
1

Adaptive Federated Learning in Resource
Constrained Edge Computing Systems

Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K. Leung,
Christian Makaya, Ting He, Kevin Chan

Abstract—Emerging technologies and applications including
Internet of Things (IoT), social networking, and crowd-sourcing
generate large amounts of data at the network edge. Machine
learning models are often built from the collected data, to enable
the detection, classification, and prediction of future events.
Due to bandwidth, storage, and privacy concerns, it is often
impractical to send all the data to a centralized location. In this
paper, we consider the problem of learning model parameters
from data distributed across multiple edge nodes, without sending
raw data to a centralized place. Our focus is on a generic class
of machine learning models that are trained using gradient-
descent based approaches. We analyze the convergence bound
of distributed gradient descent from a theoretical point of view,
based on which we propose a control algorithm that determines
the best trade-off between local update and global parameter
aggregation to minimize the loss function under a given resource
budget. The performance of the proposed algorithm is evaluated
via extensive experiments with real datasets, both on a networked
prototype system and in a larger-scale simulated environment.
The experimentation results show that our proposed approach
performs near to the optimum with various machine learning
models and different data distributions.

Index Terms—Distributed machine learning, federated learn-
ing, mobile edge computing, wireless networking

I. INTRODUCTION

The rapid advancement of Internet of Things (IoT) and
social networking applications results in an exponential growth
of the data generated at the network edge. It has been predicted
that the data generation rate will exceed the capacity of today’s
Internet in the near future [2]. Due to network bandwidth and
data privacy concerns, it is impractical and often unnecessary
to send all the data to a remote cloud. As a result, research
organizations estimate that over 90% of the data will be stored

S. Wang, T. Salonidis, and C. Makaya are with IBM T. J. Watson
Research Center, Yorktown Heights, NY, USA. Email: {wangshiq, tsa-
loni}@us.ibm.com, chrismak@ieee.org

T. Tuor and K. K. Leung are with Imperial College London, UK. Email:
{tiffany.tuor14, kin.leung}@imperial.ac.uk

T. He is with Pennsylvania State University, University Park, PA, USA.
Email: t.he@cse.psu.edu

K. Chan is with Army Research Laboratory, Adelphi, MD, USA. Email:
kevin.s.chan.civ@mail.mil

This research was sponsored by the U.S. Army Research Laboratory and
the U.K. Ministry of Defence under Agreement Number W911NF-16-3-0001.
The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the U.S. Army Research Laboratory, the U.S.
Government, the U.K. Ministry of Defence or the U.K. Government. The U.S.
and U.K. Governments are authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation hereon.

This paper (excluding appendices) has been accepted for publication in the
IEEE Journal on Selected Areas in Communications. A preliminary version of
this work entitled “When edge meets learning: adaptive control for resource-
constrained distributed machine learning” was presented at IEEE INFOCOM
2018 [1].

Remote Cloud Network
element

Edge
node

Data

Aggregator

Fig. 1: System architecture.

and processed locally [3]. Local data storing and processing
with global coordination is made possible by the emerging
technology of mobile edge computing (MEC) [4], [5], where
edge nodes, such as sensors, home gateways, micro servers,
and small cells, are equipped with storage and computation
capability. Multiple edge nodes work together with the remote
cloud to perform large-scale distributed tasks that involve both
local processing and remote coordination/execution.

To analyze large amounts of data and obtain useful informa-
tion for the detection, classification, and prediction of future
events, machine learning techniques are often applied. The
definition of machine learning is very broad, ranging from
simple data summarization with linear regression to multi-
class classification with support vector machines (SVMs) and
deep neural networks [6], [7]. The latter have shown very
promising performance in recent years, for complex tasks such
as image classification. One key enabler of machine learning
is the ability to learn (train) models using a very large amount
of data. With the increasing amount of data being generated
by new applications and with more applications becoming
data-driven, one can foresee that machine learning tasks will
become a dominant workload in distributed MEC systems in
the future. However, it is challenging to perform distributed
machine learning on resource-constrained MEC systems.

In this paper, we address the problem of how to efficiently
utilize the limited computation and communication resources
at the edge for the optimal learning performance. We consider
a typical edge computing architecture where edge nodes are
interconnected with the remote cloud via network elements,
such as gateways and routers, as illustrated in Fig. 1. The
raw data is collected and stored at multiple edge nodes, and a
machine learning model is trained from the distributed data
without sending the raw data from the nodes to a central
place. This variant of distributed machine learning (model
training) from a federation of edge nodes is known as federated
learning [8]–[10].

We focus on gradient-descent based federated learning
algorithms, which have general applicability to a wide range
of machine learning models. The learning process includes
local update steps where each edge node performs gradient

ar
X

iv
:1

80
4.

05
27

1v
3

 [
cs

.D
C

]
 1

7
Fe

b
20

19

2

descent to adjust the (local) model parameter to minimize
the loss function defined on its own dataset. It also includes
global aggregation steps where model parameters obtained at
different edge nodes are sent to an aggregator, which is a
logical component that can run on the remote cloud, a network
element, or an edge node. The aggregator aggregates these
parameters (e.g., by taking a weighted average) and sends an
updated parameter back to the edge nodes for the next round of
iteration. The frequency of global aggregation is configurable;
one can aggregate at an interval of one or multiple local
updates. Each local update consumes computation resource
of the edge node, and each global aggregation consumes
communication resource of the network. The amount of con-
sumed resources may vary over time, and there is a complex
relationship among the frequency of global aggregation, the
model training accuracy, and resource consumption.

We propose an algorithm to determine the frequency of
global aggregation so that the available resource is most
efficiently used. This is important because the training of
machine learning models is usually resource-intensive, and
a non-optimal operation of the learning task may waste a
significant amount of resources. Our main contributions in this
paper are as follows:

1) We analyze the convergence bound of gradient-descent
based federated learning from a theoretical perspec-
tive, and obtain a novel convergence bound that incor-
porates non-independent-and-identically-distributed (non-
i.i.d.) data distributions among nodes and an arbitrary
number of local updates between two global aggregations.

2) Using the above theoretical convergence bound, we pro-
pose a control algorithm that learns the data distribution,
system dynamics, and model characteristics, based on
which it dynamically adapts the frequency of global
aggregation in real time to minimize the learning loss
under a fixed resource budget.

3) We evaluate the performance of the proposed control
algorithm via extensive experiments using real datasets
both on a hardware prototype and in a simulated environ-
ment, which confirm that our proposed approach provides
near-optimal performance for different data distributions,
various machine learning models, and system configura-
tions with different numbers of edge nodes.

II. RELATED WORK

Existing work on MEC focuses on generic applications,
where solutions have been proposed for application offload-
ing [11], [12], workload scheduling [13], [14], and service
migration triggered by user mobility [15], [16]. However, they
do not address the relationship among communication, compu-
tation, and training accuracy for machine learning applications,
which is important for optimizing the performance of machine
learning tasks.

The concept of federated learning was first proposed in
[9], which showed its effectiveness through experiments on
various datasets. Based on the comparison of synchronous
and asynchronous methods of distributed gradient descent
in [17], it is proposed in [9] that federated learning should

use the synchronous approach because it is more efficient
than asynchronous approaches. The approach in [9] uses
a fixed global aggregation frequency. It does not provide
theoretical convergence guarantee and the experiments were
not conducted in a network setting. Several extensions have
been made to the original federated learning proposal recently.
For example, a mechanism for secure global aggregation is
proposed in [18]. Methods for compressing the information
exchanged within one global aggregation step is proposed
in [19], [20]. Adjustments to the standard gradient descent pro-
cedure for better performance in the federated setting is studied
in [21]. Participant (client) selection for federated learning is
studied in [22]. An approach that shares a small amount of
data with other nodes for better learning performance with
non-i.i.d. data distribution is proposed in [23]. These studies
do not consider the adaptation of global aggregation frequency,
and thus they are orthogonal to our work in this paper. To the
best of our knowledge, the adaptation of global aggregation
frequency for federated learning with resource constraints has
not been studied in the literature.

An area related to federated learning is distributed machine
learning in datacenters through the use of worker machines
and parameter servers [24]. The main difference between the
datacenter environment and edge computing environment is
that in datacenters, shared storage is usually used. The worker
machines do not keep persistent data storage on their own, and
they fetch the data from the shared storage at the beginning
of the learning process. As a result, the data samples obtained
by different workers are usually independent and identically
distributed (i.i.d.). In federated learning, the data is collected
at the edge directly and stored persistently at edge nodes, thus
the data distribution at different edge nodes is usually non-
i.i.d. Concurrently with our work in this paper, optimization
of synchronization frequency with running time considerations
is studied in [25] for the datacenter setting. It does not consider
characteristics of non-i.i.d. data distributions which is essential
in federated learning.

Distributed machine learning across multiple datacenters in
different geographical locations is studied in [26], where a
threshold-based approach to reduce the communication among
different datacenters is proposed. Although the work in [26]
is related to the adaptation of synchronization frequency with
resource considerations, it focuses on peer-to-peer connected
datacenters, which is different from the federated learning
architecture that is not peer-to-peer. It also allows asyn-
chronism among datacenter nodes, which is not the case in
federated learning. In addition, the approach in [26] is de-
signed empirically and does not consider a concrete theoretical
objective, nor does it consider computation resource constraint
which is important in MEC systems in addition to constrained
communication resource.

From a theoretical perspective, bounds on the convergence
of distributed gradient descent are obtained in [27]–[29], which
only allow one step of local update before global aggregation.
Partial global aggregation is allowed in the decentralized
gradient descent approach in [30], [31], where after each
local update step, parameter aggregation is performed over
a non-empty subset of nodes, which does not apply in our

3

federated learning setting where there is no aggregation at all
after some of the local update steps. Multiple local updates
before aggregation is possible in the bound derived in [26],
but the number of local updates varies based on the thresh-
olding procedure and cannot be specified as a given constant.
Concurrently with our work, bounds with a fixed number of
local updates between global aggregation steps are derived
in [32], [33]. However, the bound in [32] only works with
i.i.d. data distribution; the bound in [33] is independent from
how different the datasets are, which is inefficient because it
does not capture the fact that training on i.i.d. data is likely
to converge faster than training on non-i.i.d. data. Related
studies on distributed optimization that are applicable for
machine learning applications also include [34]–[36], where
a separate solver is used to solve a local problem. The main
focus of [34]–[36] is the trade-off between communication
and optimality, where the complexity of solving the local
problem (such as the number of local updates needed) is
not studied. In addition, many of the existing studies either
explicitly or implicitly assume i.i.d. data distribution at dif-
ferent nodes, which is inappropriate in federated learning. To
our knowledge, the convergence bound of distributed gradient
descent in the federated learning setting, which captures both
the characteristics of different (possibly non-i.i.d. distributed)
datasets and a given number of local update steps between two
global aggregation steps, has not been studied in the literature.

In contrast to the above research, our work in this paper for-
mally addresses the problem of dynamically determining the
global aggregation frequency to optimize the learning with a
given resource budget for federated learning in MEC systems.
This is a non-trivial problem due to the complex dependency
between each learning step and its previous learning steps,
which is hard to capture analytically. It is also challenging
due to non-i.i.d. data distributions at different nodes, where
the data distribution is unknown beforehand and the datasets
may have different degrees of similarities with each other, and
the real-time dynamics of the system. We propose an algorithm
that is derived from theoretical analysis and adapts to real-time
system dynamics.

We start with summarizing the basics of federated learning
in the next section. In Section IV, we describe our problem
formulation. The convergence analysis and control algorithm
are presented in Sections V and VI, respectively. Experimen-
tation results are shown in Section VII and the conclusion is
presented in Section VIII.

III. PRELIMINARIES AND DEFINITIONS

A. Loss Function

Machine learning models include a set of parameters which
are learned based on training data. A training data sample j
usually consists of two parts. One is a vector xj that is
regarded as the input of the machine learning model (such
as the pixels of an image); the other is a scalar yj that is the
desired output of the model (such as the label of the image). To
facilitate the learning, each model has a loss function defined
on its parameter vector w for each data sample j. The loss
function captures the error of the model on the training data,

TABLE I: Loss functions for popular machine learning models

Model Loss function f(w,xj , yj) (, fj(w))

Squared-SVM λ
2
‖w‖2 + 1

2
max

{
0; 1− yjwTxj

}2 (λ is const.)

Linear regression 1
2
‖yj −wTxj‖2

K-means 1
2
minl ‖xj−w(l)‖2 where w , [wT

(1)
,wT

(2)
, ...]T

Convolutional
neural network

Cross-entropy on cascaded linear and non-linear
transforms, see [7]

and the model learning process is to minimize the loss function
on a collection of training data samples. For each data sample
j, we define the loss function as f(w,xj , yj), which we write
as fj(w) in short1.

Examples of loss functions of popular machine learning mo-
dels are summarized2 in Table I [6], [7], [37]. For convenience,
we assume that all vectors are column vectors in this paper
and use xT to denote the transpose of x. We use “,” to denote
“is defined to be equal to” and use ‖·‖ to denote the L2 norm.

Assume that we have N edge nodes with local datasets
D1,D2, ...,Di, ...,DN . For each dataset Di at node i, the loss
function on the collection of data samples at this node is

Fi(w) ,
1

|Di|
∑
j∈Di

fj(w). (1)

We define Di , |Di|, where | · | denotes the size of the set,
and D ,

∑N
i=1Di. Assuming Di ∩ Di′ = ∅ for i 6= i′, we

define the global loss function on all the distributed datasets
as

F (w) ,

∑
j∈∪iDi fj(w)

|∪iDi|
=

∑N
i=1DiFi(w)

D
. (2)

Note that F (w) cannot be directly computed without sharing
information among multiple nodes.

B. The Learning Problem

The learning problem is to minimize F (w), i.e., to find

w∗ , argminF (w). (3)

Due to the inherent complexity of most machine learning
models, it is usually impossible to find a closed-form solu-
tion to (3). Thus, (3) is often solved using gradient-descent
techniques.

C. Distributed Gradient Descent

We present a canonical distributed gradient-descent algo-
rithm to solve (3), which is widely used in state-of-the-art
federated learning systems (e.g., [9]). Each node i has its
local model parameter wi(t), where t = 0, 1, 2, ... denotes the
iteration index. At t = 0, the local parameters for all nodes
i are initialized to the same value. For t > 0, new values of
wi(t) are computed according to a gradient-descent update
rule on the local loss function, based on the parameter value
in the previous iteration t − 1. This gradient-descent step on

1Note that some unsupervised models (such as K-means) only learn on xj
and do not require the existence of yj in the training data. In such cases, the
loss function value only depends on xj .

