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Abstract—We develop the optimal economical caching schemes
in cache-enabled heterogeneous networks, while delivering mul-
timedia video services with personalized viewing qualities to
mobile users. By applying scalable video coding (SVC), each
video file to be requested is divided into one base layer (BL) and
several enhancement layers (ELs). In order to assign different
transmission tasks, the serving small-cell base stations (SBSs)
are grouped into K clusters. The SBSs are able to cache and
cooperatively transmit BL and EL contents to the user. We
analytically derive the expressions for successful transmission
probability and ergodic service rate, and then the closed form of
EConomical Efficiency (ECE) is obtained. In order to enhance the
ECE performance, we formulate the ECE optimization problems
for two cases. In the first case, with equal cache size equipped
at each SBS, the layer caching indicator is determined. Since
this problem is NP-hard, after the l0-norm approximation, the
discrete optimization variables are relaxed to be continuous,
and this relaxed problem is convex. Next, based on the optimal
solution derived from the relaxed problem, we devise a greedy-
strategy based heuristic algorithm to achieve the near-optimal
layer caching indicators. In the second case, the cache size for
each SBS, the layer size and the layer caching indicator are
jointly optimized. This problem is a mixed integer programming
problem, which is more challenging. To effectively solve this
problem, the original ECE maximization problem is divided
into two subproblems. These two subproblems are iteratively
solved until the original optimization problem is convergent.
Numerical results verify the correctness of theoretical derivations.
Additionally, compared to the most popular layer placement
strategy, the performance superiority of the proposed SVC-based
caching schemes is testified.

Index Terms—EConomical Efficiency (ECE), heterogeneous
networks, layer caching indicator, scalable video coding (SVC),
wireless caching.

I. INTRODUCTION

The total amount of the data traffic generated by mobile

users is increasing rapidly these days, and it is predicted
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that a majority of the traffic will be spent on multimedia

video services [1]. Notably, multimedia video services are

playing an indispensable role in our daily lives. With this

data-demanding situation, more serious requirements and chal-

lenges are imposed on backhaul links, which deliver the

required contents from the core networks to the wireless edges,

such as the serving base stations (BSs). For large-scale video

transmissions, the limited capacity of backhaul links becomes

the bottleneck of the wireless networks. In this regard, to

effectively alleviate the severe backhaul burden and improve

the service delay, wireless caching is proposed, which deserves

more attraction and investigation for the Fifth Generation (5G)

communication networks [2]–[5].

With wireless caching, during the time periods with light

traffic, the contents predicted to be requested in peak hours

are pre-delivered from the core networks via backhaul links

[6]. These contents are then locally stored in the BSs. When

the cached contents are demanded by mobile subscribers,

they can be immediately transmitted without repeated back-

haul deliveries, which is more time- and energy-efficient. In

general, depending on the file placement policies, there are

two types of wireless caching, namely, uncoded caching [3],

[7] and coded caching [8], [9]. In the first type of caching,

complete videos, especially the popular ones, are stored in the

local cache of BSs. In the second caching scheme, different

segments or encoded packets of the video files are locally

stored. Among multiple coded caching schemes, the network

coding-based caching policies, such as the maximum distance

separable (MDS) coding-based caching [10]–[12] and the

random linear network coding (RLNC)-based caching [13],

have attracted a lot of attention and interest. On a parallel

avenue, random caching has been advocated recently [14],

[15], in which content files or their random combinations are

selected and stored with the optimal caching probabilities.

Owing to the superb advantages of wireless caching, it has

been extensively investigated in numerous scenarios, such as

cloud radio access networks (C-RAN) [3], [16], small cell

networks [17], [18], heterogeneous networks [7], [19], and

device-to-device communications [20], [21]. Wireless caching

is promising to alleviate the serious resource waste and traffic

burden of backhaul links. Additionally, it has the ability to

enhance the system performance in terms of service delay and

content hit probability.

Nowadays, there are a considerable number of multimedia

video services, and different viewing qualities are required

for different types of services. Generally speaking, mobile

http://arxiv.org/abs/1905.08765v1
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subscribers usually prefer basic perceptual qualities for sports

games and news reports, while high definition viewing qual-

ities are required for entertainment shows and movies. To

shed light on this, scalable video coding (SVC) has been

developed from the traditional advanced video coding (AVC)

[22]. SVC is capable of flexibly and conveniently deleting

or adding parts of the bit streams to adapt to diverse per-

sonalized user demands and dynamic network environments.

By employing SVC in wireless caching, each video file to be

transmitted is divided into two parts, namely, a base layer (BL)

and several enhancement layers (ELs). It should be pointed

out that different content layers are assigned with different

importance levels for decoding. In specific, BL content is the

fundamental part for a scalable video, and can provide the

most basic viewing quality. Supplementing ELs to the BL will

provide high definition viewing quality [23], and more ELs

lead to more enhanced perceptual experience. Recently, some

researchers have been concentrating on combining SVC with

wireless caching. In particular, Zhan et al. in [24] designed

an effective SVC-based layer placement scheme, which was

able to largely reduce the content download time. In literature

[25], each video file was encoded by SVC. In case of the

untrusted cache helpers, the BL was securely transmitted. By

designing the optimal transmit beamforming vectors and cache

placement strategy, the minimal transmit power consumption

was obtained. In our early work [18], by proposing the near-

optimal layer placement algorithm, we maximized the average

offloaded traffic to relieve the severe traffic burden of the

macro-cell BS (MBS) and reduce the service delay.

The aforementioned researches concentrated on analyzing

the successful transmission rate, average content download

time, average offloaded traffic and etc. However, these metrics

cannot fully evaluate and exploit the performance gain of

combining SVC with wireless caching. This is because these

researches only intended to enhance the system performance,

while the huge resource cost was not taken into consideration.

To this end, EConomical Efficiency (ECE) is recommended

as an important design metric [26]–[28], which is able to

balance the network revenue and resource cost. The ECE has

been studied in the literature. Specifically, in [26], Peng et al.

investigated the economical energy efficiency (EE) in C-RAN,

where the conventional EE and the cost of wired/wireless fron-

thaul links were jointly considered. In [27], the system metric

of ECE was used as a tool to proclaim basic findings and then

boost the trade-off between EE and spectral efficiency (SE).

Additionally, Zhang et al. in [28] devised the cost-effective

content placement scheme in heterogeneous networks. Under

the limited cache size, the authors maximized the network

capacity. However, all of the studies related to ECE have

overlooked the issue of different perceptual qualities, and more

performance gain could be obtained if the ECE and SVC are

combined into the cache-enabled networks.

