
This article has been accepted for publication in IEEE Journal on Selected Areas in Communications (JSAC) Volume 37, Issue 5. Citation information: DOI 

10.1109/JSAC.2019.2906806, IEEE Journal on Selected Areas in Communications. This is an author copy. The respective Copyrights are with IEEE 

Resource Allocation Mechanism for Media Handling 
Services in Cloud Multimedia Conferencing  

Abbas Soltanian†, Diala Naboulsi†, Roch Glitho†, Halima Elbiaze‡  
†Concordia University, ‡Université du Québec À Montréal 

{ab_solta, d_naboul, glitho}@encs.concordia.ca, elbiaze.halima@uqam.ca

Abstract—Multimedia conferencing is the conversational 

exchange of multimedia content between multiple parties. It has a 

wide range of applications (e.g., Massively Multiplayer Online 

Games (MMOGs) and distance learning). Media handling services 

(e.g., video mixing, transcoding, and compressing) are critical to 

multimedia conferencing. However, efficient resource usage and 

scalability still remain important challenges.   Unfortunately, the 

cloud-based approaches proposed so far have several deficiencies 

in terms of efficiency in resource usage and scaling, while meeting 

Quality of Service (QoS) requirements. This paper proposes a 

solution which optimizes resource allocation and scales in terms of 

the number of participants while guaranteeing QoS. Moreover, 

our solution composes different media handling services to 

support the participants’ demands. We formulate the resource 

allocation problem mathematically as an Integer Linear 

Programming (ILP) problem and design a heuristic for it. We 

evaluate our proposed solution for different numbers of 

participants and different participants’ geographical 

distributions. Simulation results show that our resource allocation 

mechanism can compose the media handling services and allocate 

the required resources in an optimal manner while honoring the 

QoS in terms of end-to-end delay.  

Keywords— Cloud Computing; Multimedia Conferencing; 

Resource Allocation; Scaling Algorithm  

I.  INTRODUCTION  
Multimedia conferencing (or conferencing in short) can be 

defined as the conversational and real-time exchange of 
multimedia content (e.g., voice, video, and text) between several 
parties [1]. It has three main services: signaling, media handling, 
and conference control [2]. Media handling services offer 
different functionalities such as audio and video mixing, 
compressing, and transcoding. Several conferencing 
applications such as distance learning, video conferencing, and 
Massively Multiplayer Online Games (MMOGs) use audio 
extensively. They also use video, although to a lesser extent. 
Strategy MMOGs do use live video streaming for missions 
coordination [3]. Therefore, media handling services are of 
critical importance in conferencing applications. Moreover, in 
some conferencing applications like MMOGs [3], there might 
be thousands or hundreds of thousands of end-users (i.e., 
conference participants) who are geographically distributed. 
Thus, scalability is crucial in media handling services. 
Furthermore, the pressure of cost reduction brings the need for 
efficient use of resources. In addition, participants QoS 
requirements (e.g., end-to-end delay) need to be met.  

Cloud computing [4] is an emerging paradigm where 
resources (e.g., storage, network, and services) are provisioned 
rapidly and on demand. It has several inherent benefits such as 

scalability and elasticity. These characteristics make it suitable 
for provisioning conferencing applications. This paper focuses 
on media handling services in cloud-based multimedia 
conferencing.  

 Fig. 1 depicts the assumed business model. It has four main 
roles: conferencing application providers, conferencing service 
providers, media handling service providers, and conferencing 
IaaS providers. In this model, conferencing applications rely on 
a conferencing service that is offered as a Software-as-a-Service 
(SaaS). Media handling services are also offered to conferencing 
service providers as SaaSs. The actual resources (e.g., CPU, 
RAM, and storage) for media handling services are provided by 
geographically distributed Infrastructure-as-a-Services (IaaSs).  

In this paper, we propose a Cloud-based Resource Allocation 
Mechanism for media handling services in multimedia 
conferencing (CRAM). Our proposed solution optimizes 
resource allocation and scales in terms of the number of 
participants while guaranteeing QoS. As it is shown in Fig. 1, 
CRAM runs in the IaaS. CRAM allocates or deallocates 
resources for media handling services based on the fluctuation 
in the number of participants. It performs a fine-grained scaling 
of resources to improve efficiency in resource utilization. 
Moreover, to reduce the network cost and latency, it selects 
adequate locations for allocating resources. Besides efficient 
resource and network utilization, it caters to the QoS, with 
respect to media handling response time and network latency. 

This paper is an extension of our previous cloud-based 
resource allocation mechanism [5]. Our proposed mechanism in 
[5] considered conferencing applications which need video 
mixing. Functionalities of Media handling services, such as 
audio and video mixing and compressing, are of critical 
importance in conferencing applications. In this paper, we take 
into account both mixing and compressing for media handling 
instead of mixing functionality only. We analyze the impact of 
participants’ geographical distribution on the required 

This paper is an extended version of the paper published in CNSM2015, under the title “A Resource Allocation Mechanism for 

Video Mixing as a Cloud Computing Service in Multimedia Conferencing Applications” 

Conferencing 
Application 
Provider

Distance Learning as a Service MMOG as a Service …

Conferencing 
Service Provider Conferencing as a Service

Media Handling 
Service Provider

Video Mixing 
as a Service

Transcoding 
as a Service

Compressing 
as a Service …

IaaS 
Provider

Resource 
Allocator

Cloud-based Resource Allocation Mechanism for Media Handling Services

Fig. 1. Cloud-based conferencing business model 



This article has been accepted for publication in IEEE Journal on Selected Areas in Communications (JSAC) Volume 37, Issue 5. Citation information: DOI 

10.1109/JSAC.2019.2906806, IEEE Journal on Selected Areas in Communications. This is an author copy. The respective Copyrights are with IEEE 
compression rate for video streams. In addition, we take into 
account the servers’ resource cost and the network cost in the 
objective function of our ILP formulation while these were not 
considered in [5]. Indeed, the cost has a critical impact of the 
number of participants and their geographical distributions when 
allocating the resource for media handling services in Cloud-
based multimedia conferencing. Thus, CRAM heuristic takes 
into account the cost parameter as minimization objective while 
meeting the QoS. Furthermore, instead of predefined zones, 
CRAM implements DSort algorithm to return the list of selected 
servers for a given set of participants’ locations and servers’ 
locations. Finally, we have considered extensive evaluation 
scenarios for evaluating the performance of our proposed 
CRAM solution, namely MMOG and ODL scenarios. The 
novelties and contributions of this paper can be summarized as 
follows. 
• Fine-grained allocating of resources for the fluctuating 

number of participants while satisfying the end-to-end 
delay and minimizing the total cost (i.e. network costs and 
servers’ costs). 

• Analyzing the proposed resource allocation mechanism by 
modeling it as an optimization problem. 

• Designing a heuristic to reach the sub-optimal solution for 
the large-scale scenarios in an acceptable time. 

The results show the impact of the number of participants and 
their geographical distributions on servers’ resource cost and 
network cost. Moreover, they show the impact of participants’ 
geographical distribution on the required compression rate for 
video streams. 

The rest of this paper is organized as follows. In Section II, 
we discuss the basics of media handling services, the 
requirements of these services as well as the related work. 
Section III presents the system model. The CRAM heuristic is 
presented in Section IV followed by the performance evaluation 
in Section V. We conclude the paper in Section VI with 
contributions and future research directions.  

II. BASICS OF MEDIA HANDLING SERVICES, 
REQUIREMENTS, AND RELATED WORK 

This section briefly introduces the basics of media handling 
services, followed by the requirements and the review of the 
related work. 

A. Basics of Media Handling Services 

The key media handling services used by conferencing are 
compressing, mixing, and transcoding. A compressor takes as 
input a media stream and gives as output the same media, but 
encoded on fewer bits. A mixer takes as input several media 
streams and merges them into a single media output. When it 
comes to a transcoder, it changes the format of the media stream 

it receives as input and gives as output the same stream, but in a 
different format.  

An end-to-end media handling procedure might involve 
several compressors, mixers, and transcoders. The sequence in 
which compressors, mixers, and transcoders are composed is 
critical because it does have an impact on QoS and total cost. 

Fig. 2 illustrates an example of three composition 
possibilities for an end-to-end media handling procedure with 
different total costs and end-to-end delays. While the total cost 
encompasses servers and network resources, we here only shed 
light on servers’ resources, for illustrative purposes. Each media 
handling service requires an amount of resources formed of two 
components: a fixed component and a variable component. The 
fixed component represents the operational cost of the VM (e.g., 
OS required resources). The variable component depends on the 
number of media streams taken as input. Also, we assume that 
having more instances of a media handling service helps to 
reduce the service response time. Fig. 2(a) handles all mixing 
requests with one mixer. Therefore, it uses minimum resources 
on a server and minimum servers’ resource cost. However, it 
leads to an increase in mixing and transmission time. In contrast, 
in Fig. 2(b), more mixers are composed. Therefore, the mixing 
time is reduced. But it leads to using more resources on the 
server(s) and higher servers’ resource cost. Also, there is no 
improvement in video transmission time. In fig. 2(c), the 
transmission time is reduced by adding a compressor to the 
composition. However, since it uses more instances of media 
handling services in comparison with Fig. 2(a), the cost of the 
servers’ resource is increased. 

B. Requirements 

A crucial requirement of media handling services pertains to 
scalability or, more simply, accommodating the changing 
number of conference participants. For example, in one study, 
the number of users in the World of Warcraft (WoW), one of the 
most famous MMOGs, fluctuates between approximately 1.5 
million and 2.5 million over 10 hours [6]. Therefore, the 
resource allocator for media handling services should be able to 
dynamically scale the actual resources needed (e.g., CPU, RAM, 
and storage).  