2While our focus is on non-probabilistic learning models, similar loss
functions can be defined for probabilistic models where the goal is to minimize
the negative of the log-likelihood function, for instance.

4

݅ܟ 0
ݐ

෥݅ܟ 0 ݅ܟ 1 ෥݅ܟ 1 ݅ܟ 2 ෥݅ܟ 2 ݅ܟ 3 ෥݅ܟ 3≡ …് ൌ ് ൌ്്
A A AB

Operations: A Local iteration Global aggregationB

Fig. 2: Illustration of the values of wi(t) and w̃i(t) at node i.

Algorithm 1: Distributed gradient descent (logical view)
Input: τ , T
Output: Final model parameter wf

1 Initialize wf , wi(0) and w̃i(0) to the same value for all i;
2 for t = 1, 2, ..., T do
3 For each node i in parallel, compute local update using (4);
4 if t is an integer multiple of τ then
5 Set w̃i(t)← w(t) for all i, where w(t) is defined in (5);

//Global aggregation
6 Update wf ← argminw∈{wf ,w(t)} F (w);
7 else
8 Set w̃i(t)← wi(t) for all i; //No global aggregation

the local loss function (defined on the local dataset) at each
node is referred to as the local update. After one or multiple
local updates, a global aggregation is performed through the
aggregator to update the local parameter at each node to the
weighted average of all nodes’ parameters. We define that
each iteration includes a local update step which is possibly
followed by a global aggregation step.

After global aggregation, the local parameter wi(t) at each
node i usually changes. For convenience, we use w̃i(t) to
denote the parameter at node i after possible global aggrega-
tion. If no aggregation is performed at iteration t, we have
w̃i(t) = wi(t). If aggregation is performed at iteration t, then
generally w̃i(t) 6= wi(t) and we set w̃i(t) = w(t), where
w(t) is a weighted average of wi(t) defined in (5) below. An
example of these definitions is shown in Fig. 2.

The local update in each iteration is performed on the
parameter after possible global aggregation in the previous
iteration. For each node i, the update rule is as follows:

wi(t) = w̃i(t− 1)− η∇Fi (w̃i(t− 1)) (4)

where η > 0 is the step size. For any iteration t (which may
or may not include a global aggregation step), we define

w(t) =

∑N
i=1Diwi(t)

D
. (5)

This global model parameter w(t) is only observable to nodes
in the system if global aggregation is performed at iteration
t, but we define it for all t to facilitate the analysis later.

We define that the system performs τ steps of local updates
at each node between every two global aggregations. We define
T as the total number of local iterations at each node. For
ease of presentation, we assume that T is an integer multiple
of τ in the theoretical analysis, which will be relaxed when
we discuss practical aspects in Section VI-B. The logic of
distributed gradient descent is presented in Algorithm 1, which
ignores aspects related to the communication between the
aggregator and edge nodes. Such aspects will be discussed
later in Section VI-B.

The final model parameter wf obtained from Algorithm 1
is the one that has produced the minimum global loss after
each global aggregation throughout the entire execution of

TABLE II: Summary of main notations
F (w) Global loss function
Fi(w) Local loss function for node i
t Iteration index
wi(t) Local model parameter at node i in iteration t
w(t) Global model parameter in iteration t
wf Final model parameter obtained at the end of learning process
w∗ True optimal model parameter that minimizes F (w)
η Gradient descent step size
τ Number of local update steps between two global aggregations
T Total number of local update steps at each node
K Total number of global aggregation steps, equal to T/τ
M (m) Total number of resource types (the m-th type of resource)
Rm Total budget of the m-th type of resource
cm Consumption of type-m resource in one local update step
bm Consumption of type-m resource in one global aggregation step
ρ Lipschitz parameter of Fi(w) (∀i) and F (w)
β Smoothness parameter of Fi(w) (∀i) and F (w)
δ Gradient divergence
h(τ) Function defined in (11), gap between the model parameters

obtained from distributed and centralized gradient descents
ϕ Constant defined in Lemma 2, control parameter
G(τ) Function defined in (18), control objective
τ∗ Optimal τ obtained by minimizing G(τ)

the algorithm. We use wf instead of w(T), to align with
the theoretical convergence bound that will be presented in
Section V-B. In practice, we have seen that wf and w(T) are
usually the same, but using wf provides theoretical rigor in
terms of convergence guarantee so we use wf in this paper.
Note that F (w) in Line 6 of Algorithm 1 is computed in
a distributed manner according to (2); the details will be
presented later.

The rationale behind Algorithm 1 is that when τ = 1, i.e.,
when we perform global aggregation after every local update
step, the distributed gradient descent (ignoring communication
aspects) is equivalent to the centralized gradient descent,
where the latter assumes that all data samples are available
at a centralized location and the global loss function and its
gradient can be observed directly. This is due to the linearity
of the gradient operator. See Appendix A as well as [38] for
detailed discussions about this.

The main notations in this paper are summarized in Table II.

IV. PROBLEM FORMULATION

When there is a large amount of data (which is usually
needed for training an accurate model) distributed at a large
number of nodes, the federated learning process can consume
a significant amount of resources. The notion of “resources”
here is generic and can include time, energy, monetary cost
etc. related to both computation and communication. One
often has to limit the amount of resources used for learning
each model, in order not to backlog the system and to keep
the operational cost low. This is particularly important in
edge computing environments where the computation and
communication resources are not as abundant as in datacenters.

Therefore, a natural question is how to make efficient use
of a given amount of resources to minimize the loss function
of model training. For the distributed gradient-descent based
learning approach presented above, the question narrows down
to determining the optimal values of T and τ , so that the
global loss function is minimized subject to a given resource
constraint for this learning task.

5

We use K to denote the total number of global aggregations
within T iterations. Because we assumed earlier that T is an
integer multiple of τ , we have K = T

τ . We define

wf , argmin
w∈{w(kτ):k=0,1,2,...,K}

F (w). (6)

It is easy to verify that this definition is equivalent to wf found
from Algorithm 1.

To compute F (w) in (6), each node i first computes Fi(w)
and sends the result to the aggregator, then the aggregator com-
putes F (w) according to (2). Since each node only knows the
value of w(kτ) after the k-th global aggregation, Fi(w(kτ))
at node i will be sent back to the aggregator at the (k+1)-th
global aggregation, and the aggregator computes F (w(kτ))
afterwards. To compute the last loss value F (w(Kτ)) =
F (w(T)), an additional round of local and global update is
performed at the end. We assume that at each node, local
update consumes the same amount of resource no matter
whether only the local loss is computed (in the last round)
or both the local loss and gradient are computed (in all the
other rounds), because the loss and gradient computations can
usually be based on the same intermediate result. For example,
the back propagation approach for computing gradients in
neural networks requires a forward propagation procedure that
essentially obtains the loss as an intermediate step [7].

We consider M different types of resources. For example,
one type of resource can be time, another type can be energy,
a third type can be communication bandwidth, etc. For each
m ∈ {1, 2, ...,M}, we define that each local update step at all
nodes consumes cm units of type-m resource, and each global
aggregation step consumes bm units of type-m resource, where
cm ≥ 0 and bm ≥ 0 are both finite real numbers. For given
T and τ , the total amount of consumed type-m resource is
(T + 1)cm + (K + 1) bm, where the additional “+1” is for
computing F (w(Kτ)), as discussed above.

Let Rm denote the total budget of type-m resource. We
seek the solution to the following problem:

min
τ,K∈{1,2,3,...}

F (wf) (7)

s.t. (T+1)cm+(K+1) bm ≤ Rm , ∀m∈{1, ...,M}
T = Kτ.

To solve (7), we need to find out how τ and K (and thus
T) affect the loss function F (wf) computed on the final
model parameter wf . It is generally impossible to find an
exact analytical expression to relate τ and K with F (wf),
because it depends on the convergence property of gradient
descent (for which only upper/lower bounds are known [39])
and the impact of the global aggregation frequency on the
convergence. Further, the resource consumptions cm and bm
can be time-varying in practice which makes the problem even
more challenging than (7) alone.

We analyze the convergence bound of distributed gradient
descent (Algorithm 1) in Section V, then use this bound to
approximately solve (7) and propose a control algorithm for
adaptively choosing the best values of τ and T to achieve
near-optimal resource utilization in Section VI.

Lo
ss
 fu

nc
tio

n
va
lu
e

2߬߬ݐ

ܟሺܨ ߬ ሻ
ܞሺܨ ଶ ߬ ሻ

ܞሺܨ ଵ ߬ ሻ

Interval [1] Interval [2] Interval [k]

ሺ݇ െ 1ሻ߬ ݇߬0

ܟሺܨ ݇߬ ሻ ܞሺܨ ௞ାଵ ݇߬ ሻ

ܞሺܨ ௞ ݇߬ ሻ

ሺ݇ ൅ 1ሻ	߬

… …

Fig. 3: Illustration of definitions in different intervals.

V. CONVERGENCE ANALYSIS

We analyze the convergence of Algorithm 1 in this section
and find an upper bound of F (wf)−F (w∗). To facilitate the
analysis, we first introduce some notations.

A. Definitions

We can divide the T iterations into K different intervals, as
shown in Fig. 3, with only the first and last iterations in each
interval containing global aggregation. We use the shorthand
notations [k] to denote the iteration interval3 [(k − 1)τ, kτ],
for k = 1, 2, ...,K.

For each interval [k], we use v[k](t) to denote an auxiliary
parameter vector that follows a centralized gradient descent
according to

v[k](t) = v[k](t− 1)− η∇F (v[k](t− 1)) (8)

where v[k](t) is only defined for t ∈ [(k−1)τ, kτ] for a given
k. This update rule is based on the global loss function F (w)
which is only observable when all data samples are available
at a central place (thus we call it centralized gradient descent),
whereas the iteration in (4) is on the local loss function Fi(w).

We define that v[k](t) is “synchronized” with w(t) at the
beginning of each interval [k], i.e., v[k]((k − 1)τ) , w((k −
1)τ), where w(t) is the average of local parameters defined
in (5). Note that we also have w̃i((k − 1)τ) = w((k − 1)τ)
for all i because the global aggregation (or initialization when
k = 1) is performed in iteration (k − 1)τ .

The above definitions enable us to find the convergence
bound of Algorithm 1 by taking a two-step approach. The first
step is to find the gap between w(kτ) and v[k](kτ) for each k,
which is the difference between the distributed and centralized
gradient descents after τ steps of local updates without global
aggregation. The second step is to combine this gap with the
convergence bound of v[k](t) within each interval [k] to obtain
the convergence bound of w(t).

For the purpose of the analysis, we make the following
assumption to the loss function.

Assumption 1. We assume the following for all i:

1) Fi(w) is convex
2) Fi(w) is ρ-Lipschitz, i.e., ‖Fi(w) − Fi(w′)‖ ≤ ρ‖w −

w′‖ for any w,w′

3With slight abuse of notation, we use [(k−1)τ, kτ] to denote the integers
contained in the interval for simplicity. We use the same convention in other
parts of the paper as long as there is no ambiguity.

6

3) Fi(w) is β-smooth, i.e., ‖∇Fi(w)−∇Fi(w′)‖ ≤
β ‖w −w′‖ for any w,w′

Assumption 1 is satisfied for squared-SVM and linear
regression (see Table I). The experimentation results that will
be presented in Section VII show that our control algorithm
also works well for models (such as neural network) whose
loss functions do not satisfy Assumption 1.

Lemma 1. F (w) is convex, ρ-Lipschitz, and β-smooth.

Proof. Straightforwardly from Assumption 1, the definition of
F (w), and triangle inequality.

We also define the following metric to capture the diver-
gence between the gradient of a local loss function and the
gradient of the global loss function. This divergence is related
to how the data is distributed at different nodes.

Definition 1. (Gradient Divergence) For any i and w, we
define δi as an upper bound of ‖∇Fi(w)−∇F (w)‖, i.e.,

‖∇Fi(w)−∇F (w)‖ ≤ δi. (9)

We also define δ ,
∑
iDiδi
D .

B. Main Results

The below theorem gives an upper bound on the difference
between w(t) and v[k](t) when t is within the interval [k].

Theorem 1. For any interval [k] and t ∈ [k], we have∥∥w(t)− v[k](t)
∥∥ ≤ h(t− (k − 1)τ) (10)

where
h(x) ,

δ

β
((ηβ + 1)x − 1)− ηδx (11)

for any x = 0, 1, 2,
Furthermore, as F (·) is ρ-Lipschitz, we have F (w(t)) −

F (v[k](t)) ≤ ρh(t− (k − 1)τ).

Proof. We first obtain an upper bound of
∥∥w̃i(t)− v[k](t)

∥∥
for each node i, based on which the final result is obtained.
For details, see Appendix B.

Note that we always have η > 0 and β > 0 because
otherwise the gradient descent procedure or the loss function
becomes trivial. Therefore, we have (ηβ+1)x ≥ ηβx+1 for
x = 0, 1, 2, ... due to Bernoulli’s inequality. Substituting this
into (11) confirms that we always have h(x) ≥ 0.

It is easy to see that h(0) = h(1) = 0. Therefore, when
t = (k−1)τ , i.e., at the beginning of the interval [k], the upper
bound in (10) is zero. This is consistent with the definition of
v[k]((k−1)τ) = w((k−1)τ) for any k. When t = (k−1)τ+1
(i.e., the second iteration in interval [k]), the upper bound in
(10) is also zero. This agrees with the discussion at the end of
Section III-C, showing that there is no gap between distributed
and centralized gradient descents when only one local update
is performed after the global aggregation. If τ = 1, then t −
(k−1)τ is either 0 or 1 for any interval [k] and t ∈ [k]. Hence,
the upper bound in (10) becomes exact for τ = 1.

For τ > 1, the value of x = t− (k−1) can be larger. When
x is large, the exponential term with (ηβ+1)x in (11) becomes

dominant, and the gap between w(t) and v[k](t) can increase
exponentially with t for t ∈ [k]. We also note that h(x) is
proportional to the gradient divergence δ (see (11)), which is
intuitive because the more the local gradient is different from
the global gradient (for the same parameter w), the larger the
gap will be. The gap is caused by the difference in the local
gradients at different nodes starting at the second local update
after each global aggregation. In an extreme case when all
nodes have exactly the same data samples (and thus the same
local loss functions), the gradients will be always the same
and δ = 0, in which case w(t) and v[k](t) are always equal.

