
1688 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 8, AUGUST 2019
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Abstract— Data communication in cloud-based distributed
stream data analytics often involves a collection of parallel and
pipelined TCP flows. As the standard TCP congestion control
mechanism and its variants are designed for achieving “fairness”
among competing flows and are agnostic to the application
layer contexts, the bandwidth allocation among a set of TCP
flows traversing bottleneck links often leads to sub-optimal
application-layer performance measures, e.g., stream processing
throughput or average tuple complete latency. Motivated by this
and enabled by the rapid development of the software-defined
networking (SDN) techniques, in this paper, we re-investigate the
design space of the bandwidth allocation problem and propose
a cross-layer framework which utilizes the instantaneous infor-
mation obtained from the application layer and provides on-the-
fly and dynamic bandwidth adjustment algorithms for assisting
the stream analytics applications achieving better performance
during the runtime. We implement a prototype cross-layer
bandwidth allocation framework based on a popular open-source
distributed stream processing platform, Apache Storm, together
with the OpenDaylight controller, and carry out extensive
experiments with real-world analytical workloads on top of a
local cluster consisting of ten workstations interconnected by
a SDN-enabled fat-tree like testbed. The experiment results
clearly validate the effectiveness and efficiency of our proposed
framework and algorithms. Finally, we leverage the proposed
cross-layer SDN framework and introduce an exemplary mech-
anism for bandwidth sharing and performance reasoning among
multiple active applications and show a case of a point solution
on how to approximate application-level fairness.

Index Terms— Network resources allocation, bandwidth alloca-
tion, software-defined networking, distributed stream analytics,
application-layer optimization, cross-layer design.
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I. INTRODUCTION

LARGE-SCALE stream processing has recently gained
high importance due to a large variety of supported

applications such as business intelligence, video analytics,
machine learning, and event monitoring and detection. These
applications process high volumes of unbounded with unpre-
dictable and variable data streams. Nevertheless, they entail a
variety of processing requirements, and thus researchers and
practitioners have been developing a diverse array of stream
processing frameworks (e.g., Storm [2], Heron [3], Samza [4],
Flink [5], MillWheel [6], and Ares [7]) to meet the increasing
demands of these applications.

For streaming applications, the essential performance indi-
cator of how the application reacts to the incoming data
streams is the time needed for each of them to be completely
processed. To help the application to achieve a desirable per-
formance characteristics (e.g., delivering real-time response),
stream processing frameworks need to effectively and dynam-
ically allocate system resources including CPU, memory, and
bandwidth among application components (instances and their
flows) in order to expose a highly-optimized pipeline (i.e.,
execution path) [8], [9].

Yet, many applications today are data-intensive, as opposed
to compute-intensive [10]. Indeed, in data-intensive applica-
tions, stream processing involves a higher network resource
demands than CPU cycles, particularly when the data stream
ingestion rates or derived tuples rates from these streams
are higher than provisioned network bandwidth. As such,
transfer across the network might be the cause of performance
bottleneck rather than CPU cycles, therefore managing and
optimizing network activity is important to improving and
delivering real-time responses in these applications. In this
context, there has been flurry of research attempts toward
optimizing streaming applications. While in large part suc-
cessful, however, their focus mainly has centered to schedule
and provision computation resources of the applications or
limited to minimizing traffic across the network. Hence, these
solutions have largely overlooked allocation and provision of
network bandwidth. As a result, they are either suboptimal in
optimizing network transfer [9], [11], [12], or assuming the
network with sufficient bandwidth resource [13].

In current stream processing frameworks, the share of
network bandwidth has left to the mercy of the underlying
transport mechanisms (e.g., TCP [14], DCTCP [15]).

Nonetheless, such mechanisms are designed mainly for
end-to-end data delivery in an application agnostic manner,
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i.e., flows traversing the bottleneck links sharing equal portion
of the bandwidth. This, with high probability, will lead to
sub-optimality in the overall application-level performance
because some flows can be of paramount importance than
other flows of the same application.

In this paper, we explore the design space of the bandwidth
allocation, formulate it as a utility maximization problem,
and propose a heuristic algorithm to derive the close-to-
optimal solutions. This whole procedure is encapsulated into
a cross-layer framework which utilizes the additional infor-
mation measured from the running applications and quickly
deploys the new allocation decisions to the physical net-
work layer. The latter is enabled by the rapid development
of the Software-Defined Networking (SDN) techniques and
toolkits and realized through plugging in a control plane
module developed (in ODL controller [16]) by us. The main
contributions we have made in this paper are listed as
follows:

1. We formulate the bandwidth allocation among flows
belonging to a stream processing application as an
optimization problem and design a heuristic algorithm
to seeking for the optimal allocation solution.

2. Leveraging the SDN capabilities, we develop a native
SDN control plane application that deploys and updates
the bandwidth allocation results derived by our optimiza-
tion algorithm.

3. We develop an automated cross-layer bandwidth alloca-
tion framework and implement a prototype of it based
on a popular open-source stream processing platform,
Apache Storm, integrating with the OpenDaylight SDN
controller.

4. We carry out comprehensive performance evaluation
through running stream data applications with real-world
workloads in a local cluster composed of 10 work-
stations interconnected by a hardware SDN-enabled
switch.