Besides scalability, being cost efficient in resource usage is 
another important requirement. As an example, WoW, uses 
more than ten thousand servers, while most of the capacities 
offered by these servers remain idle most of the time [6]. 
Therefore, to respect cost efficiency, the scaling should be 
elastic. It means that resource allocator should add and remove 
resources as much as demanded. 

 Moreover, meeting the QoS requirements, such as jitter, 
throughput, and end-to-end delay is crucial in media handling 
services. In our study, we consider an end-to-end delay. Based 

M M
M

M Video Mixer C Video Compressor

Normal Video Stream

(a) High media handling and video transmission 
time, Low servers’ resource usage

M
C

Compressed Video Stream

(b) Low media handling time, High video 
transmission time, High servers’ resource usage

(c) High media handling time, Low video 
transmission time, High servers’ resource usage

A Source of Final Mixed Video Stream from All Participants

M

Final Mixed Video Stream  
Fig. 2. Three composition possibilities of media handling services 



This article has been accepted for publication in IEEE Journal on Selected Areas in Communications (JSAC) Volume 37, Issue 5. Citation information: DOI 

10.1109/JSAC.2019.2906806, IEEE Journal on Selected Areas in Communications. This is an author copy. The respective Copyrights are with IEEE 
on International Telecommunication Union (ITU), the total end-
to-end delay in multimedia conferencing should not exceed 400 
milliseconds [7]. This time includes the response time of all 
media handling services. In addition to response time, the end-
to-end delay includes media transmission time. Thus, a cloud 
resource allocator for media handling services should consider 
an end-to-end delay in order to appropriately provision 
resources. 

C. Related Work 

We categorized the related work based on the 
aforementioned requirements. We first review the solutions 
proposed so far for cloud-based multimedia conferencing. This 
is followed by a discussion of the other cloud-based solutions. 
This discussion includes multimedia solutions which are not 
multimedia conferencing. The solutions which are based on 
Network Function Virtualization (NFV) [8] are also reviewed. 
NFV is a technology that enables dynamic provisioning of 
network services. However, these solutions are discussed 
because NFV is also considered as a candidate technology for 
provisioning other services such as multimedia services [9]. 
Finally, the traditional approaches for multimedia conferencing 
are reviewed. 
1) Resource Allocation for Multimedia Conferencing in the 

Cloud 

Negralo et al. [10] present algorithms for scaling resources 
based on the real-time demands by using load balancing and the 
addition or removal of virtual machines (VMs). Reaching a 
predefined threshold for CPU or bandwidth usage triggers 
scaling. Gao et al. [11] also work on cost-efficient video 
transcoding in the cloud. They minimize the overall storage and 
computing cost by partially using offline and online transcoding. 
The focus of these works is cost efficiency and they do not 
consider QoS. Soltanian et al. in [12] consider QoS too. They 
propose an adaptive and dynamic scaling mechanism for cloud-
based multimedia conferencing services. This work is focused 
on finding the optimal size of the conferencing service while 
considering QoS and efficiency in resource usage. However, 
they do not consider network cost in their model. 

Hajiesmaili et al. [13] model the video conferencing cost in 
multiparty cloud video conferencing architecture. The focus of 
this work is minimizing the operational cost by finding the best 
assignment of users to VMs. They also reduce the conferencing 
delay. However, this work does not consider the resource 
allocation problem in case of having fluctuations in the number 
of participants. In another work, Soltanian et al. [14] propose a 
holistic cloud-based architecture for conferencing service 
provisioning. This work eases the provisioning of conferencing 
services for service and application providers. Their proposed 
architecture enables elastic scaling of the conferencing services. 
However, they do not consider the network cost in this work. 
Abdallah et al. in [15] survey other architectural works on delay-
sensitive conferencing video services. They present some related 
applications such as Cloud Gaming and Virtual Reality (VR) 
and their requirements for conferencing services. In addition, 
they briefly talk about optimization techniques. None of the 
reviewed papers meet the requirement of considering 
fluctuations in the number of participants.  
2) Non-Conferencing Related Cloud Resource Allocation 

Solutions 

Several researchers have proposed solutions for resource 
allocation to multimedia services in the cloud. However, they do 
not focus on multimedia conferencing. Xavier et al. in [16] 
propose resource allocation algorithms for audio and video 
services in the content delivery network (CDN). The proposed 
solution scales the resources at the VM-level while minimizing 
the cost. They also consider meeting the users’ quality of 
experience in their algorithms. Gao et al. in [17] present a 
resource allocation algorithm for transcoding as a cloud service. 
They maximize the service profit while achieving service 
processing delays. Although these works consider scalability, 
the elasticity and fine-grained resource allocation are not 
considered. 

He et al. in [18] and Dong et al. in [19] consider fluctuation 
in the number of audio and video sources. In these two works, 
they consider numerous users as video broadcasters which live 
stream their video content such as their mobile camera feed or 
online game scenes. The authors in [18] propose a generic cloud 
framework that considers the viewers’ quality of experience 
(QoE) and cloud resource cost. They only consider transcoding 
as a media handling service in their study. The authors in [19] 
propose an algorithm that makes a tradeoff between QoE of 
users and the total cost for a media service provider. None of 
these two works consider having a video mixing service. It 
means that in these works, the videos are just streamed from a 
source to a destination and never mixed with other video 
sources. There are some other cloud resource allocation works 
such as [20] and [21] which do not focus on multimedia services 
and their requirements. Therefore, these works are out of the 
scope of our study.  
3) NFV Resource Allocation Solutions 

There are several works done in NFV resource allocation 
domain. Herrera and Botero in [22] present a comprehensive 
survey on NFV architecture and its resource allocation 
problems. The reviewed works are focused on optimizing the 
Virtual Network Functions (VNFs) placement in the network 
and not focused on scaling based on the fluctuating demands.  

Other researchers such as Fei et al. in [23] and Wang et al. 
in [24] focus on scaling the VNFs and considering the 
fluctuations in the demands of a service. In [23], they propose a 
proactive approach for provisioning VNFs by using traffic 
prediction. The goal of this work is to instantiate fewer VNFs to 
reduce cost. The authors in [24] propose an online deployment 
of VNF chains and dynamic scaling in response to changes in 
traffic. The goal of [24] is to reduce the cost by deploying a 
minimum number of VNFs. Also, they consider VNF placement 
and minimizing network congestion. The scaling in these works 
is in terms of a VNF instance and they do not consider increasing 
or decreasing the resources of existing VNFs. Dieye et al. in [9] 
introduce a cost-efficient proactive VNF placement for CDNs. 
In this work, the location of end-users as destinations are known 
in advance while the location of their surrogate servers (i.e., 
media sources) are not known. Similar to [23] and [24], they do 
not consider the elastic scaling of resources in the existing 
VNFs. 
4) Traditional Resource Allocation for Conferencing 

There are some resource allocation solutions for peer-to-peer 
(P2P) and centralized multimedia conferencing [25]. Yuen and 
Chan [26] reduce video transmission delay from different video 



This article has been accepted for publication in IEEE Journal on Selected Areas in Communications (JSAC) Volume 37, Issue 5. Citation information: DOI 

10.1109/JSAC.2019.2906806, IEEE Journal on Selected Areas in Communications. This is an author copy. The respective Copyrights are with IEEE 

sources to users. They propose an algorithm to select peers as 
mixers to minimize the overall delay. However, their algorithm 
does not account for media handling response time. Chen et al. 
[27] also propose a P2P multi-party video conferencing solution 
to achieve a low end-to-end delay. They optimize the streaming 
rates of all peers subject to network bandwidth constraints. Their 
study reduces the end-to-end delay without tackling the specifics 
of media handling services. Multipoint Control Unit (MCU) [28] 
is a media handling component that can include different media 
handling functionalities. Traditionally, all requests are handled 
by a single MCU, where resources are allocated in a static 
manner. Thus, this approach is not scalable and uses resources 
inefficiently.  

Table I summarizes the evaluation of the related work with 
respect to the mentioned requirements of media handling 
services. Check marks in this table indicate that the requirement 
is met in the related work.  

III. SYSTEM MODEL 
As it is stated in the related work, the existing works in the 

literature which are dealing with resource allocation for 
multimedia conferencing do not meet all the specified 
requirements. Specifically, those approaches still face efficient 
resource usage and scalability challenges while meeting QoS 
requirements. Hence, the novelty of this paper is to propose a 
resource allocation solution for multimedia conferencing which 
efficiently uses resources and scales in terms of the number of 
participants while guaranteeing the QoS requirements. 
Moreover, our solution composes different media handling 
services to support the participants’ demands. Our system model 
includes the general assumptions that we made in this work and 
the mathematical model. In our mathematical model, we define 
CRAM as an Integer Linear Programming (ILP) problem. 

A. General Assumptions 

There are some assumptions that are considered to model the 
problem. Those categorized into two sections. 

1) Assumptions on Conferencing Applications  

We assume that conferencing applications run on a large-
scale geographically distributed cloud. Also, we consider 
multiple conferencing participants who want to join a 
conferencing application and share their videos. Moreover, 

participants are simultaneously considered as video sources and 
destinations. It is assumed that the conferencing application 
requires the video streams from all participants to be mixed and 
sent to each of them.  

2) Assumptions on Media Handling Services 

Media handling services can be placed in any data center, as 
long as the participants’ required QoS (such as latency) is 
satisfied. It is assumed that each media handling service is 
hosted on a VM. To connect media handling services, we 
consider different cost and latency for each network link.  