Theorem 1 gives an upper bound of the difference between
distributed and centralized gradient descents for each iteration
interval [k], assuming that v[k](t) in the centralized gradient
descent is synchronized with w(t) at the beginning of each
[k]. Based on this result, we first obtain the following lemma.

Lemma 2. When all the following conditions are satisfied:
1) η ≤ 1

β

2) ηϕ− ρh(τ)
τε2 > 0

3) F
(
v[k](kτ)

)
− F (w∗) ≥ ε for all k

4) F (w(T))− F (w∗) ≥ ε
for some ε > 0, where we define ϕ , ω

(
1− βη

2

)
and ω ,

mink
1

‖v[k]((k−1)τ)−w∗‖2
, then the convergence upper bound

of Algorithm 1 after T iterations is given by

F (w(T))− F (w∗) ≤ 1

T
(
ηϕ− ρh(τ)

τε2

) . (12)

Proof. We first analyze the convergence of F
(
v[k](t)

)
within

each interval [k]. Then, we combine this result with the gap
between F (w(t)) and F (v[k](t)) from Theorem 1 to obtain
the final result. For details, see Appendix C.

We then have the following theorem.

Theorem 2. When η ≤ 1
β , we have

F (wf)− F (w∗) ≤ 1

2ηϕT
+

√
1

4η2ϕ2T 2
+
ρh(τ)

ηϕτ
+ ρh(τ).

(13)

Proof. Condition 1 in Lemma 2 is always satisfied due to the
condition η ≤ 1

β in this theorem.
When ρh(τ) = 0, we can choose ε to be arbitrarily small

(but greater than zero) so that conditions 2–4 in Lemma 2 are
satisfied. We see that the right-hand sides of (12) and (13) are
equal in this case (when ρh(τ) = 0), and the result in (13)
follows directly from Lemma 2 because F (wf) − F (w∗) ≤
F (w(T))− F (w∗) according to the definition of wf in (6).

We consider ρh(τ) > 0 in the following. Consider the right-
hand side of (12) and let

ε0 =
1

T
(
ηϕ− ρh(τ)

τε20

) . (14)

Solving for ε0, we obtain

ε0 =
1

2ηϕT
+

√
1

4η2ϕ2T 2
+
ρh(τ)

ηϕτ
(15)

7

where the negative solution is ignored because ε > 0 in
Lemma 2. Because ε0 > 0 according to (15), the denominator
of (14) is greater than zero, thus condition 2 in Lemma 2
is satisfied for any ε ≥ ε0, where we note that ηϕ − ρh(τ)

τε2

increases with ε when ρh(τ) > 0.
Suppose that there exists ε > ε0 satisfying conditions 3

and 4 in Lemma 2, so that all the conditions in Lemma 2 are
satisfied. Applying Lemma 2 and considering (14), we have

F (w(T))−F (w∗) ≤ 1

T
(
ηϕ− ρh(τ)

τε2

) < 1

T
(
ηϕ− ρh(τ)

τε20

) = ε0

which contradicts with condition 4 in Lemma 2. Therefore,
there does not exist ε > ε0 that satisfy both conditions 3
and 4 in Lemma 2. This means that either 1) ∃k such that
F
(
v[k](kτ)

)
− F (w∗) ≤ ε0 or 2) F (w(T))− F (w∗) ≤ ε0.

It follows that

min

{
min

k=1,2,...,K
F
(
v[k](kτ)

)
;F (w(T))

}
− F (w∗) ≤ ε0.

(16)
From Theorem 1, F (w(kτ)) ≤ F (v[k](kτ)) + ρh(τ) for any
k. Combining with (16), we get

min
k=1,2,...,K

F (w(kτ))− F (w∗) ≤ ε0 + ρh(τ)

where we recall that T = Kτ . Using (6) and (15), we obtain
the result in (13).

We note that the bound in (13) has no restriction on how the
data is distributed at different nodes. The impact of different
data distribution is captured by the gradient divergence δ,
which is included in h(τ). It is easy to see from (11) that
h(τ) is non-negative, non-decreasing in τ , and proportional to
δ. Thus, as one would intuitively expect, for a given total
number of local update steps T , the optimality gap (i.e.,
F (wf)−F (w∗)) becomes larger when τ and δ are larger. For
given τ and δ, the optimality gap becomes smaller when T is
larger. When τ = 1, we have h(τ) = 0, and the optimality gap
converges to zero as T →∞. When τ > 1, we have h(τ) > 0,
and we can see from (13) that in this case, convergence is
only guaranteed to a non-zero optimality gap as T → ∞.
This means that when we have unlimited budget for all types
of resources (i.e., Rm → ∞,∀m), it is always optimal to set
τ = 1 and perform global aggregation after every step of local
update. However, when the resource budget Rm is limited for
some m, the training will be terminated after a finite number
of iterations, thus the value of T is finite. In this case, it may
be better to perform global aggregation less frequently so that
more resources can be used for local update, as we will see
later in this paper.

VI. CONTROL ALGORITHM

We propose an algorithm that approximately solves (7) in
this section. We first assume that the resource consumptions
cm and bm (∀m) are known, and we solve for the values of τ
and T . Then, we consider practical scenarios where cm, bm,
and some other parameters are unknown and may vary over
time, and we propose a control algorithm that estimates the
parameters and dynamically adjusts the value of τ in real time.

A. Approximate Solution to (7)

We assume that η is chosen small enough such that η ≤ 1
β ,

and use the upper bound in (13) as an approximation of
F (wf) − F (w∗). Because for a given global loss func-
tion F (w), its minimum value F (w∗) is a constant, the
minimization of F (wf) in (7) is equivalent to minimizing
F (wf)−F (w∗). With this approximation and rearranging the
inequality constraints in (7), we can rewrite (7) as

min
τ,K∈{1,2,3,...}

1

2ηϕT
+

√
1

4η2ϕ2T 2
+
ρh(τ)

ηϕτ
+ ρh(τ) (17)

s.t. K ≤ R′m
cmτ + bm

, ∀m ∈ {1, ...,M}

T = Kτ

where R′m , Rm − bm − cm.
It is easy to see that the objective function in (17) decreases

with T , thus it also decreases with K because T = Kτ . There-
fore, for any τ , the optimal value of K is

⌊
minm

R′m
cmτ+bm

⌋
,

i.e., the largest value of K that does not violate any inequality
constraint in (17), where b·c denotes the floor function for
rounding down to integer. To simplify the analysis, we ap-
proximate by ignoring the rounding operation and substituting
T = Kτ ≈ minm

R′mτ
cmτ+bm

= 1
/
maxm

cmτ+bm
R′mτ

into the
objective function in (17), yielding

G(τ) ,
maxm

cmτ+bm
R′mτ

2ηϕ
+

√√√√(maxm
cmτ+bm
R′mτ

)2
4η2ϕ2

+
ρh(τ)

ηϕτ
+ ρh(τ)

(18)
and we can define the (approximately) optimal τ as

τ∗ = argmin
τ∈{1,2,3,...}

G(τ) (19)

from which we can directly obtain the (approximately) optimal
K as K∗ =

⌊
minm

R′m
cmτ∗+bm

⌋
, and the (approximately)

optimal T as T ∗ = K∗τ∗ =
⌊
minm

R′m
cmτ∗+bm

⌋
τ∗.

Proposition 1. When η ≤ 1
β , ρ > 0, β > 0, δ > 0, we have

limRmin→∞ τ∗ = 1, where Rmin , minmRm.

Proof. Because Rmin → ∞ ⇐⇒ Rm → ∞,∀m ⇐⇒
R′m → ∞,∀m, we have limRmin→∞maxm

cmτ+bm
R′mτ

=

maxm limR′m→∞
cmτ+bm
R′mτ

= 0. Thus, limRmin→∞G(τ) =√
ρh(τ)
ηϕτ + ρh(τ). Let B , ηβ + 1. With a slight abuse of

notation, we consider continuous values of τ ≥ 1. We have

d

(
h(τ)

τ

)/
dτ =

δ

βτ2
(Bτ logBτ − (Bτ − 1))

≥ δ

βτ2

(
Bτ
(
1− 1

Bτ

)
−Bτ − 1

)
≥ 0

where the first inequality is from a lower bound of logarithmic
function [40]. We also have

dh(τ)

dτ
=
δ

β
(Bτ logB − ηβ) ≥ δ

β

(
2ηβBτ

2 + ηβ
− ηβ

)
=
δ(2ηβBτ − 2ηβ − η2β2)

β(2 + ηβ)

8

≥ δ(2ηβB − 2ηβ − η2β2)

β(2 + ηβ)
=

δη2β2

β(2 + ηβ)
> 0

where the first inequality is from a lower bound of logB [40],
the second inequality is because B > 1 and τ ≥ 1.

Thus, for any τ ≥ 1, h(τ) increases with τ , and h(τ)
τ is

non-decreasing with τ . We also note that
√
x increases with x

for any x ≥ 0, and h(1) = 0. It follows that limRmin→∞G(τ)
increases with τ for any τ ≥ 1. Hence, limRmin→∞ τ∗ = 1.

Combining Proposition 1 with Theorem 2, we know that
using τ∗ found from (19) guarantees convergence with zero
optimality gap as Rmin → ∞ (and thus R′m → ∞,∀m and
T ∗ → ∞), because limRmin→∞ τ∗ = 1 and h(1) = 0. For
general values of Rm (and R′m), we have the following result.

Proposition 2. When η≤ 1
β , ρ>0, β>0, δ>0, there exists a

finite value τ0, which only depends on η, β, ρ, δ, ϕ, cm, bm,
R′m (∀m), such that τ∗ ≤ τ0. The quantity τ0 is defined as

τ0 , max

{
max
m

bmR
′
ν − bνR′m

cνR′m − cmR′ν
;
ϕ(2+ηβ)

2ρδ

(
2cνbν
C2

+
2b2ν
C2

)
;

1

ρδη logB

(
bν
C1

+ρηδ

)
− 1

ηβ
;

1

ηβ
+

1

2

}
where index ν , argmaxm∈V

bm
R′m

(set V , argmaxm
cm
R′m

),
B , ηβ + 1, C1 , 2ηϕR′ν , C2 , 4η2ϕ2R′2ν . Here, for
convenience, we allow argmax to interchangeably return a
set and an arbitrary value in that set, we also define 0

0 , 0.
We also note that 0 < ηβ ≤ 1, thus τ0 ≥ 1

ηβ + 1
2 > 1.

Proof. We can show that maxm
bmR

′
ν−bνR

′
m

cνR′m−cmR′ν
is finite accord-

ing to the definition of ν and 0
0 , then it is easy to see that τ0 is

finite. We then show argmaxm
cmτ+bm
R′mτ

= ν for any τ > τ0,
in which case the maximization over m in (18) becomes fixing
m = ν. Then, the proof separately considers the terms inside
and outside the square root in (18). It shows that the first order
derivatives of both parts are always larger than zero when
τ > τ0. Because the square root is an increasing function,
G(τ) increases with τ for τ > τ0, and thus τ∗ ≤ τ0. See
Appendix D for details.

There is no closed-form solution for τ∗ because G(τ)
includes both polynomial and exponential terms of τ , where
the exponential term is embedded in h(τ). Because τ∗ can
only be a positive integer, according to Proposition 2, we
can compute G(τ) within a finite range of τ to find τ∗ that
minimizes G(τ).

B. Adaptive Federated Learning

In this subsection, we present the complete control algo-
rithm for adaptive federated learning, which recomputes τ∗ in
every global aggregation step based on the most recent system
state. We use the theoretical results above to guide the design
of the algorithm.

As mentioned earlier, the local updates run on edge nodes
and the global aggregation is performed through the assistance
of an aggregator, where the aggregator is a logical component
that may also run on one of the edge nodes. The complete

procedures at the aggregator and each edge node are presented
in Algorithms 2 and 3, respectively, where Lines 8–12 of
Algorithm 3 are for local updates and the rest is considered as
part of global aggregation, initialization, or final operation. We
assume that the aggregator initiates the learning process, and
the initial model parameter w(0) is sent by the aggregator
to all edge nodes. We note that instead of transmitting the
entire model parameter vector in every global aggregation
step, one can also transmit compressed or quantized model
parameters to further save the communication bandwidth,
where the compression or quantization can be performed using
techniques described in [19], [20], for instance.

1) Estimation of Parameters in G(τ): The expression of
G(τ), which includes h(τ), has parameters which need to be
estimated in practice. Among these parameters, cm and bm
(∀m) are related to resource consumption, ρ, β, and δ are
related to the loss function characteristics. These parameters
are estimated in real time during the learning process.

The values of cm and bm (∀m) are estimated based on
measurements of resource consumptions at the edge nodes
and the aggregator (Line 22 of Algorithm 2). The estimation
depends on the type of resource under consideration. For
example, when the type-m resource is energy, the sum energy
consumption (per local update) at all nodes is considered as
cm; when the type-m resource is time, the maximum compu-
tation time (per local update) at all nodes is considered as cm.
The aggregator also monitors the total resource consumption
of each resource type m based on the estimates, and compares
the total resource consumption against the resource budget Rm
(Line 24 of Algorithm 2). If the consumed resource is at the
budget limit for some m, it stops the learning and returns the
final result.

The values of ρ, β, and δ are estimated based on the local
and global losses and gradients computed at w(t) and wi(t),
see Line 11 and Lines 17–19 of Algorithm 2 and Lines 6, 7,
and 17 of Algorithm 3. To perform the estimation, each edge
node needs to have access to both its local model parameter
wi(t) and the global model parameter w(t) for the same
iteration t (see Lines 6 and 7 of Algorithm 3), which is only
possible when global aggregation is performed in iteration t.
Because w(t) is only observable by each node after global
aggregation, estimated values of ρ, β, and δ are only available
for recomputing τ∗ starting from the second global aggrega-
tion step after initialization, which uses estimates obtained in
the previous global aggregation step4.

Remark: In the extreme case where wi(t) = w(t) in Lines 6
and 7 of Algorithm 3, we estimate ρ̂i and β̂i as zero. When
δ = β = 0 and δ

β in h(τ) is undefined, we define that h(τ) = 0
for all τ ≥ 1. This is because for t > 0, wi(t) = w(t)
only occurs when different nodes have extremely similar (often
equal) datasets, in which case a large value of τ does not make
the convergence worse than a small value of τ , thus it makes
sense to define h(τ) = 0 in this case.

