
1

Spatial Deep Learning for Wireless Scheduling
Wei Cui, Student Member, IEEE, Kaiming Shen, Student Member, IEEE, and Wei Yu, Fellow, IEEE

Abstract—The optimal scheduling of interfering links in a
dense wireless network with full frequency reuse is a chal-
lenging task. The traditional method involves first estimating
all the interfering channel strengths then optimizing the
scheduling based on the model. This model-based method is
however resource intensive and computationally hard because
channel estimation is expensive in dense networks; further-
more, finding even a locally optimal solution of the resulting
optimization problem may be computationally complex. This
paper shows that by using a deep learning approach, it is
possible to bypass the channel estimation and to schedule
links efficiently based solely on the geographic locations
of the transmitters and the receivers, due to the fact that
in many propagation environments, the wireless channel
strength is largely a function of the distance dependent path-
loss. This is accomplished by unsupervised training over
randomly deployed networks, and by using a novel neural
network architecture that computes the geographic spatial
convolutions of the interfering or interfered neighboring
nodes along with subsequent multiple feedback stages to learn
the optimum solution. The resulting neural network gives
near-optimal performance for sum-rate maximization and is
capable of generalizing to larger deployment areas and to
deployments of different link densities. Moreover, to provide
fairness, this paper proposes a novel scheduling approach that
utilizes the sum-rate optimal scheduling algorithm over judi-
ciously chosen subsets of links for maximizing a proportional
fairness objective over the network. The proposed approach
shows highly competitive and generalizable network utility
maximization results.

Index Terms—Deep learning, discrete optimization, geo-
graphic location, proportional fairness, scheduling, spatial
convolution.

I. INTRODUCTION

Scheduling of interfering links is one of the most fun-
damental tasks in wireless networking. Consider a densely
deployed device-to-device (D2D) network with full fre-
quency reuse, in which nearby links produce significant in-
terference for each other whenever they are simultaneously
activated. The task of scheduling amounts to judiciously
activating a subset of mutually “compatible” links so as
to avoid excessive interference for maximizing a network
utility.

Manuscript submitted to IEEE Journal on Selected Areas in Communi-
cations on July 21, 2018, revised February 5, 2021. This work is supported
by Natural Science and Engineering Research Council (NSERC) via the
Discovery Grant Program and the Canada Research Chairs program. The
materials in this paper have been be presented in part at the IEEE Global
Communications Conference (Globecom), Abu Dhabi, December 2018.
The authors are with The Edward S. Rogers Sr. Department of Electrical
and Computer Engineering, University of Toronto, Toronto, ON M5S
3G4, Canada (e-mails: {cuiwei2, kshen, weiyu}@ece.utoronto.ca).

The traditional approach to link scheduling is based
on the paradigm of first estimating the interfering chan-
nels (or at least the interference graph topology), then
optimizing the schedule based on the estimated channels.
This model-based approach, however, suffers from two key
shortcomings. First, the need to estimate not only the direct
channels but also all the interfering channels is resource
intensive. In a network of N transmitter-receiver pairs, N2

channels need to be estimated within each coherence block.
Training takes valuable resources away from the actual data
transmissions; further, pilot contamination is inevitable in
large networks. Second, the achievable data rates in an
interfering environment are nonconvex functions of the
transmit powers. Moreover, scheduling variables are binary.
Hence, even with full channel knowledge, the optimization
of scheduling is a nonconvex integer programming problem
for which finding an optimal solution is computationally
complex and is challenging for real-time implementation.

This paper proposes a new approach, named spatial
deep learning, to address the above two issues. Our key
idea is to recognize that in many deployment scenarios,
the optimal link scheduling does not necessarily require
the exact channel estimates, and further the interference
pattern in a network is to a large extent determined by the
relative locations of the transmitters and receivers. Hence, it
ought to be possible to learn the optimal scheduling based
solely on the geographical locations of the neighboring
transmitters/receivers, thus bypassing channel estimation
altogether. Toward this end, this paper proposes a neural
network architecture that computes the geographic spatial
convolution of the interfering or interfered neighboring
transmitters/receivers and learns the optimal scheduling
in a densely deployed D2D network over multiple stages
based on the spatial parameters alone.

We are inspired by the recent explosion of successful
applications of machine learning techniques [1], [2] that
demonstrate the ability of deep neural networks to learn
rich patterns and to approximate arbitrary function map-
pings [3]. We further take advantage of the recent progress
on fractional programming methods for link scheduling
[4]–[6] that allows us to compare against the state-of-
the-art benchmark. The main contribution of this paper
is a specifically designed neural network architecture that
facilitates the spatial learning of geographical locations of
interfering or interfered nodes and is capable of achieving
a large portion of the optimum sum rate of the state-of-the-
art algorithm in a computationally efficient manner, while
requiring no explicit channel state information (CSI).

ar
X

iv
:1

80
8.

01
48

6v
3

 [
ee

ss
.S

P]
 4

 F
eb

 2
02

1

2

Traditional approach to scheduling over wireless inter-
fering links for sum rate maximization are all based on
(non-convex) optimization, e.g., greedy heuristic search
[7], iterative methods for achieving quality local optimum
[4], [8], methods based on information theory considera-
tions [9], [10] or hyper-graph coloring [11], [12], or meth-
ods for achieving the global optimum but with worst-case
exponential complexity such as polyblock-based optimiza-
tion [13] or nonlinear column generation [14]. The recent
re-emergence of machine learning has motivated the use
of neural networks for wireless network optimization. This
paper is most closely related to the recent work of [15], [16]
in adapting deep learning to perform power control and
[17] in utilizing ensemble learning to solve a closely related
problem, but we go one step further than [15]–[17] in that
we forgo the traditional requirement of CSI for spectrum
optimization. We demonstrate that for wireless networks in
which the channel gains largely depend on the path-losses,
the location information (which can be easily obtained via
global positioning system) can be effectively used as a
proxy for obtaining near-optimum solution, thus opening
the door for much wider application of learning theory to
resource allocation problems in wireless networking.

The rest of the paper is organized as follows. Section II
establishes the system model. Section III proposes a deep
learning based approach for wireless link scheduling for
sum-rate maximization. The performance of the proposed
method is provided in Section IV. Section V discusses
how to adapt the proposed method for proportionally fair
scheduling. Conclusions are drawn in Section VI.

II. WIRELESS LINK SCHEDULING

Consider a scenario of N independent D2D links located
in a two-dimensional region. The transmitter-receiver dis-
tance can vary from links to links. We use pi to denote the
fixed transmit power level of the ith link, if it is activated.
Moreover, we use hij ∈ C to denote the channel from the
transmitter of the jth link to the receiver of the ith link,
and use σ2 to denote the background noise power level.
Scheduling occurs in a time slotted fashion. In each time
slot, let xi ∈ {0, 1} be an indicator variable for each link i,
which equals to 1 if the link is scheduled and 0 otherwise.
We assume full frequency reuse with bandwidth W . Given
a set of scheduling decisions xi, the achievable rate Ri for
link i in the time slot can be computed as

Ri = W log

(
1 +

|hii|2pixi
Γ(
∑

j 6=i |hij |2pjxj + σ2)

)
, (1)

where Γ is the signal-to-noise ratio (SNR) gap to the
information theoretical channel capacity, due to the use
of practical coding and modulation for the linear Gaussian
channel [18]. Because of the interference between the links,
activating all the links at the same time would yield poor
data rates. The wireless link scheduling problem is that
of selecting a subset of links to activate in any given

transmission period so as to maximize some network utility
function of the achieved rates.

This paper considers the objective function of max-
imizing the weighted sum rate over the N users over
each scheduling slot. More specifically, for fixed values
of weights wi, the scheduling problem is formulated as

maximize
x

N∑
i=1

wiRi (2a)

subject to xi ∈ {0, 1}, ∀i. (2b)

The weights wi indicate the priorities assigned to each
user, (i.e., the higher priority users are more likely to be
scheduled). The overall problem is a challenging discrete
optimization problem, due to the complicated interactions
between different links through the interference terms
in the signal-to-interference-and-noise (SINR) expressions,
and the different priority weights each user may have.

The paper begins by treating the scheduling problem
with equal weights w1 = w2 = · · · = wN , equivalent
to a sum-rate maximization problem. The second part
of this paper deals with the more challenging problem
of scheduling under adaptive weights w1, w2, · · · , wN for
maximizing a network utility. The assignment of weights
is typically based on upper-layer considerations, e.g., as
function of the queue length in order to minimize delay or
to stabilize the queues [19], or as function of the long-term
average rate of each user in order to provide fairness across
the network [20], or as combination of both.