In this paper, we investigate the optimal economical caching

schemes, aiming to optimize the ECE of cache-enabled het-

erogeneous networks. In the meanwhile, personalized viewing

experiences of mobile users are taken into account. Encoded

by SVC, each video file to be transmitted is divided into one

BL and several ELs. The user with basic viewing quality

requirement is provided with the standard definition video

(SDV), and only the BL content is delivered. Otherwise, both

BL and EL contents are jointly transmitted to offer the high

definition video (HDV), so that the user can enjoy excellent

perceptual experience. In the network of interest, the serving

small-cell BSs (SBSs) are divided into K clusters. These SBSs

are able to cache the SVC-based content layers, and then

cooperatively transmit cached layers to users when requested.

If some required layers cannot be exploited in the local cache

of SBSs, the nearest MBS will retrieve the missing layers

from the core networks. We analytically derive the successful

transmission probabilities (STPs) and ergodic service rates

(ESRs), and then the closed-form expression for ECE is

obtained. To enhance the ECE performance, under the limited

cache size, we formulate the ECE optimization problems for

two cases. In the first case, equal cache size is equipped at

each SBS, and the layer caching indicator is optimized. In the

second case, we consider the more practical scenario where the

cache size for each SBS, the layer size and the layer caching

indicator are jointly optimized. The main contributions of our

paper are summarized in the following:

• In this paper, we consider the different perceptual re-

quirements of multimedia users in cache-enabled het-

erogeneous networks, which has yet to be studied in

the literature. In specific, if the basic viewing quality is

demanded by the user, only BL of the required content is

delivered; otherwise, both BL and EL contents are jointly

transmitted to the user to provide HDV service.

• In the cases where the required content layers are pro-

vided by cooperative SBSs and the nearest MBS, we

derive the expressions for STP and ESR by applying

stochastic geometry. Accordingly, the closed-form ECE

is obtained to balance the network revenue and resource

cost. To the best of our knowledge, this is the first time

to consider the ECE and different viewing requirements

of uses in wireless caching.

• When equal cache size is available at each SBS, an NP-

hard, integer programming, ECE maximization problem

is formulated. We convexify the problem by taking the

l0-norm approximation and relaxing the discrete opti-

mization variables to be continuous, and finally solve

the relaxed problem efficiently with convex techniques.

Based on the solution, we devise a greedy-strategy based

algorithm to acquire the near-optimal layer caching indi-

cators. The sub-optimality property of this algorithm is

also analyzed.

• We further consider the practically increasing scenario

where the layer caching indicator, the cache size for each

SBS and the layer size are jointly optimized. This is a

more challenging mixed integer programming problem.

To effectively solve it, we divide the original ECE max-

imization problem into a layer placement subproblem

and a cache size and layer size allocation subproblem.

The first subproblem can be solved by taking the l0-

norm approximation and the proposed greedy-strategy

based algorithm. The second subproblem is convex, and

can be readily solved. The two subproblems iterate until
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convergence.

The remaining parts of this paper are organized as follows.

In Section II, we introduce the network model, the SVC-

based layer caching scheme as well as the power consumption

model of the considered network. In Section III, the STP

and ESR expressions are analytically derived, and then the

system metric ECE is obtained. In Section IV, we formulate

and solve the ECE maximization problem with equal cache

size. The ECE maximization problem with unequal cache size

and layer size is formulated and solved in Section V. Extensive

numerical results are presented in Section VI, and this paper

concludes in Section VII.

II. SYSTEM MODEL

In this section, we introduce the network model, the SVC-

based layer caching scheme as well as the power consumption

model of the observed network.

A. Network Model

The heterogeneous network with two tiers, i.e., the MBS tire

and the SBS tier, is considered in this paper. In the observed

network, the signal-antenna MBSs and SBSs are independently

and identically distributed, and the locations of these BSs obey

two homogeneous Poisson Point Processes (PPPs), denoted by

Φm and Φs. The density of the two processes are λm and λs,

respectively. Without loss of any generality, we concentrate on

the analysis of a typical user, whose location is in the center of

the observed two-tire heterogeneous network [6], [14], [29],

[30].1 2 To execute different transmission tasks, the serving

SBSs are divided into K clusters. In the circular area with

radius d1, the deployed SBSs form cluster S1, and the number

of SBSs belonging to this cluster is S1 = |S1|. The other SBSs

located in the annular area with radii dk−1 and dk (dk−1 < dk,

k = 2, 3, ...,K) form cluster Sk, and the number of SBSs in

cluster Sk is Sk = |Sk|. All SBSs are sorted in the ascending

order of the distances between the user and SBSs.

With the help of SVC, each video file to be requested and

transmitted is divided into L layers. Let l = 1 denote the

index for the BL content, and l = 2, ..., L indicate the ELs.

The BL is expected to offer the most fundamental perceptual

quality, and the user with EL contents can obtain superior

video quality. The video file with BL content can provide the

basic viewing quality, and this kind of video is defined as SDV.

On the other hand, the HDV contains both BL and ELs, and

is able to provide superior perceptual experiences to mobile

users. The SBSs are assigned to locally cache the SVC-based

video layers, and then forward them to the user. Note that

SBSs belonging to the same cluster are expected to cache

1 In this paper, we consider the network from the user centric perspective,
and the positions of the surrounding serving and interfering BSs of a typical
user follow PPPs. The performance analysis of each of the other users would
remain the same, by setting that user as the center of the observed network.
The user centric model can decouple the analysis of different users, and
provide analytical tractability and illustration convenience.

2The mobility of users is not explicitly taken into account in this work.
Nevertheless, the mobility is implicitly captured under the statistical nature of
the ECE analysis. This is because, given a realization of the PPP, a random
latitudinal shift of the realization can be a new valid realization of the PPP.

Layer Set

 MBS

 SBS

1-th cluster

2-th cluster

K-th cluster

Fig. 1. In the proposed system model, a typical user is located at the center
of the observed network, and the serving SBSs are grouped into K clusters.
As an example, each video file is divided into two layers.

and transmit the same copies of required content layers. This

scheme can increase the transmission diversity [6] and enhance

the received signal strength, such that the STP for delivering

the required layers can be improved. When the serving SBSs

cannot provide required layers to the user, the nearest MBS

will proceed to deliver uncached video layers from the core

networks through backhaul links. It is worthwhile to notice that

the line-of-sight (LoS) propagation plays the most important

role in short-range communications. Thus, it is reasonably

assumed that the distance between the serving SBS and the

user has the strongest impact on the received signal strength

[13], [31], which means that closer SBS provides larger signal

strength. Based on this assumption, when adopting successive

interference cancellation (SIC) for signal decoding, the trans-

mitted data symbols from SBSs deployed in cluster S1 can be

firstly decoded. If this signal is obtained without error, it can

be removed from the original received signal. Next, the signals

from clusters Sk (k = 2, ...,K) will be subsequently decoded.

