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Deep-Reinforcement Learning Multiple Access for
Heterogeneous Wireless Networks
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Abstract—This paper investigates the use of deep reinforcement
learning (DRL) in a MAC protocol for heterogeneous wireless
networking referred to as Deep-reinforcement Learning Multiple
Access (DLMA). The thrust of this work is partially inspired
by the vision of DARPA SC2, a 3-year competition whereby
competitors are to come up with a clean-slate design that “best
share spectrum with any network(s), in any environment, without
prior knowledge, leveraging on machine-learning technique”.
Specifically, this paper considers the problem of sharing time slots
among a multiple of time-slotted networks that adopt different
MAC protocols. One of the MAC protocols is DLMA. The other
two are TDMA and ALOHA. The nodes operating DLMA do
not know that the other two MAC protocols are TDMA and
ALOHA. Yet, by a series of observations of the environment,
its own actions, and the resulting rewards, a DLMA node can
learn an optimal MAC strategy to coexist harmoniously with
the TDMA and ALOHA nodes according to a specified objective
(e.g., the objective could be the sum throughput of all networks,
or a general a-fairness objective).

I. INTRODUCTION

This paper investigates a new generation of wireless multi-
ple access control (MAC) protocol that leverages the latest ad-
vances in “deep reinforcement learning”. The work is partially
inspired by our participation in the Spectrum Collaboration
Challenge (SC2), a three-year competition hosted by DARPA
of the United States [I]P_-] Quoting DARPA, “SC2 is the first-
of-its-kind collaborative machine-learning competition to over-
come scarcity in the radio frequency (RF) spectrum. Today,
spectrum is managed by dividing it into rigid, exclusively
licensed bands. In SC2, competitors will reimagine a new,
more efficient wireless paradigm in which radio networks
autonomously collaborate to dynamically determine how the
spectrum should be used moment to moment.” In other words,
DARPA aims for a clean-slate design in which different wire-
less networks share spectrum in a very dynamic manner based
on instantaneous supply and demand. In DARPA’s vision,
“winning design is the one that best share spectrum with
any network(s), in any environment, without prior knowledge,
leveraging on machine-learning technique”. DARPA’s vision
necessitates a total re-engineering of the PHY, MAC, and
Network layers of wireless networks.

As a first step, this paper investigates a new MAC design
that exploits deep Q-network (DQN) algorithm [2], a deep
reinforcement learning (DRL) algorithm that combines deep
neural networks [3] with Q-learning [4]]. DQN was shown to
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be able to achieve superhuman-level playing performance in
video games. Our MAC design aims to learn an optimal way
to use the time-spectrum resources by a series of observations
and actions without the need to know the operating mech-
anisms of the MAC protocols of other coexisting networks.
In particular, our MAC strives to achieve optimal perfor-
mance as if it knew the MAC protocols of these networks
in detail. In this paper, we refer to our MAC protocol as
deep-reinforcement learning multiple access (abbreviated as
DLMA), and a radio node operating DLMA as a DRL agent.

For a focus, this paper considers time-slotted systems and
the problem of sharing the time slots among multiple wireless
networks. In general, DLMA can adopt different objectives
in time-slot sharing. We first consider the objective of max-
imizing the sum throughput of all the networks. We then
reformulate DLMA to achieve a general a-fairness objective.
In particular, we show that DLMA can achieve near-optimal
sum throughput and proportional fairness when coexisting
with a TDMA network, an ALOHA network, and a mix of
TDMA and ALOHA networks, without knowing the coex-
isting networks are TDMA and ALOHA networks. Learning
from the experience it gathers from a series of state-action-
reward observations, a DRL agent tunes the weights of the
neural network within its MAC machine to zoom to an optimal
MAC strategy.

This paper also addresses the issue of why DRL is prefer-
able to the traditional reinforcement learning (RL) [5] for
wireless networking. Specifically, we demonstrate that the use
of deep neural networks (DNN) in DRL affords us with two
essential properties to wireless MAC: (i) fast convergence
to near-optimal solutions; (ii) robustness against non-optimal
parameter settings (i.e., fine parameter tuning and optimization
are unnecessary with our DRL framework). Compared with
MAC based on traditional RL, DRL converges faster and is
more robust. Fast convergence is critical to wireless networks
because the wireless environment may change quickly as new
nodes arrive, and existing nodes move or depart. If the environ-
mental “coherence time” is much shorter than the convergence
time of the wireless MAC, the optimal strategy would elude
the wireless MAC as it continuingly tries to catch up with
the environment. Robustness against non-optimal parameter
settings is essential because the optimal parameter settings
for DRL (and RL) in the presence of different coexisting
networks may be different. Without the knowledge of the
coexisting networks, DRL (and RL) cannot optimize its pa-
rameter settings a priori. If non-optimal parameter setting can
also achieve roughly the same optimal throughput at roughly
the same convergence rate, then optimal parameter settings are



not essential for practical deployment.

In our earlier work [6]], we adopted a plain DNN as the
neural network in our DRL overall framework. In this work,
we adopt a deep residual network (ResNet) [7]. The results
of all sections in the current paper are based on ResNet,
except Section [[II-E] where we study deep ResNet versus plain
DNN. A key advantage of ResNet over plain DNN is that
the same static ResNet architecture can be used in DRL for
different wireless network scenarios; whereas for plain DNN,
the optimal neural network depth varies from case to case.

Overall, our main contributions are as follows:

« We employ DRL for the design of DLMA, a MAC pro-
tocol for heterogeneous wireless networking. Our DLMA
framework is formulated to achieve general a-fairness
among the heterogeneous networks. Extensive simulation
results show that DLMA can achieve near-optimal sum
throughput and proportional fairness objectives. In partic-
ular, DLMA achieves these objectives without knowing
the operating mechanisms of the MAC protocols of the
other coexisting networks.

« We demonstrate the advantages of exploiting DRL in
heterogeneous wireless networking compared with the
traditional RL method. In particular, we show that DRL
can accelerate convergence to an optimal solution and is
more robust against non-optimal parameter settings, two
essential properties for practical deployment of DLMA in
real wireless networks.