This paper utilizes unsupervised training to optimize
the parameters of the neural network. The results will be
compared against multiple benchmarks including a recently
developed and the-state-of-art fractional programming ap-
proach (referred to as FPLinQ or FP) [4] for obtaining
high-quality local optimum benchmark solutions. We re-
mark that the FPLinQ benchmark solutions can also be uti-
lized as training targets for supervised training of the neural
network, and a numerical comparison is provided later in
the paper. FPLinQ relies on a transformation of the SINR
expression that decouples the signal and the interference
terms and a subsequent coordinated ascent approach to find
the optimal transmit power for all the links. The FPLinQ
algorithm is closely related to the weighted minimum
mean-square-error (WMMSE) algorithm for weighted sum-
rate maximization [8]. For the scheduling task, FPLinQ
quantizes the optimized power in a specific manner to
obtain the optimized binary scheduling variables.

III. DEEP LEARNING BASED LINK SCHEDULING FOR
SUM-RATE MAXIMIZATION

We begin by exploring the use of deep neural network
for scheduling, while utilizing only location information,
under the sum-rate maximization criterion. The sum-rate
maximization problem (i.e., with equal weights) is con-
siderably simpler than weighted rate-sum maximization,

3

because all the links have equal priority. We aim to use
path-losses and the geographical locations information to
determine which subset of links should be scheduled.

A. Learning Based on Geographic Location Information

A central goal of this paper is to demonstrate that for
wireless networks in which the channel gains are largely
functions of distance dependent path-losses, the geographi-
cal location information is already sufficient as a proxy for
optimizing link scheduling. This is in contrast to traditional
optimization approaches for solving (2) that require the full
instantaneous CSI, and also in contrast to the recent work
[15] that proposes to use deep learning to solve the power
control problem by learning the WMMSE optimization
process. In [15], a fully connected neural network is
designed that takes in the channel coefficient matrix as the
input, and produces optimized continuous power variables
as the output to maximize the sum rate. While satisfactory
scheduling performance has been obtained in [15], the
architecture of [15] is not scalable. In a D2D links network
with N transmitter-receiver pairs, there are N2 channel
coefficients. A fully connected neural network with N2

nodes in the input layer and N output layer would require
at least O(N3) interconnect weights (and most likely much
more). Thus, the neural network architecture proposed in
[15] has training and testing complexity that grows rapidly
with the number of links.

Instead of requiring the full set of CSI between every
transmitter and every receiver as the inputs to the neu-
ral network {hij}, which has O(N2) entries, this paper
proposes to use the geographic location information (GLI)
as input, defined as a set of vectors {(dtx

i ,d
rx
i)}i, where

dtx
i ∈ R2 and drx

i ∈ R2 are the transmitter and the receiver
locations of the ith link, respectively. Note that the input
now scales linearly with the number of links, i.e., O(N).

We advocate using GLI as a substitute for CSI because in
many wireless deployment scenarios, GLI already captures
the main feature of channels: the path-loss and shadow-
ing of a wireless link are mostly functions of distance
and location. This is essentially true for outdoor wireless
channels, and especially so in rural regions or remote
areas, where the number of surrounding objects to reflect
the wireless signals is sparse. An example application is
a sensor network deployed outdoors for environmental
monitoring purposes.

In fact, if we account for fast fading in addition, the CSI
can be thought of as a stochastic function of GLI

CSI = f(GLI). (3)

While optimization approaches to the wireless link
scheduling problem aim to find a mapping g(·) from CSI
to the scheduling decisions, i.e.,

x = g(CSI), (4)

the deep learning architecture of this paper aims to capture
directly the mapping from GLI to x, i.e., to learn the
function

x = g(f(GLI)). (5)

B. Transmitter and Receiver Density Grid as Input

To construct the input to the neural network based on
GLI, we quantize the continuous (dtx

i ,d
rx
i) in a grid form.

Without loss of generality, we assume a square `×` meters
deployment area, partitioned into equal-size square cells
with an edge length of `/M , so that there are M2 cells
in total. We use (s, t) ∈ [1 : M] × [1 : M] to index the
cells. For a particular link i, let (stx

i , t
tx
i) be the index of

the cell where the transmitter dtx
i is located, and (srx

i , t
rx
i)

be the index of the cell where the receiver drx
i is located.

We use the tuple (stx
i , t

tx
i , s

rx
i , t

rx
i) to represent the location

information of the link.
We propose to construct two density grid matrices of size

M ×M , denoted by T and R, to represent the density of
the active transmitters and receivers, respectively, in the ge-
ographical area. The density grid matrices are constructed
by simply counting the total number of active transmitters
and receivers in each cell, as illustrated in Fig. 1. The
activation pattern {xi} is initialized as a vector of all 1’s at
the beginning. As the algorithm progressively updates the
activation pattern, the density grid matrices are updated as

T (s, t) =
∑

{i|(stx
i ,t

tx
i)=(s,t)}

xi, (6)

R(s, t) =
∑

{i|(srx
i ,t

rx
i)=(s,t)}

xi. (7)

C. Novel Deep Neural Network Structure

The overall neural network structure for link scheduling
with sum-rate objective is an iterative computation graph.
A key novel feature of the network structure is a forward
path including two stages: a convolution stage that captures
the interference patterns of neighboring links based on
the geographic location information and a fully connected
stage that captures the nonlinear functional mapping of the
optimized schedule. Further, we propose a novel feedback
connection between the iterations to update the state of
optimization. The individual stages and the overall network
structure are described in detail below.

1) Convolution Stage: The convolution stage is respon-
sible for computing two functions, corresponding to that
of the interference each link causes to its neighbors and
the interference each link receives from its neighbors,
respectively. As a main innovation in the neural network
architecture, we propose to use spatial convolutional filters,
whose coefficients are optimized in the training process,
that operate directly on the transmitter and receiver density
grids described in the previous section. The transmitter and
receiver spatial convolutions are computed in parallel on
the two grids. At the end, two pieces of information are

4

Original Links Layout Layout with Discretized Cells

1
1
3

1 2
1

Transmitter Density Grid

1
12

2
1

1 1

Receiver Density Grid

Fig. 1. Transmitter and receiver density grids

0 10 20 30 40 50 60
0

10

20

30

40

50

60
Raw Weight Parameters

−2

−1

0

1

2

3

Fig. 2. A trained spatial convolution filter (in log scale)

computed for the transmitter-receiver pair of each link:
a convolution of spatial geographic locations of all the
nearby receivers that the transmitter can cause interference
to, and a convolution of spatial geographic locations of
all the nearby transmitters that the receiver can experience
interference from. The computed convolutions are referred
to as TxINTi and RxINTi, respectively, for link i.

Since the idea is to estimate the effect of total inter-
ference each link causes to nearby receivers and effect
of the total interference each link is exposed to, we
need to exclude the link’s own transmitter and receiver
in computing the convolutions. This is done by subtracting
the contributions each link’s own transmitter and receiver
in the respective convolution sum.

The convolution filter is a 2D square matrix with fixed
pre-defined size and trainable parameters. The value of
each entry of the filter can be interpreted as the channel
coefficient of a transceiver located at a specific distance
from the center of the filter. Through training, the filter
learns the channel coefficient by adjusting its weights.
Fig. 2 shows a trained filter. As expected, the trained filter
exhibits a circular symmetric pattern with radial decay.

The convolution stage described above summarizes two
quantities for each link: the total interference produced by
the transmitter and the total interference the receiver is

Original Field in Grids

Convolution Filter

Filter Center Anchor:
Receiver’s location

Transmitter’s
location

Direct Channel Strength
Estimation

Fig. 3. Extracting direct channel strength from convolution filter

being exposed to. Furthermore, we can also extract another
important quantity for scheduling from the trained convolu-
tion filter: the direct channel strength. At the corresponding
relative location of the transmitter from its receiver, the
value of the convolution filter describes the channel gain
of the direct link between this transmitter/receiver pair.
The procedure for obtaining this direct channel strength is
illustrated in Fig. 3. The direct channel strength is referred
to as DCSi for link i.

2) Fully Connected Stage: The fully connected stage
is the second stage of the forward computation path,
following the convolution stage described above. It takes a
feature vector extracted for each link as input and produces
an output xi ∈ [0, 1], (which can be interpreted as a relaxed
scheduling variable or alternatively as continuous power)
for that link.