Besides, the coexisting MBSs and SBSs are allocated with

orthogonal spectrum bands, such that the inter-tier interference

can be suppressed. A detailed example of the considered

system model is illustrated in Fig. 1.

If the required content layers are cached in the SBSs be-

longing to cluster Sk , these layers will be directly transmitted

to the typical user. The received signal from cluster Sk at the

typical user’s side can be written as

yk =
∑

l∈Sk

hlr
−αs

2

l tl
√

Ps +
∑

s∈Φs\Sk

hsr
−αs

2
s ts

√

Ps + z, (1)

where Ps and αs are the transmit power and path loss exponent

of SBSs, respectively; hl represents the channel gain from the

l-th SBS, following the complex Gaussian distribution with
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zero mean and unit variance, i.e., CN (0, 1); rl denotes the

distance between the user and the l-th SBS; tl is the transmit-

ted data symbol from the l-th SBS, satisfying E[t2l ] = 1; and

z refers to the additive white Gaussian noise. After SIC, the

received signal yk can be written as

yk =
∑

l∈Sk

hlr
−αs

2

l tl
√

Ps +
∑

s∈Φs\S1,...,Sk

hsr
−αs

2
s ts

√

Ps + z,

(2)

where the interference generated by the SBSs closer than those

located in cluster Sk is successfully cancelled.

On the other hand, when some of the required video layers

cannot be obtained from the local cache of SBSs, the nearest

MBS is supposed to deliver the missing layers. The received

signal from the nearest MBS, denoted by m0, can be given by

ym0
=

hm0
r
−αm

2
m0 qm0

√

Pm +
∑

m∈Φm\m0

hmr
−αm

2
m qm

√

Pm + z, (3)

where Pm and αm are the transmit power and path loss

exponent of MBSs, respectively; hm0
and hm represent the

channel gains from the nearest MBS and other MBSs, fol-

lowing CN (0, 1); rm0
denotes the distance between the user

and the nearest MBS; rm denotes the distance between the

user and other MBSs; moreover, qm0
and qm refer to the

transmitted data symbols from the nearest MBS and other

MBSs, satisfying E[q2m0
] = E[q2m] = 1.

It is a common phenomenon that the interference generated

by numerous coexisting BSs has more negative impact than

the noise in wireless networks. To this end, the interference-

limited network is taken into account, where the background

noise at the user’s side is assumed to be negligible. As a result,

the received signal-to-interference ratio (SIR) from cluster Sk

is given by

SIRk =

∣

∣

∣

∑Sk

l=Sk−1+1 hlr
−αs

2

l

∣

∣

∣

2

∑

s∈Φs\S1,...,Sk
|hs|

2
r−αs
s

. (4)

The SIR from the nearest MBS is written as

SIRm0
=

|hm0
|2 r−αm

m0
∑

m∈Φm\m0
|hm|2 r−αm

m

. (5)

B. SVC-based Layer Caching Scheme

In the network of interest, the total cache size of the entire

network is M . The cache size allocated to each cluster is

denoted by Mk, and it satisfies
∑K

k=1 Mk ≤ M . Considering

the same copies of required content layers are cached in

SBSs deployed in the same cluster, the allocated cache size

for each SBS in cluster Sk can be given by Mk/Sk. There

are F video contents required by the user at the beginning

of each transmission slot. The maximum size of each file

is Cf (f = 1, 2, ..., F ). Moreover, the size of the l-th
layer for the f -th video file is denoted by Cf,l, satisfying
∑L

l=1 Cf,l ≤ Cf . We sort all video files in the descending

popularity order. In such an order, more popular videos are

related to smaller indices. Assume that the video popularity is

known in advance.3 The Zipf’s law is a common distribution

for user requests [33]. Following this distribution, the request

probability of video files is given by [34]

p(f) =
f−α

∑F

n=1 n
−α

, f = 1, 2, ..., F, (6)

where α is defined as the skewness parameter to capture the

request concentration degree [33]. Typically, a larger value of

α manifests that fewer video contents can satisfy the majority

of user requests. Apart from the request probability of these

video files, the quality preference needs to be characterized as

well. The preference for SDV of the f -th file is given by [35]

gSDV(f) =
f − 1

F − 1
. (7)

Accordingly, the preference for HDV is gHDV(f) = 1 −
gSDV(f) = F−f

F−1 . When HDV is demanded by the user, it

is supposed that all ELs possess the same popularity. Hence,

the request probability for the divided content layers can be

calculated as

pf (l) =

{

p(f)· f−1
F−1 , l = 1,

p(f)· F−f
(F−1)(L−1) , l = 2, ..., L.

(8)

Employing SVC, each video file to be requested is divided

into several layers. Due to the limited cache size and power

resource of the observed network, it is critical to determine

which layer needs to be placed in the local cache of the SBSs

to achieve the optimal layer placement. Thus, we define the

binary variable xf,l,k as the layer caching indicator, which is

used to judge whether the l-th layer of the f -th video is cached

in the SBSs deployed in cluster Sk. If xf,l,k = 1, the l-th layer

of the f -th video is locally stored in SBSs belonging to Sk.

If xf,l,k = 0, this video layer cannot be locally obtained. For

notational simplicity, all layer caching indicators are collected

in a matrix x ∈ RF×L×K.

C. Power Consumption Model

In the considered cache-enabled networks, the total power

consumption consists of four parts, namely, the transmit power

consumption PT, the caching power consumption Pca, the

backhaul delivery consumption Pbh and the fixed power

consumption Pfix. Then, the total power consumption can be

modeled by

PTotal = PT + Pca + Pbh + Pfix. (9)

The details for these power consumptions are provided as

follows.