The parameter η is the gradient-descent step size which

4See the condition in Line 10 of Algorithm 2 and Lines 5 and 16 of
Algorithm 3. Also note that the parameters ρ̂i, β̂i, Fi(w(t0)), ∇Fi(w(t0))
sent in Line 17 of Algorithm 3 are obtained at the previous global aggregation
step (t0, ρ̂i, and β̂i are obtained in Lines 4–7 of Algorithm 3).

9

Algorithm 2: Procedure at the aggregator
Input: Resource budget R, control parameter ϕ, search range

parameter γ, maximum τ value τmax
Output: wf

1 Initialize τ∗ ← 1, t← 0, s← 0; //s is a resource counter
2 Initialize w(0) as a constant or a random vector;
3 Initialize wf ← w(0);
4 repeat
5 Send w(t) and τ∗ to all edge nodes, also send STOP if it is set;
6 t0 ← t; //Save iteration index of last transmission of w(t)
7 t← t+ τ∗; //Next global aggregation is after τ iterations
8 Receive wi(t), ĉi from each node i;
9 Compute w(t) according to (5);

10 if t0 > 0 then
11 Receive ρ̂i, β̂i, Fi(w(t0)), ∇Fi(w(t0)) from each node i;
12 Compute F (w(t0)) according to (2)
13 if F (w(t0)) < F (wf) then
14 wf ← w(t0);
15 if STOP flag is set then
16 break; //Break out of the loop here if STOP is set

17 Estimate ρ̂←
∑N
i=1Diρ̂i
D

;

18 Estimate β̂ ←
∑N
i=1Diβ̂i
D

;

19 Compute ∇F (w(t0))←
∑N
i=1Di∇Fi(w(t0))

D
, estimate

δ̂i ← ‖∇Fi(w(t0))−∇F (w(t0))‖ for each i, from which

we estimate δ̂ ←
∑N
i=1Diδ̂i
D

;
20 Compute new value of τ∗ according to (19) via linear search

on integer values of τ within [1, τm], where we set
τm ← min{γτ∗; τmax};

21 for m = 1, 2, ...,M do
22 Estimate resource consumptions ĉm, b̂m, using ĉm,i received

from all nodes i and local measurements at the aggregator;
23 sm ← sm + ĉmτ + b̂m;
24 if ∃m such that sm + ĉm(τ + 1) + 2b̂m ≥ Rm then
25 Decrease τ∗ to the maximum possible value such that the

estimated resource consumption for remaining iterations is
within budget Rm for all m, set STOP flag;

26 Send w(t) to all edge nodes;
27 Receive Fi(w(t)) from each node i;
28 Compute F (w(t)) according to (2)
29 if F (w(t)) < F (wf) then
30 wf ← w(t);

is pre-specified and known. The remaining parameter ϕ in-
cludes ω which is non-straightforward to estimate because
the algorithm does not know w∗, thus we regard ϕ as a
control parameter that is manually chosen and remains fixed
for the same machine learning model5. Experimentation results
presented in the next section show that a fixed value of ϕ
works well across different data distributions, various numbers
of nodes, and various resource consumptions/budgets. If we
multiply both sides of (18) by ϕ, we can see that a larger value
of ϕ gives a higher weight to the terms with h(τ), yielding a
smaller value of τ∗ (because h(τ) increases with τ), and vice
versa. Therefore, in practice, it is not hard to tune the value
of ϕ on a small and simple setup, which can then be applied
to general cases. See also the results on the sensitivity of ϕ
in Section VII-B6.

2) Recomputing τ∗: The value of τ∗ is recomputed by
the aggregator during each global aggregation step, based on
the most updated parameter estimations. When searching for

5Although ϕ is related to β and we estimate β separately, we found that
it is good to keep ϕ a constant value that does not vary with the estimated
value of β in practice, because there can be occasions where the estimated
β is large causing ϕ < 0, which causes abnormal behavior when computing
τ∗ from G(τ).

Algorithm 3: Procedure at each edge node i
1 Initialize t← 0;
2 repeat
3 Receive w(t) and new τ∗ from aggregator, set w̃i(t)← w(t);
4 t0 ← t; //Save iteration index of last transmission of w(t)
5 if t > 0 then
6 Estimate ρ̂i ← ‖Fi(wi(t))− Fi(w(t))‖ / ‖wi(t)−w(t)‖;
7 Estimate

β̂i ← ‖∇Fi(wi(t))−∇Fi(w(t))‖ / ‖wi(t)−w(t)‖;
8 for µ = 1, 2, ..., τ∗ do
9 t← t+ 1; //Start of next iteration

10 Perform local update and obtain wi(t) according to (4);
11 if µ < τ∗ then
12 Set w̃i(t)← wi(t);
13 for m = 1, 2, ...,M do
14 Estimate type-m resource consumption ĉm,i for one local

update at node i;
15 Send wi(t), ĉm,i (∀m) to aggregator;
16 if t0 > 0 then
17 Send ρ̂i, β̂i, Fi(w(t0)), ∇Fi(w(t0)) to aggregator;
18 until STOP flag is received;
19 Receive w(t) from aggregator;
20 Send Fi(w(t)) to aggregator;

τ∗, we use the following search range instead of the range
in Proposition 2 due to practical considerations of estimation
error. As shown in Line 20 of Algorithm 2, we search for new
values of τ∗ up to γ times the current value of τ∗, and find
τ∗ that minimizes G(τ), where γ > 0 is a fixed parameter.
The presence of γ limits the search space and also avoids
τ∗ from growing too quickly as initial parameter estimates
may be inaccurate. We also impose a maximum value of τ ,
denoted by τmax, because if τ∗ is too large, it is more likely
for the system to operate beyond the resource budget due to
inaccuracies in the estimation of local resource consumption,
see Line 24 of Algorithm 2. The new value of τ∗ is sent to
each node together with w(t) (Line 5 of Algorithm 2).

3) Distributed Gradient Descent: The local update steps of
distributed gradient descent at the edge node include Lines 8–
12 of Algorithm 3, where Line 10 of Algorithm 3 corresponds
to Line 3 of Algorithm 1 and Line 12 of Algorithm 3 corre-
sponds to Line 8 of Algorithm 1. When global aggregation is
performed, Line 9 of Algorithm 2 computes the global model
parameter w(t) at the aggregator, which is sent to the edge
nodes in Line 5 of Algorithm 2, and each edge node receives
w(t) in Line 3 of Algorithm 3 and sets w̃i(t)← w(t) to use
w(t) as the initial model parameter for the next round of local
update; this corresponds to Line 5 of Algorithm 1.

The final model parameter wf that minimizes F (w) is
obtained at the aggregator in Lines 13–14 of Algorithm 2,
corresponding to Line 6 of Algorithm 1. As discussed in
Section IV, the computation of wf lags for one round of
global aggregation, because for any iteration t0 that includes
a global aggregation step, F (w(t0)) can only be computed
after each edge node has received w(t0) and sent the local
loss Fi(w(t0)) to the aggregator in the next round of global
aggregation. To take into account the final value of w(t) in the
computation of wf , Lines 26–30 of Algorithm 2 and Lines 19–
20 of Algorithm 3 perform an additional round of computation
of the loss and wf , as also discussed in Section IV.

Overall, when global aggregation is executed for K times
in total, the computational complexity of Algorithm 2 is
O(K(NM + τmax)), because each global aggregation step

10

includes the computation of global parameters from the local
parameters collected from N different nodes for M resource
types and the linear search step in Line 20 of Algorithm 2
which has at most τmax steps. When T steps of local updates
are performed in total, Algorithm 3 has a computational
complexity of O(T +KM), where the additional term KM
corresponds to the additional local processing (at each node)
in global aggregation steps.

C. Extension to Stochastic Gradient Descent

When the amount of training data is large, it is usually
computationally prohibitive to compute the gradient of the
loss function defined on the entire (local) dataset. In such
cases, stochastic gradient descent (SGD) is often used [6], [7],
[37], which uses the gradient computed on the loss function
defined on a randomly sampled subset (referred to as a mini-
batch) of data to approximate the real gradient. Although the
theoretical analysis in this paper is based on deterministic
gradient descent (DGD), the proposed approach can be directly
extended to SGD. As discussed in [38], SGD can be seen as
an approximation to DGD.

When using SGD with our proposed algorithm, all losses
and their gradients are computed on mini-batches. Each local
iteration step corresponds to a step of gradient descent where
the gradient is computed on a mini-batch of local training
data. The mini-batch changes for every step of local iteration,
i.e., for each new local iteration, a new mini-batch of a
given size is randomly selected from the local training data.
However, to reduce errors introduced by random data sampling
when estimating the parameters ρ, β, and δ, the first iteration
after global aggregation uses the same mini-batch as the last
iteration before global aggregation. When τ = 1, the mini-
batch changes if the same mini-batch has already been used
in two iterations, to ensure that different mini-batches are used
for training over time.

To avoid approximation errors caused by mini-batch sam-
pling when determining wf , when using SGD, the aggregator
informs the edge nodes whether the current w(t0) is selected
as wf using an additional flag sent together with the message
in Line 5 of Algorithm 2. The edge nodes save their own
copies of wf . When an edge node computes Fi(w(t0)) that
is sent in Line 17 of Algorithm 3, it also recomputes Fi(wf)
using the same mini-batch as for computing Fi(w(t0)). It then
sends both Fi(wf) and Fi(w(t0)) to the aggregator in Line 17
of Algorithm 3. The aggregator recomputes F (wf) based on
the most recently received Fi(wf). In this way, the values of
F (wf) and F (w(t0)) used for the comparison in Lines 13
and 29 of Algorithm 2 are computed on the same mini-batch
at each edge node.

VII. EXPERIMENTATION RESULTS

A. Setup

To evaluate the performance of our proposed adaptive fed-
erated learning algorithm, we conducted experiments both on
networked prototype system with 5 nodes and in a simulated
environment with the number of nodes varying from 5 to
500. The prototype system consists of three Raspberry Pi

(version 3) devices and two laptop computers, which are all
interconnected via Wi-Fi in an office building. This represents
an edge computing environment where the computational
capabilities of edge nodes are heterogeneous. All these 5 nodes
have local datasets on which model training is conducted. The
aggregator is located on one of the laptop computers, and
hence co-located with one of the local datasets.

1) Resource Definition: For ease of presentation and in-
terpretation of results, we let M = 1 and consider time as
the single resource type in our experiments. For the prototype
system, we train each model for a fixed amount of time budget.
The values of c and b (we omit the subscript m = 1 for
simplicity) correspond to the actual time used for each local
update and global aggregation, respectively. The simulation
environment performs model training with simulated resource
consumptions, which are randomly generated according to
Gaussian distribution with mean and standard deviation values
(see Appendix E for these values) obtained from measure-
ments of the squared-SVM model on the prototype. See
Section VII-A4 below for definitions of models and datasets.

2) Baselines: We compare with the following baseline
approaches:

(a) Centralized gradient descent [6], [7], where the entire
training dataset is stored on a single edge node and the
model is trained directly on that node using a standard
(centralized) gradient descent procedure;

(b) Canonical federated learning approach presented in [9],
which is equivalent to using a fixed (non-adaptive) value
of τ in our setting;

(c) Synchronous distributed gradient descent [17], which is
equivalent to fixing τ = 1 in our setting.

For a fair comparison, we implement the estimation of
resource consumptions for all baselines and the training stops
when we have reached the resource (time) budget. When
conducting experiments on the prototype system, the central-
ized gradient descent is performed on a Raspberry Pi device.
To avoid resource consumption related to loss computation,
centralized gradient descent uses the last model parameter
w(T) (instead of wf) as the result, because convergence of
w(T) can be proven in the centralized case [39]. We do not
explicitly distinguish the baselines (b) and (c) above because
they both correspond to an approach with non-adaptive τ of
a certain value. When τ is non-adaptive, we use the same
protocol as in Algorithms 2 and 3, but remove any parts related
to parameter estimation and recomputation of τ .

3) DGD and SGD: We consider both DGD and SGD in
the experiments to evaluate the general applicability of the
proposed algorithm. For SGD, the mini-batch sampling uses
the same initial random seed at all nodes, which means that
when the datasets at all nodes are identical, the mini-batches
at all nodes are also identical in the same iteration (while they
are generally different across different iterations). This setup
is for a better consideration of the differences between equal
and non-equal data distributions (see Section VII-A5 below).

4) Models and Datasets: We evaluate the training of four
different models on five different datasets, which represent
a large variety of both small and large models and datasets,

11

0.6 Centralized (baseline)

Dist. Case 1 (baseline)

Dist. Case 2 (baseline)

Dist. Case 1 (proposed)

Value of τ

10 10Dist. Case 3 (baseline)

Dist. Case 4 (baseline) 0.20.40.6 Dist. Case 1 (proposed)

Dist. Case 2 (proposed) Value of τ

10 10 10Dist. Case 3 (proposed)

Dist. Case 4 (proposed)

Value of τ

10
0

10
1

10
2

L
o

s
s
 f

u
n

c
ti
o

n

0.15

0.2

0.25

0.3
SVM (DGD)

Value of τ

100 101 102
A

c
c
u

ra
c
y

0.75

0.8

0.85

0.9
SVM (DGD)

Value of τ

10
0

10
1

10
2

L
o

s
s
 f

u
n

c
ti
o

n

0.2

0.25

0.3

0.35
SVM (SGD)

Value of τ

100 101 102

A
c
c
u

ra
c
y

0.75

0.8

0.85

0.9
SVM (SGD)

Value of τ

10
0

10
1

10
2

L
o

s
s
 f

u
n

c
ti
o

n

0.42

0.44

0.46

0.48
Linear regression (SGD)

Value of τ

10
0

10
1

10
2

L
o

s
s
 f

u
n

c
ti
o

n

0.1

0.2

0.3
K-means (DGD)

Value of τ

10
0

10
1

10
2

L
o

s
s
 f

u
n

c
ti
o

n

0

0.5

1
CNN (SGD) + MNIST-O

Value of τ

100 101 102

A
c
c
u

ra
c
y

0.7

0.8

0.9

1
CNN (SGD) + MNIST-O

Value of τ

10
0

10
1

10
2

L
o

s
s
 f

u
n

c
ti
o

n

0.4

0.6

0.8

1

1.2
CNN (SGD) + MNIST-F

Value of τ

100 101 102

A
c
c
u

ra
c
y

0.5

0.6

0.7

0.8

CNN (SGD) + MNIST-F

Value of τ

10
0

10
1

10
2

L
o

s
s
 f

u
n

c
ti
o

n

1

1.5

2

2.5
CNN (SGD) + CIFAR-10

Value of τ

100 101 102

A
c
c
u

ra
c
y

0.2

0.4

0.6
CNN (SGD) + CIFAR-10

Fig. 4: Loss function values and classification accuracy with different τ . Only SVM and CNN classifiers have accuracy values. The curves show the results
from the baseline with different fixed values of τ . Our proposed solution (represented by a single marker for each case) gives an average τ and loss/accuracy
that is close to the optimum in all cases.

as one can expect all these variants to exist in edge com-
puting scenarios. The models include squared-SVM, linear
regression, K-means, and deep convolutional neural networks
(CNN)6. See Table I for a summary of the loss functions of
these models, and see [6], [7], [37] for more details. Among
them, the loss functions for squared-SVM (which we refer to
as SVM in short in the following) and linear regression satisfy
Assumption 1, whereas the loss functions for K-means and
CNN are non-convex and thus do not satisfy Assumption 1.