« In the course of our generalization to the a-fairness objec-
tive in wireless networking, we discovered an approach to
generalize the Q-learning framework so that more general
objectives can be achieved. In particular, we argue that
for generality, we need to separate the Q function and
the objective function upon which actions are chosen to
optimize — in conventional Q learning, the Q function
itself is the objective function. We give a framework on
how to relate the objective function and the Q function
in the general set-up.

A. Related Work

RL is a machine-learning paradigm, where agents learn
successful strategies that yield the largest long-term reward
from trial-and-error interactions with their environment [5]].
The most representative RL algorithm is the Q-learning algo-
rithm [4]. Q-learning can learn a good policy by updating an
action-value function, referred to as the Q function, without
an operating model of the environment. When the state-action
space is large and complex, deep neural networks can be
used to approximate the Q function and the corresponding
algorithm is called DRL [2]]. This work employs DRL to speed
up convergence and increase the robustness of DLMA (see our
results Section [III-D).

RL was employed to develop channel access schemes for
cognitive radios [8[]-[[11]] and wireless sensor networks [12],
[13]]. Unlike this paper, these works do not leverage the recent
advances in DRL.

There has been little prior work exploring the use of DRL
to solve MAC problems, given that DRL itself is a new

research topic. The MAC scheme in [14] employs DRL in
homogeneous wireless networks. Specifically, [14] considered
a network in which N radio nodes dynamically access K
orthogonal channels using the same DRL MAC protocol. By
contrast, we are interested in heterogeneous networks in which
the DRL nodes must learn to collaborate with nodes employing
other MAC protocols.

The authors of [15] proposed a DRL-based channel access
scheme for wireless sensor networks. Multiple frequency
channels were considered. In RL terminology, the multiple
frequency channels with the associated Markov interference
models form the “environment” with which the DRL agent
interacts. There are some notable differences between [15]
and our investigation here. The Markov environmental model
in [15]] cannot capture the interactions among nodes due
to their MAC protocols. In particular, the Markov environ-
mental model in [15] is a “passive” model not affected by
the “actions” of the DRL agent. For example, if there is
one exponential backoff ALOHA node (see Section for
definition) transmitting on a channel, the collisions caused by
transmissions by the DRL agent will cause the channel state
to evolve in intricate ways not captured by the model in [[15].

In [[16], the authors employed DRL for channel selection and
channel access in LTE-U networks. Although it also aims for
heterogeneous networking in which LTE-U base stations coex-
ist with WiFi APs, its focus is on matching downlink channels
to base stations; we focus on sharing an uplink channel among
users. More importantly, the scheme in [16] is model-aware in
that the LTE-U base stations know that the other networks are
WiFi. For example, it uses an analytical equation (equation
(1) in [16]]) to predict the transmission probability of WiFi
stations. By contrast, our DLMA protocol is model-free in
that it does not presume knowledge of coexisting networks and
is outcome-based in that it derives information by observing
its interactions with the other stations in the heterogeneous
environment.

II. DLMA PrROTOCOL

This section first introduces the time-slotted heterogeneous
wireless networks considered in this paper. Then a short
overview of RL is given. After that, we present our DLMA
protocol, focusing on the objective of maximizing the sum
throughput of the overall system. A generalized DLMA pro-
tocol that can achieve a-fairness objective will be given in
Section [Vl

A. Time-Slotted Heterogeneous Wireless Networks

We consider time-slotted heterogeneous wireless networks
in which different radio nodes transmit packets to an access
point (AP) via a shared wireless channel, as illustrated in Fig.
[I] We assume all the nodes can begin transmission only at the
beginning of a time slot and must finish transmission within
that time slot. Simultaneous transmissions of multiple nodes
in the same time slot result in collisions. The nodes may not
use the same MAC protocol: some may use TDMA and/or
ALOHA, and at least one node uses our proposed DLMA
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Fig. 1: A heterogeneous multiple-access system with a mix of
DRL nodes and other nodes.

protocol. The detailed descriptions of different radio nodes
are given below:

« TDMA: The TDMA node transmits in X specific slots
within each frame of Y slots in a repetitive manner from
frame to frame.

o ¢-ALOHA: A ¢-ALOHA node transmits with a fixed
probability g in each time slot in an i.i.d. manner from
slot to slot.

« Fixed-window ALOHA: A fixed-window ALOHA (FW-
ALOHA) node generates a random counter value w in
the range of [0, W — 1] after it transmits in a time slot. It
then waits for w slots before its next transmission. The
parameter W is referred to as the window size.

« Exponential backoff ALOHA: Exponential backoff
ALOHA (EB-ALOHA) is a variation of window-based
ALOHA in which the window size is not fixed. Specif-
ically, an EB-ALOHA node doubles its window size
each time when its transmission encounters a collision,
until a maximum window size 2™W is reached, where
m is the “maximum backoff stage”. Upon a successful
transmission, the window size reverts back to the initial
window size W.

« DRL agent/node: A DRL agent/node is the radio node
that adopts our DLMA protocol. For a DRL node, if it
transmits, it will get an immediate ACK from the AP,
indicating whether the transmission is successful or not; if
it does not transmit, it will listen to the channel and get an
observation from the environment, indicating other nodes’
transmission results or idleness of the channel. Based
on the observed results, the DRL node can set different
objectives, such as maximizing the sum throughput of
the overall system (as formulated in Part C of this
section) and achieving a general a-fairness objective (as
formulated in Section [[V).

B. Overview of RL

In RL [5], an agent interacts with an environment in a
sequence of discrete times, t = 0,1,2,---, to accomplish a
task, as shown in Fig. E} At time ¢, the agent observes the
state of the environment s; € S, where S is the set of possible
states. It then takes an action a; € Ay, , where Ay, is the set of
possible actions at state s;. As a result of the state-action pair
(s, ar), the agent receives a reward r,., and the environment
moves to a new state s,y at time f + 1. The goal of the
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Fig. 2: The agent-environment interaction process.

agent is to effect a series of rewards {r;},_;, . through its
actions to maximize some performance criteria. For example,
the performance criterion to be maximized at time ¢ could be
R; 2 Yo, ¥ "rry1, where y € (0,1] is a discount factor for
weighting future rewards. In general, the agent takes actions
according to some decision policy 7. RL methods specify how
the agent changes its policy as a result of its experiences. With
sufficient experiences, the agent can learn an optimal decision
policy * to maximize the long-term accumulated reward [3].