When cached video layers are requested, the serving SBSs

are required to cooperatively transmit them to the typical

user. These SBSs are in the active mode, and the power

consumptions for content transmission and some fixed budgets

do exist. Note that the MBS is always active so as to guarantee

3 The video popularity changes between different realizations of the Zipf’s
law, and it is typically updated at a large time scale [32]. During the time
period with unchanged popularity, by taking all cases of the random user
requests into account, we design the optimal layer placement scheme to
maximize the ECE. The same analysis and optimization can be applied again
after the popularity is updated.
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the basic converge and transmit the necessary signalings to its

serving users. Then, the transmit power consumption PT can

be calculated as

PT =
K
∑

k=1

∥

∥

∥

∥

∥

∥

F
∑

f=1

L
∑

l=1

pf (l)xf,l,k

∥

∥

∥

∥

∥

∥

0

SkζsPs + ζmPm, (10)

where ζs and ζm denote the power inefficiencies of the power

amplifiers for SBS and MBS, respectively. The l0-norm in

(10) is used to determine whether the files cached in SBSs

belonging to cluster Sk are required by the user. In the

similar manner, the fixed power consumption Pfix, caused by

site-cooling, managing circuit components and running the

oscillator, can be given by

Pfix =

K
∑

k=1

∥

∥

∥

∥

∥

∥

F
∑

f=1

L
∑

l=1

pf (l)xf,l,k

∥

∥

∥

∥

∥

∥

0

SkPfix,s + Pfix,m, (11)

where Pfix,s and Pfix,m are the fixed power consumptions for

SBS and MBS, respectively.

As for the caching power consumption Pca and backhaul

delivery consumption Pbh, the energy-proportional model has

been widely adopted in the content-centric networks [32], [36].

As described in [11], [37], the caching power consumption

is proportional to the total number of the data bits that are

placed in the local cache of BSs. Similarly, the backhaul

power consumption scales in proportion to the total number

of the data bits that are delivered from the core networks over

backhaul links. Following this energy-proportional model, Pca

and Pbh can be calculated as

Pca =

K
∑

k=1

F
∑

f=1

L
∑

l=1

xf,l,kccaCf,lSk, (12)

Pbh =
K
∑

k=1

F
∑

f=1

L
∑

l=1

pf (l)(1− xf,l,k)cbhCf,l, (13)

where cca and cbh are the caching and backhaul consumption

coefficients, respectively. Substituting (10), (11), (12) and (13)

into (9), the expression for total power consumption PTotal can

be obtained.

III. THE ANALYSIS AND DERIVATIONS OF ECE

In this section, we give the definition of ECE, and derive

the expressions for STP and ESR. Then, the closed-form ECE

can be developed.

A. The Analysis of ECE

We intend to consider the economical gain of the proposed

SVC-based layer caching scheme. To this end, the system

metric ECE is defined to measure the net profit of the network

at every second, as given by [27]

ECE = Re− C, (14)

where Re is the network revenue and C is the total cost. The

ECE is a more comprehensive metric to balance the network

revenue and total cost.

First, let us discuss the revenue of wireless networks. The

network revenue represents the economical gain at every

second when providing data services to multimedia users.

Typically, different kinds of mobile services possess different

revenue functions, where the linear, logarithmic and constant

functions are adopted as revenue functions for services with

voice traffic, limited-volume traffic and unlimited-volume traf-

fic, respectively [38]. The data traffic generated by multimedia

video services can be regarded as the volume-limited traffic,

thus the logarithmic function is employed as the revenue

function, as given by [27]

Revenue
∆
= krRref log2(1 +

R

Rref
). (15)

In (15), kr is the unit price per data bit, and R is the service

rate. In addition, Rref represents the referenced date rate,

which is able to guarantee the minimum quality of service

(QoS) requirement for the user. As mentioned earlier, the total

revenue of the proposed SVC-based layer caching scheme can

be given by

Re =kr

K
∑

k=1

F
∑

f=1

L
∑

l=1

pf (l)[xf,l,kRref,s log2(1 +
Rk

Rref,s
)

+ (1− xf,l,k)Rref,m log2(1 +
Rm0

Rref,m
)]

=kr

K
∑

k=1

F
∑

f=1

L
∑

l=1

pf (l)[xf,l,k(Rref,s log2(1 +
Rk

Rref,s
)

−Rref,m log2(1 +
Rm0

Rref,m
))] +R0, (16)

where

R0 = KkrRref,m log2(1 +
Rm0

Rref,m
). (17)

In (16), Rref,s = Ws log2(1 + γs) and Rref,m = Wm log2(1 +
γm), where Ws and Wm are the allocated system bandwidths

for SBSs and MBSs, and γs and γm are set as the minimum

QoS requirements for cooperative SBSs and the nearest MBS.

Additionally, Rk and Rm0
are denoted as the ESRs achieved

by SBSs in cluster Sk and the nearest MBS, whose definitions

are given as follows.

Definition 1. The ESRs that are contributed by SBSs deployed

in the k-th cluster and the nearest MBS are defined as

Rk = WsE {log2(1 + SIRk)|SIRk ≥ γs} , (18)

Rm0
= WmE {log2(1 + SIRm0

)|SIRm0
≥ γm} , (19)

where the expectations are related to the small-scale fading, as

well as PPP-distributions of the locations of SBSs and MBSs.

In the unit time of one second, the total cost is the monetary

overhead when running the cache-enabled network. The cost

is proportional to the total power consumption, as given by

C = kcPTotal

= kc[

K
∑

k=1

∥

∥

∥

∥

∥

∥

F
∑

f=1

L
∑

l=1

pf(l)xf,l,k

∥

∥

∥

∥

∥

∥

0

Sk(ζsPs + Pfix,s)
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+

K
∑

k=1

F
∑

f=1

L
∑

l=1

xf,l,kCf,l(ccaSk − pf(l)cbh)] + C0, (20)

where

C0 = kc
[

K

F
∑

f=1

L
∑

l=1

pf (l)cbhCf,l + ζmPm + Pfix,m

]

, (21)

and kc specifies the unit price per Joule. Finally, by substi-

tuting (16) and (20) into (14), the expression for ECE can

be derived. However, the ESRs appearing in (16) are not yet

available, and will be derived in the following subsection.

B. The Derivations of ESRs

In order to obtain the closed-form ECE, we need the

expressions for ESR. The derivations of Rk and Rm0
are

revealed in the following theorem.

Theorem 1. When the typical user is provided with the

required video layers by SBSs in cluster Sk and the nearest

MBS, the ESRs can be calculated as

Rk =Ws log2(1 + γs) +
Ws

ln 2

∫ dk

dk−1

...

∫ dk

dk−1

fs(xk)dxk

∫ ∞

γs

Pr(SIRk ≥ t|rk = xk)

Pr(SIRk ≥ γs|rk = xk)(1 + t)
dt, (22)

Rm0
=Wm log2(1 + γm) +

Wm

ln 2

∫ ∞

0

fm(xm0
)dxm0

∫ ∞

γm

Pr(SIRm0
≥ t|rm0

= xm0
)

Pr(SIRm0
≥ γm|rm0

= xm0
)(1 + t)

dt, (23)

where d0 = 0; xk = [xsk−1+1, ..., xsk ]; rk =
[rsk−1+1, ..., rsk ]; Pr(SIRk ≥ γs|rk = xk) and Pr(SIRm0

≥
γm|rm0

= xm0
) are the conditional STPs for SBSs in cluster

Sk and the nearest MBS, respectively. Moreover, the probabil-

ity density functions (PDFs) of the locations of serving SBSs

in Sk and the nearest MBS can be expressed by

fs(xk) =

Sk
∏

l=Sk−1+1

2xl

d2k − d2k−1

, (24)

fm(xm0
) = 2πλmxm0

exp(−πλmx
2
m0

), (25)

where we set S0 = 0.