The feature vector for each link comprises of the fol-
lowing entries: TxINTi, RxINTi, DCSi, DCSmax, DCSmin,
xt−1
i . The first three terms have been explained in the

previous section. DCSmax and DCSmin denote the largest
and smallest direct channel strength among links in the
entire layout; and xt−1

i represents the fully connected stage
output at the previous iteration in the overall feedback
structure, as described later. The tuple (TxINTi, RxINTi)
describes the interference between the ith link and its
neighbors, while the triplet (DCSi, DCSmax, DCSmin)
describes the link’s own channel strength as compared to
the strongest and the weakest links in the entire layout.

It is worth noting that the minimum and maximum chan-
nel strengths over the layout are chosen here to characterize

5

1

1

3

1 2

1

Transmitter Density Grid

1

12

2

1

1 1

Receiver Density Grid

Convolution Filter

Filter Center Anchor: Receiver’s location

Filter Center Anchor: Transmitter’s location

DCS* of the link

Largest DCS*
in the layout

Smallest DCS*
in the layout

Previous Iteration
Allocation (0 ∼ 1)

Feature Vector Per Link

ReLu
nonlinearity

x

f (x)

ReLu
nonlinearity

x

f (x)

Output Per Link

Sigmoid
nonlinearity

x

f (x)

*DCS: Direct Channel Strength

Fig. 4. Forward computation path for a single link with spatial convolutions and link distance as input to a neural network

the range of the direct channel strengths. This is appropriate
when the D2D link pairwise distances are roughly uniform,
as we assume in the numerical simulations of this paper.
However, if the D2D link pairwise distances do not follow
a uniform distributions, a more robust characterization
could be, for example, 10th and 90th percentile values of
the channel strength distribution, to alleviate the effect of
potential outliers.

The value xi for this link is computed based on its
feature vector through the functional mapping of a fully
connected neural network (denoted here as Ffc) over the
feedback iterations indexed by t:

xti ← Ffc(TxINTi,RxINTi,DCSi,

DCSmax,DCSmin, x
t−1
i). (8)

The convolution stage and the fully connected stage
together form one forward computation path for each
transmitter-receiver pair, as depicted in Fig. 4. In the
implementation, we use two hidden layers with 30 neurons
in each layer to ensure sufficient expressive power of the
neural network. A rectified linear unit (ReLU) is used at
each neuron in the hidden layers; a sigmoid nonlinearity is
used at the output node to produce a value in [0, 1].

3) Feedback Connection: The forward computation
(which includes the convolution stage and the fully con-
nected stage) takes the link activation pattern xi as the input
for constructing the density grid. In order to account for
the progressive (de)activation pattern of the wireless links
through the iterations (i.e., each subsequent interference
estimates need to be aware of the fact that the deactivated
links no longer produce or are subject to interference), we
propose a feedback structure, in which each iteration of

the neural network takes the continuous output x from the
previous iteration as input, then iterate for a fixed number
of iterations. We find experimentally that the network is
then able to converge within a small number of iterations.

The feedback stage is designed as following: After the
completion of (t− 1)th forward computation, the x vector
of [0, 1] values is obtained, with each entry representing
the activation status for each of the N links. Then, a new
forward computation is started with input density grids
prepared by feeding this x vector into (6)-(7). In this way,
the activation status for all N links are updated in the
density grids for subsequent interference estimations. Note
that the trainable weights of the convolutional filter and the
neural network are tied together over the multiple iterations
for more efficient training.

After a fixed number of iterations, the scheduling deci-
sions are obtained from the neural network by quantizing
the x vector from the last iteration into binary values,
representing the scheduling decisions of the N links.

The overall feedback structure is depicted in Fig. 5. We
emphasize here that the neural network is designed on
a per-link basis, thus the overall model is scalable with
respect to the network size. Specifically, at the convolution
stage, the convolutions are computed based on the fixed
(and trained) convolution filter that covers the neighboring
non-negligible interference sources. At the fully connected
stage, the neural networks of different links are decoupled,
thus scheduling can be performed in a distributed fashion.

Moreover, in the training stage, the convolutional filter
parameters and the neural network weights of the different
links are tied together. This facilitates efficient training,
and implicitly assumes that the propagation environments
of the different links are similar. Under this homogeneity
assumption, regardless of how large the layout is and how

6

Forward Path

Spatial Convolutions

Feedback

Continuous Scheduling

Variable

Q

Binary Scheduling

Variable

Forward Path

Forward Path

Forward Path

Forward Path

Forward Path

Q

Q

Q

Q

Q

Fig. 5. Overall neural network with one forward path per link and with feedback connections and quantized output (denoted as “Q”).

many links are to be scheduled in the network, the overall
trained neural network model can be directly utilized for
scheduling, without adjustment or re-training,

D. Training Process

The overall deep neural network is trained using wireless
network layouts with randomly located links and with the
transmitter-receiver distances following a specific distri-
bution. Specifically, we train the model to maximize the
target sum rate via gradient descent on the convolutional
filter weights and neural network weight parameters. It is
worth noting that while the channel gains are needed at the
training stage for computing rates, they are not needed for
scheduling, which only requires GLI.

To allow the gradients to be back-propagated through the
network, we do not discretize the network outputs when
computing the rates. Therefore, the unsupervised training
process is essentially performing a power control task for
maximizing the sum rate. The scheduling decisions are
obtained from discretizing the optimized power variables.

We randomly generate wireless D2D networks consist-
ing of N = 50 D2D pairs in a 500 meters by 500 meters
region. The locations for the transmitters are generated
uniformly within the region. The locations of the receivers
are generated according to a uniform distribution within
a pairwise distances of dmin ∼ dmax meters from their
respective transmitters. We generate 800,000 such network
layouts for training.

The transmitter-receiver distance has significant effect
on the achievable rate. Link scheduling for sum-rate max-
imization tends to favor short links over long links, so the
distribution of the link distances has significant effect on
the scheduling performance. To develop the capacity of the
proposed deep learning approach to accommodate varying
transmitter-receiver distances, we generate training samples
based on the following distribution:
• Generate dmin uniformly from 2 ∼ 70 meters.
• Generate dmax uniformly from dmin ∼ 70 meters.
• Generate D2D links distance as uniform dmin ∼ dmax.

Fig. 6. Oscillatory behavior in the neural network training process.

As noted earlier, we could have also used a state-of-
the-art optimization algorithm to generate locally optimal
schedules as targets and train the neural network in a
supervised fashion. Promising results have been obtained
for specific transmitter-receiver distance distributions (e.g.,
2∼65 meters) [21], but supervised learning does not always
work well for more general distributions; see Section IV-E.
A possible explanation is that the high quality local optimal
schedules are often not a smooth functional mapping of the
network parameters, and are therefore difficult to learn.

E. Symmetry Breaking

The overall neural network is designed to encourage
links to deactivate either when it produces too much
interference to its neighbors, or when it experiences too
much interference from its neighbors. However, because
training happens in stages and all the links update their
activation pattern in parallel, the algorithm frequently gets
into situations in which multiple links may oscillate be-
tween being activated and deactivated.

Consider the following scenario involving two closely
located links with identical surroundings. Starting from the
initialization stage where both links are fully activated, both
links see severe interference coming from each other. Thus,
at the end of the first forward path, both links would be
turned off. Now assuming that there are no other strong

7

TABLE I
DESIGN PARAMETERS FOR THE SPATIAL DEEP NEURAL NETWORK

Parameters Values
Convolution Filter Size 63 cells × 63 cells
Cell Size 5m by 5m
First Hidden Layer 30 units
Second Hidden Layer 30 units

Number of Iterations Training 3∼20 iterations
Testing 20 iterations

interference in the neighborhood, then at the end of the
second iteration, both links would see little interference;
consequentially both would be encouraged to be turned
back on. This oscillation pattern can keep going, and
the training process for the neural network would never
converge to a good schedule (which is that one of the two
links should be on). Fig. 6 shows a visualization of the
phenomenon. Activation patterns produced by the actual
training process are shown in successive snapshots. Notice
that the closely located strong interfering links located at
middle bottom of the layout have the oscillating pattern
between successive iterations. The training procedure does
not converge to a reasonably good schedule, with only one
of the links being scheduled.

