we have collected traces in the stationary position in
one of the most crowded places in the world, Times Square.
For each scenario, we have considered two cases. In the first
case, we send traffic between one of our servers in our lab
and one UE in both downlink and uplink directions (minimum
RTT between the server and the UE is 20ms). In other cases,
to collect the impact of competing traffics at BS on a specific
client, we send traffic between another server located in our lab
and another client which is located beside the client under the
test. We have repeated all measurements using both LTE and
HSPA technologies. Overall, about 2 hours of cellular traces
have been collected. Fig. 12 and Fig. 13 show two samples
of our traces. These samples clearly show the highly dynamic
nature of cellular networks in which available link capacities
vary fast (Traces are available at: https://github.com/Soheil-ab/
Cellular-Traces-2018). In addition to our traces, we use the
older data collected in prior work ( [31] and [5]) from 5
different commercial cellular networks in Boston (T-Mobile’s
LTE and 3G UMTS, AT&T’s LTE, and Verizon’s LTE and 3G
1xEV-DO).

B. Schemes Compared and Metrics

In this section, we compare C2TCP with various schemes.
We choose these schemes to cover different solution categories
in our evaluation. In particular, we compare C2TCP with
the state-of-the-art e2e schemes including Google’s BBR [17]
(a delay and throughput based design), PCC-Vivace [16] (a
delay-based online-learning equipped design), Verus [7] (a
delay-based TCP targeting cellular network), Sprout [5] (a
delay-based design targeting cellular network), and different
TCP flavors including Cubic [13] (the dominant and the
most popular design on Internet) and Westwood [15] (an
older scheme targeting cellular networks). We use 4 main
performance metrics in this section: average throughput (in
short, throughput), average and 95th percentile queuing delay,
and jitter.

C. Topology

We mainly use 3 entities (equipped with Linux OS) shown
in Fig. 14 for these evaluations. The first one represents a

Fig. 14. Topology used for trace-driven evaluations

TABLE I
OVERALL NORMALIZED RESULTS AVERAGED ACROSS ALL TRACES

Throughput Avg. Delay Jitter 95th%tile Delay
C2TCP 1 1 1 1
BBR 1.22 2.44 2.15 2.31
Verus 1.12 3.82 9.25 3.22
Cubic 1.28 8.95 7.19 8.54
Sprout 1.13 1.94 1.32 1.64

Westwood 1.26 6.89 6.04 6.78
PCC-Vivace 1.04 10.05 9.25 10.52

server, the 2nd one emulates a cellular access channel using
Mahimahi toolkit, and the 3rd one represents a UE. Similar to
our traces, the minimum RTT is 20ms. Although the specific
buffer size at BS for each client is not in public domain,
we have tried to select the buffer size in our evaluations by
comparing results from emulations with results from the real-
world for a specific scheme such as Cubic. Based on that, the
buffer size at bottleneck link is selected to be 150KB. Later, in
section VIII-C, we investigate the impact of the buffer size on
the performance of C2TCP. For C2TCP, unless it is mentioned,
we set Target to 50ms.

D. Results

Fig. 15 and Fig. 16 show the performance of various
schemes in our extensive trace-driven evaluations for different
traces. Due to space limitation, we only show the graphs for
six traces. Results for other traces are similar to the ones
shown here. In particular, Fig. 15 depicts results for LTE
traces and Fig. 16 illustrates results for UMTS and HSPA
traces. For each trace, there are 3 graphs, one showing the
average delay and throughput, one illustrating 95th percentile
delay and throughput, and the other one showing the jitter
performance. Schemes achieving higher throughput and lower
delay (up and to right region of graphs) are more desirable.

We have normalized results of different schemes for various
traces to C2TCP’s performance and averaged them through all
evaluations. The overall averaged normalized results through
all traces are shown in Table I13. C2TCP achieves the lowest
average delay, the lowest jitter, and the lowest 95th percentile
delay among all schemes, while compromising throughput
slightly. For instance, compared to Cubic, C2TCP decreases
the average delay by about 9×, while compared to Cubic
which achieves the highest throughput, it only compromises
throughput by 0.28×.