Proof: For brevity, the proof for this theorem is sup-

pressed. Readers can refer to our earlier paper for more details

[19, Theorem 1].

From theorem 1, we can see that, to obtain the expressions

for ESR, the STPs need to be derived.

Theorem 2. By applying stochastic geometry, the STPs of

cooperative SBSs belonging to cluster Sk and the nearest MBS

can be calculated as

Pr(SIRk ≥ γs) =

∫ dk

dk−1

...

∫ dk

dk−1

Sk
∏

l=Sk−1+1

2xl

d2k − d2k−1

exp(−πλs(k1γs)
2
αs Gαs

(d2k(k1γs)
− 2

αs ))dxk, (26)

Pr(SIRm0
≥ γm) = (γ

2
αm
m Gαm

(γ
− 2

αm
m ) + 1)−1, (27)

where k1 = 1
∑Sk

l=Sk−1+1
x
−αs
l

and Ga(b) =
∫∞

b
1

1+r
a

2
dr.

Proof: Please refer to Appendix A.

Based on the derived expressions for STP, the ESRs can

be obtained as in (28) and (29) shown in the top of the next

page. By substituting (28) and (29) into (16), the expression

for ECE is obtained.

IV. THE ECE MAXIMIZATION PROBLEM WITH EQUAL

CACHE SIZE AND LAYER SIZE

In this section, we optimize the ECE when equal cache size

is equipped at each SBS. Moreover, content layers from the

same video file are of equal size, and only the layer caching

indicator needs to be determined.

A. The Formulated ECE Optimization Problem and the Pro-

posed Algorithm

When equal cache size is equipped at each SBS, the

cache size of each SBS can be calculated as Q = M∑
K

k=1
Sk

.

Moreover, for content layers belonging to the same video

file, the layer sizes are identical, and can be calculated as

Cf,l = Cf/L. To improve the ECE performance, under

the limited cache size, the ECE optimization problem is

formulated as

max
x

ECE (30a)

s.t.
K
∑

k=1

xf,l,k ≤ 1, ∀f, ∀l, (30b)

F
∑

f=1

L
∑

l=1

xf,l,kCf,l,≤ Q, ∀k, (30c)

xf,l,k ∈ {0, 1}, ∀f, ∀l, ∀k. (30d)

Here, constraint (30b) indicates that one video layer should

be placed in no more than one cluster of the SBSs, such that

the layer diversity can be enhanced and the performance of

content hit probability is improved. The cache size restriction

for each SBS is captured in constraint (30c). (30d) specifies

the feasible range of the discrete variable xf,l,k .

Problem (30) is an integer programming problem. It is

nonconvex and NP-hard [24]. Additionally, the l0-norm shown

in the objective function (30a) makes the problem intractable.

To solve the problem effectively, we firstly suppress the l0-

norm. The l0-norm of a scalar x can be approximated as [26]

‖x‖0 ≈
x(t)

x(t) + τ
, (31)

where the superscript “(t)” indicates the optimal value ob-

tained in the t-th iteration, and τ is a constant parameter to

characterize the approximation accuracy. Then, the total cost

can be rewritten as

C̃ = kc[

K
∑

k=1

∑F

f=1

∑L

l=1 pf (l)x
(t)
f,l,k

∑F
f=1

∑L
l=1 pf(l)x

(t)
f,l,k + τ

Sk(ζsPs + Pfix,s)
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Rk =Ws log2(1 + γs) +
Ws

ln 2

∫ dk

dk−1

...

∫ dk

dk−1

Sk
∏

l=Sk−1+1

2xl

d2k − d2k−1

dxk

∫ ∞

γs

exp(−πλsk
2
αs

1 (t
2
αs Gαs

(d2k(k1t)
− 2

αs )− γ
2
αs
s Gαs

(d2k(k1γs)
− 2

αs )))
1

1 + t
dt, (28)

Rm0
=Wm log2(1 + γm) +

2πλmWm

ln 2

∫ ∞

0

xm0
exp(−πλmx

2
m0

)dxm0

∫ ∞

γm

exp(−πλmx
2
m0

(t
2

αm Gαm
(t−

2
αm )− γ

2
αm
m Gαm

(γ
− 2

αm
m )))

1

1 + t
dt. (29)

+

K
∑

k=1

F
∑

f=1

L
∑

l=1

x
(t)
f,l,k(ccaCf,lSk − pf (l)cbhCf,l)] + C0. (32)

After the l0-norm approximation, the original Problem (30) is

still difficult to solve due to its NP-hard property. Then, the

discrete binary variable xf,l,k is relaxed to be continuous. The

relaxed ECE optimization problem is written as

max
x̃

ẼCE = Re− C̃ (33a)

s.t.

K
∑

k=1

x̃f,l,k ≤ 1, ∀f, ∀l, (33b)

F
∑

f=1

L
∑

l=1

x̃f,l,kCf,l ≤ Q, ∀k, (33c)

0 ≤ x̃f,l,k ≤ 1, ∀f, ∀l, ∀k, (33d)

where the matrix x̃ ∈ RF×L×K collects all values of x̃. The

relaxed Problem (33) is convex, and its optimal solution can be

generated by running off-the-shelf CVX solver, i.e., SeDuMi,

iteratively until convergence. According to the optimal solution

for (33), a greedy-strategy based algorithm is proposed to

achieve the near-optimal xf,l,k, and more details are presented

in Algorithm 1.

At the beginning of Algorithm 1, we initialize all values

of xf,l,k to be 0, and then zf,l,k is calculated to evaluate the

marginal economical gain when caching the l-th layer of the f -

th video file in SBSs located in cluster Sk. We set the particular

xf,l,k to 1 first, which possesses the same subscript with

the optimal x̃f,l,k that is generated by (33) and can provide

the largest zf,l,k. Afterwards, if SBSs reserve enough storage

space, the other xf,l,ks are set to 1 successively following

the sorted order of zf,l,k. Note that the constraints in (30)

are reflected in Algorithm 1. In specific, to meet constraint

(30b), we have Step 10), which ensures that each video layer

is cached at no more than one cluster of SBSs. Step 7) makes

sure that the total size of cached layers is less than or equal

to the allocated cache size for each SBS, satisfying constraint

(30c). When Algorithm 1 is over, all layer caching indicators

are examined, and the values of these indicators are set to 1

or remain 0 otherwise, then constraint (30d) is satisfied. From

these steps, the near-optimal solutions for Problem (30) can

be achieved.