 Our video mixing model follows the Fork/Join parallelism 
technique. All video mixing requests fork off to several other 
mixing processes, which are executed on each video mixer until 
they finally join into a single mixed video. Therefore, the video 
mixing process for all participants depends on all video mixer 
instances. In this work, we assume the video mixing time in a 
video mixer depends on the number of input streams of that 
mixer. Note that all video mixers across different servers need 
the results from each other to complete the mixing process. 
Thus, the total mixing time depends on the number of video 
mixers and network latency. 

B. Mathematical Model 

This subsection presents our CRAM problem formulation, 
which is modeled as an ILP problem. 

1) Problem Statement 

Given � and � as sets of servers and participants (i.e., video 
sources and destinations) respectively, let ��(�) and ��(�) 
represent the time and the resource required to mix or compress 		video sources, respectively. We assume ��(�) and ��(�) are 
linear functions of		. Also, let ��, and ��, denote the time and 
cost to exchange a video from location � to	�, respectively. Each 
compressor instance can reduce the size of video by	�%. 
The		��, and ��, are reduced by	�% if there is a compressor at 
location	�. Also, �� are the resources which cannot be utilized 
for video mixing or compressing (e.g., OS required resources). 
There are thresholds �ε on QoS, pertaining to the maximum 
acceptable end-to-end delay, and ��� on resource capacity of 
server	�. The problem is finding the minimum number of VMs 
and minimum network cost, while respecting QoS. Also, finding 
the optimal order of using media handling services to efficiently 
use resources is part of the problem. 

We model this as an ILP problem, where we assume a media 
handling service to be analogous to a VM. Tables II and III 
delineate the inputs and variables of our problem, respectively.  

2) Objectives 

We assume the operational cost of a VM, in terms of non-
utilizable resources, supersedes the cost of resources required for 
media handling services request of a participant (i.e. the required 
resources to mix or compress one new video stream in a VM), 
as in (1). Furthermore, we assume homogeneous costs of video 
mixing and compressing resources on each server. Therefore, 
the operational cost	��, associated with a VM, inhibits the 
introduction of a new VM, in the event of a new participant’s 
arrival. That is, a new VM is only instantiated if an incoming 
request cannot be handled by increasing the resources of an 
existing VM.  

�� ≫ ���	(���) − ��(�)	� (1)

TABLE I. Evaluation of the related work 

  Scalability 
Cost 

Efficiency 
Elasticity 

Meeting 
QoS 

Conferencing 
Cloud 

Solutions  

[10] � � – – 
[11] � � – – 
[12] � – � � 
[13] – �  � 
[14] � – � � 

Non-
Conferencing 

Cloud 
Solutions 

[16] � � – � 
[17] � – – � 
[18] � � – – 
[19] � � – – 

NFV  
Solutions 

[23] � � – – 
[24] � � – – 
[9] � � – – 

Traditional 
Solutions  

[26] – – – � 
[27] – – – � 

 



This article has been accepted for publication in IEEE Journal on Selected Areas in Communications (JSAC) Volume 37, Issue 5. Citation information: DOI 

10.1109/JSAC.2019.2906806, IEEE Journal on Selected Areas in Communications. This is an author copy. The respective Copyrights are with IEEE 

Equation (2) depicts our objectives which are aiming at 
minimizing the overall cost. We aim to minimize the cost of 
allocated resources by minimizing the number of VMs. 
Moreover, we want to minimize the network cost. We use ��,� 
to represent a VM � which is hosting on server	�. Also,  �, 
represents a video stream connection from source	� to the 
location	�. The network cost between location	� and 	� is shown 
by	��,.  

!"# $%%��,� × �� + % %  �, × ��,	∈)∪+�∈)∪+�∈+�∈,
- (2)

In this work, we assume the cost of sending a video from one 
location to another location in both directions are the same 
(i.e.,	��, = �,�). Note that we know the locations of 
participants and servers. Therefore, to find the cost of sending a 
video from a participant to a VM, or from a VM to another VM, 
we use equations (3) and (4). �/,� = ��,/ = %(��,� × ��,/)�∈,

 ∀	� ∈ 0	
∀	1 ∈ � 

(3)

��2,�3 = % %(��2,�2 × ��3,�3 × ��2,�3)�3∈,�2∈,
 
∀	��, �4 ∈ 0 (4) 

Since equation (4) is not linear, we linearize it through 
equations (4-1) and (4-4). We use a binary auxiliary variable 5�2,�3  for linearizing this equation.  5�2,�3 ≤ ��2,�2  ∀	�� ∈ 0	

∀	��, �4 ∈ � 
(4-1) 

5�2,�3 ≤ ��3,�3  ∀	�4 ∈ 0	
∀	��, �4 ∈ � 

(4-2) 

5�2,�3 ≥ ��2,�2 + ��3,�3 − 1 ∀	��, �4 ∈ 0	
∀	��, �4 ∈ � 

(4-3) 

��2,�3 = % %(5�2,�3 × ��2,�3)�3∈,�2∈,
 

∀	��, �4 ∈ 0 (4-4) 

3) Constraints 

Based on the set	�, we can define two sets for video mixers 
(9) and compressors (:). We know that each video mixer has 
at least two video streams as input. Therefore, set 9 can be 
defined such that |9| = |�| − 1 and	9 ={!�, !4, … ,!|)|>�	}. Also, we assume we can have 
compressors between participants and mixers as well as between 
mixers. Therefore, set : can be defined such that |:| = |2�| −1 and	: = {A�, A4, … , A|4)|>�	}. Since each VM hosts just one 
media handling service, we define a set for all possible virtual 
machines as 0 where	0 = {: ∪ 9}. These sets are used in the 
following equations. 

We consider each participant has only one directed 
connection for sending the video stream and receiving the mixed 
video. Equations (5) and (6) ensure that there is only one 
directed connection from participants to VMs, and from VMs to 
participants, respectively.  

% /,� = 1
	�∈+

 ∀	1 ∈ � (5)

% �,/ = 1
	�∈+

 ∀	1 ∈ � (6)

Note that  �, is a directed connection where � and b are the 
head and tail, respectively. Moreover, participants need the 
mixed video from all others in the conference. Therefore, there 
is no direct connection between the participants. Equation (7) 
ensures this constraint. 

TABLE II. Problem inputs 
Input  Definition � set of servers � set of users, i.e., video sources and 

destinations 9 set of video mixer instances : set of compressor instances 0 set of all VMs, where 0 = {: ∪ 9} ��(�)	 time to mix or compress 	 video sources	��(�) required resources to mix or compress 		video sources in a VM �� non-utilizable VM operating resources ��, time to send a video between location a and 
b  ��, cost to send a video between location a and 
b �� cost of provisioning a VM on server �, � ∈ � �	 compress rate, 0 < � < 100 ��� threshold on the maximum amount of 
resources in server � �ε QoS threshold (acceptable mixing response 
time) D large enough constant 

 

TABLE III. Problem variables 
Variable   Definition 

E 

(4|�| − 2) ×(4|�| − 2) 

binary matrix, 
where 

		 �, = $ 1, "G �H H"�	 "IJAKLM		AN##JAKJ 	KN	 J�K"#�K"N#	′�′0, 	NKℎJIQ"�J  

R 
|�| × (3|�| −2) binary 
matrix, where 

		J�,
= $1, "G	1�JI	′�′	 "IJAKLM	NI	"# "IJAKLM	"�	AN##JAKJ 	KN	09	′�′0, 	NKℎJIQ"�J  

T 
|�| × (3|�| −2) binary 
matrix, where 

		��,� = U1, 	"G	�JI�JI	′�′	ℎN�K�	09	′�′0, 	NKℎJIQ"�J  

V 

|�| × (3|�| − 2) matrix where, M�, is the required time to 
transmit a video stream from user	′�′ to VM	′�′ and the total 

required time for media handling services to reach 
location	′�′ 

W 
|�| × (3|�| −2) matrix, 

where 
		X�,� = UY� , 	"G	�JI�JI	′�H	ℎN�K�	09	′�′0, 	NKℎJIQ"�J  

Z 
A vector where Y� is the number of users connected to the 

VM � 

[ 

|�| × (3|�| −2) × (3|�| −2) binary 
matrix, where 

G\,�/ = ] 1, "G	1�JI 1H H"�	"# "IJAKLM	AN##JAKJ 	KN	09 �H HKℎIN1Yℎ	09	′"′0, 	NKℎJIQ"�J  

 

 



This article has been accepted for publication in IEEE Journal on Selected Areas in Communications (JSAC) Volume 37, Issue 5. Citation information: DOI 

10.1109/JSAC.2019.2906806, IEEE Journal on Selected Areas in Communications. This is an author copy. The respective Copyrights are with IEEE 

%% \,^	^∈)
= 0

	\∈)
 (7)

To complete the video mixing process, there should be at 
least one VM, which is the tail of a direct or indirect connection 
to all original sources of video streams (i.e., participants). After 
finishing the whole video mixing process, the final mixed video 
stream should be sent to the participants from the mixers or 
compressors that have the whole mixing result. Equations (8) 
and (9) find the direct and indirect connection between all 
participants and all VMs. Equation (10) ensures that there is no 
indirect connection to any VM which has no direct connection. 
In addition, equations (11) and (12) consider all possible indirect 
connections from a participant1 to the VM	� through all other 
VMs. Based on these connections, equation (13) ensures that the 
final video streams come from the VMs which are directly or 
indirectly connected to all participants. Note that J�, is an 
indirect connection where � and � are the head and tail, 
respectively.  J/,� ≥  \,� +	J/,\ − 1 