Q-learning [4] is one of the most popular RL methods. A
Q-learning RL agent learns an action-value function Q” (s, a)
corresponding to the expected accumulated reward when an
action a is taken in the environmental state s under the decision
policy 7:

Q”(s,a)éE[R, |s; = s,a, =a,m]. (D

The optimal action-value function, Q* (s, a) = max, Q0" (s, a),
obeys the Bellman optimality equation [5]:

Q" (s,a)=Egy |1y +ymax Q™ (s',a’) |s; = s,a, = al, (2)
a/

where s’ is the new state after the state-action pair (s, a). The
main idea behind Q-learning is that we can iteratively estimate
Q" (s, a) at the occurrences of each state-action pair (s, a).
Let g (s,a) be the estimated action-value function during
the iterative process. Upon a state-action pair (s;, a;) and a
resulting reward r;,1, Q-learning updates g(s;, a,) as follows:

q (s, ar) < q (s, a:)+

B

Trvl + )’H}IZ}XQ(SHI, a’) = q(spar)|, 3)

where B € (0, 1] is the learning rate.
While the system is updating g (s, a), it also makes decisions
based on ¢ (s, a). The e-greedy policy is often adopted, i.e.,

-

A reason for randomly selecting an action is to avoid getting
stuck with a ¢ (s,a) function that has not yet converged to

Q* (s, a).

argmaxg ¢ (s, @),
random action,

with probability 1 — g,

witih probability €. “)



C. DLMA Protocol Using DRL

This subsection describes the construction of our DLMA
protocol using the DRL framework.

The action taken by a DRL agent at time t is a; €
{TRANSMIT, WAIT}, where TRANSMIT means that the agent
transmits, and WAIT means that the agent does not trans-
mit. We denote the channel observation after taking action
a; by z; € {SUCCESS, COLLISION, IDLENESS}, where
SUCCESS means one and only one station transmits on
the channel; COLLISION means multiple stations transmit,
causing a collision; /IDLENESS means no station transmits.
The DRL agent determines z; from an ACK signal from the
AP (if it transmits) and listening to the channel (if it waits).
We define the channfl state at time t + 1 as the action-
observation pair ¢;+| = (ay, z;). There are five possibilities for
cr+1: {TRANSMIT, SUCCESS}, {TRANSMIT, COLLISION},
{WAIT, SUCCESS}, {WAIT, COLLISION} and {WAIT, IDLE-
NESS}. We define the environmental state at time t + 1 to be

Siel = {ct—m+2, ---» €15 €141}, Where the parameter M is the state
history length to be tracked by the agent. After taking action
a;, the transition from state s, to s;; generates a reward ry41,
where 1,41 = 1 if z, = SUCCESS; 4 = 0 if 7, = COLLISION
or IDLENESS. The definition of reward here corresponds to
the objective of maximizing the sum throughput. We define
a reward vector in Section so as to generalize DLMA to
achieve the a-fairness objective.

So far, the above definitions of “action”, ‘“state” and “re-
ward” also apply to an RL agent that adopts as its learning
algorithm. We next motivate the use of DRL and then provide
the details of its use.

Intuitively, subject to a non-changing or slow-changing
environment, the longer the state history length M, the better
the decision can be made by the agent. However, a large M
induces a large state space for the RL algorithm. With a large
number of state-action entries to be tracked, the step-by-step
and entry-by-entry update ¢ (s,a) is very inefficient. To get
a rough idea, suppose that M = 10 (a rather small state
history to keep track of), then there are 5'° ~ 10 million
possible values for state s. Suppose that for convergence to
the optimal solution, each state-action value must be visited
at least once. If each time slot is 1 ms in duration (typical
wireless packet transmission time), the convergence of RL will
take at least 5! x 2 ms, or more than 5 hours. Due to node
mobility, arrivals and departures, the wireless environment will
most likely to have changed well before then. Section
of this paper shows that applying DRL to DLMA accelerates
the convergence speed significantly (convergence is obtained
in seconds, not hours).

In DRL, a deep neural network [3] is used to approxi-
mate the action-value function, g (s,a;0) =~ Q(s,a), where
q (s, a; 0) is the approximation given by the neural network and
0 is a parameter vector containing the weights of the edges in
the neural network. The input to the neural network is a state s,
and the outputs are approximated ¢ values for different actions
Q={q(s,a;0)|a € As}. We refer to the neural network as the
Q neural network (QNN) and the corresponding RL algorithm
as DRL. Rather than following the tabular update rule of the

traditional RL in (3), DRL updates ¢ (s, a; 6) by adjusting the
0 in the QNN through a training process.

In particular, QNN is trained by minimizing prediction
errors of ¢ (s,a;6). Suppose that at time ¢, the state is s;
and the weights of QNN are §. The DRL agent takes an
action a, = argmax,q (s;, a; 8), where ¢ (s, a; 6) for different
actions a are given by the outputs of QNN. Suppose that
the resulting reward is r,.; and the state moves to s;ii.
Then, (s, as, 1141, Se+1) constitutes an “experience sample” that
will be used to train the QNN. For training, we define the
prediction error of QNN for the particular experience sample
(815 s, 71415 S141) tO be

LSt,ar,VtH»SHl (0) = (nger,I;iH -9 (St’ ar; 0)) (5)

where 6 are the weights in QNN, ¢ (s, a;;0) is the approx-
imation given by QNN, and y,Qtﬁ];f“ is the target output for
QNN given by

NN
yr%l,sm = Tee1 + ymaxq (S1+1,a’56). (6)

2
s

Note that y%ﬁ{&l is a refined target output based on the cur-

rent reward r,;; plus the predicted discounted rewards going
forward ymax, g (s;+1,a’;0) given by QNN. We can train
QNN, i.e., update 6, by applying a semi-gradient algorithm
(5] in (). The iteration process of € is given by

Iterate @ «— 60 — p [yerﬁ{XH —q(ss,a:;,0)| Vg (ss,a;0), (7)
where p is the step size in each adjustment.