Generally, results for different traces in Fig. 15 and Fig. 16
show a common pattern. As expected, Cubic achieves the

13It is worth mentioning that all experiments have been repeated several
times to make sure that the results presented here are not affected by the
random variations.

https://github.com/Soheil-ab/Cellular-Traces-2018
https://github.com/Soheil-ab/Cellular-Traces-2018
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highest throughput among all schemes. The reason is that since
it is not sensitive to delay, it simply builds up the queue.
Therefore, it will achieve higher utilization of the cellular
access link when the channel experiences good quality. In
that sense, Westwood is similar to Cubic, though it performs
slightly better than Cubic with a smaller delay. Verus performs
better than schemes such as Cubic and achieves lower average
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Fig. 17. Throughput, average queuing delay, and jitter of each scheme for
the Mobile Edge scenario

and 95th percentile delays. However, its delay performance is
far from the delay performance of Sprout, BBR, and C2TCP
for almost all traces. Design of BBR is based on first getting
good throughput and then reaching good delays [17]. BBR
tries to find the bottleneck link bandwidth by periodically
increasing its sending rates. Although that might work in a
wired network where the bottleneck link bandwidth does not
change very fast, in a highly dynamic environment such as
a cellular network, it fails. Therefore, there are times that
BBR sends packets with the rates higher than bottleneck
link bandwidth. Therefore, as Fig. 15 and Fig. 16 show it
experiences queuing delay. The main idea behind Sprout is to
predict the future of cellular link’s capacity and send packets
to the network cautiously to achieve low 95th percentile delay.
Although Sprout can achieve good delay performance, C2TCP
still beats its delay performance by about 2×. PCC-Vivace,
as admitted by its authors, cannot perform well in a highly
dynamic network such as cellular networks. The main reason
is a relatively long time that it requires to converge to its
targeted rate. C2TCP controls the average delay and keeps it
below the application’s Target while having a high throughput.
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Results confirm that C2TCP performs well across all traces
while maintaining a good throughput performance. For the
other technologies such as HSPA and UMTS where the cellular
network intrinsically experiences lower throughput and higher
delay, C2TCP still outperforms other schemes (Fig. 16) and
achieves a smaller controllable delay and good throughput.

E. Mobile Edge Scenario

Now, we examine C2TCP’s capability to achieve very low
average delays in the mobile edge computing architecture
where the server application is close to base station at the
edge and show that C2TCP can achieve very low delays such
as 10ms. To that end, we set the minimum RTT of the topology
shown in Fig. 14 to 4ms. To make it feasible to achieve very
low average delays in the network, we used a modified version
of the cellular trace shown in Fig. 13. For the modified trace,
we increased the link capacity 3× at each arbitrary time to
have a long-term average line capacity of 46Mbps. We set
Target value to 10ms and compare C2TCP’s average queuing
delay, throughput, and jitter performance with other schemes.
Fig. 17 shows the results. C2TCP achieves stringent Target
delay of 10ms while having the lowest jitter among all schemes
(nearly 2× less jitter than the second best performing scheme)
while compromising throughput only at most 20% (compared
to the best throughput achieved by Cubic).

VIII. C2TCP MICRO-EVALUATION

In this section, we look into more characteristics of C2TCP.
In particular, we investigate C2TCP’s friendliness to existing
TCP flows (e.g., Cubic), its fairness to other C2TCP flows,
the impact of changing Target on its performance, comparison
of our e2e solution with CoDel, an in-network AQM design,
and impact of the buffer size on the performance of C2TCP.

A. TCP Friendliness

Before reaching the last mile (BS to UE), C2TCP flows
will need to go from the server to BS. Therefore, it will most
likely coexist with other TCP flows in network’s switches.
So, in this section, we investigate an important requirement of
any TCP variant: TCP Friendliness. TCP friendliness property

means that in the presence of other TCP variants, how fair the
bandwidth will be shared among the competing flows. Usually,
a scheme that is too aggressive is not a good candidate since
it may starve flows of other TCP variants.