∀	", � ∈ 0	
∀	1 ∈ � 

(8)

J/,� ≥  /,� 
∀	� ∈ 0	
∀	1 ∈ � 

(9)

J/,� ≤ %  �,��∈)∪+
 ∀	� ∈ 0	

∀	1 ∈ � 
(10)

J/,� ≤%G\,�/\∈+
+	 /,�  ∀	� ∈ 0	

∀	1 ∈ � 
(11)

G\,�/ ≤	 \,� + J/,\2  
∀	", � ∈ 0	
∀	1 ∈ � 

(12)

 �,/ ≤ ∑ J`,�`∈)|�|  
∀	� ∈ 0	
∀	1 ∈ � 

(13)

The compressors can just reduce the video size. Therefore, 
the total number of input and output streams are the same. This 
constraint is considered in equation (14). In addition, 
compressors can help to reduce the size of video and in 
consequence, reduce the network cost and transmission time. In 
this work, we assume there is no need to have two consecutive 
compressors. Thus, there is no direct connection between the 
two compressor instances. Equation (15) ensures this constraint. %  �,a�∈)∪+

= %  a,��∈)∪+
 ∀	A ∈ : (14)

%% \,^	^∈b
= 0

	\∈b
 (15)

On the other hand, mixers are responsible to mix video 
streams. Therefore, at least one video mixer should be directly 
or indirectly connected to all participants as the tail. This 
constraint is ensured in equation (16). 

% c∑ J/,�/∈)|�| d
�∈e

≥ 1  (16)

We linearize equation (16) through equations (16-1) and (16-
2) by using	ℎ� as an auxiliary variable.  % ℎ��∈e

≥ 1 (16-1)

ℎ� ≤	∑ J/,�/∈)|�|  ∀	! ∈ 9 (16.2)

A VM, that is hosting a media handling service, cannot be 
split across multiple servers. Equation (17) ensures that a VM 
exists on a single server. Furthermore, if there are any input 
streams connected to a VM, that VM should exist on one server, 
as depicted in (18) and (19). Also, if there are any output streams 
from a VM, that VM needs to exist on a server as shown in (20) 
and (21). Note that	D is a big enough constant used for 
linearization purpose. 

%��,� ≤ 1
�∈,

 ∀	� ∈ 0 (17) 

%  �,� ≤ D × f%��,��∈,
g

�∈)∪+ ∀	� ∈ 0 (18) 

%  �,� ≥%��,��∈,�∈)∪+ ∀	� ∈ 0 (19) 

%  �,� ≤ D × f%��,��∈,
g

�∈)∪+
 ∀	� ∈ 0 (20) 

			 %  �,� ≥%��,��∈,�∈)∪+
 ∀	� ∈ 0 (21) 

The number of VMs and their resources are bounded by the 
servers’ capacities. Equation (22) ensures that the required 
resources for media handling services and operating system in 
VMs are bounded by the server resource capacity.  

			�� × f%��,��∈+
g + 	���∑ (hi,jj∈k ×∑ lm,j)m∈n∪k � ≤ ���					

																																																																∀	� ∈ � 

(22)

We linearize (22) by replacing it with constraints (22-1) - 
(22-6).  

			 %  �,� = Y��∈)∪+
 ∀	� ∈ 0 (22-1)

			X�,� ≤ |�| × ��,�  ∀	� ∈ �	,∀	� ∈ 0 (22-2)X�,� ≤ Y� ∀	� ∈ �		,∀	� ∈ 0 (22-3)			X�,� ≥ Y� − |�| × �1 − ��,�� ∀	� ∈ �,∀	� ∈ 0 (22-4)			X�,� ≥ 0 ∀	� ∈ �,∀	� ∈ 0 (22-5)

			�� × f%��,��∈+
g + 	���∑ oi,jj∈k � ≤ �ε						∀	� ∈ �	 (22-6)

The whole mixing procedure time, depends on the video 
mixing, compressing, and the time required for video 
transmission over the network. To satisfy the QoS requirement, 
the mixing procedure time for all participants should be less than 
or equal to	�ε. Equations (23) to (25) ensure that this end-to-end 
time for all participants, abides by the QoS threshold	�ε.  M/,� ≥  \,� × �\,� + M/,\ + ��(∑ lm,jm∈n∪k ) ∀	", � ∈ 0	

∀	1 ∈ � 
(23)

M/,� ≥  /,� × �/,� 
∀	� ∈ 0	
∀	1 ∈ � 

(24)

M/,� +  �,/ × ��,/ ≤ �ε ∀	� ∈ 0	
∀	1 ∈ � 

(25)



This article has been accepted for publication in IEEE Journal on Selected Areas in Communications (JSAC) Volume 37, Issue 5. Citation information: DOI 

10.1109/JSAC.2019.2906806, IEEE Journal on Selected Areas in Communications. This is an author copy. The respective Copyrights are with IEEE 
We assume that the required time for sending a video from 

one location to another location in both directions are the same 
(i.e.,	��, = �,�). To find the time of sending a video from a 
participant to a VM, or from a VM to another VM, we use 
equations (26) and (27). �/,� = ��,/ = %(��,� × ��,/)�∈,

 ∀	� ∈ 0	
∀	1 ∈ � 

(26)

��2,�3 = % %(��2,�2 × ��3,�3 × ��2,�3)�3∈,�2∈,
 
∀	��, �4 ∈ 0 (27) 

Since equation (27) is not linear, we use the same canonical 
approach used in equation (4) to linearize it.  

IV. CRAM HEURISTIC 
As illustrated in Fig. 1 conferencing applications rely on a 

conferencing service that is offered as a SaaS. Media handling 
services offered as SaaS, require actual resources (e.g., CPU, 
RAM, and storage), that are provided by geographically 
distributed IaaSs. The resource allocation is performed at IaaS 
level using CRAM algorithm.  

CRAM allows determining the number of VMs for mixers 
and compressors needed in order to serve a set of media handling 
requests. In addition, it identifies the servers that will host these 
VMs, together with the resulting service composition. These 
aspects are covered with the objective of minimizing the overall 
costs while meeting QoS thresholds for multimedia 
conferencing applications. Note that to reach the lower media 
handling processing time, CRAM always assigns video streams 
to the VMs which have fewer connected streams on each server. 
Also, to respect the QoS threshold, CRAM may decide for using 
compressors. Note that using compressors leads to lower video 
resolution. However, in a dense network or when participants 
are very far from each other, it may help to abide by the latency 
threshold. 

Finding the best possible servers to host VMs can be mapped 
to the NP-hard facility location problem [29]. Besides finding 
the best servers to host VMs, our problem determines the best 
composition of media handling services. Solving our resource 
allocation problem for large-scale scenarios using exact 
algorithms is time-consuming. Thus, we introduce a heuristic to 
solve the problem efficiently and in a reasonable time. In this 
section, we propose the CRAM heuristic. It handles the 
composition of media handling services, together with the 
placement of the corresponding VMs. 

The CRAM heuristic first calculates the minimum required 
number of VMs for mixing all streams, regardless of 
participants’ locations. Then, it finds the possible servers with 
the minimum distance from all participants to host the mixers. 
Using these servers results in minimizing network latency and 
network cost. The CRAM heuristic also ensures that the 
available resources on these servers are enough to instantiate 
new VMs. Then, it checks the possibility of satisfying QoS 
requirements by having this minimum number of VMs hosting 
the mixers. If the QoS is not satisfied, the heuristic tries to 
increase the number of mixers (to reduce the mixing time) or add 
compressors (to reduce the transmission time). In these 
processes, our CRAM heuristic considers minimizing the cost as 
the main objective as well. Our solution is divided into four parts 
as described in Algorithms 1 to 4. We consider the constants and 

variables shown in Table II and Table III as the input to these 
algorithms. Also, to simplify the code, we assume the same 
resource capacity for all servers (i.e.,	��).  

Algorithm 1 is the main body of the CRAM heuristic. It takes 
as main inputs: (i) the list of participants and their locations, (ii) 
the list of servers and their locations, and (iii) the network 
transmission time and cost between different locations. This 
algorithm in collaboration with algorithms 2 to 4, finds the list 
of mixers, compressors, network connections, and the maximum 
end-to-end delay. This algorithm runs at the starting point of the 
conferencing application. In addition, it re-runs periodically to 
scale the system based on the fluctuations in the number of 
participants. 