For algorithm stability, the “experience replay” and “quasi-
static target network™ techniques can be used [2]. For “experi-
ence replay”, instead of training QNN with a single experience
at the end of each execution step, we could pool together many
experiences for batch training. In particular, an experience
memory with a fixed storage capacity is used for storing the
experiences e = (s, a,r,s’) gathered from different time steps
in an FIFO manner, i.e., once the experience memory is full,
the oldest experience is removed from, and the new experience
is put into, the experience memory. For a round of training, a
minibatch E consisting of Ng random experiences are taken
from the experience memory for the computation of the loss
function. For “quasi-static target network”, a separate target
QNN with parameter 8~ is used as the target network for
training purpose. Specifically, the ¢ (-) in (6) is computed based
on this separate target QNN, while the ¢ (-) in is based on
QNN under training. The target QNN is a copy of an earlier
QNN: every F time steps, the target QNN is replaced by the
latest QNN, i.e., setting 6~ to the latest 8 of QNN. With these
two techniques, equations (3)), (6), and replaced by the
following:

1 2
Le @)=, 2 —aa0).  ®
eck
yrQ,jYN =71+ ymaxq (s',a’;07), )

Iterate 6 «— 0 — £

N [yrQ;VN —q(s,a; 0)] Vq (s, a;0),
E

(10)

eckE



Every F steps, set 6~ to 6. an

The pseudocode of DLMA algorithm is given in Algorithm [I]

Algorithm 1 DLMA with the sum throughput objective

Initialize s, €, v, p, Ng, F

Initialize experience memory EM

Initialize the parameter of QNN as 6

Initialize the parameter of target QNN 6~ = 6

for t=0,1,2,--- in DLMA do
Input s, to QNN and output Q = {q(s,, a,0)la e As,}
Generate action a,; from Q using e-greedy algorithm
Observe z;, 1141
Compute sy, from s;, a; and z;
Store (sz, az, re+1, S¢+1) to EM
if Remainder(¢/F ==0) then I = 1 else 7 =0
TRAINQNN(y, p, Ng, I, EM, 6, 6~

end for

procedure TRAINQNN(y, p, Ng, I, EM, 6, 67)
Randomly sample Ng experience tuples from EM as E
for each sample ¢ = (s,a,r,s’) in E do

Calculate yr,SIYN =r+ymaxgq(s’,a’;07)
end for ¢
Perform Gradient Descent to update 6 in QNN:

Tterate 6 «— 0 — - Z [yQ]YN —q(s,a;0)[Vq(s,a;0)
NE r,s
ecE
if / == 1 then
Update 6~ in target QNN by setting 8~ = 6
end if
end procedure

III. SUM THROUGHPUT PERFORMANCE EVALUATION

This section investigates the performance of DLMA with
the objective of maximizing the sum throughput of all the
coexisting networks. For our investigations, we consider the
interactions of DRL nodes with TDMA nodes, ALOHA nodes,
and a mix of TDMA nodes and ALOHA nodes. Section [V
will reformulate the DLMA framework to achieve a general
a-fairness objective (which also includes maximizing sum-
throughput objective as a subcase); Section [V] will present the
corresponding results.

As illustrated in Fig. [ the architecture of QNN used in
DLMA is a six-hidden-layer ResNet with 64 neurons in each

2For convenience, in our simulation, we assume execution of decisions and
training of QNN are run synchronously. In particular, the training is done at the
end of each time step after an execution. In practice, for efficiency and to allow
more time for training, execution and training can be done asynchronously
and in parallel. In this case, the experiences resulted from executions in
successive time steps are fed to the experience memory in a continuous
manner. Meanwhile, training takes random minibatches of experiences from
the experience memory in a parallel and asynchronous fashion continuously.
There could be more than one training round (i.e., more than one minibatches
used for training ) per execution time step if sufficient computation resources
are available. Once in a while, the QNN used in execuction is replaced by
the newly trained QNN by substituting the @ in QNN with the new 6 in the
newly trained QNN; at the same time 6~ in the target QNN is also replaced
by the new @ for future training purposes.
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Fig. 3: ResNet Architecture

hidden layer. The activation functions used for the neurons are
ReLU functions [3]]. The first two hidden layers of QNN are
fully connected, followed by two ResNet blocks. Each ResNet
block contains two fully connected hidden layers plus one
“shortcut” from the input to the output of the ResNet block.
The state, action and reward of DRL follow the definitions in
Section [[I-C} The state history length M is set to 20, unless
stated otherwise. When updating the weights 8 of QNN, a
minibatch of 32 experience samples are randomly selected
from an experience-replay reservoir of 500 prior experiences
for the computation of the loss function (8). The experience-
replay reservoir is updated in a FIFO manner: a new ex-
perience replaces the oldest experience in it. The RMSProp
algorithm is used to conduct minibatch gradient descent
for the update of 8. To avoid getting stuck with a suboptimal
decision policy before sufficient learning experiences, we
apply an exponential decay e-greedy algorithm: ¢ is initially
set to 0.1 and decreases at a rate of 0.995 every time slot
until its value reaches 0.005. A reason for not decreasing &
all the way to zero is that in a general wireless setting, the
wireless environment may change dynamically with time (e.g.,
nodes are leaving and joining the network). Having a positive
€ at all time allows the decision policy to adapt to future
changes. Table [ summarizes the hyper-parameter settings in
our investigations.

TABLE I: DLMA Hyper-parameters

Hyper-parameters Value

State history length M 20, unless stated otherwise
Discount factor y 0.9

& in g-greedy algorithm 0.1 to 0.005
Learning rate used in RMSProp 0.01
Target network update frequency F 200

Experience-replay minibatch size Ng 32
Experience-replay memory capacity 500

A salient feature of our DLMA framework is that it is
model-free (it does not need to know the protocols adopted
by other coexisting nodes). For benchmarking, we consider
model-aware nodes. Specifically, a model-aware node knows
the MAC mechanisms of coexisting nodes, and it executes an
optimal MAC protocol derived from this knowledge. We will
show that our model-free DRL node can achieve near-optimal
throughput with respect to the optimal throughput of the
model-aware node. The derivations of the optimal throughputs
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Fig. 4: Sum and individual throughputs for different cases with the objective of maximizing sum throughput.

for different cases below, which are interesting in their own
right, are provided in [[18]. We omit them here to save space.