It is noted that the preference indifference [39] may occur

in Step 4), which means that different content layers cached in

the same cluster of SBSs may possess the same value of zf,l,k.

To deal with this issue, we establish the following principles:

• When file indices for these videos are different, the

layer with smaller ratio between the file size and request

probability will be cached with higher priority. This

principle can improve the file diversity and thus enhance

the content hit probability.4

• When file indices for these layers are identical but the

layer indices are different, the layer with smaller index

will be cached with higher priority. This is due to the fact

that the layer of a scalable video with smaller index is

more important in the decoding process.

B. Discussions of the Proposed Algorithm 1

Stability and Optimality Analysis. In the considered layer

placement problem, multiple video layers search for the SBSs

that can provide the largest economical caching gains. The

proposed optimal layer placement Problem (30) is a variation

of the many-to-one matching problem for the user-SBS asso-

ciation, where several users search for the best SBS and then

establish connections, and the SBS can select the optimal users

to serve. For the many-to-one matching problem, the stability

is a key performance metric. In order to illustrate the stability

property of Algorithm 1, we give the following definition [40].

Definition 2. A layer-SBS association is stable if there does

not exist two layers li and lj that are cached in SBSs belonging

to two clusters ni and nj , i 6= j, respectively, although li
prefers nj and lj prefers ni.

From the definition of stability, the stability property of

Algorithm 1 can be revealed.

Theorem 3. After the proposed greedy-strategy based Algo-

rithm 1, the layer-SBS association, i.e., the layer placement,

is stable.

Proof: See Appendix B.

Next, the sub-optimality of the proposed Algorithm 1 is

given in the following theorem.

Theorem 4. Under the case with FLK → ∞, the relaxed

Problem (33) is equivalent to the original maximization Prob-

lem (30), such that the optimal layer caching indicators can

4 In the special case with equal file size, the comparison of file-size-to-
request-probability ratios degrades into the comparison of request probabil-
ities, which indicates that the content layer from more popular videos has
higher caching priority.
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Algorithm 1 The proposed greedy-strategy based heuristic

algorithm for solving Problem (30).

1) Initialization: set xf,l,k = 0 for ∀f, ∀l, ∀k, and set mk =
Q for ∀k.

2) Solve the relaxed optimization Problem (33), and obtain

the optimal solution x̃f,l,k.

3) For ∀f, ∀l, ∀k, calculate the marginal ECE, denoted by

zf,l,k, as

zf,l,k = krpf(l)[x̃f,l,k(Rref,s log2(1 +
Rk

Rref,s
)

−Rref,m log2(1 +
Rm0

Rref,m
)) +Rref,m log2(1 +

Rm0

Rref,m
)]

− kc[||pf (l)x̃f,l,k||0Sk(ζsPs + Pfix,s)

+ x̃f,l,kCf,l(ccaSk − pf (l)cbh) + Cf,lpf (l)cbh],

and the matrix Z ∈ RF×L×K is used to gather all values

of zf,l,k.

4) Sort x̃f,l,k in the decreasing order of zf,l,k, and set i = 1.

5) while (i ≤ FLK and Z is not empty)

6) find the maximum zf,l,k;

7) if mk ≥ Cf,l

8) xf,l,k = 1;
9) mk = mk − Cf,l;

10) Delete zf,l,k′ , ∀k
′

6= k from Z;

11) end if

12) Delete zf,l,k from Z;

13) i = i+ 1;
14) end while

be directly acquired by solving Problem (33) without invoking

Algorithm 1.

Proof: Similar steps for proof can be found in [25,

Theorem 2].

Computational complexity. The original Problem (30)

cannot be solved in the polynomial time due to its NP-hard

property. After employing Algorithm 1, the computational

complexity is largely reduced. In specific, after we derive

the optimal solution for the relaxed Problem (33), in the

worst case, when Algorithm 1 is over, all layer caching

indicators will be examined, then the layer caching indicators

can be determined. Therefore, the computational complexity

of Algorithm 1 is O(FLK).

V. THE ECE MAXIMIZATION PROBLEM WITH UNEQUAL

CACHE SIZE AND LAYER SIZE

For the more practical scenario, the cache size and layer size

are not identical for different SBSs and video layers. In this

section, we plan to search for the optimal cache size, layer size

and layer caching indicator to optimize the ECE. The cache

size of the k-th cluster is denoted by Mk, and all values of

Mk are collected in a vector M ∈ RK×1. Moreover, the sizes

of all video layers are collected in a matrix C ∈ RF×L. Then,

the ECE optimization problem with unequal cache size and

Algorithm 2 The proposed iterative algorithm for solving

Problem (34).

1) Initialization: input the feasible x, the accuracy threshold

△, and the maximum number of iterations T .

2) Set δ as a large value such that δ ≫ △, t = 0 and

ECE(t) = 0.

3) while (δ > △ and t ≤ T )

4) With given x
∗, solve Problem (35) by running CVX

solvers, and obtain the optimal C∗ and M
∗;

5) With given C
∗ and M

∗, solve Problem (36) by Algo-

rithm 1, and obtain the optimal x∗ and ECE∗;

6) δ = |ECE∗ − ECE(t)|;
7) t = t+ 1;

8) ECE(t) = ECE∗;

9) end while

10) Output: The optimal cache size C
∗, layer size M

∗, layer

caching indicator x∗, and the corresponding ECE∗.

layer size is reformulated as

max
x,M,C

ECE (34a)

s.t.
K
∑

k=1

xf,l,k ≤ 1, ∀f, ∀l, (34b)

F
∑

f=1

L
∑

l=1

xf,l,kCf,l,≤ Mk/Sk, ∀k, (34c)

K
∑

k=1

Mk ≤ M, (34d)

Cf,l ≥ CTH
l , ∀f, ∀l, (34e)

L
∑

l=1

Cf,l ≤ Cf , ∀f, (34f)

xf,l,k ∈ {0, 1}, ∀f, ∀l, ∀k. (34g)

Constraint (34b) indicates that one content layer is supposed

to be cached in no more than one cluster of the SBSs. The

cache size constraint of each SBS is captured in (34c), and

the total cache size of the entire network is limited by (34d).