Algorithm 1. Media Handling Resource Allocation  
Input:  �, �; // the sets of participants’ and servers’ locations, 
respectively �� // cost of resources on a server ��(�), 	��(�), ��; ��; // the maximum capacity for all servers � ← ��	; // the set of available resources on each server  ��; // the maximum acceptable end-to-end delay  
Output:	9, :, E; // list of Mixers (9), Compressors (:) and 
the connections between participants/mixers/compressors (E) 	KNK�L_ JL�M; // maximum end-to-end delay 
Phase 1: Find the minimum number of mixers 
1. 9"#_!"�JI ← 0; 
2. ℎ�# L"#Y_K"!J ← ∞; 
3. do 

4. 9"#_!"�JI ← 9"#_!"�JI + 1; 

5. 9��_1�JI = tuvw x |)|
e\y_�\hz{|; 

6. If (ℎ�# L"#Y_K"!J < �e(e�h_/�z{) + �e(e\y_�\hz{)) 
Then 

7.    return null; //there is no possible solution for the given 
|U| 

8. end if 

9. ℎ�# L"#Y_K"!J ← �e(e�h_/�z{) + �e(e\y_�\hz{) 
10. while ((ℎ�# L"#Y_K"!J ≥ ��)		}�	(�� +

��(e�h_/�z{) > �ε)) 
Phase 2: Select the best servers for hosting mixers 

11. �! ← 0; 
12. " ← 0; 
13. � ← �����(�, �);// sort servers based on minimum 

distance to the group of participants 

14. do 

15.    " ← " + 1; 
16.    while (�[�["]] ≥ �� + ��(e�h�i��)���	�! <

9"#_!"�JI) do 
17. 			9[�["]] ← 9[�["]] + 1;// number of mixers hosted on 

server " 
18.   	�! + +; 
19.    �[�["]] ← �[�["]] − (�� + ��(e�h_/�z{)); 
20.  end while 
21.    If (" == |�|	���	�! < 9"#_!"�JI) Then 
22.       return null; //not enough resources to support |U| 
23.    end if 



This article has been accepted for publication in IEEE Journal on Selected Areas in Communications (JSAC) Volume 37, Issue 5. Citation information: DOI 

10.1109/JSAC.2019.2906806, IEEE Journal on Selected Areas in Communications. This is an author copy. The respective Copyrights are with IEEE 
24. while (�! < 9"#_!"�JI) 
Phase 3: Check the need of compressor between mixers  

25. 1�J _�JI�JI� ← "; 
26. For j =1 → 	1�J _�JI�JI�  do    
27. !"�_K"!J[�[5]] ← 0; // maximum mixing time for each 

server 
28. For n =1 → 	1�J _�JI�JI�  do 
29.  KNK�L_K"!J ← �e(e�h_/�z{) + �e(e[,[^]]) +�e(/�zl_�z{�z{�) + �[�[5]][�[#]]; 
30.    if (KNK�L_K"!J ≥ ��) Then 
31.       K ← KNK�L_K"!J−��; // required time to compress 

      //Create/assign a compressor between servers j and 
n 

32.       AN!�IJ��_IJ�1LK� ←�����u��(5, �[#], K, "�JI�JI"); 
33.           if (AN!�IJ��_IJ�1LK� == �1LL) Then 
34.              return null; // there is no possible solution  
35.           end if 
36.       KNK�L_K"!J ← ��; 
37.    end if 
38.    If (KNK�L_K"!J > !"�_K"!J[�[5]]) Then 
39.       !"�_K"!J[�[5]] ← 	KNK�L_K"!J; // keep track of 

mixing time and network transmission time between all 
mixers 

40.    end if 
41. end for 
42. end for 

Phase 4: Assign participants to mixers AND check the need of 

compressors 

43. !��_ JL�M ← 0; 
44. For u =1 → |�| do 
45. KNK�L_K"!J ← 0; 

//find the closest server with a mixer that can accept a 
participant 

46. � ← ���(1,9); //acceptable closest server to the 
participant 1 

47. KNK�L_K"!J ← !"�_K"!J[�[�]] + 2 × �[�[1]][�[�]]; 
48.    If (KNK�L_K"!J ≤ ��) Then 

    //Assign the participant 1 to a mixer on server 
�, (� ∈ �) 

49.    E[1][�[�]] ← 1; //connection from participant to 
server 

50.    E[�[�]][1] ← 1; //connection from server to 
participant 

51. end if 

52.    Else  
      //Create/assign a compressor between participant u 
and server s 

53.       K ← KNK�L�\�z − ��; // required time to compress 
54.       AN!�IJ��_IJ�1LK ←

�����u��(1, �[�], K, "1�JI");  
55.           if (AN!�IJ��_IJ�1LK� == �1LL) Then 
56.              return null; // there is no possible solution  
57.           end if 
58.       KNK�L_K"!J ← ��; 
59.    end else 
60.   If (KNK�L_K"!J > !��_ JL�M) Then 

61.       !��_ JL�M ← 	KNK�L_K"!J;//maximum end-to-end 
delay 

62.   end if 
63. end for 

Return 9, :, E,!��_ JL�M 

Algorithm 1 has four main phases. In the first phase, it finds 
the minimum possible number of mixers that can mix the total 
number of video streams from all participants. To find this 
minimum number, it considers both the QoS threshold and the 
available resources on the servers.  

After finding the minimum number of mixers, in phase two, 
it places these mixers on the servers which are closer to most 
participants. Also, it makes sure that the selected server has 
enough resources to host VMs. To find the servers based on the 
minimum distances to most participants, it uses Algorithm 2 
(i.e., DSort).  

After placing the mixers on the chosen servers, in phase three 
it checks the need of having compressors between mixers. If the 
total time of the mixing process and the network transmission 
time between two servers cannot abide by the QoS threshold, a 
compressor will be added between these servers. To assign or 
create a compressor between two servers, Algorithm 3 (i.e., 
Compress) is used in this phase. At the end of phase three, all 
mixers and required compressors between them are placed. 
Moreover, the mixing time for each specific server will be 
known.  

In the last phase, participants are assigned to the closest 
mixer which can accept a new participant. The acceptable 
closest server is retrieved by using Algorithm 4 (i.e., ACS). 
Moreover, if the end-to-end delay is greater than the QoS 
threshold, it uses Algorithm 3 to assign a compressor between 
participant and mixer. 
Algorithm 2. (DSort): Sort servers based on minimum distance 
to a group of participants   
Input:  

�; // the sets of servers’ locations  
�; // the sets of participants’ locations  
Output:�JI�JI // sorted list of servers 
1.  JL�M[]; // an array to keep track of distance for each 

server 
2. For n =1 → |�|  do 
3.   For u =1 → |�|  do 
4.       JL�M[#] ← 	 JL�M[#] + �[��JI[1]][�[�]];	 
5.   end for 
6. end for 
7.  JL�M2[] ← 	�NIK( JL�M[]);// keep sorted distances in 

another array 
8. For " = 1 → |�|  do 
9.   For 5 = 1 → |�|  do 
10.      if ( JL�M2["] ==  JL�M[5]) Then 
11.      			�JI�JI["] ← 	5; // keep track of server n’s location 
12.          JL�M[5] ← −1; //change to a negative value to 

make sure not using the same server more than once 
13.         break; 
14.      end if 
15.   end for 
16. end for 
Return �JI�JI 



This article has been accepted for publication in IEEE Journal on Selected Areas in Communications (JSAC) Volume 37, Issue 5. Citation information: DOI 

10.1109/JSAC.2019.2906806, IEEE Journal on Selected Areas in Communications. This is an author copy. The respective Copyrights are with IEEE 
Algorithm 2 sorts the servers based on their minimum 

distances to a group of participants. It takes the list of servers 
and participants and returns a list of sorted servers. This 
algorithm calculates the total distance from each server to all 
participants and uses a simple sort function (e.g., binary sort).  
Algorithm 3. (Compress): Create or assign a compressor 
Input: �J# JI// video sender (i.e., a participant or a server) � // the location of destination server K // minimum time that needs to be reduced by compression �KI"#Y // to find video sender is a participant or another server � // the matrix of video transmission costs over the network � // the matrix of video transmission times over the network ��KJ��h  // the maximum acceptable compression rate (0 to 1) 
Output:	:, E // list of compressors and their connections  ��KJ // compression rate for the requested compress 
1. if (�KI"#Y == "�JI�JI") Then 
2.    � ← �[�J# JI]; // keep location of the server in � 
3. else 
4.    � ← ��JI�[�J# JI]; keep location of the participant in � 
5. end if/else 

6. 9��_ "�K�#AJ ← �[�][�] − K − ��(�); 
7. �N��"�LJ_�JI�JI�[]; list of possible servers that can host 

compressors between locations a and b 
8. GL�Y[] ← 0; // to keep the demand for adding a new 

compressor 
9. 5 ← 0; 
Phase 1: Find possible servers to host compressors between � 

and � 
10. For " =1 → |�|  do 
11.     if (�[�][�["]] < 9��_ "�K�#AJ AND �[�["]] >

��(�)) Then 
12.        5 ← 5 + 1; 
13. 							�N��"�LJ_�JI�JI�[5] ← "; keep server " as a possible 

server 
14.     end if 
15. end for 
16. if (|�N��"�LJ_�JI�JI�| == 0) Then 
17.   return null; // there is no possible server to host 

compressors 
18. end if 
Phase 2: Find the corresponding cost for hosting or using 

compressors on each possible server found 
19. :_� ← 1 − ��KJ��h; //  
20. For	" =1 → |�N��"�LJ_�JI�JI�|  do 
21.     � ← �N��"�LJ_�JI�JI�["]  
22.     if (:[�[�]] == 0) Then //no existing compressor on 

server � 
23.        if (�[�[�]] < �� + ��(�)) Then //not enough 

resources 
24.           Cost[�[�]]	← 	∞; 
25.           continue;   
26.        end if        
27.        Cost[�[�]]	← 	�[�][�[�]]+(��(�) + ��) × ��; 
28.        GL�Y[�[�]] ← 1;  
29.     end if 
30.     Else 

31.        !"#_�KIJ�! ← ∞; 
32.        For A =1 → :[�[�]]  do  
33.      		! ← 	AN!�_AN##JAK"N#�[�[�]][A]; //connected 

number of streams to the compressor A on server � 
34.        if (! < !"#_�KIJ�!) Then 
35.            !"#_�KIJ�!	 ← 	!;  
36.        end if 
37.        end for 
38.        if (��(�\y_��{z��	��) + �[�][�[�]] + �[�[�]][�] ×