A. Coexistence with TDMA networks

We first present the results of the coexistence of one DRL
node with one TDMA node. The TDMA node transmits in
X specific slots within each frame of Y slots in a repetitive
manner from frame to frame. For benchmarking, we consider
a TDMA-aware node which has full knowledge of the X slots
used by the TDMA node. To maximize the overall system
throughput, the TDMA-aware node will transmit in all the
Y — X slots not used by the TDMA node. The optimal sum
throughput is one packet per time slot. The DRL agent, unlike
the TDMA-aware node, does not know that the other node is
a TDMA node (as a matter of fact, it does not even know how
many other nodes there are) and just uses the DRL algorithm
to learn the optimal strategy.

Fig. presents the throughpuﬂ results when Y = 10 and
X varies from 2 to 8. The green line is the sum throughput of
the DRL node and the TDMA node. We see that it is very close
to 1. This demonstrates that the DRL node can capture all the
unused slots without knowing the TDMA protocol adopted by
the other node.

B. Coexistence with ALOHA networks

We next present the results of the coexistence of one DRL
node with one g-ALOHA, one FW-ALOHA and one EB-
ALOHA, respectively. We emphasize that the exact same

3Unless stated otherwise, “throughput” in this paper is the “short-term
throughput”, calculated as Z’th_ N1 Tt/N, where N = 1000. If one time
step is 1 ms in duration, then this is the throughput over the past second.
In the bar charts presented in this paper, “throughput” is the average reward
over the last V steps in an experiment with a length of 50000 steps and we
take the average of 10 experiments for each case to get the final value.

DLMA algorithm as in Part A is used here even though the
other protocols are not TDMA anymore. For benchmarking,
we consider model-aware nodes that operate with optimal
MAGC:s tailored to the operating mechanisms of the three
ALOHA variants [18].

Fig. (b)| presents the experimental results for the coex-
istence of one DRL node and one g-ALOHA node. The
results show that the DRL node can learn the strategy to
achieve the optimal throughputs despite the fact that it is not
aware that the other node is g-ALOHA node and what the
transmission probability g is. Fig. presents the results for
the coexistence of one DRL node and one FW-ALOHA node
with different fixed-window sizes. Fig. [f(d)| presents the results
for the coexistence of one DRL node and one EB-ALOHA
node with different initial window sizes and maximum backoff
stage m = 2. As shown, DRL node can again achieve near-
optimal throughputs for these two cases.

C. Coexistence with a mix of TDMA and ALOHA networks

We now present the results of a set-up in which one DRL
agent coexists with one TDMA node and one g-ALOHA
node simultaneously. Again, the same DLMA algorithm is
used. We consider two cases. In the first case, the TDMA
node transmits in 3 slots out of 10 slots in a frame; the
transmission probability g of the g-ALOHA node varies. In
the second case, g of the g-ALOHA node is fixed to 0.2;
X, the number of slots used by the TDMA nodes in a frame,
varies. Fig. [A(e)]and Fig. A(f)| present the results of the first and
second cases respectively. For both cases, we see that our DRL
node can approximate the optimal results without knowing the
transmission schemes of the TDMA and ¢g-ALOHA nodes.

We next consider a setup in which multiple DRL nodes
coexist with a mix of TDMA and g-ALOHA nodes. Specif-
ically, the setup consists of three DRL nodes, one TDMA
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coexistence of three DRL nodes with one TDMA node and two
q-ALOHA nodes. The throughputs at time ¢ are computed by
X i N+1Te/N, where N = 5000.

node that transmits in 2 slots out of 10 slots in a frame, and
two g-ALOHA nodes with transmission probability ¢ = 0.1.
In Fig. ] we can see that DLMA can also achieve near-
optimal sum throughput in this more complex setup. However,
when we focus on the individual throughputs of each node, we
find that since there is no coordination among the three DRL
nodes, one DRL node may preempt all the slots not occupied
by the TDMA node, causing the other two DRL nodes and
two q-ALOHA nodes get zero throughputs. This observation
motivates us to consider fairness among different nodes in
Section [[V]

D. RL versus DRL

We now present results demonstrating the advantages of
the “deep” approach using the scenario where one DRL/RL
agent coexists with one TDMA node. Fig. [6] compares the
convergence time of the Q-learning based RL approach and
the QNN-based DRL approach. The sum throughput in the
figure is the “cumulative sum throughput” starting from the
beginning: >! _, r¢/t. It can be seen that DRL converges to the
optimal throughput of 1 at a much faster rate than RL does.
For example, DRL requires only less than 5000 steps (5 s if
each step corresponds to a packet transmission time of 1 ms)
to approach within 80% of the optimal throughput. Note that
when state history length increases from 10 to 16, RL learns
progressively slower and slower, but the convergence time of
DRL varies only slightly as M increases. In general, for a
model-free MAC protocol, we do not know what other MAC
protocols there are besides our MAC protocol. Therefore, we
will not optimize on M and will likely use a large M to
cater for a large range of other possible MAC protocols. The
robustness, in terms of insensitivity of convergence time to M,
is a significant practical advantage of DRL.