To guarantee the required video contents can be correctly

decoded, the size of each content layer should be no less than

the predefined level. Then, we have constraint (34e), where

CTH
l denotes the minimum size requirement of the l-th layer.

In constraint (34f), we ensure that the total size of layers from

the same video content will not exceed the predefined content

size. Finally, constraint (34g) gives the feasible variable range

of xf,l,k.

Problem (34) is a mixed integer programming problem,

which is NP-hard and even less tractable than Problem (30).

To solve this problem, we divide (34) into two subproblems,

namely, the layer placement subproblem, and the cache size

and layer size allocation subproblem. First, under the given

cache size and layer size, the layer placement subproblem can
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be written as

max
x

ECE (35a)

s.t. (34b), (34c), (34g). (35b)

Obviously, Problem (35) is of resemblance to Problem (30).

With the help of Algorithm 1, Problem (35) can be efficiently

solved, where mk = Mk/Sk in Step 1).

Then, when the layer caching indicators are known, the

cache size and layer size allocation subproblem is given by

max
M,C

ECE (36a)

s.t. (34c), (34d), (34e), (34f). (36b)

Problem (36) is convex, and can be efficiently solved by

running the CVX solver, such as SeDuMi. The two subprob-

lems require to be iteratively solved until convergence. The

detailed procedures for solving Problem (34) is summarized

in Algorithm 2.

VI. SIMULATION RESULTS

In this section, the simulation hardware platform is a

Windows x64 system with 3.2 GHz CPU and 8 GB RAM.

Additionally, the software platform is MATLAB R2016a with

off-the-shelf CVX solver, namely, SeDuMi. We first show

the simulation results of derived STPs and ESRs. Next, the

ECE performance of Algorithms 1 and 2 is demonstrated

under different parameter settings. In order to present the

effectiveness of devised SVC-based caching policies, we

employ the most popular layer placement (MPLP) scheme

as the comparison scheme. In the MPLP strategy, content

layers from the most popular video files are selected and

locally cached in SBSs until the cache sizes of SBSs are

fully occupied. The MPLP is able to fully utilize the local

caching resources of BSs, and is widely used in state-of-the-

art researches [3], [32]. Additionally, for very few studies

which jointly considered SVC with wireless caching [24], [25],

the cache placement policies were tailored for their specific

scenarios, which are substantially different from ours. They

cannot provide meaningful comparisons to our approaches. As

a result, we focus on MPLP as the benchmark. The settings

of simulation parameters are listed in Table I.

Fig. 2 illustrates the numerical results of derived expres-

sions, as well as the Monte Carlo simulations, for STPs under

varying QoS requirements. From the figure, we can see that

the gap between theoretical analysis and Monte Carlo simu-

lations is negligible, which validates our derived expressions

presented in Theorem 2. Additionally, it is obvious that higher

QoS requirement results in poorer STP performance, while

increasing the number of serving SBSs in a cluster will have

a positive impact on STP. From Fig. 2 (b), we can conclude

that lower pathloss exponent cannot improve the STP, since

the increase of received signal strength cannot make up for

the loss caused by the increased interference.

In Fig. 3, we present the numerical results of derived

expressions for ESR derived in (28) and (29) under varying

QoS requirements. As γs and γm grow, though the STP

Table I
VALUES OF SIMULATION PARAMETERS

Parameter Value

K 3
Ps, Pm 23 dBm, 33 dBm

λs, λm 1/(1002π)/m2, 1/(5002π)/m2

d1, d2, d3 10 m, 20 m, 50 m

αs, αm 4
M 1000 Mbits

Cf 50 Mbits

F 100

L 5

α 1
Ws, Wm 10 MHz, 50 MHz

γs, γm 10 dB, 5 dB

Pfix,s, Pfix,m 6.8 W, 30 W

kc 3.87× 10−4 CNY/Joule

kr 1.41× 10−8 CNY/bit

τ 10−11

decreases, the ESR increases. Similar to Fig. 2, more serving

SBSs in a cluster will lead to larger ESR, since the STP

increases as the number of serving SBSs grows.

In Fig. 4, we present the relationship between the ECE

performance and the minimum QoS requirement γs. It is

apparent that a larger value of γs leads to a better ECE

performance, since the ESR increases as γs grows. It is noted

that the optimal ECE derived from the relaxed Problem (33)

can be regarded as the upper bound of Algorithm 1, since the

feasible range of optimization variables becomes larger. From

this figure, we also find that the ECE of Algorithm 1 is almost

the same as the upper bound obtained from Problem (33),

which demonstrates the optimality of Algorithm 1. Obviously,

the ECE obtained from Algorithm 2 outperforms the ECE

derived from Algorithm 1, since the cache size and layer

size can be adaptively adjusted in response to different user

requirements and network environments. Both of the proposed

algorithms show better ECE performance than MPLP scheme.

The reason for this is given as follows. The proposed SVC-

based layer caching schemes fully exploit the layer diversity,

such that more required layers can be found in the local cache

of SBSs, avoiding repeated backhaul deliveries and reducing

extra resource cost.

From Fig. 5, we can find the relationship between the ECE

performance and the skewness parameter α. As described

earlier, a larger value of α typically leads to the fact that

fewer video contents can satisfy the majority of multimedia

video requests. As α increases, the performance gaps between

the proposed algorithms and MPLP diminish. This is because

that the user requests are increasingly concentrated on the

top popular videos, and a few of them can satisfy most of

the user requests. When the skewness parameter α is large

enough, performance gaps between the proposed algorithms

and MPLP will disappear, and the proposed caching schemes

are equivalent to the MPLP strategy.

In Fig. 6, we present the relationship between the ECE
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Fig. 2. The STPs when the user is served by cooperative SBSs and the nearest MBS.
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Fig. 3. The ESRs when the typical user is served by cooperative SBSs and the nearest MBS.

performance and the cache size M . With larger cache size

equipped at each SBS, more video layers can be locally

cached. Additionally, repeated deliveries through backhaul

links can be avoided, thus the ECE performance is improved.

On the other hand, with more layers placed in the local cache

of SBSs, content layers can be immediately transmitted to

the user if requested, reducing the service delay and thus

enhancing the quality of experience (QoE) of mobile users.

In Fig. 7, the relationship between the ECE performance

and the backhaul power coefficient cbh is presented. It is

apparent that a larger value of cbh has a more negative impact

on ECE. As cbh grows, the backhaul delivery will be more

power-consuming, thus increasing the total cost and degrading

the ECE performance. In the power-limited case, the wired

backhaul can be employed, though the deployment flexibility

is poor. Otherwise, the wireless backhaul, i.e., the optical

backhaul, can be applied.