To resolve this problem, a stochastic update mechanism
to break the symmetry is proposed. At the end of each
forward path, the output vector x contains the updated
activation pattern for all the links. However, instead of
feeding back x directly to the next iteration, we feed-
back the updated entries of x with 50% probability (and
feedback the old entries of x with 50% probability). This
symmetry breaking is used in both the training and testing
phases and is observed to benefit the overall performance
of the neural network.

IV. PERFORMANCE OF SUM-RATE MAXIMIZATION

A. Testing on Layouts of Same Size as Training Samples

We generate testing samples of random wireless D2D
network layouts of the same number of links and the same
size as the training samples, except with fixed uniform
link distance distribution between some values of dmin

and dmax. The channel model is adapted from the short-
range outdoor model ITU-1411 with a distance-dependent
path-loss [22], over 5 MHz bandwidth at 2.4 GHz carrier
frequency, and with 1.5 m antenna height and 2.5 dBi
antenna gain. The transmit power level is 40 dBm; the
background noise level is -169 dBm/Hz. We assume an
SNR gap of 6 dB to Shannon capacity to account for
practical coding and modulation.

For each specific layout and each specific channel real-
ization, the FPLinQ algorithm [4] is used to generate the
sum-rate maximizing scheduling output with a maximum
number of iterations of 100. We note that although FPLinQ
guarantees monotonic convergence for the optimization

TABLE II
AVERAGE SUM RATE AS PERCENTAGE OF FP

% CSI 30∼70 2∼65 10∼50 all 30
Learning 7 92.19 98.36 98.42 96.90
Greedy X 84.76 97.08 94.00 84.56

Strongest 7 59.66 82.03 75.41 N/A
Random 7 35.30 47.47 49.63 50.63

All 7 26.74 54.18 48.22 43.40
FP X 100 100 100 100

over the continuous power variables, it does not necessarily
produce monotonically increasing sum rate for scheduling.
Experimentally, scheduling outputs after 100 iterations
show good numerical performance. We generate 5000
layouts for testing in this section.

The design parameters for the neural network are sum-
marized in the Table I. We compare the sum rate perfor-
mance achieved by the trained neural network with each
of the following benchmarks in term of both the average
and the maximum sum rate over all the testing samples:

• All Active: Activate all the links.
• Random: Schedule each link with 0.5 probability.
• Strongest Links First: We sort all the links according

to the direct channel strength, then schedule a fixed
portion of the strongest links. The optimal percentage
is taken as the average percentage of the active links
in the FP target.

• Greedy: Sort all the links according to the link
distance, then schedule one link at a time. Choose
a link to be active only if scheduling this link strictly
increases the objective function (i.e., the sum rate).
Note that the interference at all the active links needs
to be re-evaluated in each step as soon as a new link
is turned on or off.

• FP: Run FPLinQ for 100 iterations.

We run experiments with the following D2D links pair-
wise distance distributions in the test samples:

• Uniform in 30 ∼ 70 meters.
• Uniform in 2 ∼ 65 meters.
• Uniform in 10 ∼ 50 meters.
• All links at 30 meters.

The distance distribution affects the optimal scheduling
strategies, e.g., in how advantageous it is for scheduling
only the strongest links. The sum rate performance of
each of the above methods are reported in Table II. The
performance is expressed as the percentages as compared
to FPLinQ.

As shown in Table II, the proposed spatial learning ap-
proach always achieves more than 92% of the average sum
rate produced by FPLinQ for all cases presented, without
explicitly knowing the channels. The neural network also
outperforms the greedy heuristic (which requires CSI) and
outperforms other benchmarks by large margins.

8

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500
Activation Result by Greedy on Sample #2

Tx
Rx

(a) Greedy

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500
Activation Result by FP on Sample #2

Tx
Rx

(b) FP

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500
Activation Result by Neural Network on Sample #2

Tx
Rx

(c) Neural Network

Fig. 7. Greedy heuristic prematurely activates the strongest link

The main reason that the greedy heuristics performs
poorly is that it always activates the strongest link first,
but once activated, the algorithm does not reconsider the
scheduling decisions already made. The earlier scheduling
decision may be suboptimal; this leads to poor performance
as illustrated in an example in Fig. 7. Note that under the
channel model used in simulation, the interference of an
activated link reaches a range of 100m to 300m. If a greedy
algorithm activates a link in the center of the 500m by
500m layout, it could preclude the activation of all other
links, while the optimal scheduling should activate multiple
weaker links roughly 100m to 300m apart as shown in
Fig. 7.

Throughout testings of many cases, including the exam-
ple shown in Fig. 7, the spatial learning approach always
produces a scheduling pattern close to the FP output. This
shows that the neural network is capable of learning the
state-of-the-art optimization strategy.

B. Generalizability to Arbitrary Topologies
An important test of the usefulness of the proposed

spatial deep learning design is its ability to generalize
to different layout dimensions and link distributions. In-
tuitively, the neural network performs scheduling based
on an estimate of the direct channel and the aggregate
interference from a local region surrounding the transmitter
and the receiver of each link. Since both of these estimates
are local, one would expect that the neural network should
be able to extend to general layouts.

To validate this generalization ability, we test the trained
neural network on layouts with larger number of links,
while first keeping the link density the same, then further
test on layouts in which the link density is different. Note
that we do not perform any further training on the neural
network. For each test, 500 random layouts are generated
to obtain the average maximum sum rate.

TABLE III
GENERALIZABILITY TO LAYOUTS OF LARGER DIMENSIONS BUT

SAME LINK DENSITY AND LINK DISTANCE: SUM RATE AS % OF FP

Size (m2) Links 2m∼65m All 30m
DL Greedy DL Greedy

750× 750 113 98.5 102.4 98.4 98.4
1000× 1000 200 99.2 103.2 98.3 98.8
1500× 1500 450 99.5 103.8 98.3 100.0
2000× 2000 800 99.7 104.1 98.8 100.8
2500× 2500 1250 99.7 104.2 99.1 101.3

TABLE IV
GENERALIZABILITY TO LAYOUTS WITH DIFFERENT LINK DENSITIES:

SUM RATE AS % OF FP

Size (m2) Links 2m∼65m All 30m
DL Greedy DL Greedy

500× 500

10 95.5 90.0 94.9 81.6
30 97.0 93.2 96.1 81.3

100 98.6 99.8 99.0 88.7
200 97.8 101.7 96.0 92.4
500 93.0 104.1 92.91 92.8

1 50 iterations are required for deep learning to achieve this result

1) Generalizability to Layouts of Large Sizes: First, we
keep the link density and distance distribution the same
and test the performance of the neural network on larger
layouts occupying an area of up to 2.5km by 2.5km and
1250 links. The resulting sum rate performance is presented
in Table III. Note that following the earlier convention,
the entries for the deep learning (DL) neural network and
greedy method are the percentages of sum rates achieved
as compared with FP, averaged over the testing set.

Table III shows that the neural network is able to
generalize to layouts of larger dimensions very well, with
performance very close to FP. It is worth emphasizing
that while the greedy algorithm also performs well (likely
because the phenomenon of Fig. 7 is less likely to occur on
larger layouts), it requires CSI, as opposed to just location
information utilized by spatial deep learning.

2) Generalizability to Layouts with Different Link Den-
sities: We further explore the neural network’s generaliza-
tion ability in optimizing scheduling over layouts that have
different link densities as compared to the training set. For
this part of the evaluation, we fix the layout size to be 500
meters by 500 meters as in the training set, but instead
of having 50 links, we vary the number of links in each
layout from 10 to 500. The resulting sum rate performances
of deep learning and the greedy heuristics are presented in
Table IV.

As shown in Table IV, with up to 4-fold increase in
the density of interfering links, the neural network is able
to perform near optimally, achieving almost the optimal
FP sum rate, while significantly outperforming the greedy
algorithm, especially when the network is sparse.

9

TABLE V
SUM RATE AS % OF FP ON CHANNELS WITH FAST FADING

% CSI 30∼70 2∼65 10∼50 30
DL 7 71.8 88.6 82.5 73.9

FP no fade X 77.7 88.9 82.7 76.3
Greedy X 95.9 98.3 97.7 96.7

Strongest X 65.4 80.8 75.0 68.8
Random 7 31.7 44.5 44.0 42.7

All Active 7 25.3 50.4 43.8 38.4
FP X 100 100 100 100

However, the generalizability of deep learning does have
limitations. When the number of links increases to 500 or
more (10-fold increase as compared to training set), the
neural network becomes harder to converge, resulting in
dropping in performance. This is reflected in one entry in
the last row of Table IV, where it takes 50 iterations for the
neural network to reach a satisfactory rate performance. If
the link density is further increased, it may fail to converge.
Likely, new training set with higher link density would be
needed.