Fig. [7] presents the throughput evolutions of TDMA+RL
and TDMA+DRL versus time. Unlike in Fig.[6} in Fig. [7] the
sum throughput is the “short-term sum throughput” rather than
the “cumulative sum throughput” starting from the beginning.
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Fig. 6: Convergence speeds of RL and DRL nodes. The sum
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! r./N, where N = 1000.
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Specifically, the sum throughput in Fig. [7}is X!_, ., /N,
where N = 1000. If one time step is 1 ms in duration,
then this is the throughput over the past second. As can be
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seen, although both RL and DRL can converge to the optimal
throughput in the end, DRL takes a much shorter time to do
so. Furthermore, the fluctuations in throughput experienced
by RL along the way are much larger. To dig deeper into this
phenomenon, we examine f (s,), defined to be the number
of previous visits to state s prior to time step ¢. Fig. [/| also
plots f (s¢,1): i.e., we look at the number of previous visits to
state s, before visiting s;, the particular state being visited
at time step z. As can be seen, for RL, each drop in the
throughput coincides with a visit to a state s, with f (s;,7) = 0.
In other words, the RL algorithm has not learned the optimal
action for this state yet because of the lack of prior visits.
From Fig. [/} we also see that it takes a while before RL
extricates itself from persistent and consecutive visits to a
number of states with f(-) = 0. This persistency results in
large throughput drops until RL extricates itself from the
situation. By contrast, although DRL also occasionally visits
a state s, with f(s;,¢) = 0, it is able to take an appropriate
action at the unfamiliar territory (due to the “extrapolation”
ability of the neural network to infer a good action to take at
s; based on prior visits to states other than s;: recall that each
update of @ changes the values of ¢(s,a, @) for all (s, a), not
just that of a particular (s, @)). DRL manages to extricate itself
from unfamiliar territories quickly and evolve back to optimal
territories where it only transmits in time slots not used by
TDMA.

Fig.[8|presents the evolutions of the number of distinct states
visited by RL and DRL agents in the same experiment as
in Fig. []] In this case, both RL and DRL find an optimal
strategy in the end, but RL requires more time to do so. Once
the optimal strategies are found, RL and DRL agents seldom
explore new states, except the “exploration” step in e-greedy
algorithm. As indicated in Fig. [8] the number of distinct states
visited by RL on its journal to the optimal strategy is much
larger than that of DRL. From Fig. [8] we see that RL spends
35000 time steps in finding the optimal strategy, having visited
23000 distinct states before doing so. By contrast, it takes only

10000 time steps for DRL to find the optimal strategy and the
number of distinct states visited is only around 1000. In other
words, DRL can better narrow down its choice of states to
visit in order to find the optimal strategy, hence the faster
convergence speed.

E. Plain DNN versus deep ResNet

We now demonstrate the advantages of deep ResNet over
plain DNN using two cases: 1) one DRL node coexisting
with one TDMA node, wherein the TDMA node occupies 2
slots out of 10 slots in a frame; 2) one DRL node coexisting
with one TDMA node and one q-ALOHA node, wherein
the TDMA is the same as in 1) and ¢ = 0.1 for the g-
ALOHA node. The optimal sum throughputs for a model-
aware protocol for 1) and 2) can be established analytically
to be 1 and 0.9, respectively (see [[18]] for the derivation). For
each case, we compare the cumulative sum throughputs of
plain DNN based approach and deep ResNet based approach
with different numbers of hidden layers A.

As can be seen from the upper parts of Fig. [O(a)] and Fig.
O(b)| the plain DNN is not robust against variation of 4, i.e.,
the performance varies with h. Furthermore, 4 = 1 and h =4
achieve the best performance for case 1) and 2), respectively.
This implies that it is difficult to use a common plain DNN
architecture for different wireless setups. In other words, the
optimal 4 may be different under different scenarios. If the
environment changes dynamically, there is no one single / that
is optimal for all scenarios. In contrast to plain DNN’s non-
robustness to &, deep ResNet can always achieve near-optimal
performance for different £ for both cases, as illustrated in the
lower parts of Fig. O(a)] and Fig. P(b)]

For wireless networking, the environment may change
quickly when new nodes arrive, and existing nodes move or
depart. It is desirable to adopt a one-size-fits-all neural network
architecture in DRL. Our results show that deep ResNet is
more desirable than plain DNN in this regard.



IV. GENERAL OBJECTIVE DLMA PROTOCOL

This section first introduces the well-known a-fairness
utility function [19]. Then, a multi-dimensional Q-learning
algorithm is proposed to incorporate the a-fairness utility
function in a general reformulation of DLMA.

A. a-fairness objective

Instead of sum throughput, we now adopt the a-fairness
index as the metric of the overall system performance. The
parameter @ € [0,00) is used to specify a range of the
fairness criteria, e.g., when @ = 0 , maximizing the a-fairness
objective corresponds to maximizing the sum throughput (the
corresponding results were presented in Section [[I); when
a = 1, maximizing the a-fairness objective corresponds to
achieving proportional fairness; when @ — oo, the minimum
throughput among nodes is being maximized. Specifically, we
consider a system with N nodes and for a particular node i,
its throughput is denoted by x; its a-fairness local utility
function is given by

log (x(i)), if a=1,
(1 _ CY)_I (X(l)) l*a/,

The objective of the overall system is to maximize the sum of
all the local utility functions:

£ (x0) = (12)

if a#l.

N
maximize F (x(l), x<2), e, x(N)) = Z fc(,i) (x(i))

i=1

N .
subject to ZH <1, (13)

x> 0, Vi

B. DLMA reformulation

We now reformulate our system model as a semi-distributed
system that consists of several wireless networks with dif-
ferent MAC protocols. Nodes in different networks cannot
communicate with each other. For nodes within the DLMA
network, there is a DLMA central gateway that coordinates
the transmissions of the nodes. Similarly, for nodes within the
TDMA network, there is implicitly a TDMA central gateway
to decide the time slots in which TDMA nodes transmit.