SVM is trained on the original MNIST dataset (referred
to as MNIST-O) [42], which contains gray-scale images of
70, 000 handwritten digits (60, 000 for training and 10, 000
for testing). The SVM outputs a binary label that corresponds
to whether the digit is even or odd. We consider both DGD
and SGD variants of SVM. The DGD variant only uses 1, 000
training and 1, 000 testing data samples out of the entire
dataset in each simulation round, because DGD cannot process
a large amount of data. The SGD variant uses the entire
MNIST dataset.

Linear regression is performed with SGD on the energy
dataset [43], which contains 19, 735 records of measurements
from multiple sensors and the energy consumptions of appli-
ances and lights. The model learns to predict the appliance
energy consumption from sensor measurements.

K-means is performed with DGD on the user knowledge
modeling dataset [44], which has 403 samples each with
5 attributes summarizing the user interaction with a web
environment. The samples can be grouped into 4 clusters
representing different knowledge levels, but we assume that
we do not have prior knowledge of this grouping.

CNN is trained using SGD on three different datasets,
including MNIST-O as described above, the fashion MNIST
dataset (referred to as MNIST-F) which has the same format
as MNIST-O but includes images of fashion items instead of

6The CNN has 9 layers with the following structure: 5× 5× 32 Convolu-
tional → 2 × 2 MaxPool → Local Response Normalization → 5 × 5 × 32
Convolutional→ Local Response Normalization→ 2×2 MaxPool→ z×256
Fully connected → 256× 10 Fully connected → Softmax, where z depends
on the input image size and z = 1568 for MNIST-O and MNIST-F and
z = 2048 for CIFAR-10. This configuration is similar to what is suggested
in the TensorFlow tutorial [41].

digits [45], and the CIFAR-10 dataset which includes 60, 000
color images (50, 000 for training and 10, 000 for testing) of
10 different types of objects [46]. A separate CNN model is
trained on each dataset, to perform multi-class classification
among the 10 different labels in the dataset.

5) Data Distribution at Different Nodes (Cases 1– 4): For
the distributed settings, we consider four different ways of
distributing the data into different nodes. In Case 1, each data
sample is randomly assigned to a node, thus each node has
uniform (but not full) information. In Case 2, all the data
samples in each node have the same label7. This represents the
case where each node has non-uniform information, because
the entire dataset has samples with multiple different labels. In
Case 3, each node has the entire dataset (thus full information).
In Case 4, data samples with the first half of the labels are
distributed to the first half of the nodes as in Case 1; the other
samples are distributed to the second half of the nodes as in
Case 2. This represents a combined uniform and non-uniform
case. For datasets that do not have ground truth labels, such
the energy dataset used with linear regression, the data to node
assignment is based on labels generated from an unsupervised
clustering approach.

6) Training and Control Parameters: In all our exper-
iments, we set the search range parameter γ = 10, the
maximum τ value τmax = 100. Unless otherwise specified,
we set the control parameter ϕ = 0.025 for SVM, linear
regression, and K-means, and ϕ = 5 × 10−5 for CNN. The
gradient descent step size is η = 0.01. The resource (time)
budget is set as R = 15 seconds unless otherwise specified.
Except for the instantaneous results in Section VII-B5, the
average results of 15 independent experiment/simulation runs
are shown.

B. Results

1) Loss and Accuracy Values: In our first set of experi-
ments, the SVM, linear regression, and K-means models were

7When there are more labels than nodes, each node may have data with
more than one label, but the number of labels at each node is no more than
the total number of labels divided by the total number of nodes rounded to
the next integer.

12

Number of nodes

5 10 100 500

V
a

lu
e

 o
f
τ
*

0

50

100 Case 1
Case 2
Case 3
Case 4

(a) τ∗ in proposed algorithm

Fix τ = 10 Proposed

L
o
s
s
 fu

nc
tio

n

5 10 100 500

0.223

0.2235

0.224

0.2245
Case 1

5 10 100 500

0.22

0.24

0.26
Case 2

5 10 100 500

0.223

0.224

0.225
Case 3

5 10 100 500

0.235

0.24

0.245

0.25
Case 4

A
c
c
u

ra
c
y

Number of nodes

5 10 100 500

0.87

0.872

0.874

Number of nodes

5 10 100 500

0.85

0.855

0.86

0.865

Number of nodes

5 10 100 500

0.868

0.87

0.872

0.874

Number of nodes

5 10 100 500

0.835

0.84

0.845

0.85

0.855

(b) Loss function values and classification accuracy

Fig. 5: SVM (SGD) with different numbers of nodes.

trained on the prototype system. Due to the resource limitation
of Raspberry Pi devices, the CNN model was trained in a
simulated environment of 5 nodes, with resource consumptions
generated in the way described in Section VII-A1.

We compare the loss function values of our proposed
algorithm (with adaptive τ) to baseline approaches, and also
compare the classification accuracies for the SVM and CNN
classifiers. The results are shown in Fig. 4. We note that the
proposed approach only has one data point (represented by a
single marker in the figure) in each case, because the value
of τ is adaptive in this case and the marker location shows
the average τ∗ with the corresponding loss or accuracy. The
centralized case also only has one data point but we show a
flat line across different values of τ for the ease of comparison.
We see that the proposed approach performs close to the
optimal point for all cases and all models8. We also see that
the (empirically) optimal value of τ is different for different
cases and models, so a fixed value of τ does not work well
for all cases. In some cases, the distributed approach can
perform better than the centralized approach, because for a
given amount of time budget, federated learning is able to
make use of the computation resource at multiple nodes. For
DGD approaches, Case 3 does not perform as well as Case 1,
because the amount of data at each node in Case 3 is larger
than that in Case 1, and DGD processes the entire amount of
data thus Case 3 requires more resource for each local update.

Due to the high complexity of evaluating CNN models and
the fact that linear regression and K-means models do not
provide accuracy values, we focus on the SVM model in the
following and provide further insights on the system.

2) Varying Number of Nodes: Results of SVM (SGD) for
the number of nodes varying from 5 to 500 are shown in
Fig. 5, which are obtained in the simulated environment. Our

8Note that the loss and accuracy values shown in Fig. 4 can be improved if
we allow a longer training time. For example, the accuracy of CNN on MNIST
data can become close to 1.0 if we allow a long enough time for training.
The goal of our experiments here is to show that our proposed approach can
operate close to the optimal point with a fixed and limited amount of training
time (resource budget) as defined in Section VII-A6.

Adjustment factor

10-2 10-1 100 101

V
a

lu
e

 o
f
τ
*

0

50

100 Case 1
Case 2
Case 3
Case 4

(a) τ∗ in proposed algorithm

Fix τ = 10 Proposed

L
o
s
s
 fu

nc
tio

n

10
-2

10
-1

10
0

10
1

0.22

0.24

0.26
Case 1

10
-2

10
-1

10
0

10
1

0.22

0.24

0.26
Case 2

10
-2

10
-1

10
0

10
1

0.22

0.24

0.26
Case 3

10
-2

10
-1

10
0

10
1

0.2

0.25

0.3

0.35
Case 4

A
c
c
u

ra
c
y

Adjustment factor

10-2 10-1 100 101
0.84

0.86

0.88

Adjustment factor

10-2 10-1 100 101
0.82

0.84

0.86

0.88

Adjustment factor

10-2 10-1 100 101
0.84

0.86

0.88

Adjustment factor

10-2 10-1 100 101
0.8

0.85

0.9

(b) Loss function values and classification accuracy

Fig. 6: SVM (SGD) with different global aggregation times.

proposed approach performs better than or similar to the fixed
τ = 10 baseline in all cases, where we choose fixed τ = 10
as the baseline in this and the following evaluations because
it is empirically a good value for non-adaptive τ in different
cases according to the results in Fig. 4.

3) Varying Global Aggregation Time: To study the impact
of different resource consumption (time) for global aggre-
gation, we modify the simulation environment so that the
global aggregation time is scaled by an adjustment factor.
The actual time of global aggregation is equal to the original
global aggregation time multiplied by the adjustment factor,
thus a small adjustment factor corresponds to a small global
aggregation time. The results for SVM (SGD) are shown in
Fig. 6. Additional results for SVM (DGD) are included in
Appendix F. We can see that as one would intuitively expect,
a larger global aggregation time generally results in a larger
τ∗ for the proposed algorithm, because when it takes more
time to perform global aggregation, the system should perform
global aggregation less frequently, to make the best use of
available time (resource). The fact that τ∗ slightly decreases
when the adjustment factor is large is because in this case,
the global aggregation time is so large that only a few rounds
of global aggregation can be performed before reaching the
resource budget, and the value of τ∗ will be decreased in the
last round to remain within the resource budget (see Line 25
of Algorithm 2). Comparing to the fixed τ = 10 baseline, the
proposed algorithm performs better in (almost) all cases.

4) Varying Total Time Budget: We evaluate the impact
of the total time (resource) budget on the prototype system.
Results for SVM (SGD) are shown in Fig. 7. Further results for
SVM (DGD) are included in Appendix G. We see that except
for Case 3 where all nodes have the same dataset, the value
of τ∗ of the proposed algorithm decreases with the total time
budget. This aligns with the discussion in Section VI-A that
τ∗ becomes close to one when the resource budget is large
enough. We also see that the proposed algorithm performs
better than or similar to the fixed τ = 10 baseline in all cases.

13

Total time budget (s)

5 10 20 30 40 50 60

V
a

lu
e

 o
f
τ
*

0

50

100 Case 1
Case 2
Case 3
Case 4

(a) τ∗ in proposed algorithm

Fix τ = 10 Proposed

L
o
s
s
 fu

nc
tio

n

5 20 40 60

0.22

0.225

0.23

0.235
Case 1

5 20 40 60

0.22

0.23

0.24
Case 2

5 20 40 60

0.22

0.225

0.23

0.235
Case 3

5 20 40 60

0.22

0.24

0.26

0.28
Case 4

A
c
c
u

ra
c
y

Total time budget (s)

5 20 40 60
0.85

0.86

0.87

0.88

Total time budget (s)

5 20 40 60
0.85

0.86

0.87

0.88

Total time budget (s)

5 20 40 60
0.85

0.86

0.87

0.88

Total time budget (s)

5 20 40 60
0.82

0.84

0.86

0.88

(b) Loss function values and classification accuracy

Fig. 7: SVM (SGD) with different total time budgets.

Case 1 Case 2 Case 3 Case 4

Time (s)

0 10 20 30

L
o
s
s
 F
un
ct
io
n

0.1

0.2

0.3

0.4

Time (s)

0 10 20 30

A
c
c
u
ra

c
y

0.75

0.8

0.85

0.9

Time (s)

0 10 20 30

E
s
t.
 v

a
lu

e
 o

f
c
 (s
)

0

0.05

0.1

0.15

Time (s)

0 10 20 30

E
s
t.
 v

a
lu

e
 o

f
b
 (s
)

0

0.2

0.4

0.6

Time (s)

0 10 20 30

E
s
t.
 v

a
lu

e
 o

f
ρ

0

2

4

Time (s)

0 10 20 30

E
s
t.
 v

a
lu

e
 o

f
β

0

20

40

Time (s)

0 10 20 30

E
s
t.
 v

a
lu

e
 o

f
δ

0

2

4

Time (s)

0 10 20 30

V
a
lu

e
 o

f
τ
*

0

50

100

Fig. 8: Instantaneous results of SVM (DGD) with the proposed algorithm.

5) Instantaneous Behavior: We further study the instanta-
neous behavior of our system for a single run of 30 seconds
(for each case) on the prototype system. Results for SVM
(DGD) is shown in Fig. 8. Further results for SVM (SGD)
are available in Appendix H. We see that the value of τ∗

remains stable after an initial adaptation period, showing that
the control algorithm is stable. The value of τ∗ decreases at
the end due to adjustment caused by the system reaching the
resource budget (see Line 25 of Algorithm 2). As expected,
the gradient deviation δ is larger for Cases 2 and 4 where the
data samples at different nodes are non-uniform. The same is
observed for ρ and β, indicating that the model parameter w is
in a less smooth region for Cases 2 and 4. In Case 3, the data
at different nodes are equal so we always have wi(t) = w(t)
regardless of whether global aggregation is performed in
iteration t. Thus, the estimated ρ and β values are zero by
definition, as explained in the remark in Section VI-B1. Case
3 of SVM (DGD) has a much larger value of c because it
processes more data than in other cases and thus takes more
time, as explained before. The value of b exhibits fluctuations
because of the randomness of the wireless channel.

6) Sensitivity of ϕ: The sensitivity of the control parameter
ϕ evaluated on the prototype system is shown in Fig. 9.
We see that the relationship among τ∗ in different cases
is mostly maintained with different values of ϕ. The value
of τ∗ decreases approximately linearly with logϕ, which is

Value of ϕ
10

-2
10

-1

V
a
lu

e
 o

f
τ
*

0

50

100
SVM (DGD)

Value of ϕ
10

-2
10

-1

V
a
lu

e
 o

f
τ
*

0

50

100
SVM (SGD)

Case 1

Case 2

Case 3

Case 4

Fig. 9: Impact of ϕ on the average value of τ∗ in the proposed algorithm.

consistent with the fact that there is an exponential term w.r.t.
τ in h(τ) (and thus G(τ)). For Case 3, τ∗ remains the same
with different ϕ, because h(τ) = 0 in this case by definition
(see the remark in Section VI-B1) and the value of ϕ does
not affect τ∗, as G(τ) ∝ 1

ϕ independently of τ in this case
according to (18). We also see that small changes of ϕ does
not change τ∗ much, indicating that one can take big steps
when tuning ϕ in practice and the tuning is not difficult.