:_� ≤ �[�][�] − K) Then 
39.            Cost[�[�]]	← 	�[�][�[�]]+(��(�)) × ��; 
40.        end if 
41.        Else 
42.            if (�[�[�]] < �� + ��(�)) Then //not enough 

resources 
43.                Cost[�[�]]	← 	∞; 
44.                continue;   
45.            end if        
46.            Cost[�[�]]	← 	�[�][�[�]]+(��(�) + ��) × ��; 
47.            GL�Y[�[�]] ← 1; 
48.        end else 
49.     end else 
50.   end for 
Phase 3: Assign a compressor between locations � and � 

based on cost 
51. :N�K2[] ← 	�NIK(:N�K[]);// keep sorted cost in another 

array 
52. For 5 = 1 → |:N�K|  do 
53.    if (:N�K2[1] == :N�K[�[5]]) Then 
54.    			AℎN�J ← �N��"�LJ_�JI�JI[5]; // chosen server to host 

the compressor between � and � 
55.       break; 
56.    end if 
57. end for 
58. if(�KI"#Y == 1�JI)Then 

59. E[�J# JI][�[AℎN�J]] ← 	1; connection from sender to 
server 

60. E[�[AℎN�J]][�J# JI] ← 	1; connection from server to 
sender 

61. else 
62. E[�[�J# JI]][�[AℎN�J]] ← 	E[�[�J# JI]][�[AℎN�J]] +

1; 
63. end if/else 

64. E[�[AℎN�J]][�] ← 	E[�[AℎN�J]][�] + 1; 
65. :[�[AℎN�J]] ← :[�[AℎN�J]] + GL�Y[�[AℎN�J]]; 
66. !"#_�KIJ�! ← ∞; 
67. 1�J _AN!�IJ��NI ← 0; 
68. For A =1 → :[AℎN�J]  do  
69.   		! ← 	AN!�_AN##JAK"N#�[�[AℎN�J]][A]; // number of 

streams  
70.     if (! < !"#_�KIJ�!) Then 
71.         !"#_�KIJ�!	 ← 	!;  
72.         1�J _AN!�IJ��NI ← A; 
73.     end if 
74. end for 
75. AN!�_AN##JAK"N#�[�[AℎN�J]][1�J _AN!�IJ��NI] ←

	AN!�_AN##JAK"N#�[�[AℎN�J]][1�J _AN!�IJ��NI] +
1; 



This article has been accepted for publication in IEEE Journal on Selected Areas in Communications (JSAC) Volume 37, Issue 5. Citation information: DOI 

10.1109/JSAC.2019.2906806, IEEE Journal on Selected Areas in Communications. This is an author copy. The respective Copyrights are with IEEE 
Phase 4: Find the required compression rate for this stream 
76. �JQ_K�, ← �[�][�] − K − �[�][�[AℎN�J]] −��(�\y_��{z��	��); 
77. �J�L_��KJ ← (�[�[AℎN�J]][�] − �JQ_K�,)/�[�[AℎN�J]][�]; 
Return :, E, �J�L_��KJ 

 The CRAM heuristic considers video mixing and 
compressing as two main media handling services. The 
compressing process is described in Algorithm 3. It has three 
main inputs: (i) two locations that need a compressor in between, 
(ii) the minimum time that needs to be reduced by compression, 
and (iii) the video mixing transmission times and costs between 
different locations. Our proposed compression algorithm does 
not have a fixed compression rate. It compresses as less as 
possible to have less impact on the video resolution. We also 
consider a maximum acceptable compression rate 
(i.e.,	��KJ��h) as the input for this algorithm. 

The compression algorithm has four main phases. In phase 
one, it finds the servers that are close enough to the video sender 
and have resources to compress a video stream. According to the 
servers found, in phase two, it calculates the corresponding cost 
for assigning the compressing request for each server. The cost 
is calculated based on the server’s resource cost and the network 
transmissions cost. If the chosen server has no compressor on it, 
this phase considers the cost of creating a new compressor on 
the server in the total cost. However, if there is an existing 
compressor on the server, this phase checks if the compressor 
can accept another stream. It ensures by checking the 
satisfaction of the minimum time that needs to be reduced by 
compression. In the case of satisfaction, there is no extra cost for 
creating a new VM and the server cost is calculated based on the 
required resources to compress one more stream. On the other 
hand, if it cannot satisfy, then another compressor needs to be 
created on this server and the cost of a new VM will be 
considered.  

According to the calculated cost to host a compressor for 
each server, phase three selects the server with the minimum cost 
and allocates the required resources for the compressor. Also, it 
creates a link from the sender to the compressor and from the 
compressor to the destination. If there is more than one 
compressor on the chosen server, it always assigns the video 
stream to a compressor with minimum connected streams. It 
helps to minimize the overall media handling time. At the end of 
this algorithm, in phase four it calculates the exact reduced time 
by compression and also finds the compression rate. 
Algorithm 4. (ACS): Find the acceptable closest server 
Input: 9 // list of Mixers 1// a participant � // the sets of servers’ locations  
Output: � //proposed server with mixer to host 1 
Phase 1: Find acceptable servers 
1. 5 ← 0; 
2. For " =1 → |�|  do 
3.   if (9[�["]] > 0) Then 
4.     For ! =1 → 9[�["]]  do 
5.       if (!"�JI_AN##JAK"N#�[�["]][!] < !��_1�JI) 

Then 
6.          5 ← 5 + 1; 

7.         �N��"�LJ_�JI�JI�[5] ← "; keep server " as a possible 
server  

8.         break;  
9.       end if 
10.     end for 
11.   end if 
12. end for 
Phase 2: Find the closest server from the acceptable servers 
13. !"#_ "�K�#AJ ← ∞; 
14. � ← 0; 
15. For " =1 → |�N��"�LJ_�JI�JI�|	do 
16.      if (!"#_ "�K�#AJ >

�[�[1]][�[�N��"�LJ_�JI�JI�["]]]) Then 
17.         � ← �N��"�LJ_�JI�JI�["]; //chosen server to assign 

the participant to a mixer 
18. 									!"#_ "�K�#AJ ←

�[�[1]][�[�N��"�LJ_�JI�JI�["]]]; 
19.      end if 
20. end for 
21. !"#_�KIJ�! ← ∞; 
22. For ! =1 → 9[�[�]]  do 
23.      if (!"�JI_AN##JAK"N#�[�[�]][!] < !"#_�KIJ�!) 

Then 
24.         !"�JI ← !; // chosen mixer to support participant 
25. 									!"#_�KIJ�!	 ← !"�JI_AN##JAK"N#�[�[�]][!]; 
26. end for 
27. !"�JI_AN##JAK"N#�[�[�]][!"�JI] ←

!"�JI_AN##JAK"N#�[�[�]][!"�JI] + 1; 
Return � 

Algorithm 4 is responsible to find the closest server which is 
hosting a video mixer to a participant. It has two main phases. In 
the first phase, it finds the servers with at least one video mixer 
whose total connected streams is less than a maximum possible 
connection calculated in phase one of Algorithm 1. In phase two, 
it selects the one which is closest to the participant. Also, it 
selects the video mixer on this server with the minimum 
connected streams to be responsible for this mixing request. In 
addition, it increases the number of connected video streams for 
the selected video mixer. 

V. SIMULATION RESULTS 
This section describes our evaluation scenarios and the 

simulation settings followed by the obtained results. 

A. Evaluation Scenarios and Simulation Settings 

We consider two different conferencing applications as our 
evaluation scenarios. (i) Massively Multiplayer Online Game 
(MMOG) and (ii) Online Distance Learning (ODL). In these 
scenarios, the conference participants are sharing their videos in 
the logic of the application. The aim is to allow each participant 
to have a mixed video from all other participants. In MMOG, 
participants are from different geographical locations in the 
world. Thus, the end-to-end delay may be high. In contrast, in 
ODL, the number of participants is limited, and they are 
distributed in a smaller area such as one country. For our 
simulation, we consider two different geographical distributions 
for participants as depicted in Fig. 3. (a) Homogeneous – 
participants are distributed over the whole area (i.e., world or 
country) with similar density. (b)  Heterogeneous – the majority 



This article has been accepted for publication in IEEE Journal on Selected Areas in Communications (JSAC) Volume 37, Issue 5. Citation information: DOI 

10.1109/JSAC.2019.2906806, IEEE Journal on Selected Areas in Communications. This is an author copy. The respective Copyrights are with IEEE 

of the participants are geographically distributed in the east and 
the west side of the area. These distributions can help to 
understand the behavior of the proposed solution when the 
participants are close or far from each other. 

For our simulations, we consider having servers in twenty 
cities over the world for MMOG and nine cities over the USA 
for ODL. For the network transmission time between servers, 
we use the information available at [30]. Fig. 4 shows the 
locations of considered servers. Also, we consider different 
number of participants for both scenarios. We assume a snapshot 
of the number of participants in this work. To study the impact 
of servers’ resources and network costs, we consider various 
settings with different simulation parameters. We assume that 
the network transmission cost between two locations is a linear 
function of the transmission time between them. In fact, the 
farther two locations are, the higher is the network cost between 
them. Also, for the media handling time and required resources, 
we consider our prototype experience in [5]. The simulation 
parameters and settings are depicted in Table IV. In our 
evaluation, we account for the server resource in terms of used 
memory. However, the mathematical model and our heuristic 
are general enough to accommodate other types of resources as 
well.  