To evaluate the C2TCP’s TCP friendliness, we use
Mahimahi [31] to connect two servers to one client using a
normal switch. In particular, we send one Cubic flow from
one server to the client. Choosing Cubic as the reference TCP
rests on the fact that Cubic is the default TCP in Linux and
Android OS which takes more than 60% of smartphone/tablet
market share [32]. Then, after 30 seconds, we start sending
another flow from the second server to the client using
different schemes including Cubic, BBR, Verus, PCC-Vivace,
Westwood, and C2TCP. When there is a very large queue in the
switch, there will be no scheme which can get a fair portion
of bandwidth when the queue is already being filled up by
another aggressive flow [5]. So, to have a fair comparison,
as a rule of thumb, we set the buffer size of the switch to
the BDP (bandwidth delay product) of the network. Here, the
access link’s bandwidth, RTT, and the buffer size are 24Mbps,
20ms, 40 packets (1pkt=1.5KB), respectively. Also, we use
different Target delays for C2TCP to examine the impact of it
on friendliness property of C2TCP. In particular, we set Target
to 50ms, 80ms, and 100ms. 14

Fig. 18 shows the average throughput gained by different
schemes throughout time. The results indicate that BBR and
Verus are aggressive and will get nearly all the bandwidth from
the Cubic flow, while PCC-Vivace’s share of link’s bandwidth
cannot grow in the presence of Cubic.

The main idea of BBR is to set congestion window to the
BDP of the network. To do that, it measures min RTT and
the delivery rate of the packets. When the buffer size is at the
order of BDP, BBR fully utilizes the queue and will not leave
room for other flows. Therefore, here when BBR shares the
queue with another Cubic flow, the Cubic flow experiences
extensive packet drops and won’t achieve its fair share of the
bandwidth. PCC-Vivace changes the sending rate and tracks its

14Sprout’s [5] main design idea is to model the cellular access link band-
width using a varying Poisson process, so this scheme won’t work properly
when link bandwidth is constant. Therefore, to have a fair comparison, we
don’t include performance results of this scheme here.
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Fig. 19. Share of bandwidth among a NewReno flow (started at 0) and a
C2TCP flow (the left graph), and two C2TCP flows (the right graph)

impact on a predefined utility function. However, the fact that
it requires time to figure out the good rates make it suffer from
the presence of Cubic flow in the queue. In both cases, either
being very aggressive (BBR) or being too moderate (PCC-
Vivace), the TCP friendliness characteristic of these schemes
is not desirable.

However, as Fig. 18 illustrates, flows of Westwood, Cubic,
and C2TCP can share the bandwidth with the Cubic flow fairly.
C2TCP is implemented over Cubic. So, to show that C2TCP’s
fairness property is not because the competing flow in the test
is Cubic, we replace Cubic flow with a NewReno flow and do
the test again. The result is shown in Fig. 19 (the left one).
Also, we evaluate the fairness between two C2TCP flows (both
C2TCP flows have 80ms Target) and the result is shown in
Fig. 19 (the right one). Fig. 19 (the right graph) depicts that
C2TCP is fair to the other C2TCP flow in the network. That
being mentioned, C2TCP is friendly to other TCP flows and
can achieve good fairness property with other C2TCP flows.

B. Impact of Target and Comparison with an In-Network
Scheme

In this section, we change the application’s Target of av-
erage delay and investigate the impact of it on the overall
performance of C2TCP. Also, we compare the performance
of C2TCP, an end-host solution, with CoDel, an in-network
solution which is one of the schemes that inspired us. To
do that, we add CoDel AQM algorithm to both uplink and
downlink queues in Mahimahi and use Cubic at the end hosts.
Here, a cellular trace shown in Fig. 13 has been used for the
experiments.

In particular, we vary the Target value from 25ms to 75ms.
The average e2e delay (average queuing delay plus the mini-
mum RTT of the network, i.e., 20ms) and throughput achieved
for each setting are shown in Fig. 20. By varying the value
of Target, an application can control its average packet delay
while achieving a good throughput. As expected, increasing
Target will push C2TCP toward Cubic’s performance.