7) Comparison to Asynchronous Distributed Gradient De-
scent: Asynchronous gradient descent [17] is an alternative to
the typically used synchronous gradient descent in federated
learning. With asynchronous gradient descent, the edge nodes
operate in an asynchronous manner. Each edge node pulls
the most up-to-date model parameter from the aggregator,
computes the gradient on its local dataset, then sends the
gradient back to the aggregator. The aggregator performs
gradient descent according to the step size η weighted by
the dataset sizes of each node, similar to the combination of
(4) and (5). The process repeats until the training finishes.
Asynchronous gradient descent is able to fully utilize the
available computational resource at each node by running
more gradient descent steps at more powerful (faster) nodes.
However, the asynchronism may hurt the overall performance.

It was shown in [17] that synchronous gradient descent has
benefits over asynchronous gradient descent in a datacenter
setting. Here, we study their differences in the edge computing
setting with heterogeneous resources (laptops and Raspberry
Pis in our experiment) and different data distributions (Cases
1–4). The results for DGD and SGD with SVM are shown
in Figs. 10 and 11, respectively. We see that the performance
of asynchronous gradient descent is much worse than syn-
chronous gradient descent for non-uniform data distribution
in Cases 2 and 4, with slower convergence, sudden changes
(indicating instability of the training process), and convergence
to higher loss and lower accuracy values. This is because the
model tends overfit the datasets on the faster nodes, as many
more steps of gradient descent are performed on these nodes
compared to the slower nodes. With uniform data distribution
(Cases 1 and 3), asynchronous gradient descent performs
similar as or slightly better than synchronous gradient descent,
because when the datasets at different nodes are similar
(Case 1) or equal (Case 3), there is not much harm caused
by overfitting the data on the faster nodes.

Considering the overall performance in all Cases 1–4, we
can conclude that it is still better to perform federated learning
with synchronous gradient descent as we do throughout this
paper. However, how to make more efficient use of heteroge-
neous resources is something worth investigating in the future.

14

Case 1
Sync w. τ* Sync w. τ=1 0 10 20 30Async

L
o
s
s
 fu

nc
tio

n

0 10 20 30

0.1

0.2

0.3

0.4

Case 1

0 10 20 30

0.1

0.2

0.3

0.4

Case 2

0 10 20 30

0.1

0.2

0.3

0.4

Case 3

0 10 20 30

0.1

0.2

0.3

0.4

Case 4

A
c
c
u

ra
c
y

Time (s)

0 10 20 30
0.75

0.8

0.85

0.9

Time (s)

0 10 20 30
0.7

0.8

0.9

Time (s)

0 10 20 30
0.75

0.8

0.85

0.9

Time (s)

0 10 20 30
0.65

0.7

0.75

0.8

Fig. 10: Synchronous vs. asynchronous distributed DGD with SVM.

Case 1
Sync w. τ* Sync w. τ=1 0 10 20 30Async

L
o
s
s
 fu

nc
tio

n

0 10 20 30

0.2

0.3

0.4

0.5
Case 1

0 10 20 30

0.2

0.3

0.4

0.5
Case 2

0 10 20 30

0.2

0.3

0.4

0.5
Case 3

0 10 20 30

0.2

0.3

0.4

0.5
Case 4

A
c
c
u

ra
c
y

Time (s)

0 10 20 30
0.7

0.8

0.9

Time (s)

0 10 20 30
0.6

0.7

0.8

0.9

Time (s)

0 10 20 30
0.5

0.6

0.7

0.8

Time (s)

0 10 20 30
0.7

0.8

0.9

Fig. 11: Synchronous vs. asynchronous distributed SGD with SVM.

VIII. CONCLUSION

In this paper, we have focused on gradient-descent based
federated learning that include local update and global aggre-
gation steps. Each step of local update and global aggregation
consumes resources. We have analyzed the convergence bound
for federated learning with non-i.i.d. data distributions. Using
this theoretical bound, a control algorithm has been proposed
to achieve the desirable trade-off between local update and
global aggregation in order to minimize the loss function under
a resource budget constraint. Extensive experimentation results
confirm the effectiveness of our proposed algorithm. Future
work can investigate how to make the most efficient use of
heterogeneous resources for distributed learning, as well as the
theoretical convergence analysis of some form of non-convex
loss functions representing deep neural networks.

REFERENCES

[1] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “When edge meets learning: adaptive control for resource-
constrained distributed machine learning,” in IEEE INFOCOM, Apr.
2018.

[2] M. Chiang and T. Zhang, “Fog and IoT: An overview of research
opportunities,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 854–
864, Dec. 2016.

[3] R. Kelly, “Internet of Things data to top 1.6 zettabytes by 2020,” Apr.
2015. [Online]. Available: https://campustechnology.com/articles/2015/
04/15/internet-of-things-data-to-top-1-6-zettabytes-by-2020.aspx

[4] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.

[5] P. Mach and Z. Becvar, “Mobile edge computing: A survey on ar-
chitecture and computation offloading,” IEEE Communications Surveys
Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[6] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning:
From theory to algorithms. Cambridge university press, 2014.

[7] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[8] B. McMahan and D. Ramage, “Federated learning: Collab-
orative machine learning without centralized training data,”
Apr. 2017. [Online]. Available: https://ai.googleblog.com/2017/04/
federated-learning-collaborative.html

[9] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in International Conference on Artificial Intelligence and Statistics
(AISTATS), 2016.

[10] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless network
intelligence at the edge,” arXiv, Dec. 2018. [Online]. Available:
http://arxiv.org/abs/1812.02858

[11] Y. Xiao and M. Krunz, “QoE and power efficiency tradeoff for fog
computing networks with fog node cooperation,” in IEEE INFOCOM,
May 2017, pp. 1–9.

[12] L. Tong and W. Gao, “Application-aware traffic scheduling for workload
offloading in mobile clouds,” in IEEE INFOCOM, Apr. 2016.

[13] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for
mobile computing,” in IEEE INFOCOM, Apr. 2016.

[14] H. Tan, Z. Han, X.-Y. Li, and F. Lau, “Online job dispatching and
scheduling in edge-clouds,” in IEEE INFOCOM, May 2017.

[15] L. Wang, L. Jiao, J. Li, and M. Muhlhauser, “Online resource allocation
for arbitrary user mobility in distributed edge clouds,” in IEEE ICDCS,
June 2017, pp. 1281–1290.

[16] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung,
“Dynamic service placement for mobile micro-clouds with predicted
future costs,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 4, pp. 1002–1016, Apr. 2017.

[17] J. Chen, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting distributed
synchronous SGD,” in ICLR Workshop Track, 2016.

[18] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for federated learning on user-held data,” in NIPS Workshop on Private
Multi-Party Machine Learning, 2016.

[19] J. Konen, H. B. McMahan, F. X. Yu, P. Richtarik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” in NIPS Workshop on Private Multi-Party Machine Learning,
2016. [Online]. Available: https://arxiv.org/abs/1610.05492

[20] C. Hardy, E. Le Merrer, and B. Sericola, “Distributed deep learning
on edge-devices: feasibility via adaptive compression,” in Network
Computing and Applications (NCA), 2017 IEEE 16th International
Symposium on. IEEE, 2017, pp. 1–8.

[21] J. Konen, H. B. McMahan, D. Ramage, and P. Richtarik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
2016. [Online]. Available: https://arxiv.org/abs/1610.02527

[22] T. Nishio and R. Yonetani, “Client selection for federated learn-
ing with heterogeneous resources in mobile edge,” arXiv preprint
arXiv:1804.08333, 2018.

[23] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[24] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed machine
learning with the parameter server.” in OSDI, vol. 14, 2014, pp. 583–
598.

[25] J. Wang and G. Joshi, “Adaptive communication strategies to achieve
the best error-runtime trade-off in local-update SGD,” in SysML,
Mar.–Apr. 2019. [Online]. Available: http://arxiv.org/abs/1810.08313

[26] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu, “Gaia: Geo-distributed machine learning
approaching LAN speeds,” in 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), 2017, pp. 629–647.

[27] A. Agarwal and J. C. Duchi, “Distributed delayed stochastic optimiza-
tion,” in Advances in Neural Information Processing Systems, 2011, pp.
873–881.

[28] X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous parallel stochastic
gradient for nonconvex optimization,” in Advances in Neural Informa-
tion Processing Systems, 2015, pp. 2737–2745.

[29] S. Zheng, Q. Meng, T. Wang, W. Chen, N. Yu, Z.-M. Ma, and T.-Y. Liu,
“Asynchronous stochastic gradient descent with delay compensation,” in
Proceedings of the 34th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, D. Precup and Y. W.
Teh, Eds., vol. 70. International Convention Centre, Sydney, Australia:
PMLR, Aug. 2017, pp. 4120–4129.

[30] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? a case study
for decentralized parallel stochastic gradient descent,” in Advances in
Neural Information Processing Systems, 2017, pp. 5330–5340.

https://campustechnology.com/articles/2015/04/15/internet-of-things-data-to-top-1-6-zettabytes-by-2020.aspx
https://campustechnology.com/articles/2015/04/15/internet-of-things-data-to-top-1-6-zettabytes-by-2020.aspx
http://www.deeplearningbook.org
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
http://arxiv.org/abs/1812.02858
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1610.02527
http://arxiv.org/abs/1810.08313

15

[31] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized
parallel stochastic gradient descent,” arXiv preprint arXiv:1710.06952,
2017.

[32] J. Wang and G. Joshi, “Cooperative SGD: A unified framework for
the design and analysis of communication-efficient SGD algorithms,”
arXiv, Jan. 2019. [Online]. Available: http://arxiv.org/abs/1808.07576

[33] H. Yu, S. Yang, and S. Zhu, “Parallel restarted SGD with faster con-
vergence and less communication: Demystifying why model averaging
works for deep learning,” in AAAI Conference on Artificial Intelligence,
Jan.–Feb. 2019.

[34] Y. Zhang, M. J. Wainwright, and J. C. Duchi, “Communication-efficient
algorithms for statistical optimization,” in Advances in Neural Informa-
tion Processing Systems, 2012, pp. 1502–1510.

[35] Y. Arjevani and O. Shamir, “Communication complexity of distributed
convex learning and optimization,” in Advances in neural information
processing systems, 2015, pp. 1756–1764.

[36] C. Ma, J. Konečnỳ, M. Jaggi, V. Smith, M. I. Jordan, P. Richtárik,
and M. Takáč, “Distributed optimization with arbitrary local solvers,”
Optimization Methods and Software, vol. 32, no. 4, pp. 813–848, 2017.

[37] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–
186.

[38] T. Tuor, S. Wang, K. K. Leung, and K. Chan, “Distributed machine
learning in coalition environments: overview of techniques,” in 21st
International Conference on Information Fusion, Jul. 2018.

[39] S. Bubeck, “Convex optimization: Algorithms and complexity,” Foun-
dations and trends in Machine Learning, vol. 8, no. 3-4, 2015.

[40] F. Topsok, “Some bounds for the logarithmic function,” Inequality theory
and applications, vol. 4, 2006.

[41] “Advanced convolutional neural networks.” [Online]. Available: https:
//www.tensorflow.org/tutorials/images/deep%5Fcnn

[42] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[43] L. M. Candanedo, V. Feldheim, and D. Deramaix, “Data driven predic-
tion models of energy use of appliances in a low-energy house,” Energy
and Buildings, vol. 140, pp. 81 – 97, 2017.

[44] H. Kahraman, S.Sagiroglu, and I.Colak, “Developing intuitive knowl-
edge classifier and modeling of users’ domain dependent data in web,”
Knowledge Based Systems, vol. 37, pp. 283–295, 2013.

[45] H. Xiao, K. Rasul, and R. Vollgraf. (2017) Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms.

[46] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” University of Toronto, Tech. Rep., 2009.

APPENDIX

A. Distributed vs. Centralized Gradient Descent

Proposition 3. When τ = 1, Algorithm 1 yields the following
recurrence relation for w(t):

w(t) = w(t− 1)− η∇F (w(t− 1)) (20)

Proof. When τ = 1, we have w̃i(t) = w(t) for all t. Thus,

w(t) =

∑N
i=1Diwi(t)

D

=

∑N
i=1Di (w̃i(t− 1)− η∇Fi (w̃i(t− 1)))

D

=

∑N
i=1Diw(t− 1)

D
− η

∑N
i=1Di∇Fi (w(t− 1))

D
= w(t− 1)− η∇F (w(t− 1))

where the second term in the last equality is because∑N
i=1Di∇Fi (w)

D
= ∇

(∑N
i=1DiFi (w)

D

)
= ∇F (w)

due to the linearity of the gradient operator.

We note that (20) is the recurrence relation for centralized
gradient decent on the global loss F (w). Therefore, the dis-
tributed gradient descent algorithm presented in Algorithm 1 is
logically equivalent to centralized gradient descent for τ = 1.

B. Proof of Theorem 1

To prove Theorem 1, we first introduce the following
lemma.

Lemma 3. For any interval [k], and t ∈ [(k − 1)τ, kτ), we
have ∥∥w̃i(t)− v[k](t)

∥∥ ≤ gi(t− (k − 1)τ)

where we define the function gi(x) as

gi(x) ,
δi
β
((ηβ + 1)x − 1)

Proof. We show by induction that
∥∥wi(t)− v[k](t)

∥∥ ≤ g(t−
(k − 1)τ) for all t ∈ ((k − 1)τ, kτ].

When t = (k − 1)τ , we know that w̃i(t) = v[k](t) by the
definition of v[k](t), and we have

∥∥w̃i(t)− v[k](t)
∥∥ = gi(0).