Among the N nodes in the wireless networks, let K be the
number of DRL nodes in the DLMA network and L = N - K
be the number of non-DRL nodes. In the DLMA protocol as
described in Section [[I-C] all DRL nodes individually adopt the
single-agent DRL algorithm, and independently perform train-
ing and execution of the DRL algorithm. Unlike the DLMA
protocol in Section [[I-C| we now consider an DRL algorithm
with “centralized training at the gateway node and independent
execution at DRL nodes”. The gateway in the DLMA network
associates with all other DRL nodes in the DLMA network
and coordinates the coexistence of the DLMA network with
other networks (e.g., the TDMA and ALOHA networks). In
each time slot, the gateway decides whether a node in the
DLMA network should transmit or not. If YES, the gateway
selects one of the DRL nodes in a round-robin manner to

transmit. After transmitting, the selected DRL node receives a
feedback from the system and communicates with the gateway
with this information. If NO, all DRL nodes keep silent. In
this manner, the gateway can be regarded as a virtual big agent
that is a combination of the K DRL nodes. The coordination
information from the gateway to other DRL nodes can be sent
through a control channel. For example, the control channel
can be implemented as a short time slot after each time
slot of information transmission. Other implementations are
also possible, but we will omit the discussion here since the
focus of this paper is not implementation details. The above
reformulates the system to contain L + 1 nodes: one DRL big
agent node (we index it by i = L+1) and other L legacy nodes
(we index them by i = 1,2,---,L).

We now modify the original Q-learning algorithm. The orig-
inal Q-learning algorithm is designed for the single-agent case
under the objective of maximizing the accumulated reward of
the agent. It cannot be directly applied to the multi-node/multi-
agent case to meet arbitrary fairness objectives. We therefore
put forth a multi-dimensional Q-learning algorithm to cater for
the a-fairness objective.

In the original Q-learning algorithm, each agent receives
a scalar reward from the environment. The scalar reward,
representing the overall system transmission result (success,
idleness or collision), is regarded as the overall reward to
the system in the original Q-learning algorithm. Each agent
uses the overall reward to compute the sum throughput ob-
jective. By contrast, in our new multi-dimensional Q-learning
algorithm, the big agent receives an L + 1 dimension vec-
tor of rewards from the environment. Each element of the
vector represents the transmission result of one particular
node. The reward vector is used to compute the a-fairness
objective. Specifically, let r¥) be the reward of node i and
thus the received reward vector is given by [r(i)]iL:Jrll. For a
state-action pair (s, @), instead of maintaining an action-value
scalar Q (s, a), the big agent maintains an action-value vector
[Q(i) (s, a)]l.L:Jrll, where the element Q) (s,a) is the expected
accumulated discounted reward of node i.

Let ¢ (s, a) be the estimate of the elementary action-value
function Q(i) (s, @) in the action-value vector. Suppose at time ¢,
the state is s,. For decision making, we still adopt the &-greedy
algorithm. When selecting the greedy action, the objective in
can be applied to meet arbitrary fairness objective, i.e.,

L

a; = arg max {Z £ (q(i) (57, a))+

i=1

K. fo (q(LH) (57, a))} _

X (14)

After taking action a;, the big agent employs the multi-
dimensional Q-learning algorithm to parallelly update the L+1
elementary action-value estimates q(i)(s,, a),i=12,...L+1
as

4" (ss ar) —q" (51, a0) +

B r,(i)l +7‘1(i)(st+l,at+l)_q(i)(st’at) , (15)



where
L

dr+1 = argmax {Z fcgi) (q([) (St415 al))"'
a

i=1
K. poh (CI(L”) (Ijm,a’))} _ (16)

Here, it is important to point out the subtleties in (I4)-(16)
and how they differ from the conventional Q-learning update
equation in (3). In conventional Q-learning, an action that
optimizes the Q function is chosen (as explained in Section
. In other words, the Q function is the objective function
to be optimized. However, the Q function as embodied in (EI)
and (T3] is a projected (estimated) weighted sum of the current
rewards and future rewards. To be more specific, take a look

at the term [rm +ymax g (s;+1,a’)| in (3). It can be taken to
a/

be an estimation of [r,4; +YE[r;42]+Y>E[r;+3] +...], which is
a weighted sum of the current reward and future rewards with
discount factor y. We can view [rr41 +YE[ri2]+y2E[ri+3]+...]
as a newly estimated q(s;, a;). In (3), for the purpose of
estimation smoothing, we apply a weight of S to this new
estimate and a weight of (1 — ) to the previous value of
q (s, a;) to come up with a new value for ¢ (s;, a;). Never-
theless, ¢ (s, a;) still embodies a weighted sum of the current
and future rewards. Since in conventional Q-learning, an action
that gives the maximum ¢ (s;, a;) is taken at each step ¢, the
objective can be viewed as trying to maximize a weighted
sum of rewards with discount factor y. However, not all
objectives can be conveniently expressed as a weighted sum of
rewards. An example is the a-fairness objective of focus here.
A contribution of us here is the realization that, for generality,
we need to separate the objective upon which the optimizing
action is chosen and the Q function itself.

Objectives can often be expressed as a function of several
components, wherein each component can be expressed as a
Q function (e.g., (I4)). In the more general setup, the update
equation of Q function still has the same form (i.e., (T5) has the
same form as (EI)). However, the action a;;; chosen a time step
later in is not that gives the maximum q(i) (S¢+1, ), but
which is based on (I6). Thus, the Q function is still a projected
weighted sum of rewards. But the policy that gives rise to
the rewards is not based on maximizing the weighted sum of
rewards, but based on maximizing a more general objective.

Returning to our wireless setting, the first term in (T4) is
the sum of local utility functions of all legacy nodes. Since the
big agent (indexed by L + 1) is actually a combination of the
K DRL nodes, and ¢'“*V (-) /K is the estimated accumulated
reward of each DRL node, the second term in @I) is the
sum of local utility functions of all the DRL nodes. We
have two remarks: i) the ¢ (s;,a;) in is an estimate
of the expected accumulated discounted reward of node i (as
expressed in , rather than the exact throughput x) in
; ii) we use ¢ (s, a,) to help the agent make decisions
because the exact throughput x) is not known. Our evaluation
results in section [V] show that this method can achieve the
fairness objective. We continue the reformulation of DLMA
by incorporating deep neural networks. The incorporation of

Algorithm 2 DLMA with the a-fairness objective

Initialize s, €, ¥, p, Ng, F
Initialize experience memory EM
Initialize the parameter of QNN as 6
Initialize the parameter of target QNN 6~ = 6
fort=0,1,2,--- in DLMA do