C. Sum Rate Optimization with Fast Fading

So far we have tested on channels with only a path-loss
component (according to the ITU-1411 outdoor model).
Since path-loss is determined by location, the channels are
essentially deterministic function of the location.

In this section, Rayleigh fast fading is introduced into
the testing channels. This is more challenging, because the
channel gains are now stochastic functions of GLI inputs.
Note that the neural network is still trained using channels
without fading.

We use test layouts of 500 meters by 500 meters with 50
D2D links and with 4 uniform link distance distributions.
The sum rate performance results are presented in Table
V, with an additional benchmark:
• FP without knowing fading: Run FP based on

the CSI without fast fading effect added in. This
represents the best that one can do without knowing
the fast-fading.

As shown in Table V, the performance of deep learning
indeed drops significantly as compared to FP or Greedy
(both of which require exact CSI). However, it is still
encouraging to see that the performance of neural network
matches FP without knowing fading, indicating that it is
already performing near optimally given that only GLI is
available as inputs.

D. Computational Complexity

In this section, we further argue that the proposed
neural network has a computation complexity advantage
as compared to the greedy or FP algorithms by providing
a theoretical analysis and some experimental verification.

1) Theoretical Analysis: We first provide the complexity
scaling for each of the methods as functions of the number
of links N :
• FPLinQ Algorithm: Within each iteration, to up-

date scheduling outputs and relevant quantities, the
dominant computation includes matrix multiplication
with the N×N channel coefficient matrix. Therefore,
the complexity per iteration is O(N2). Assuming
that a constant number of iterations is needed for
convergence, the total run-time complexity is then
O(N2).

• Greedy Heuristic: The greedy algorithm makes
scheduling decisions for each link sequentially. When
deciding whether to schedule the ith link, it needs
to compare the sum rate of all links that have been
scheduled so far, with and without activating the
new link. This involves re-computing the interference,
which costs O(i) computation. As i ranges from 1 to
N , the overall complexity of the greedy algorithm is
therefore O(N2).

• Neural Network Let the discretized grid be of di-
mension K × K, and the spatial filter be of dimen-
sion J × J . Furthermore, let h0 denotes the size of
input feature vector for fully connected stage, and let
(h1, h2, ...hn) denote the number of hidden units for
each of the n hidden layers (note that the output layer
has one unit). The total run-time complexity of the
proposed neural network can be computed as:

K2 × J2︸ ︷︷ ︸
Convolution Stage

+N × (h0h1 + · · ·+ hn−1hn + hn)︸ ︷︷ ︸
Fully Connected Stage per Pair

(9)

Thus, given a layout of fixed region size, the time
complexity of neural network scales as O(N).

2) Experimental Verification: In actual implementa-
tions, due to its ability to utilize parallel computation
architecture, the run-time of the neural network can be
even less than O(N). To illustrate this point, we measure
the total computation time of scheduling one layout of
varying number of D2D links by using FP and greedy
algorithms and by using the proposed neural network. The
timing is conducted on a single desktop, with the hardware
specifications as below:
• FP and Greedy: Intel CPU Core i7-8700K @ 3.70GHz
• Neural Network: Nvidia GPU GeForce GTX 1080Ti

To provide reasonable comparison of the running time, we
select hardwares most suited for each of the algorithms.
The implementation of the neural network is highly par-
allelizable; it greatly benefits from the parallel computa-
tion power of GPU. On the other hand, FP and greedy
algorithms have strictly sequential computation flows, thus
benefiting more from CPU due to its much higher clock
speed. The CPU and GPU listed above are selected at about
the same level of computation power and price point with
regard to their respective classes.

10

50200 1000 2000 3000 4000 5000
Number of D2D Links

0.0

0.5

1.0

1.5

2.0

2.5

3.0
C
PU

/G
PU

 r
un
 t
im
e
fo
r
op
tim

iz
in
g
on
e
la
yo
ut
 (
se
co
nd
s)

FP
Neural Net
Greedy

Fig. 8. Computation time on layouts with varying number of D2D links.

As illustrated in Fig. 8, the computational complexity of
the proposed neural network is approximately constant, and
is indeed several orders of magnitude less than FP baseline
for layouts with large number of D2D links.

We remark here that the complexity comparison is in-
herently implementation dependent. For example, the bot-
tleneck of our neural network implementation is the spatial
convolutions, which are computed by built-in functions
in TensorFlow [23]. The built-in function for computing
convolution in TensorFlow, however, computes convolution
in every location in the entire geographic area, which is an
overkill. If a customized convolution operator is used only
at specific locations of interests, the rum-time complexity
of our neural network can be further reduced. The complex-
ity is expected to be O(N), but with much smaller constant
than the complexity curve in Fig. 8. We also remark that
the computational complexity of traditional optimization
approaches can potentially be reduced by further heuristics;
see, e.g., [24].

To conclude, the proposed neural network has significant
computational complexity advantage in large networks,
while maintaining near-optimal scheduling performance.
This is remarkable considering that the neural network has
only been trained on layouts with 50 links, and requires
only O(N) GLI rather than O(N2) CSI.

E. Unsupervised vs. Supervised Training

As mentioned earlier, the neural network can also be
trained in a supervised fashion using the locally opti-
mal schedule from FP, or in a unsupervised fashion di-
rectly using the sum-rate objective. Table VI compares
these two approaches on the layouts of 500 meters by
500 meters with 50 D2D links, but with link distances
following four different distributions. It is interesting to
observe that while supervised learning is competitive for
link distance distribution of 2m∼65m, it generally has
inferior performance in other cases. An intuitive reason

TABLE VI
UNSUPERVISED VS. SUPERVISED TRAINING – SUM RATE AS % OF FP

Sum Rate (%) 2∼65m 10∼50m 30∼70m 30m
Unsupervised 98.4 98.4 92.2 96.9

Supervised 96.2 90.3 83.2 82.0

is that when the layouts contain very short links, the sum-
rate maximization scheduling almost always chooses these
short links. It is easier for the neural network to learn
such pattern in either a supervised or unsupervised fashion.
When the layouts contain links of similar distances, many
distinct local optima emerge, which tend to confuse the
supervised learning process. In these cases, using the sum-
rate objective directly tends to produce better results.

V. SCHEDULING WITH PROPORTIONAL FAIRNESS

This paper has thus far focused on scheduling with sum-
rate objective, which does not include a fairness criterion,
thus tends to favor shorter links and links that do not
experience large amount of interference. Practical appli-
cations of scheduling, on the other hand, almost always
require fairness. In the remaining part of this paper, we first
illustrate the challenges in incorporating fairness in spatial
deep learning, then offer a solution that takes advantage of
the existing sum-rate maximization framework to provide
fair scheduling across the network.

A. Proportional Fairness Scheduling

We can ensure fairness in link scheduling by defining
an optimization objective of a network utility function over
the long-term average rates achieved by the D2D links. The
long-term average rate, for example, can be defined over
a duration of T time slots, with an exponential weighted
window:

R̄t
i = (1− α)R̄t−1

i + αRt
i t ≤ T (10)

where Rt
i is the instantaneous rate achieved by the D2D

link i in time slot t, which can be computed as in (1) based
on the scheduling decision binary vector in each time slot,
xt. Define a concave and non-decreasing utility function
U(R̄i) for each link. The network utility maximization
problem is that of maximizing

N∑
i=1

U(R̄i). (11)

In the proportional fairness scheduling, the utility function
is chosen to be U(·) = log(·).