B. Results 

We solve our mathematical model to achieve optimality for 
the small-case scenario using LPSolve Java Library1. For the 
medium-scale and large-scale scenarios (i.e., scenarios with a 
higher number of participants) deriving the optimal solution 
with exact algorithms used by the solver is very time-
consuming. Therefore, we only present the results of our 
heuristic that can support the number of participants in our 
simulation settings. However, the results in the small-case 
scenario allow us to validate our mathematical model. In 
addition, they show that our mathematical model enables the 
orchestration of media handling services and the possibility of 

                                                           
1 http://lpsolve.sourceforge.net/ 

composing these services on the fly. As an example of the result 
of the mathematical model for a small-case scenario, we ran our 
model while having 6 participants in Seattle and 2 participants 
in Toronto. The result shows a composition of one video mixer 
and one compressor. It allocates required resources for the video 
mixer in Seattle and for the compressor in Toronto.  

In ODL, we assume all participants are from the USA with 
homogeneous or heterogeneous geographical distributions. We 
run the CRAM heuristic for 100, 200, and 500 participants. Fig. 
5 shows the total cost by considering both servers’ resources and 
network costs. By increasing the number of participants, the 
need for media handling services increases. This leads to 
allocating more resources and implies higher communication 
traffic as well. Thus, as depicted in fig. 5, the total cost increases 
as a higher number of participants is considered. However, 
considering the same number of participants, the total cost in 
homogeneous geographical distribution is greater than that of 
the heterogeneous geographical distribution. The reason is that 
the heterogeneous geographical distribution favors the execution 
of some media handling services locally. By that, it leads to 
transmit a lower number of streams over the network and implies 
a lower total cost. 

Fig. 6 depicts the servers’ resources (i.e., RAM) that is 
allocated for media handling services. By increasing the number 
of participants, our heuristic allocates more resources to media 
handling services to cope with the requests. The amount of 
memory allocation for the same number of participants is greater 
in the case of heterogeneous geographical distribution. In fact, 
in the homogeneous geographical distribution of ODL, most of 
the participants can reach the mixers without the need of passing 
through the compressors. It leads to using fewer compressors in 
homogeneous and less memory allocation compared to 
heterogeneous.  

Fig. 7 shows the network cost. By increasing the number of 
participants, the traffic grows, implying a higher network cost. 

 

 

 
Fig. 3. Geographical distribution of participants in 

conferencing applications 

 

(a) Homogeneous Geographical Distribution

(b) Heterogeneous Geographical Distribution

Participants’ PopulationLow (0) High

TABLE IV. Simulation parameters and settings 
 MMOG ODL 

Number of servers 20 9 
Servers geographical 

distribution 
Over the world Over the USA 

Number of 
participants 

100, 2000, 3000 100, 200, 500 

Participants’ 
geographical 
distribution 

Homogeneous: Equally distributed in 
each server’s location 

Heterogeneous: Half of users are in 
the western city and half are in the 

eastern one ��(�) 6 msec per video source ��(�) 20 MB (RAM)  per video source �� 400 MB (RAM)   ��� 10240 MB (RAM)  per each server �� 400 msec �� $0.01 per MB ��, , ��, As in [1] 
Maximum acceptable 

compression rate 
0.95 

 

Fig. 4. Geographical distribution of the servers 



This article has been accepted for publication in IEEE Journal on Selected Areas in Communications (JSAC) Volume 37, Issue 5. Citation information: DOI 

10.1109/JSAC.2019.2906806, IEEE Journal on Selected Areas in Communications. This is an author copy. The respective Copyrights are with IEEE 

Unlike servers’ resources, the network cost is less in 
heterogeneous geographical distribution in comparison with 
homogeneous for the same number of participants. In fact, the 
aggregation of participants helps to decrease network 
communications and reduces the network cost. However, as it is 
depicted in Fig. 8, it causes more compression rate in 
heterogeneous in comparison with homogeneous geographical 
distribution for the same number of participants. In fact, the 
compressors should serve a higher number of participants in 
heterogeneous geographical distribution. Thus, it increases the 
compression rate to cope with the QoS threshold and reduces the 
network transmission time. The lines in the boxes indicate the 
median for the compression rate.  

On the other hand, in MMOG, we assume all participants are 
from different locations in the world. In this scenario, CRAM 
heuristic runs for 100, 2000, and 3000 number of participants. 
As depicted in Fig. 9, similar to the ODL, by increasing the 
number of participants, the total cost will increase as well. Also, 
the total cost for the same number of participants in 
heterogeneous geographical distribution is less than that of the 
homogeneous geographical distribution. Based on that, both 

evaluation scenarios show that regardless of the area size, the 
aggregation of participants can help reduce the total cost.  

The memory allocations for different numbers of 
participants in MMOG is depicted in Fig. 10. Unlike the results 
of ODL, the memory allocation for MMOG in both 
homogeneous and heterogeneous geographical distributions are 
almost the same. The reason is that in MMOG, even in the 
homogeneous geographical distribution, the participants are far 
from each other. This leads to using several compressors. In fact, 
the aggregation of the participants into two locations does not 
help to reduce the required resources for compressing service. 
However, as it is depicted in Fig. 11, the aggregation can help to 
reduce the network cost in heterogeneous geographical 
distribution. Although the network cost is decreased by the 
aggregation, it leads to more compression rate as it is shown in 
Fig. 12. In other words, more participants end up with lower 
video resolution in comparison with homogeneous geographical 
distribution. 

For the composition, the CRAM heuristic orchestrates the 
required instances of media handling services for participants. 
Note that each participant may follow a specific media handling 
composition which differs from others. Fig. 13 shows an 

 
Fig. 5. CRAM heuristic total cost in ODL  

 
Fig. 6. CRAM heuristic total memory allocation in ODL 

Fig. 7. CRAM heuristic network cost in ODL  

 
Fig. 8. CRAM heuristic video compression rate in ODL 

0

100

200

100 200 500 100 200 500

Homogeneous Heterogeneous

T
ot

al
 C

os
t (

$)

Number of Participants

Servers' Resource Network

0

5

10

100 200 500 100 200 500

Homogeneous Heterogeneous

M
em

or
y 

(G
B

)

Number of Participants

0
20
40
60
80

100 200 500 100 200 500

Homogeneous HeterogeneousN
et

w
or

k 
C

os
t (

$)

Number of Participants

0%
20%
40%
60%
80%

100%

100 200 500 100 200 500

Homogeneous HeterogeneousC
om

pr
es

si
on

 R
at

e

Number of Participants

Fig. 9. CRAM heuristic total cost in MMOG  

 
Fig. 10. CRAM heuristic total memory allocation in MMOG 

Fig. 11. CRAM heuristic network cost in MMOG  

Fig. 12. CRAM heuristic video compression rate in MMOG 

0

250

500

750

100 2000 3000 100 2000 3000

Homogeneous Heterogeneous

T
ot

al
 C

os
t (

$)

Number of Paerticipants

Servers' Resource Network

0

20

40

60

100 2000 3000 100 2000 3000

Homogeneous Heterogeneous

M
em

or
y 

(G
B

)

Number of Participants

0
50

100
150
200

100 2000 3000 100 2000 3000

Homogeneous Heterogeneous
N

et
w

or
k 

C
os

t (
$)

Number of Participants

0%
20%
40%
60%
80%

100%

100 2000 3000 100 2000 3000

Homogeneous Heterogeneous

C
om

pr
es

sa
io

n 
R

at
e

Number of Participants



This article has been accepted for publication in IEEE Journal on Selected Areas in Communications (JSAC) Volume 37, Issue 5. Citation information: DOI 

10.1109/JSAC.2019.2906806, IEEE Journal on Selected Areas in Communications. This is an author copy. The respective Copyrights are with IEEE 

example of the created compositions for two different 
participants in different locations. As shown in the figure, 
CRAM may assign the participant from Seattle to a mixer which 
is hosted by a server in Seattle. Thus, this participant will receive 
the final mixed stream from that mixer as well. However, if 
CRAM allocates resources to the mixers in Seattle and a 
participant from Toronto wants to use the mixers, to respect the 
maximum latency, CRAM allocates a compressor in a location 
which reduces the total cost and assigns the participant from 
Toronto to it. Then, the result of compression is sent to the mixer 
in Seattle. For this specific example, CRAM allocates a 
compressor on the Seattle server as well. Therefore, the final 
results are compressed one more time and then it sends to the 
participant in Toronto.  

C. Comparison Results 

As it is described in the related work section, to the best of 
our knowledge, CRAM is the first work on cloud-based resource 
allocation for media handling services that meets all the 
requirements of scalability, cost-efficiency, elasticity, and 
meeting the QoS. However, to compare the CRAM heuristic 
with other algorithms, we choose VMRA [5], as the baseline. 
The focus of the VMRA algorithm is minimizing the servers’ 
resource cost while meeting the QoS requirements. We use the 
same parameters mentioned in Table IV for both CRAM and 
VMRA simulations. In VMRA, servers and participants are 
divided into different zones. To support a higher number of 
participants, we consider 7 zones in the VMRA setting. In 
addition, since in the VMRA the network cost is not considered, 
we choose the servers which their distances are less than 50 
milliseconds. Fig. 14 is the comparison results between 
CRAM’s used memory and the one in VMRA. Both CRAM and 
VMRA can mix the video stream for the participants less than 
the QoS threshold. However, as it is depicted in Fig. 14, the 
VMRA memory usage is more than that of the CRAM for any 
same number of participants. The main reason is that in VMRA, 
video streams are mixed in each zone and the results will be sent 
to other zones to be mixed again. However, in CRAM, there are 
no zones and video mixers that can be placed anywhere based 
on demand. It leads to less number of video mixers and in 
consequence, consumes fewer resources in the CRAM. The 
average time to run the CRAM and VMRA heuristics are 154 
and 32 milliseconds, respectively. Although the execution time 
of CRAM is more than VMRA, this time is negligible. 