Input s, to QNN and output

Q= {q(i)(s;,a,O)laeAst,iz 1,2,---,L+1}

Generate action a; from Q using e-greedy algorithm
o Q L

Observe z;, 1, > I s = s T
Compute s, from s;, a; and z;
(e (L+1)
Store (s,, Aps V(s Ty Teny s St+1) tO EM

if Remainder(s/F == 0) then / =1 else 1 =0
TRAINQNN(y, p, Ng, I, EM, 0, 67)
end for

procedure TRAINQNN(y, p, Ng, I, EM, 6, 67)
Randomly sample Ng experience tuples from EM as E
for each sample e = (s, a,rD, r@ ... ,r(“l),s’) in E

do

Calculate y("),Q,;\,]N =r®D 4+ yq® (s, a’,07), where a’
is selected to according (I9)
end for
Perform Gradient Descent to update € in QNN:

—p .
Ng (L + 1)

L+1
PR 4 5.0:0)| V4 (s, a:6)
i=1 ecE
if / == 1 then
Update 6~ in target QNN by setting §~ = 0
end if
end procedure

Iterate 6 «—0 —

deep neural networks into the multi-dimensional Q-learning
algorithm calls for two additional modifications. The first
is to use a QNN to approximate the action-value vector
; L+1 i L+1 . .
[Q<’) (s, a)]i:l as [q(’) (s,a;ﬁ’)]i=1 , Where 6 is the weights
of QNN. The second is to augment the experience tuple to
e= (s, a,r® @ LD s’). With these two modifications,
the loss function (8), the target (9) and the update of 6
are now given by

L+1

1 NONN . 2
Lp(@)= ——— (" -4V s a:0), a7
£(0) NE<L+1);8; Why —d"s.a0). A7)
VORI =10 4 g (5" 07), (18)
where
L o
a’ = argmax {Z 9 (q(’) (s, d’; 0‘))+
a/
i=1
(L+1) s’,d’;H‘
K~f(§L+1)(q (K ))} (19)
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Fig. 10: Individual throughputs for different cases with the objective of achieving proportional fairness.

Iterate @ <6 — S
N (L+1)

L+1
NONN . .
Z Z [y(’)r’s, -4 (s,a;0)| Vg (s,a;0).
i=1 ecE
(20)

The pseudocode of the reformulated DLMA protocol is sum-
marized in Algorithm 2]

V. PROPORTIONAL FAIRNESS PERFORMANCE EVALUATION

This section investigates the performance when DRL nodes
aim to achieve proportional fairness among nodes, as a rep-
resentative example of the general a-fairness DLMA formu-
lation. We investigate the interaction of DRL nodes with
TDMA nodes, ALOHA nodes, and a mix of TDMA nodes
and ALOHA nodes, respectively. The optimal results for
benchmarking purposes can also be derived by imagining
a model-aware node for different cases (the derivations are
provided in and omitted here.)

A. Coexistence with TDMA networks

We first present the results of the coexistence of one DRL
node with one TDMA node. In this trivial case, achieving pro-
portional fairness is the same as maximizing sum throughput.
That is, to achieve proportional fairness, the optimal strategy
of the DRL node is to transmit in the slots not occupied by
the TDMA node and keep silent in the slots occupied by the
TDMA node. Fig. [T0(a)] presents the results when the number
of slots assigned to TDMA node is 2, 3, 7 and 8 out of 10
slots within a frame. We can see that the reformulated DLMA
protocol can achieve proportional fairness in this case.

B. Coexistence with ALOHA networks

We next present the results of the coexistence of one DRL
node with one g-ALOHA node, one FW-ALOHA node, and
one EB-ALOHA, respectively. Fig. [[0(b)] presents the results
with different transmission probabilities for the coexistence
of one DRL node with one g-ALOHA node. Fig.
presents the results with different fixed-window sizes for the
coexistence of one DRL node with one FW-ALOHA node.
Fig. [I0(d)] presents the results with different initial window
sizes and m = 2 for the coexistence of one DRL node
with one EB-ALOHA node. As shown in these results, the
reformulated DLMA protocol can again achieve proportional
fairness without knowing the transmission schemes of different
ALOHA variants.

C. Coexistence with a mix of TDMA and ALOHA networks

We now present the results of a setup where one DRL
node coexists with one TDMA node and one g-ALOHA node
simultaneously. We also consider the two cases investigated in
Section [II-C] but the objective now is to achieve proportional
fairness among all the nodes. Fig. [T0(e)] and Fig. [T0(F) present
the results of the two cases. We can see that with the refor-
mulated DLMA protocol, the individual throughputs achieved
approximate the optimal individual throughputs achieved by
imaging a model aware node.

We now present the results when three DRL nodes coexist
with one TDMA node and two g-ALOHA nodes. The case
investigated here is the same as the case presented in Fig. [5]
but the three DRL nodes are now formulated to be one big
agent and the objective is modified to achieve proportional
fairness among all the nodes. The optimal results for the big
agent, the TDMA node and each g-ALOHA node are derived
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two g-ALOHA nodes. The throughput at time ¢ is computed
2 i N+1Te/N, where N = 5000.

in [T8]. As shown in Fig. [T]] the optimal results can also be
approximated using the reformulated DLMA protocol.

VI. CONCLUSION

This paper proposed and investigated a MAC protocol based
on DRL for heterogeneous wireless networking, referred to as
DLMA. A salient feature of DLMA is that it can learn to
achieve an overall objective (e.g., a-fairness objective) by a
series of state-action-reward observations while operating in
the heterogeneous environment. In particular, it can achieve
near-optimal performance with respect to the objective with-
out knowing the detailed operating mechanisms of the other
coexisting MACs.

This paper also demonstrated the advantages of using
neural networks in reinforcement learning for wireless net-
working. Specifically, compared with the traditional RL, DRL
can acquire the near-optimal strategy and performance with
faster convergence time and higher robustness, two essential
properties for practical deployment of the MAC protocol in
dynamically changing wireless environments.

Last but not least, in the course of doing this work, we
discovered an approach to generalize the Q-learning frame-
work so that more general objectives can be achieved. In
particular, for generality, we argued that we need to separate
the Q function and the objective function upon which actions
are chosen to optimize. A framework on how to relate the
objective function and the Q function in the general set-up
was presented in this paper.
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