Fig. 8 presents the relationship between the ECE perfor-

mance and the number of divided content layers L. As we

can see, the ECE increases as L grows, since more video

layers can be adaptively placed and the limited cache size of

SBSs can be fully exploited. Notably, when L becomes large,

the performance gap between Algorithm 1 and the relaxed

Problem (33) diminishes, which validates the optimality of

Algorithm 1 given in Theorem 4. In the practical scenario,

when the value of FLK is considerably large, the optimal

layer caching indicators resulting from (33) can be optimal.

VII. CONCLUSION

In this paper, we investigate the optimal economical caching

schemes in cache-enabled heterogeneous networks to provide

SDV and HDV services to mobile users. In order to enhance

the ECE performance, we formulate the ECE optimization

problems for two cases. In the first case, equal cache size

is equipped at each SBS. The original problem is first relaxed

to be convex after the l0-norm approximation. Then, a greedy-

strategy based algorithm is proposed to achieve the near-

optimal layer caching indicators. In the second case, with
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unequal cache size and layer size, the ECE maximization

problem is divided into two subproblems, which are then

independently solved. Simulation results validate the theoret-

ical analysis, and confirm the effectiveness of the proposed

economical caching schemes as compared to the MPLP strat-

egy. Moreover, the optimality of the proposed greedy-strategy

based algorithm is confirmed.

APPENDIX A

PROOF OF THEOREM 2

First, the expressions for STPs can be re-written as

Pr(SIRk ≥ γs) =

∫ dk

dk−1

...

∫ dk

dk−1

fs(xk)

Pr(SIRk ≥ γs|rk = xk)dxk, (37)
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Fig. 6. The ECE performance versus the total cache size M .
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Fig. 7. The ECE performance versus the backhaul power coefficient cbh.

Pr(SIRm0
≥ γm) =

∫ ∞

0

fm(xm0
)

Pr(SIRm0
≥ γm|rm0

= xm0
)dxm0

.
(38)

For simplicity of notations, we define

Is =
∑

s∈Φs\S1,...,Sk

|hs|
2
r−αs

s , (39)

Im =
∑

m∈Φm\m0

|hm|2 r−αm

m . (40)

The conditional STP for SBSs in cluster Sk can be calculated

as

Pr(SIRk ≥ γs|rk = xk)

= Pr(

∑Sk

l=Sk−1+1

∣

∣

∣
hlx

−αs
2

l

∣

∣

∣

2

∑

s∈Φs\S1,...,Sk
|hs|

2 r−αs
s

≥ γs)
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= Pr(

Sk
∑

l=Sk−1+1

∣

∣

∣
hlx

−αs
2

l

∣

∣

∣

2

≥ γsIs)

(a)
= EIs [exp(−

1
∑Sk

l=Sk−1+1 x
−αs

l

γsIs)]

= LIs(
γs

∑Sk

l=Sk−1+1 x
−αs

l

). (41)

Equality (a) holds since
∑Sk

l=Sk−1+1

∣

∣

∣
hlx

−αs
2

l

∣

∣

∣

2

∼

exp( 1
∑Sk

l=Sk−1+1
x
−αs
l

), where exp(λ) denotes the exponential

distribution with mean λ. For notational convenience, we

denote k1 = 1
∑Sk

l=Sk−1+1
x
−αs
l

. Besides, LIs(
γs

∑Sk

l=Sk−1+1
x
−αs
l

)

is the Laplace transform of the interference generated by the

PPP-distributed SBSs that are farther than those in Sk, which

is calculated as

LIs(
γs

∑Sk

l=Sk−1+1 x
−αs

l

)

= EΦs,hs
[

∏

s∈Φs\S1,...,Sk

exp(−k1γs |hs|
2 r−αs

s )]

= EΦs
[

∏

s∈Φs\S1,...,Sk

1

k1γsr
−αs
s

]

(b)
= exp(−2πλs

∫ ∞

dk

(1−
1

1 + k1γsr
−αs
s

)rsdrs)

= exp(−πλs(k1γs)
2
αs Gαs

(d2k(k1γs)
− 2

αs )), (42)

where Ga(b) =
∫∞

b
1

1+r
a

2
dr and equality (b) holds due to the

property of the probability generating functional (PGF) of the

PPP process Φs. Substituting (42) into (37), we can obtain the

STP Pr(SIRk ≥ γs).
Next, the conditional probability Pr(SIRm0

≥ γm|rm0
=

xm0
) can be calculated as

Pr(SIRm0
≥ γm|rm0

= xm0
)

= Pr(
|hm0

|2 x−αm
m0

∑

m∈Φm\m0
|hm|2 r−αm

m

≥ γm)

= Pr(|hm0
|2 ≥ γmx

αm

m0
Im)

(c)
= EIm [exp(−γmx

αm

m0
Im)]

= LIm(γmx
αm

m0
), (43)

where (c) holds because |hm0
|2 ∼ exp(1). Following the

similar steps, LIm(γmx
αm
m0

) can be derived as

LIm(γmx
αm

m0
)

= EΦm,hm
[

∏

m∈Φm\m0

exp(−γmx
αm

m0
|hm|2 r−αm

m )]

= EΦm
[

∏

m∈Φm\m0

1

γmx
αm
m0

r−αm
m

]

= exp(−2πλm

∫ ∞

xm0

(1−
1

1 + γmx
αm
m0

r−αm
m

)rmdrm)

= exp(−πλmγ
2

αm
m x2

m0
Gαm

(γ
− 2

αm
m )). (44)

Then, Pr(SIRm0
≥ γm) can be derived as

Pr(SIRm0
≥ γm) = 2πλm

∫ ∞

0

xm0
exp(−πλmx

2
m0

(γ
2

αm
m Gαm

(γ
− 2

αm
m ) + 1))dxm0

= πλm

∫ ∞

0

exp(−πλmx2
m0

(γ
2

αm
m Gαm

(γ
− 2

αm
m ) + 1))dx2

m0

= (γ
2

αm
m Gαm

(γ
− 2

αm
m ) + 1)−1. (45)

APPENDIX B

PROOF OF THEOREM 3

In Algorithm 1, from Steps 6) to 11), we find that each

content layer is cached in the SBS that can provide the

largest marginal ECE, evaluated by zf,l,k, if the reserved

storage space is large enough. This means that, in the case

of limited cache size at each SBS, the devised layer-SBS

associations, i.e., the layer placement, are the best choices

at the current conditions, and these associations will not be

broken. Therefore, it can be inferred that the proposed layer

placement scheme is stable.
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