The idea of proportional fairness scheduling is to max-
imize the quantity defined in (11) incrementally [25].
Assuming large T , in each new time slot, the incremental
contribution of the achievable rates of the scheduled links

11

Consecutive Time Slots at a Fixed Layout

l1 l10 l20 l30 l40 l50
Link Index

0.0

0.2

0.4

0.6

0.8

1.0

No
rm
al
ize
d
W
ei
gh
t/A
llo
ca
tio
n
Va
lu
e

Time Slot #1

l1 l10 l20 l30 l40 l50
Link Index

0.0

0.2

0.4

0.6

0.8

1.0

No
rm
al
ize
d
W
ei
gh
t/A
llo
ca
tio
n
Va
lu
e

Time Slot #2

l1 l10 l20 l30 l40 l50
Link Index

0.0

0.2

0.4

0.6

0.8

1.0

No
rm
al
ize
d
W
ei
gh
t/A
llo
ca
tio
n
Va
lu
e

Time Slot #3
weights
FP allocs

Fig. 9. The optimal scheduling can drastically change over slow varying
proportional fairness weights

to the network utility is approximately equivalent to a
weighted sum rate [20]

N∑
i=1

wiR
t
i (12)

where the weights are set as:

wi =
∂U(R̄t

i)

∂R

∣∣∣∣
R̄t

i

=
∂ log(R̄t

i)

∂R

∣∣∣∣
R̄t

i

=
1

R̄t
i

. (13)

Thus, the original network utility maximization problem
(11) can be solved by a series of weighted sum-rate
maximization, where the weights are updated in each time
slot as in (13). The approximate mathematical equivalence
of (11) to this series of weighted sum-rate maximization
(12)-(13) is established in [26]. In the rest of the paper,
to differentiate the weights in the weighted rate-sum max-
imization from the weights in the neural network, we refer
wi as the proportional fairness weights.

The weights wi can take on any positive real values.
This presents a significant challenge to deep learning based
scheduling. In theory, one could train a different neural
network for each set of weights, but the complexity of
doing so would be prohibitive. To incorporate wi as an
extra input to the neural network turns out to be quite
difficult as well. We explain this point in the next section,
then offer a solution.

B. Challenge in Learning to Maximize Weighted Sum Rate

A natural idea is to incorporate the proportional fairness
weights as an extra input for each link in the neural
network. However, this turns out to be quite challenging.
We have implemented both the spatial convolution based
neural network (using the structure mentioned in the first
part of the paper, while taking an extra proportional fairness
weight parameter) and the most general fully connected
neural network to learn the mapping from the proportional
fairness weights to the optimal scheduling. With millions
of training data, the neural network is unable to learn such
a mapping, even for a single fixed layout.

The essential difficulty lies in the high dimensionality
of the function mapping. To visualize this complexity, we

provide a series of plots of proportional fairness weights
against FP scheduling allocations in sequential time slots
in Fig. 9. It can be observed that the FP schedule can
change drastically when the proportional weights only
vary by a small amount. This is indeed a feature of
proportional fairness scheduling: an unscheduled link sees
its average rate decreasing and its proportional fairness
weight increasing over time until they cross a threshold,
then all the sudden it gets scheduled. Thus, the mapping
between the proportional fairness weights and the optimal
schedule is highly sensitive to these sharp turns. If we
desire to learn this mapping from a data-driven approach,
one should expect to need a considerably larger amount of
training samples to be collected just to be able to survey the
functional landscape, not to mention the many more local
sharp optima that would make training difficult. Further
exacerbating the difficulty is the fact that there is no easy
way to sample the space of proportional fairness weights.
In a typical scheduling process, the sequence of weights
are highly non-uniform.

C. Weighted Sum Rate Maximization via Binary Weights

To tackle the proportionally fair scheduling problem,
this paper proposes the following new idea. Since the
neural network proposed in the first part of this paper is
capable of generalizing to arbitrary topologies for sum-
rate maximization, we take advantage of this ability by
emulating weighted sum-rate maximization by sum-rate
maximization, but over a judiciously chosen subset of links.

The essence of scheduling is to select an appropriate
subset of users to activate. Our idea is therefore to first
construct a shortlist of candidate links based on the pro-
portional fairness weights alone, then further refine the can-
didate set of links using deep learning. Alternatively, this
can also be thought of as to approximate the proportional
fairness weights by a binary weight vector taking only the
values of 0 or 1.

The key question is how to select this initial shortlist
of candidate links, or equivalently how to construct the
binary weight vector. Denote the original proportional
fairness weights as described in (13) by wt. Obviously, the
links with higher weights should have higher priority. The
question is how many of the links with the large weights
should be included.

This paper proposes to include the following subset of
links. We think of the problem as to approximate wt by
a binary 0-1 vector ŵt. The proposed scheme finds this
binary approximation in such a way so that the dot product
between wt (normalized to unit `2-norm) and ŵt (also
normalized) is maximized. For a fixed real-valued weight
vector wt, we find the binary weight vector ŵt as follows:

ŵt = arg max
y∈{0,1}N

〈
y

‖y‖2
,

wt

‖wt‖2

〉
(14)

12

where 〈·, ·〉 denotes the dot product of two vectors. Geo-
metrically, this amounts to finding an ŵt that is closest to
wt in term of the angle between the two vectors.

Algorithmically, such a binary vector can be easily found
by first sorting the entries of wt, then setting the largest k
entries to 1 and the rest of 0, where k is found by a linear
search using the objective function in (14). With the binary
weight vector ŵt, the weighted sum rate optimization is
reduced to sum rate optimization, over the subset of links
with weights equal to 1. We can then utilize spatial deep
learning to perform scheduling over this subset of links.

D. Utility Analysis of Binary Reweighting Scheme
The proposed binary reweighting scheme is a heuristic

for producing fair user scheduling, but a rigorous analysis
of such a scheme is challenging. In the following, we
provide a justification as to why such a scheme provides
fairness. From a stochastic approximation perspective [26],
the proposed way of updating the weights can be thought
of as maximizing a particular utility function of the long-
term average user rate. To see what this utility function
looks like, we start with a simple fixed-threshold scheme:

ŵi =

{
1, if wi ≥ θ
0, otherwise

(15)

for some fixed threshold θ > 0, where ŵi and wi are the
binary weight and the original weight, respectively. Since
wi = 1/R̄i, we can rewrite (15) as

ŵi =

1, if R̄i ≤
1

θ
0, otherwise

. (16)

Recognizing (16) as a reverse step function with sharp
transition from 1 to 0 at 1/θ, we propose to use the
following reverse sigmoid function to mimic ŵi:

W (R̄i) =
1

1 + exp(κ(R̄i − θ))
(17)

where the parameter κ > 0 controls the steepness of the
W (R̄i). We can now recover the utility function that the
reweighting scheme (17) implicitly maximizes.

For a fixed strictly concave utility U(R̄i), the user
weights are set as wi = U ′(R̄i). Thus, given some
reweighting scheme wi = U ′(R̄i), the corresponding utility
objective must be U(R̄i). In our case, the utility function
U(R̄i) can be computed explicitly as

U(R̄i) = α

∫
W (R̄i) dR̄i

= αR̄i −
α

κ
ln
(
1 + exp(κ(R̄i − θ))

)
+ β (18)

where α > 0 is a scaling parameter and β ∈ R is
an offset parameter. These two parameters do not affect
the scheduling performance. Fig. 10 compares the utility
function U(R̄i) of the binary weighting scheme with the
log-utility proportional fairness function. It is observed that

0 5 10 15 20 25 30

Long-term average rate (Mbps)

-3

-2

-1

0

1

2

3

4

U
ti
lit

y

Proportional Fairness

Fixed-Threshold Scheme, =0.5

Fixed-Threshold Scheme, =1.0

Fixed-Threshold Scheme, =5.0

Fig. 10. Utility function of the fixed-threshold binary weighting scheme
vs. proportional fairness scheduling. Here θ = 0.1.

the utility of the fixed-threshold scheme follows the same
trend as the proportional fairness utility.

Note that the above simplified analysis assumes that the
threshold θ is fixed, but in the proposed binary reweighting
scheme, the threshold changes adaptively in each step, so
this analysis is an approximation. Observe also that the
utility function of the binary reweighting scheme saturates
when R̄ is greater than the threshold, in contrast to the
proportional fairness utility which grows logarithmically
with R̄. This difference becomes important in the numeri-
cal evaluation of the proposed scheme.

VI. PERFORMANCE OF PROPORTIONAL FAIRNESS
SCHEDULING

We now evaluate the performance of the deep learning
based approach with binary reweighting for proportional
fairness scheduling in three types of wireless network
layouts:
• The layouts with the same size and link density;
• The larger layouts but with same link density;
• The larger layouts but with different link density.