Using CoDel improves the delay performance of Cubic
while degrading its throughput. As Fig. 20 illustrates, C2TCP
can achieve even better delay performance than CoDel when
application’s Target is chosen accordingly at the cost of
compromising throughput. It is worth mentioning that to have
in-network solutions such as CoDel, cellular carriers must
install them inside their base stations and in base band modem
or radio-interface drivers on cellular phones, while an end-
host solution scheme like C2TCP only requires to update the
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software at the server, and thus is much more deployment
friendly than in-network solutions.

Also, C2TCP provides great flexibility for applications
when it is compared to in-network schemes such as RED
and CoDel in which a set of queue parameters are set for
all applications. From the aspect of the architecture design,
it is more desirable to have an end-host solution providing a
degree of freedom for applications to control their operational
points instead of having an in-network solution lacking the
flexibility of accommodating various application requirements
and requiring modified gateways and network devices.

C. Impact of Buffer Size on C2TCP’s Performance

Deep per-user buffers at BS is one of the cellular network
characteristics that distinguish them from the wired network
in which all users will compete for the same queue which is
not usually very big. One of the reasons for such a design is
that cellular network providers try to increase their network’s
reliability and drop packets as few as possible. However, this
leads to the well-known problem of bufferbloat [18].

C2TCP’s main design goal is to control the delay of packets.
So, one of its primary features and important properties is
that it has very low sensitivity to the size of the queue. To
show that, here, we explore the impact of the buffer size
on C2TCP’s performance. In particular, we use one of our
traces shown in Fig. 13 and vary the bottleneck buffer size
from 75KB to 1.5MB and compare the queuing delay and
throughput of C2TCP and its parent loss-based TCP - Cubic.
Results are shown in Fig.21. As expected, Cubic’s delay per-
formance degrades dramatically when buffer size is increased.
In contrast, C2TCP’s delay performance is independent of
the buffer size, though it actually built on top of Cubic.
On the other hand, both schemes achieve almost constant
throughput performance, though for different reasons. Cubic
always occupies the bottleneck link queue as much as it can to
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utilize the bottleneck link bandwidth. In contrast, C2TCP tries
to always send a proper amount of packets (which is almost
independent of the buffer size) into the network to control the
delay of them. So, change in the bottleneck buffer size will
not affect its throughput performance as shown in Fig. 21.

IX. DISCUSSION

Does C2TCP work in other networks? Our design rests
on the underlying architecture of cellular networks including
the presence of deep per-user buffers at BS, exploiting a
scheduler at BS which brings fairness among various UEs at
the bottleneck link (last-mile), and low e2e feedback control
delay (thanks to current technologies and trends such as MEC,
MCDN, M-CORD [30], etc.). Therefore, the lack of this kind
of structure will affect C2TCP’s performance. For instance,
for networks with very large intrinsic RTTs, end-hosts absorb
the network’s condition with a large delay due to the large
feedback delay. Therefore, because of that large feedback
delay, C2TCP (and any other e2e approaches) couldn’t catch
fast link fluctuations and respond to them fast enough.

Abusing the parameters: Misusing a layer 4 solution
and setting its parameters to get more share of the network
bandwidth by users is always a concern. For instance, a
user can change the initial congestion window of loss-based
schemes such as Cubic in Linux kernel. Similarly, users might
be tempted to abuse the Target parameter of C2TCP. Although
providing mechanisms to prevent these misuses is beyond the
scope of this paper, our minimum and maximum values for
α can mitigate the issue. In addition, in TCP, the sender’s
congestion window will be always capped to the receiver’s
advertised window (RcvWnd).

C2TCP flows with different requirements for a user:
When a cellular phone user runs a delay sensitive application
(such as real-time gaming, video conferencing, virtual reality
content streaming, etc.), flows of that application are the main
interested flows (highest priority ones) for the user. Therefore,
throughout the paper, we have assumed that it’s rare to have
flows of other applications with different delay requirements
competing with the highest priority flows for the same user.
However, in case of having multiple applications with different
requirements for the same user, we think that any transport
control solution (such as Cubic, Sprout, C2TCP, etc.) should
be accompanied with prioritization techniques at lower layers
to get good results in practice (e.g. [42], [43]). For instance,
one simple solution is to use the strict priority tagging for
packets of different flows (by setting differentiated services
field in the IP header) and serve flows based on these strict
priorities in the network.