VI. CONCLUSION 
We propose a novel and scalable cloud-based resource 

allocation mechanism for media handling services. Our 
mechanism enables efficient utilization of leased resources. It 
allocates resources for fluctuating number of participants while 
meeting the end-to-end delay constraint. The proposed 

mechanism composes multimedia conferencing services from 
different media handling services to support the participants’ 
demands. We model the problem as an ILP problem and design 
a heuristic to solve it over large-scale scenarios. Our simulation 
results show that the number of participants and their 
geographical distribution have a significant impact on the 
servers’ resource cost, the network cost, and the required 
compression rate for video streams. In addition, the comparison 
results show that for the same number of participants, CRAM 
uses less resources than the closest algorithm in the literature. As 
the future work, prediction algorithms to predict participants’ 
arrivals can be introduced. In addition, the proposed solution can 
be evaluated with real datasets. Moreover, instead of considering 
the snapshots, algorithms can be designed with finer scalability 
(i.e., handling the joining and leaving of participants separately). 

ACKNOWLEDGMENT 
This work is partially the Canada Research Chair Program, 

and the Canadian Natural Sciences and Engineering Research 
Council (NSERC) through the Discovery Grant program 

REFERENCES 
[1] F. Taheri, J. George, F. Belqasmi, N. Kara, and R. Glitho, “A cloud 

infrastructure for scalable and elastic multimedia conferencing 
applications,” in Network and Service Management (CNSM), 2014 

10th International Conference on, 2014, pp. 292–295. 
[2] R. H. Glitho, “Cloud-based multimedia conferencing: Business 

model, research agenda, state-of-the-art,” in Commerce and 

Enterprise Computing (CEC), 2011 IEEE 13th Conference on, 
2011, pp. 226–230. 

[3] S. Ahmad et al., “Peer-to-peer live streaming for massively 
multiplayer online games,” in 2012 IEEE 12th International 

Conference on Peer-to-Peer Computing (P2P), 2012, pp. 67–68. 
[4] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A 

break in the clouds: towards a cloud definition,” ACM SIGCOMM 

Comput. Commun. Rev., vol. 39, no. 1, pp. 50–55, 2008. 
[5] A. Soltanian, M. A. Salahuddin, H. Elbiaze, and R. Glitho, “A 

resource allocation mechanism for video mixing as a cloud 
computing service in multimedia conferencing applications,” in 
Network and Service Management (CNSM), 2015 11th 

International Conference on, 2015, pp. 43–49. 
[6] V. Nae, R. Prodan, and T. Fahringer, “Cost-efficient hosting and 

load balancing of massively multiplayer online games,” in Grid 

Computing (GRID), 2010 11th IEEE/ACM International 

Conference on, 2010, pp. 9–16. 
[7] O. T. Time, “ITU-T Recommendation G. 114,” ITU-T May, 2000. 
[8] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and 

R. Boutaba, “Network function virtualization: State-of-the-art and 
research challenges,” IEEE Commun. Surv. Tutor., vol. 18, no. 1, 
pp. 236–262, 2016. 

[9] M. Dieye et al., “CPVNF: Cost-efficient Proactive VNF Placement 
and Chaining for Value-Added Services in Content Delivery 
Networks,” IEEE Trans. Netw. Serv. Manag., 2018. 

 
Fig. 14. CRAM vs. VMRA Servers' Resource Usage 

 

0

40

80

120

100 200 500 1000 2000 3000 5000M
em

or
y 

(G
B

)

Number Of Participants

VMRA CRAM

 
Fig. 13. Two different media handling compositions for users 

in Seattle and Toronto 



This article has been accepted for publication in IEEE Journal on Selected Areas in Communications (JSAC) Volume 37, Issue 5. Citation information: DOI 

10.1109/JSAC.2019.2906806, IEEE Journal on Selected Areas in Communications. This is an author copy. The respective Copyrights are with IEEE 
[10] A. P. Negralo, M. Adaixo, L. Veiga, and P. Ferreira, “On-Demand 

Resource Allocation Middleware for Massively Multiplayer 
Online Games,” in Network Computing and Applications (NCA), 

2014 IEEE 13th International Symposium on, 2014, pp. 71–74. 
[11] G. Gao, W. Zhang, Y. Wen, Z. Wang, and W. Zhu, “Towards cost-

efficient video transcoding in media cloud: Insights learned from 
user viewing patterns,” IEEE Trans. Multimed., vol. 17, no. 8, pp. 
1286–1296, 2015. 

[12] A. Soltanian, D. Naboulsi, M. A. Salahuddin, R. Glitho, H. 
Elbiaze, and C. Wette, “ADS: Adaptive and Dynamic Scaling 
Mechanism for Multimedia Conferencing Services in the Cloud,” 
in Consumer Communications & Networking Conference (CCNC), 

2018 15th IEEE Annual, 2018, pp. 1–6. 
[13] M. H. Hajiesmaili, L. T. Mak, Z. Wang, C. Wu, M. Chen, and A. 

Khonsari, “Cost-Effective Low-Delay Design for Multiparty 
Cloud Video Conferencing,” IEEE Trans. Multimed., vol. 19, no. 
12, pp. 2760–2774, 2017. 

[14] A. Soltanian, F. Belqasmi, S. Yangui, M. A. Salahuddin, R. Glitho, 
and H. Elbiaze, “A Cloud-based Architecture for Multimedia 
Conferencing Service Provisioning,” IEEE Access, vol. 6, no. 1, 
pp. 9792–9806, 2018. 

[15] M. Abdallah, C. Griwodz, K.-T. Chen, G. Simon, P.-C. Wang, and 
C.-H. Hsu, “Delay-Sensitive Video Computing in the Cloud: A 
Survey,” ACM Trans. Multimed. Comput. Commun. Appl. TOMM, 
vol. 14, no. 3s, p. 54, 2018. 

[16] R. Xavier et al., “Cloud resource allocation algorithms for elastic 
media collaboration flows,” in Cloud Computing Technology and 

Science (CloudCom), 2016 IEEE International Conference on, 
2016, pp. 440–447. 

[17] G. Gao, H. Hu, Y. Wen, and C. Westphal, “Resource provisioning 
and profit maximization for transcoding in clouds: a two-timescale 
approach,” IEEE Trans. Multimed., vol. 19, no. 4, pp. 836–848, 
2017. 

[18] Q. He, J. Liu, C. Wang, and B. Li, “Coping with heterogeneous 
video contributors and viewers in crowdsourced live streaming: A 
cloud-based approach,” IEEE Trans. Multimed., vol. 18, no. 5, pp. 
916–928, 2016. 

[19] C. Dong, Y. Jia, H. Peng, X. Yang, and W. Wen, “A Novel 
Distribution Service Policy for Crowdsourced Live Streaming in 
Cloud Platform,” IEEE Trans. Netw. Serv. Manag., 2018. 

[20] S. Mireslami, L. Rakai, B. H. Far, and M. Wang, “Simultaneous 
Cost and QoS Optimization for Cloud Resource Allocation,” IEEE 

Trans. Netw. Serv. Manag., vol. 14, no. 3, pp. 676–689, 2017. 
[21] D. Ardagna, M. Ciavotta, and M. Passacantando, “Generalized 

nash equilibria for the service provisioning problem in multi-cloud 
systems,” IEEE Trans. Serv. Comput., vol. 10, no. 3, pp. 381–395, 
2017. 

[22] J. G. Herrera and J. F. Botero, “Resource allocation in NFV: A 
comprehensive survey,” IEEE Trans. Netw. Serv. Manag., vol. 13, 
no. 3, pp. 518–532, 2016. 

[23] X. Fei, F. Liu, H. Xu, and H. Jin, “Adaptive vnf scaling and flow 
routing with proactive demand prediction,”,” in IEEE INFOCOM, 
2018. 

[24] X. Wang, C. Wu, F. Le, and F. C. Lau, “Online Learning-Assisted 
VNF Service Chain Scaling with Network Uncertainties,” in Cloud 

Computing (CLOUD), 2017 IEEE 10th International Conference 

on, 2017, pp. 205–213. 
[25] S. Zhang, D. Niu, Y. Hu, and F. Liu, “Server selection and 

topology control for multi-party video conferences,” in 
Proceedings of Network and Operating System Support on Digital 

Audio and Video Workshop, 2014, p. 43. 
[26] P. Yuen and G. Chan, “MixNStream: multi-source video 

distribution with stream mixers,” in Proceedings of the 2010 ACM 

workshop on Advanced video streaming techniques for peer-to-

peer networks and social networking, 2010, pp. 77–82. 

[27] X. Chen, M. Chen, B. Li, Y. Zhao, Y. Wu, and J. Li, “Celerity: a 
low-delay multi-party conferencing solution,” in Proceedings of 

the 19th ACM international conference on Multimedia, 2011, pp. 
493–502. 

[28] M. H. Willebeek-LeMair, D. D. Kandlur, and Z.-Y. Shae, “On 
multipoint control units for videoconferencing,” in Local 

Computer Networks, 1994. Proceedings., 19th Conference on, 
1994, pp. 356–364. 

[29] R. Z. Farahani and M. Hekmatfar, Facility location: concepts, 

models, algorithms and case studies. Springer, 2009. 
[30] “Global Ping Statistics,” WonderNetwork. [Online]. Available: 

https://wondernetwork.com/pings. [Accessed: 26-Aug-2018]. 
 