For testing on layouts with the same setting, 20 distinct
layouts are generated for testing, with each layout being
scheduled over 500 time slots. For the other two settings,
10 distinct layouts are generated and scheduled over 500
time slots. Since scheduling is performed here within a
finite number of time slots, we compute the mean rate of
each link by averaging the instantaneous rates over all the
time slots:

R̄i =
1

T

T∑
t=1

Rt
i. (19)

The utility of each link is computed as the logarithm of the
mean rates in Mbps. The network utility is the sum of link
utilities as defined in (11). The utilities of distinct layouts
are averaged and presented below. To further illustrate the

13

0 1 2 3 4
Mean Rate for each link (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

Fu
nc

tio
n

Deep Learning
FP
Weighted Greedy
Max Weight Only
All Active
Random

Fig. 11. CDF of mean rates for layouts of 50 links in 500m×500m area
for the case that link distance distribution is 30m to 70m.

TABLE VII
MEAN LOG UTILITY PERFORMANCE FOR PROPORTIONALLY FAIR

SCHEDULING

CSI 30-70 2-65 10-50 30
DL 7 45.9 61.9 63.3 62.6

W. Greedy X 39.7 51.5 51.1 49.0
Max Weight 7 38.3 42.1 41.9 41.4

Random 7 0.76 38.4 38.7 35.1
All Active 7 -27.6 24.0 20.9 15.7

FP X 45.2 63.1 63.3 63.0

mean rate distribution of the D2D link, we also plot the
cumulative distribution function (CDF) of the mean link
rates, serving as a visual illustration of fairness.

The proposed deep learning based proportional fairness
scheduling solves a sum-rate maximization problem over a
subset of links using the binary reweighting scheme in each
time slot. In addition to the baseline schemes mentioned
previously, we also include:
• Max Weight: Schedule the single link with the high-

est proportional fairness weight in each time slot.
• Weighted Greedy: Generate a fixed ordering of all

links by sorting all the links according to the propor-
tional fairness weight of each link multiplied by the
maximum direct link rate it can achieve without inter-
ferences, then schedule one link at a time in this order.
Choose a link to be active only if scheduling this
link strictly increases the weighted sum rate. Note that
interference is taken into account when computing the
link rate in the weighted sum rate computation. Thus,
CSI is required. In fact, the interference at all active
links needs to be re-evaluated in each step whenever
a new link is activated.

1) Performance on Layouts of Same Size and Link
Density: In this first case, we generate testing layouts with
size 500 meters by 500 meters, with 50 D2D links in each

layout. Similar to sum rate optimization evaluation, we
have conducted the testing under the following 4 D2D links
pairwise distance distributions:

• Uniform in 30 ∼ 70 meters.
• Uniform in 2 ∼ 65 meters.
• Uniform in 10 ∼ 50 meters.
• All 30 meters.

The log utility values achieved by the various schemes
are presented in Table VII. The CDF plot of mean rates
achieved for the case of link distributed in 30m-70m is
presented in Fig. 11.

Remarkably, despite the many approximations, the deep
learning approach with binary reweighting achieves excel-
lent log-utility values as compared to the FP. Its log-utility
also exceeds the weighted greedy algorithm noticeably.
We again emphasize that this is achieved with geographic
information only without explicit CSI.

It is interesting to observe that the deep learning ap-
proach has a better CDF performance as compared to the
FP in the low-rate regime, but worse mean rate beyond
the 80-percentile range. This is a consequence of the fact
that the implicit network utility function of the binary
reweighting scheme is higher than proportional fairness
utility at low rates, but saturates at high rate, as shown
in Fig. 10.

2) Performance on Larger Layouts with Same Link
Density: To demonstrate the ability of the neural network
to generalize to layouts of larger size under the proportional
fairness criterion, we conduct further testing on larger
layouts with the same link density. We again emphasize
that no further training is conducted. We test the following
two D2D links pairwise distance distributions:

• Uniform in 2 ∼ 65 meters.
• All 30 meters.

The results for this setting are summarized in Table VIII.
It is observed that under the proportional fairness cri-

terion, the spatial deep learning approach still generalizes
really well. It is competitive with respect to both FP and
the weighted greedy methods, using only O(N) GLI as
input and using the binary weight approximation.

3) Performance on Layout with Different Link Density:
We further test the neural network on a more challenging
case: layouts with different link densities than the setting on
which it is trained. Specifically, we experiment on layouts
of 500 meters by 500 meters size and varying number of
D2D links. The resulting sum log utility value, averaged
over 10 testing layouts, are summarized in Table IX.

It is observed that the neural network still competes
really well against FP in log utility, and outperforms the
weighted greedy method significantly. To visualize, we
select one specific layout of 500 meters by 500 meters
region with 200 links with link distances fixed to 30 meters,
and provide the CDF plot of long-term mean rates achieved
by each link in Fig. 12.

14

TABLE VIII
MEAN LOG UTILITY PERFORMANCE FOR PROPORTIONALLY FAIR SCHEDULING ON LARGER LAYOUTS WITH SAME LINK DENSITY

Layout Size Links 2m∼65m all 30 m
FP DL W. Greedy FP DL W. Greedy

750m ×750m 113 127 124 106 127 126 111
1000m ×1000m 200 217 205 203 219 214 205
1500m ×1500m 450 462 432 454 466 448 462

TABLE IX
MEAN LOG UTILITY PERFORMANCE FOR PROPORTIONALLY FAIR SCHEDULING ON LAYOUTS WITH DIFFERENT LINK DENSITY

Layout Size Links 2m∼65m all 30m
FP DL W. Greedy FP DL W. Greedy

500m ×500m
30 52 49 47 50 50 44

200 -11 -13 -90 -11 -26 -102
500 -511 -514 -736 -485 -542 -739

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Mean Rate for each link (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e
Di
st
rib
ut
io
n
Fu
nc
tio
n

Deep Learning
FP
Weighted Greedy
Max Weight Only
All Active
Random

Fig. 12. CDF for mean rates of Layouts with 200 links in 500m×500m
area with link distance fixed at 30m

VII. CONCLUSION

Deep neural network has had remarkable success in
many machine learning tasks, but the ability of deep
neural networks to learn the outcome of large-scale discrete
optimization in still an open research question. This paper
provides evidence that for the challenging scheduling task
for the wireless D2D networks, deep learning can perform
very well for sum-rate maximization. In particular, this
paper demonstrates that in certain network environments,
by using a novel geographic spatial convolution for esti-
mating the density of the interfering neighbors around each
link and a feedback structure for progressively adjusting
the link activity patterns, a deep neural network can in
effect learn the network interference topology and perform
scheduling to near optimum based on the geographic
spatial information alone, thereby eliminating the costly
channel estimation stage.

Furthermore, this paper demonstrates the generalization

ability of the neural network to larger layouts and to
layouts of different link density (without the need for
any further training). This ability to generalize provides
computational complexity advantage for the neural network
on larger wireless networks as compared to the traditional
optimization algorithms and the competing heuristics.

Moreover, this paper proposes a binary reweighting
scheme to allow the weighted sum-rate maximization prob-
lem under the proportional fairness scheduling criterion to
be solved using the neural network. The proposed method
achieves near optimal network utility, while maintaining
the advantage of bypassing the need for CSI.

Taken together, this paper shows that deep learning
is promising for wireless network optimization tasks, es-
pecially when the models are difficult or expensive to
obtain and when computational complexity of existing
approaches is high. In these scenarios, a carefully crafted
neural network topology specifically designed to match the
problem structure can be competitive to the state-of-the-art
methods.

REFERENCES

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov. 1998.

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, pp.
436–444, May 2015.

[3] K. Hornik, “Multilayer feedforward networks are universal approx-
imators,” Neural Netw., vol. 2, pp. 359–366, 1989.

[4] K. Shen and W. Yu, “FPLinQ: A cooperative spectrum sharing
strategy for device-to-device communications,” in IEEE Int. Symp.
Inf. Theory (ISIT), Jun. 2017, pp. 2323–2327.

[5] ——, “Fractional programming for communication systems—Part
I: Power control and beamforming,” IEEE Trans. Signal Process.,
vol. 66, no. 10, pp. 2616–2630, May 15, 2018.

[6] ——, “Fractional programming for communication systems—Part
II: Uplink scheduling via matching,” IEEE Trans. Signal Process.,
vol. 66, no. 10, pp. 2631–2644, May 15, 2018.

[7] X. Wu, S. Tavildar, S. Shakkottai, T. Richardson, J. Li, R. Laroia,
and A. Jovicic, “FlashLinQ: A synchronous distributed scheduler
for peer-to-peer ad hoc networks,” IEEE/ACM Trans. Netw., vol. 21,
no. 4, pp. 1215–1228, Aug. 2013.