We note that w̃i(t) = wi(t) for t ∈ ((k− 1)τ, kτ) because
there is no global aggregation within this interval. Combining
this with (4), for t ∈ ((k − 1)τ, kτ), we have

w̃i(t) = w̃i(t− 1)− η∇Fi(w̃i(t− 1)) (21)

For the induction, we assume that∥∥w̃i(t− 1)− v[k](t− 1)
∥∥ ≤ gi(t− 1− (k − 1)τ) (22)

holds for some t ∈ ((k − 1)τ, kτ). We now show that∥∥w̃i(t)− v[k](t)
∥∥ ≤ gi(t− (k − 1)τ) holds for t. We have∥∥w̃i(t)− v[k](t)
∥∥

=
∥∥ (w̃i(t− 1)− η∇Fi(w̃i(t− 1)))

−
(
v[k](t− 1)− η∇F (v[k](t− 1))

) ∥∥ (from (8), (21))

=
∥∥ (w̃i(t− 1)− v[k](t− 1)

)
− η
[
∇Fi(w̃i(t− 1))

−∇Fi(v[k](t− 1))+∇Fi(v[k](t− 1))−∇F (v[k](t− 1))
]∥∥

(adding a zero term and rearranging)

≤
∥∥w̃i(t− 1)− v[k](t− 1)

∥∥
+ η

∥∥∇Fi(w̃i(t− 1))−∇Fi(v[k](t− 1))
∥∥

+ η
∥∥∇Fi(v[k](t− 1))−∇F (v[k](t− 1))

∥∥
(from triangle inequality)

≤ (ηβ + 1)
∥∥w̃i(t− 1)− v[k](t− 1)

∥∥+ ηδi
(from the β-smoothness of Fi(·) and (9))

≤ (ηβ + 1)gi(t− 1− (k − 1)τ) + ηδi
(from the induction assumption in (22))

= (ηβ + 1)

(
δi
β

(
(ηβ + 1)t−1−(k−1)τ − 1

))
+ ηδi

=
δi
β
(ηβ + 1)t−(k−1)τ − δi

β
(ηβ + 1) + ηδi

=
δi
β
(ηβ + 1)t−(k−1)τ − δi

β

=
δi
β
((ηβ + 1)t−(k−1)τ − 1)

= gi(t− (k − 1)τ)

http://arxiv.org/abs/1808.07576
https://www.tensorflow.org/tutorials/images/deep%5Fcnn
https://www.tensorflow.org/tutorials/images/deep%5Fcnn

16

Using the above induction, we have shown
that

∥∥w̃i(t)− v[k](t)
∥∥ ≤ gi(t − (k − 1)τ) for all

t ∈ [(k − 1)τ, kτ).

We are now ready to prove Theorem 1.

Proof of Theorem 1. From (4) and (5), we have

w(t) = w(t− 1)− η
∑
iDi∇Fi(w̃i(t− 1))

D
(23)

Then, for t ∈ ((k − 1)τ, kτ], we have∥∥w(t)− v[k](t)
∥∥

=

∥∥∥∥w(t− 1)− η
∑
iDi∇Fi(w̃i(t− 1))

D
− v[k](t− 1)

+ η∇F (v[k](t− 1))

∥∥∥∥ (from (23) and (8))

=

∥∥∥∥w(t− 1)− v[k](t− 1)

− η
(∑

iDi∇Fi(w̃i(t− 1))

D
−∇F (v[k](t− 1))

)∥∥∥∥
=

∥∥∥∥w(t− 1)− v[k](t− 1)

− η
(∑

iDi(∇Fi(w̃i(t− 1))−∇Fi(v[k](t− 1)))

D

)∥∥∥∥
≤
∥∥w(t− 1)− v[k](t− 1)

∥∥
+ η

(∑
iDi

∥∥∇Fi(w̃i(t− 1))−∇Fi(v[k](t− 1))
∥∥

D

)
(from triangle inequality)

≤
∥∥w(t− 1)− v[k](t− 1)

∥∥
+ ηβ

(∑
iDi

∥∥w̃i(t− 1)− v[k](t− 1)
∥∥

D

)
(because F (·) is β-smooth)

≤
∥∥w(t−1)−v[k](t−1)

∥∥+ηβ(∑iDigi(t−1− (k−1)τ)
D

)
(from Lemma 3)

=
∥∥w(t− 1)− v[k](t− 1)

∥∥+ ηδ
(
(ηβ + 1)t−1−(k−1)τ − 1

)
where the last equality is because for any x,

ηβ

(∑
iDigi(x)

D

)
= ηβ

(∑
iDi

δi
β ((ηβ + 1)x − 1)

D

)

= η

(∑
iDiδi
D

)
((ηβ + 1)x − 1)

= ηδ ((ηβ + 1)x − 1)

Equivalently,∥∥w(t)− v[k](t)
∥∥− ∥∥w(t− 1)− v[k](t− 1)

∥∥
≤ ηδ

(
(ηβ + 1)t−1−(k−1)τ − 1

)
(24)

When t = (k− 1)τ , we have w(t) = v[k](t) according to the
definition, thus

∥∥w(t)− v[k](t)
∥∥ = 0. For t ∈ ((k − 1)τ, kτ],

by summing up (24) over different values of t, we have∥∥w(t)− v[k](t)
∥∥

=

t∑
y=(k−1)τ+1

∥∥w(y)− v[k](y)
∥∥− ∥∥w(y − 1)− v[k](y − 1)

∥∥
≤ ηδ

t∑
y=(k−1)τ+1

(
(ηβ + 1)y−1−(k−1)τ − 1

)

= ηδ

t−(k−1)τ∑
z=1

(
(ηβ + 1)z−1 − 1

)
= ηδ

t−(k−1)τ∑
z=1

(ηβ + 1)z−1 − ηδ(t− (k − 1)τ)

= ηδ
(1− (ηβ + 1)t−(k−1)τ)

−ηβ
− ηδ(t− (k − 1)τ)

= ηδ
(ηβ + 1)t−(k−1)τ − 1

ηβ
− ηδ(t− (k − 1)τ)

=
δ

β

(
(ηβ + 1)t−(k−1)τ − 1

)
− ηδ(t− (k − 1)τ)

= h(t− (k − 1)τ)

C. Proof of Lemma 2

To prove Lemma 2, we first introduce some additional
definitions and lemmas.

Definition 2. For an interval [k], we define θ[k](t) =
F (v[k](t)) − F (w∗), for a fixed k, t is defined between
(k − 1)τ ≤ t ≤ kτ .

According to the convergence lower bound of gradient
descent given in [39, Theorem 3.14], we always have

θ[k](t) > 0 (25)

for any finite t and k.

Lemma 4. When η ≤ 1
β , for any k, and t ∈ [(k − 1)τ, kτ],

we have that
∥∥v[k](t)−w∗

∥∥ does not increase with t, where
w∗ is the optimal parameter defined in (3).

Proof.∥∥v[k](t+ 1)−w∗
∥∥2

=
∥∥v[k](t)− η∇F (v[k](t))−w∗

∥∥2
=
∥∥v[k](t)−w∗

∥∥2 − 2η∇F (v[k](t))
T(v[k](t)−w∗)

+ η2
∥∥∇F (v[k](t))

∥∥2
Because F (·) is β-smooth, from (25) and [39, Lemma 3.5],

we have

0 < θ[k](t) ≤ ∇F (v[k](t))
T(v[k](t)−w∗)−

∥∥∇F (v[k](t))
∥∥2

2β

Thus,

−∇F (v[k](t))
T(v[k](t)−w∗) < −

∥∥∇F (v[k](t))
∥∥2

2β

Therefore,∥∥v[k](t+ 1)−w∗
∥∥2

17

=
∥∥v[k](t)− η∇F (v[k](t))−w∗

∥∥2 (from (8))

=
∥∥v[k](t)−w∗

∥∥2 − 2η∇F (v[k](t))
T(v[k](t)−w∗)

(expanding the squared norm)

+ η2
∥∥∇F (v[k](t))

∥∥2
<
∥∥v[k](t)−w∗

∥∥2−η∥∥∇F (v[k](t))
∥∥2

β
+ η2

∥∥∇F (v[k](t))
∥∥2

=
∥∥v[k](t)−w∗

∥∥2 − η(1

β
− η
)∥∥∇F (v[k](t))

∥∥2
When η ≤ 1

β , we obtain∥∥v[k](t+ 1)−w∗
∥∥2 ≤ ∥∥v[k](t)−w∗

∥∥2
Lemma 5. For any k, when η ≤ 1

β and t ∈ [(k − 1)τ, kτ),
we have

F (v[k](t+ 1))− F (v[k](t)) ≤ −η
(
1− βη

2

)∥∥∇F (v[k](t))
∥∥2

(26)

Proof. Because F (·) β-smooth, from [39, Lemma 3.4], we
have

F (x) ≤ F (y) +∇F (y)T(x− y) +
β

2
‖x− y‖2

for arbitrary x and y. Thus,

F (v[k](t+ 1))− F (v[k](t))

≤ ∇F (v[k](t))
T(v[k](t+ 1)− v[k](t))

+
β

2

∥∥v[k](t+ 1)− v[k](t)
∥∥2

≤ −η∇F (v[k](t))
T∇F (v[k](t)) +

βη2

2

∥∥∇F (v[k](t))
∥∥2

(from (8))

≤ −η
(
1− βη

2

)∥∥∇F (v[k](t))
∥∥2

Lemma 6. For any k, when η ≤ 1
β and t ∈ [(k − 1)τ, kτ),

we have
1

θ[k](t+ 1)
− 1

θ[k](t)
≥ ωη

(
1− βη

2

)
(27)

where ω = mink
1

‖v[k]((k−1)τ)−w∗‖2

Proof. By definition, θ[k](t) = F (v[k](t)) − F (w∗) and
θ[k](t + 1) = F (v[k](t + 1)) − F (w∗) Substituting this into
(26) in Lemma 5 yields

θ[k](t+ 1)− θ[k](t) ≤ −η
(
1− βη

2

)∥∥∇F (v[k](t))
∥∥2

Equivalently,

θ[k](t+ 1) ≤ θ[k](t)− η
(
1− βη

2

)∥∥∇F (v[k](t))
∥∥2 (28)

The convexity condition gives

θ[k](t) = F (v[k](t))− F (w∗) ≤ ∇F (v[k](t))
T(v[k](t)−w∗)

≤
∥∥∇F (v[k](t))

∥∥∥∥v[k](t)−w∗
∥∥

where the last inequality is from the Cauchy-Schwarz inequal-
ity. Hence,

θ[k](t)∥∥v[k](t)−w∗
∥∥ ≤ ∥∥∇F (v[k](t))

∥∥ (29)

Substituting (29) into (28), we get

θ[k](t+ 1) ≤ θ[k](t)−
η
(
1− βη

2

)
θ[k](t)

2∥∥v[k](t)−w∗
∥∥2

≤ θ[k](t)− ωη
(
1− βη

2

)
θ[k](t)

2

where the last inequality in the above is explained as follows.
From Lemma 4, we know that for each interval of [k],∥∥v[k](t)−w∗

∥∥ does not increase with t when t ∈ [(k −
1)τ, kτ]. Hence,

∥∥v[k]((k − 1)τ) −w∗
∥∥ ≥ ∥∥v[k](t) −w∗

∥∥.
Recall that we defined ω = mink

1

‖v[k]((k−1)τ)−w∗‖2
, we

have −ω ≥ −1
‖v[k]((k−1)τ) −w∗‖2

≥ −1
‖v[k](t) −w∗‖2

and the

inequality follows.
As θ[k](t + 1)θ[k](t) > 0 according to (25), dividing both

sides by θ[k](t+ 1)θ[k](t), we obtain

1

θ[k](t)
≤ 1

θ[k](t+ 1)
−
ωη
(
1− βη

2

)
θ[k](t)

θ[k](t+ 1)

We have 0 < θ[k](t+ 1) ≤ θ[k](t) from (25) and (28), thus
θ[k](t)

θ[k](t+1) ≥ 1. Hence,

1

θ[k](t+ 1)
− 1

θ[k](t)
≥
ωη
(
1− βη

2

)
θ[k](t)

θ[k](t+ 1)
≥ ωη

(
1− βη

2

)

We are now ready to prove Lemma 2.

Proof of Lemma 2. Using Lemma 6 and considering t ∈ [(k−
1)τ, kτ], we have

1

θ[k](kτ)
− 1

θ[k]((k − 1)τ)
=

kτ−1∑
z=(k−1)τ

(
1

θ[k](t+ 1)
− 1

θ[k](t)

)

≥ τωη
(
1− βη

2

)
Summing up the above for all k = 1, 2...,K yields

K∑
k=1

(
1

θ[k](kτ)
− 1

θ[k]((k − 1)τ)

)
≥

K∑
k=1

τωη

(
1− βη

2

)
= Kτωη

(
1− βη

2

)
Rewriting the left-hand side and noting that T = Kτ yields

1

θ[K](T)
− 1

θ[1](0)
−
K−1∑
k=1

(
1

θ[k+1](kτ)
− 1

θ[k](kτ)

)
≥ Tωη

(
1− βη

2

)

18

which is equivalent to

1

θ[K](T)
− 1

θ[1](0)

≥ Tωη
(
1− βη

2

)
+

K−1∑
k=1

(
1

θ[k+1](kτ)
− 1

θ[k](kτ)

)
(30)

Each term in the sum in right-hand side of (30) can be further
expressed as

1

θ[k+1](kτ)
− 1

θ[k](kτ)
=
θ[k](kτ)− θ[k+1](kτ)

θ[k](kτ)θ[k+1](kτ)

=
F (v[k](kτ))− F (v[k+1](kτ))

θ[k](kτ)θ[k+1](kτ)

≥ −ρh(τ)
θ[k](kτ)θ[k+1](kτ)

(31)

where the last inequality is obtained using Theorem 1 and
noting that, according to the definition, v[k+1](kτ) = w(kτ),
thus F (v[k+1](kτ)) = F (w(kτ)).