Setting Target: Instead of setting Target value per applica-
tion, we could set it per class of applications. In other words,
we could let applications choose their application types. Then,
C2TCP would set the Target using a table including application
types and their corresponding Target values configured in an
offline manner.

X. RELATED WORK

e2e congestion control protocols: Congestion control is
always one of the hottest topics with huge studies including

numerous variants of TCP. TCP Reno [27], TCP Taho [29],
and TCP NewReno [28] were among early approaches using
loss-based structures to control the congestion window. TCP
Vegas [33] tries to do congestion control directly by using
measured RTTs. TCP Cubic [13] changes incremental function
of the general AIMD-based congestion window structure,
and Compound TCP [34] maintains two separate congestion
windows for calculating its sending rate. PCC-Vivace [16]
uses online learning techniques to choose best sending rates.
BBR [17] estimates both maximum bottleneck bandwidth and
minimum RTT delay of the network and tries to work around
this operation point, though [2] has proved that no distributed
algorithm can converge to that operation point. Also, LEDBAT
[35], BIC [36], and TCP Nice [37] are among other TCP
variants. However, all these schemes are mainly designed for
a wired network, i.e., fixed link capacities in the network. In
that sense, they are not suitable for cellular networks where
link capacity changes dynamically.

Among the state-of-the-art proposed schemes targeting cel-
lular networks, Sprout [5] and Verus [7] are worth being
mentioned. Sprout introduces a stochastic forecast framework
for predicting the bandwidth of the cellular link, while Verus
tries to make a delay profile of the network and then use it
to calculate congestion window based on the current network
delay. TCP Westwood [15], which is among the older designs
targeting wireless networks, attempts to select a slow start
threshold more consistent with the actual available bandwidth
and introduces a new fast recovery scheme. We have compared
C2TCP with most of these schemes in section VII.

AQM schemes and feedback-based algorithms: Active
queue management schemes (such as RED [10], BLUE [38],
and AVQ [39]) use the idea of dropping/marking packets at
the bottleneck links so that end-points can react to packet
losses and control their sending rates. It is already known
that automatically tuning parameters of these schemes in
the network is very difficult [5], [11]. To solve this issue,
CoDel [11] proposes using sojourn time of packets in a
queue instead of queue length to drop packets to indirectly
signal the end-points. However, even this improved AQM
scheme still has a profound issue inherited from its legacy
ones: these schemes all seek a “one-setting-fits-all” solution,
while different applications might have different throughput or
delay requirements. Even one application can have different
delay/throughput requirements during different periods of its
lifetime.

Also, there are different schemes using feedback from
the network to do a better control over congestion window.
Among them, various schemes using ECN [40] as the main
feedback. The most recent example is DCTCP [41] which
changes congestion window smoothly using ECN feedback in
datacenter networks. However, DCTCP similar to other TCP
variants is mainly designed for stable link capacities but not
highly variable cellular link capacities.

AQM and feedback-based schemes have a common prob-
lem: they need changes in the network which is not desirable
for cellular network providers due to high CAPEX costs.
Inspired by AQM designs such as CoDel and RED, C2TCP
provides an e2e solution to circumvent the problem. Our
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approach does not require any change/modification/feedback
to/from the network.

XI. CONCLUSION

We have presented C2TCP, a congestion control protocol
designed for cellular networks to control the delay of packets
and achieve high throughput. Our main design philosophy is
that achieving good performance does not necessarily comes
from complex rate calculation algorithms or complicated chan-
nel modelings. C2TCP works on top of classic throughput-
oriented TCP and provides it with a sense of delay with-
out using any network state profiling, channel prediction,
or complicated rate adjustments mechanisms. This enables
C2TCP to achieve ultra-low latency communications for the
next generation of highly delay-sensitive applications such as
AR/VR without the need for changing network devices (It
only modifies the server side). Our real-world experiments
and trace-driven evaluations show that C2TCP outperforms
well-known TCP variants and existing state-of-the-art schemes
which use channel prediction or delay profiling of the network.
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