15

[8] Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An iteratively
weighted MMSE approach to distributed sum-utility maximization
for a MIMO interfering broadcast channel,” IEEE Trans. Signal
Process., vol. 59, no. 9, pp. 4331–4340, Apr. 2011.

[9] N. Naderializadeh and A. S. Avestimehr, “ITLinQ: A new approach
for spectrum sharing in device-to-device communication systems,”
IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1139–1151, Jun.
2014.

[10] X. Yi and G. Caire, “Optimality of treating interference as noise: A
combinatorial perspective,” IEEE Trans. Inf. Theory, vol. 62, no. 8,
pp. 4654–4673, Jun. 2016.

[11] B. Zhuang, D. Guo, E. Wei, and M. L. Honig, “Scalable spectrum
allocation and user association in networks with many small cells,”
IEEE Trans. Commun., vol. 65, no. 7, pp. 2931–2942, Jul. 2017.

[12] I. Rhee, A. Warrier, J. Min, and L. Xu, “DRAN: Distributed
randomized TDMA scheduling for wireless ad hoc networks,” IEEE
Trans. Mobile Comput., vol. 8, no. 10, pp. 1384–1396, Oct. 2009.

[13] L. P. Qian and Y. J. Zhang, “S-MAPEL: Monotonic optimization
for non-convex joint power control and scheduling problems,” IEEE
Trans. Wireless Commun., vol. 9, no. 5, pp. 1708–1719, May 2010.

[14] M. Johansson and L. Xiao, “Cross-layer optimization of wireless
networks using nonlinear column generation,” IEEE Trans. Wireless
Commun., vol. 5, no. 2, pp. 435–445, Feb. 2006.

[15] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos,
“Learning to optimize: Training deep neural networks for interfer-
ence management,” IEEE Trans. Signal Process., vol. 66, no. 20,
pp. 5438–5453, Aug. 2018.

[16] M. Eisen, C. Zhang, L. F. O. Chamon, D. D. Lee, and A. Ribeiro,
“Learning optimal resource allocations in wireless systems,” Jul.
2018, [Online] Available: https://arxiv.org/pdf/1807.08088.

[17] F. Liang, C. Shen, and F. Wu, “Towards power control for interfer-
ence management via ensembling deep neural networks,” Jul. 2018,
[Online] Available: https://arxiv.org/pdf/1807.10025.

[18] J. G. D. Forney and G. Ungerboeck, “Modulation and coding for
linear gaussian channels,” IEEE Trans. Inf. Theory, vol. 44, no. 6,
Oct. 1998.

[19] M. J. Neely, Stochastic Network Optimization with Application to
Communication and Queueing Systems. Morgan & Claypool, 2010.

[20] J. Huang, R. Berry, and M. Honig, “Distributed interference com-
pensation for wireless networks,” IEEE J. Sel. Areas Commun.,
vol. 24, no. 5, pp. 1074–1084, May 2006.

[21] W. Cui, K. Shen, and W. Yu, “Spatial deep learning for wireless
scheduling,” in IEEE Global Commun. Conf. (GLOBECOM), Abu
Dhabi, UAE, Dec. 2018.

[22] Recommendation ITU-R P.1411-8. International Telecommunica-
tion Union, 2015.

[23] M. Abadi et al., “TensorFlow: Large-scale machine learning
on heterogeneous systems,” 2015, software available from
tensorflow.org. [Online]. Available: https://www.tensorflow.org/

[24] Z. Zhou and D. Guo, “1000-cell global spectrum management,” in
ACM Int. Symp. Mobile Ad Hoc Netw. Comput. (MobiHoc), Jul.
2017.

[25] E. F. Chaponniere, P. J. Black, J. M. Holtzman, and D. N. C.
Tse, “Transmitter directed code division multiple access system
using path diversity to equitably maximize throughput,” U.S. Patent
345 700, Jun. 30, 1999.

[26] H. J. Kushner and P. A. Whiting, “Convergence of proportional-fair
sharing algorithms under general conditions,” IEEE Trans. Wireless
Commun., vol. 3, no. 4, pp. 1250–1259, Jul. 2004.

Wei Cui (S’17) received the B.A.Sc in En-
gineering Science degree from University of
Toronto, Toronto, Canada in 2017, and the
M.A.Sc degree in Electrical and Computer En-
gineering from University of Toronto, Toronto,
Canada in 2019. He is currently pursuing the
Ph.D. degree at the University of Toronto.

His research interests include optimization,
machine learning, and wireless communication.

Kaiming Shen (S’13) received the B.Eng. de-
gree in information security and the B.S. de-
gree in mathematics from Shanghai Jiao Tong
University, Shanghai, China in 2011, and the
M.A.Sc. degree in electrical and computer engi-
neering from the University of Toronto, Ontario,
Canada in 2013. He is currently pursuing the
Ph.D. degree at the University of Toronto.

His research interests include optimization,
information theory, and artificial intelligence.

Wei Yu (S’97-M’02-SM’08-F’14) received the
B.A.Sc. degree in Computer Engineering and
Mathematics from the University of Waterloo,
Waterloo, Ontario, Canada in 1997 and M.S. and
Ph.D. degrees in Electrical Engineering from
Stanford University, Stanford, CA, in 1998 and
2002, respectively. Since 2002, he has been with
the Electrical and Computer Engineering De-
partment at the University of Toronto, Toronto,
Ontario, Canada, where he is now Professor and
holds a Canada Research Chair (Tier 1) in Infor-

mation Theory and Wireless Communications. His main research interests
include information theory, optimization, wireless communications, and
broadband access networks.

Prof. Wei Yu serves as a Vice President of the IEEE Information Theory
Society in 2019. He is currently an Area Editor for the IEEE Transactions
on Wireless Communications (2017-20), and in the past served as an
Associate Editor for IEEE Transactions on Information Theory (2010-
2013), as an Editor for IEEE Transactions on Communications (2009-
2011), and as an Editor for IEEE Transactions on Wireless Communi-
cations (2004-2007). He served as the Chair of the Signal Processing
for Communications and Networking Technical Committee of the IEEE
Signal Processing Society (2017-18) and as a member in 2008-2013. Prof.
Wei Yu was an IEEE Communications Society Distinguished Lecturer in
2015-16. He received the Steacie Memorial Fellowship in 2015, the IEEE
Signal Processing Society Best Paper Award in 2017 and 2008, an Journal
of Communications and Networks Best Paper Award in 2017, an IEEE
Communications Society Best Tutorial Paper Award in 2015, an IEEE
ICC Best Paper Award in 2013, the McCharles Prize for Early Career
Research Distinction in 2008, the Early Career Teaching Award from the
Faculty of Applied Science and Engineering, University of Toronto in
2007, and an Early Researcher Award from Ontario in 2006. Prof. Wei
Yu is a Fellow of the Canadian Academy of Engineering, and a member of
the College of New Scholars, Artists and Scientists of the Royal Society
of Canada. He is recognized as a Highly Cited Researcher.

https://www.tensorflow.org/

	I Introduction
	II Wireless Link Scheduling
	III Deep Learning Based Link Scheduling for Sum-Rate Maximization
	III-A Learning Based on Geographic Location Information
	III-B Transmitter and Receiver Density Grid as Input
	III-C Novel Deep Neural Network Structure
	III-C1 Convolution Stage
	III-C2 Fully Connected Stage
	III-C3 Feedback Connection

	III-D Training Process
	III-E Symmetry Breaking

	IV Performance of Sum-Rate Maximization
	IV-A Testing on Layouts of Same Size as Training Samples
	IV-B Generalizability to Arbitrary Topologies
	IV-B1 Generalizability to Layouts of Large Sizes
	IV-B2 Generalizability to Layouts with Different Link Densities

	IV-C Sum Rate Optimization with Fast Fading
	IV-D Computational Complexity
	IV-D1 Theoretical Analysis
	IV-D2 Experimental Verification

	IV-E Unsupervised vs. Supervised Training

	V Scheduling with Proportional Fairness
	V-A Proportional Fairness Scheduling
	V-B Challenge in Learning to Maximize Weighted Sum Rate
	V-C Weighted Sum Rate Maximization via Binary Weights
	V-D Utility Analysis of Binary Reweighting Scheme

	VI Performance of Proportional Fairness Scheduling
	VI-1 Performance on Layouts of Same Size and Link Density
	VI-2 Performance on Larger Layouts with Same Link Density
	VI-3 Performance on Layout with Different Link Density

	VII Conclusion
	References
	Biographies
	Wei Cui
	Kaiming Shen
	Wei Yu