It is assumed that F (v[k](kτ)) − F (w∗) ≥ ε for all
k. According to Lemma 5, F (v[k](t)) ≥ F (v[k](t + 1))
for any t ∈ [(k − 1)τ, kτ). Therefore, we have θ[k](t) =
F (v[k](t)) − F (w∗) ≥ ε for all t and k for which v[k](t)
is defined. Consequently,

θ[k](kτ)θ[k+1](kτ) ≥ ε2

−1
θ[k](kτ)θ[k+1](kτ)

≥ − 1

ε2
(32)

Combining (32) with (31), the sum in the right-hand side
of (30) can be bounded by

K−1∑
k=1

(
1

θ[k+1](kτ)
− 1

θ[k](kτ)

)
≥ −

K−1∑
k=1

ρh(τ)

ε2

= − (K − 1)
ρh(τ)

ε2

Substituting the above into (30), we get

1

θ[K](T)
− 1

θ[1](0)
≥ Tωη

(
1− βη

2

)
− (K − 1)

ρh(τ)

ε2

(33)

It is also assumed that F (w(T))− F (w∗) ≥ ε. Using the
same argument as for obtaining (32), we have

−1
(F (w(T))− F (w∗)) θ[K](T)

≥ − 1

ε2
(34)

We then have

1

F (w(T))−F (w∗)
− 1

θ[K](T)
=
θ[K](T)−(F (w(T))−F (w∗))
(F (w(T))−F (w∗)) θ[K](T)

=
F (v[K](T))− F (w(T))

(F (w(T))− F (w∗)) θ[K](T)

≥ −ρh(τ)
(F (w(T))− F (w∗)) θ[K](T)

≥ −ρh(τ)
ε2

(35)

where the first inequality is from Theorem 1 and the second

inequality is from (34).
Summing up (33) and (35), we have

1

F (w(T))− F (w∗)
− 1

θ[1](0)
≥ Tωη

(
1− βη

2

)
−Kρh(τ)

ε2

= Tωη

(
1− βη

2

)
− T ρh(τ)

τε2

= T

(
ωη

(
1− βη

2

)
− ρh(τ)

τε2

)
where the first equality is because K = T

τ .
We note that

1

F (w(T))− F (w∗)
≥ 1

F (w(T))− F (w∗)
− 1

θ[1](0)

≥ T
(
ωη

(
1− βη

2

)
− ρh(τ)

τε2

)
> 0

where the first inequality is because θ[1](0) = F (v[1](0)) −
F (w∗) > 0, and the last inequality is due to the assumption
that ωη(1 − βη

2) − ρh(τ)
τε2 > 0. Taking the reciprocal of the

above inequality yields

F (w(T))− F (w∗) ≤ 1

T
(
ωη
(
1− βη

2

)
− ρh(τ)

τε2

)
=

1

T
(
ηϕ− ρh(τ)

τε2

)
D. Proof of Proposition 2

We first prove that τ0 is finite. According to the definition
of ν, we have cν

R′ν
≥ cm

R′m
for all m, thus cνR′m − cmR′ν ≥ 0.

For any m, we consider the following two cases.
1) When cνR′m− cmR′ν > 0, it is obvious that bmR

′
ν−bνR

′
m

cνR′m−cmR′ν
is finite.

2) When cνR
′
m − cmR

′
ν = 0, according to the definition

of ν, we have bν
R′ν
≥ bm

R′m
thus bmR′ν − bνR′m ≤ 0. We

further consider two cases as follows.
a) If bmR′ν − bνR′m < 0, we have bmR

′
ν−bνR

′
m

cνR′m−cmR′ν
= −∞.

b) If bmR′ν − bνR′m = 0, because we define 0
0 , 0, we

have bmR
′
ν−bνR

′
m

cνR′m−cmR′ν
= 0.

Combining the above, we know that maxm
bmR

′
ν−bνR

′
m

cνR′m−cmR′ν
is

finite. Then, we can easily see that τ0 is finite.
Now, we prove that τ∗ ≤ τ0. We will first show that for

any τ > τ0, we have

max
m

cmτ + bm
R′mτ

=
cντ + bν
R′ντ

. (36)

To see this, we note that when τ > τ0, we have

τ > τ0 ≥ max
m

bmR
′
ν − bνR′m

cνR′m − cmR′ν
≥ bmR

′
ν − bνR′m

cνR′m − cmR′ν
(37)

for any m. As mentioned above, we have cνR′m − cmR′ν ≥ 0
according to the definition of ν. We consider the following
two cases for any m.

1) When cνR
′
m − cmR

′
ν > 0, we can rearrange (37) and

obtain
cντ + bν
R′ντ

>
cmτ + bm
R′mτ

.

19

2) When cνR
′
m − cmR

′
ν = 0 (i.e., cν

R′ν
= cm

R′m
), we have

bν
R′ν
≥ bm

R′m
according to the definition of ν. Then, it is

obvious that
cντ + bν
R′ντ

≥ cmτ + bm
R′mτ

.

Combining these two cases, we have proven (36). In the
following, we define c , cν and b , bν for simplicity.

It follows that for τ > τ0, we can rewrite G(τ) as

G(τ) = H1(τ) +
√
H2(τ) (38)

where

H1(τ) ,
cτ + b

C1τ
+ ρh(τ)

=
c

C1
+

b

C1τ
+
ρδ(Bτ − 1)

β
− ρηδτ

H2(τ) ,
(cτ + b)2

C2τ2
+
ρh(τ)

ηϕτ

=
c2

C2
+

2cb

C2τ
+

b2

C2τ2
+
ρδ(Bτ − 1)

ηβϕτ
− ρδ

ϕ
.

Next, we consider continuous values of τ (with a slight
abuse of notation) and continue to assume that τ > τ0. We
show that both H1(τ) and H2(τ) increase with τ in this case.

Taking the first order derivative of H1(τ), we have

dH1(τ)

dτ
= − b

C1τ2
+
ρδBτ logB

β
− ρηδ

≥ − b

C1τ2
+
ρδ logB

β
(1 + ηβτ)− ρηδ

(Bernoulli’s inequality)

> − b

C1
+
ρδ logB

β
(1 + ηβτ)− ρηδ

(τ > 1, b
C1

> 0)

> 0 (τ > τ0 >
1

ρδη logB

(
b
C1

+ ρηδ
)
− 1

ηβ)

Taking the first order derivative of H2(τ), we have

dH2(τ)

dτ

= − 2cb

C2τ2
− 2b2

C2τ3
+

ρδ

ηβϕ

(
Bτ logB

τ
− Bτ − 1

τ2

)
=

1

τ2

(
−2cb

C2
− 2b2

C2τ
+

ρδ

ηβϕ
(τBτ logB − (Bτ − 1))

)
(39)

From [40], we know that logB ≥ 2ηβ
2+ηβ . We thus have

τBτ logB − (Bτ − 1) ≥
(

2ηβτ

2 + ηβ
− 1

)
Bτ + 1

>
2ηβτ

2 + ηβ
(40)

where the last inequality is because 2ηβτ
2+ηβ − 1 > 0 due to

τ > τ0 ≥ 1
ηβ + 1

2 = 2+ηβ
2ηβ , and Bτ > 1 due to B > 1 and

τ > τ0 > 1. Plugging (40) into (39), we have

dH2(τ)

dτ
>

1

τ2

(
−2cb

C2
− 2b2

C2τ
+

2ρδτ

ϕ(2 + ηβ)

)

>
1

τ2

(
−2cb

C2
− 2b2

C2
+

2ρδτ

ϕ(2 + ηβ)

)
(τ > 1, 2b2

C2
> 0)

> 0. (τ > τ0 ≥ ϕ(2+ηβ)
2ρδ

(
2cb
C2

+ 2b2

C2

)
)

We have now proven that dH1(τ)
dτ > 0 and dH2(τ)

dτ > 0.
Because

√
x increases with x for any x ≥ 0, we conclude that

G(τ) increases with τ for τ > τ0. Hence, τ∗ ≤ τ0.

E. Parameters for Generating Resource Consumptions in Sim-
ulation

The mean and standard deviation values for randomly
generating resource consumptions in the simulation are shown
in Tables III, IV, and V. All these values are obtained from
measurements on the prototype system when running with the
SVM model. The distributed DGD uses different distributions
for each case, because the amount of data samples processed
in Case 3 is different from other cases. The distributed SGD
uses the same distribution for all cases, because the mini-batch
size remains the same among all cases. When running the
centralized SGD in simulations, only the local update time is
generated randomly, because the centralized gradient descent
does not include any global aggregation step; thus Table V
only includes the mean and standard deviation values for local
update. We note that we never simulated centralized DGD in
our experiments, thus we do not include values for centralized
DGD here.

TABLE III: Parameters for generating resource consumptions for distributed
DGD

Case Resource type Mean Standard deviation
1 Local update (seconds) 0.020613052 0.008154439

Global aggregation (seconds) 0.137093837 0.05548447
2 Local update (seconds) 0.021810727 0.008042984

Global aggregation (seconds) 0.12322071 0.048079171
3 Local update (seconds) 0.095353094 0.016688657

Global aggregation (seconds) 0.157255906 0.066722225
4 Local update (seconds) 0.022075891 0.008528005

Global aggregation (seconds) 0.108598094 0.044627335

TABLE IV: Parameters for generating resource consumptions for distributed
SGD

Resource type Mean Standard deviation
Local update (seconds) 0.013015156 0.006946299
Global aggregation (seconds) 0.131604348 0.053873234

TABLE V: Parameters for generating resource consumptions for centralized
SGD

Resource type Mean Standard deviation
Local update (seconds) 0.009974248 0.011922926

F. Additional Results on Varying Global Aggregation Time

See Fig. 12.

G. Additional Results on Varying Total Time Budget

See Fig. 13.

H. Additional Results on Instantaneous Behavior

See Fig. 14.

20

Fix τ = 10 Proposed

Case 1
Case 2
Case 3
Case 4

Adjustment factor

10-2 10-1 100 101

L
o

s
s
 f

u
n

c
ti
o

n

0.18

0.2

0.22

0.24

Adjustment factor

10-2 10-1 100 101

L
o

s
s
 f

u
n

c
ti
o

n

0.18

0.2

0.22

0.24

0.26

Adjustment factor

10-2 10-1 100 101

L
o

s
s
 f

u
n

c
ti
o

n

0.2

0.22

0.24

0.26

Adjustment factor

10-2 10-1 100 101

L
o

s
s
 f

u
n

c
ti
o

n

0.15

0.2

0.25

0.3

Adjustment factor

10-2 10-1 100 101

V
a

lu
e

 o
f
τ
*

0

50

100

(a) τ∗ in proposed algorithm

Adjustment factor

10-2 10-1 100 101

A
c
c
u

ra
c
y

0.82

0.84

0.86

(b) Case 1

Adjustment factor

10-2 10-1 100 101

A
c
c
u

ra
c
y

0.82

0.84

0.86

(c) Case 2

Adjustment factor

10-2 10-1 100 101

A
c
c
u

ra
c
y

0.81

0.82

0.83

0.84

(d) Case 3

Adjustment factor

10-2 10-1 100 101

A
c
c
u

ra
c
y

0.78

0.8

0.82

0.84

(e) Case 4

Fig. 12: Loss function values and classification accuracy with different global aggregation times for SVM (DGD).

Fix τ = 10 Proposed

Case 1
Case 2
Case 3
Case 4

Total time budget (s)

5 20 40 60

L
o

s
s
 f

u
n

c
ti
o

n

0.19

0.2

0.21

0.22

Total time budget (s)

5 20 40 60

L
o

s
s
 f

u
n

c
ti
o

n

0.19

0.2

0.21

0.22

0.23

Total time budget (s)

5 20 40 60
L

o
s
s
 f

u
n

c
ti
o

n
0.15

0.2

0.25

0.3

Total time budget (s)

5 20 40 60

L
o

s
s
 f

u
n

c
ti
o

n

0.18

0.2

0.22

0.24

0.26

Total time budget (s)

5 10 20 30 40 50 60

V
a

lu
e

 o
f
τ
*

0

50

100

(a) τ∗ in proposed algorithm

Total time budget (s)

5 20 40 60

A
c
c
u

ra
c
y

0.83

0.84

0.85

0.86

(b) Case 1

Total time budget (s)

5 20 40 60

A
c
c
u

ra
c
y

0.83

0.84

0.85

0.86

(c) Case 2

Total time budget (s)

5 20 40 60

A
c
c
u

ra
c
y

0.8

0.82

0.84

0.86

(d) Case 3

Total time budget (s)

5 20 40 60

A
c
c
u

ra
c
y

0.8

0.82

0.84

0.86

(e) Case 4

Fig. 13: Loss function values and classification accuracy with different total time budgets for SVM (DGD).

Case 1
Case 2
Case 3
Case 4

Time (s)

0 10 20 30

L
o
s
s
 F
un
ct
io
n

0.2

0.3

0.4

0.5

Time (s)

0 10 20 30

A
c
c
u
ra

c
y

0.5

0.6

0.7

0.8

0.9

Time (s)

0 10 20 30

E
s
t.
 v

a
lu

e
 o

f
c
 (s
)

0

0.01

0.02

0.03

0.04

Time (s)

0 10 20 30

E
s
t.
 v

a
lu

e
 o

f
b
 (s
)

0

0.2

0.4

0.6

0.8

Time (s)

0 10 20 30

E
s
t.
 v

a
lu

e
 o

f
ρ

0

1

2

3

4

Time (s)

0 10 20 30

E
s
t.
 v

a
lu

e
 o

f
β

0

10

20

30

40

Time (s)

0 10 20 30

E
s
t.
 v

a
lu

e
 o

f
δ

0

1

2

3

4

Time (s)

0 10 20 30

V
a
lu

e
 o

f
τ
*

0

50

100

Fig. 14: Instantaneous results of SVM (SGD) with the proposed algorithm.

	I Introduction
	II Related Work
	III Preliminaries and Definitions
	III-A Loss Function
	III-B The Learning Problem
	III-C Distributed Gradient Descent

	IV Problem Formulation
	V Convergence Analysis
	V-A Definitions
	V-B Main Results

	VI Control Algorithm
	VI-A Approximate Solution to (7)
	VI-B Adaptive Federated Learning
	VI-B1 Estimation of Parameters in G()
	VI-B2 Recomputing *
	VI-B3 Distributed Gradient Descent

	VI-C Extension to Stochastic Gradient Descent

	VII Experimentation Results
	VII-A Setup
	VII-A1 Resource Definition
	VII-A2 Baselines
	VII-A3 DGD and SGD
	VII-A4 Models and Datasets
	VII-A5 Data Distribution at Different Nodes (Cases 1–4)
	VII-A6 Training and Control Parameters

	VII-B Results
	VII-B1 Loss and Accuracy Values
	VII-B2 Varying Number of Nodes
	VII-B3 Varying Global Aggregation Time
	VII-B4 Varying Total Time Budget
	VII-B5 Instantaneous Behavior
	VII-B6 Sensitivity of
	VII-B7 Comparison to Asynchronous Distributed Gradient Descent

	VIII Conclusion
	References
	Appendix
	A Distributed vs. Centralized Gradient Descent
	B Proof of Theorem 1
	C Proof of Lemma 2
	D Proof of Proposition 2
	E Parameters for Generating Resource Consumptions in Simulation
	F Additional Results on Varying Global Aggregation Time
	G Additional Results on Varying Total Time Budget
	H Additional Results on Instantaneous Behavior