5. We introduce an exemplary mechanism for bandwidth
sharing and reasoning of performance among multiple
active applications and present a case on how to approx-
imate application-level fairness.

6. We built a fat-tree like testbed to carry out the evaluation
of optimization particulars in a more general setting with
a multi-hop network.

The rest of the paper is organized as follows. Section II
presents briefly an overview of stream processing, model
of datacenter fabric, communication flow, and an example
stream application motivating our contribution. In Section III,
we introduce a formulation of bandwidth allocation as an
application-oriented utility maximization problem and high-
light surrounding challenges. We then present the details of
solution model and optimization framework in Section IV.
Section V describes briefly the end-to-end cross-layer SDN-
based implementation of proposed solution. Experimental
results are presented in Section VI. Also, a preliminary inves-
tigation of the performance of multiple applications and the
initial results are presented in Section VII. Finally, we explore
related works in Section VIII and conclude the paper in
Section IX.

II. BACKGROUND AND MOTIVATION

A. Stream Processing

1) Distributed Stream Processing Frameworks: Main exam-
ples of them such as Storm [2], Twitter [3], Samza [4],
Flink [5] and MillWheel [6], have been widely adopted in
cloud-based data analytics to enable stream processing in a
distributed manner with low latency. Using these frameworks,
a variety of stream applications are developed for processing
continuously arrived data streams from external producers
(e.g., web logs, software logs, scalar sensors, and video
cameras) through a pipeline of processing stages. Towards
this, multiple models such as one-at-a-time and micro-batched
have been proposed to cope with diverse stream applica-
tion requirements [17]. In this paper, however, our focus is
particularly pointed towards the one-at-a-time model which
accomplishes processing on an individual tuple basis, for
delay-sensitive and data-intensive stream applications.

2) Application Model: Our conceptual viewpoint in design-
ing our bandwidth allocation mechanism is by abstracting
out the entire application as a sequence of Fork-Join stages.
In data analytics literature, the application (a.k.a., job) is
typically characterized by a logical topology, that defines a
dataflow programming paradigm in a form of directed acyclic
graph (DAG) of operators (i.e., vertices), through which data
streams (i.e., edges) are constantly produced and consumed.
Despite differences in DAG structure, we observe that stream
applications have one thing in common: Fork-Join pattern,
in which each edge starts with a fork operator and end with a
join operator. Additionally, each operator can typically be clas-
sified according to number of input and output streams into a)
1:1 operator, b) m:1 operator, and c) 1:m operator. This variety
in operators enables application programmer to flexibly chain
them according to the logic of stream application. In Figure 1a,
we show an example topology of finding trending tags at
LinkedIn [4], which consists of six operators. In this topology,
Split is a 1:m type operator constitutes the entry point of
the application, typically called source operator. It consumes
streams of user profile updates, splits them into skill and job
updates and then emits them to the two downstream operators
named Skill Extractor and Job Extractor. Both Skill Extractor
and Job Extractor are of the type 1:1 operators performing tag
extraction on the input streams and sending the processing
results to the Merge operator. The latter is a m:1 operator
combining skill and job tag streams into one and sending them
to a 1:1 Count operator which maintains the frequency of each
distinct tag. Lastly, TopK, as the last operator in the topology,
typically called sink operator, partitions received tag counts
into windows (e.g., find top k tags over a 5-second window)
and keeps updating application statistics (e.g., trending tags
such as user skills and job positions, in this example).

Furthermore, stream applications exhibit a wide diversity in
terms of scale, state, and lifetime. In particular, the scaling of
stream application is important to cope with computational
need of time-constrained applications. As such, processing
frameworks offer users a set of APIs to configure multiple
instances per operator in order to execute user-defined logic
concurrently. Figure 1b presents a parallelization of DAG
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Fig. 1. A Streaming application example (a) Operators component of trending
tags logical topology (b) Parallelism of logical topology into instances and
data grouping policies among them.

shown in Figure 1a where each operator is replicated twice
(e.g., Split1 and Split2 are instances of the Split operator),
except the sink operator has only one instance, TopK1.

3) Stream Grouping Policies: As parallelizing operators is
a key factor to speeding up stream processing, the transfer of
data streams between the instances must follow appropriate
grouping policies, sometimes called data routing, to meet
different application requirements. The main grouping policies
of regulating how data tuples are forwarded to target instance
set of the downstream operators are categorized as follows.

a) Shuffle Grouping: data tuples are sent in a round-robin
fashion to the instances of the downstream operator. This
policy ensures that the processing workloads are evenly dis-
tributed among these receiving instances.

b) Key-Based Grouping: the destination instances to
which data tuples are sent is determined by applying some
well defined projection function, e.g., hashing, on the key
(or signature) of the data tuple. This grouping policy has the
property that a) the tuples sharing the same key are guaranteed
to send to the same instance, i.e., avoiding an additional step
for key-based result aggregation; and b) roughly even-partition
the key space among all the destination instances, but this is
insufficient to guarantee workload balance under the skewed
key distributions, e.g., heavy tail distributions.

c) Global Grouping: data tuples are sent to a dedicated
instance of a downstream operator, typically for results aggre-
gation in the final stage of the topology. As an example, TopK1

instance gathers tag counts from all instances of operator
Count.

d) All Grouping: data tuples are duplicated and sent to
all instances of the downstream operator, equivalent to data
broadcasting.

4) Instance Placement: Given that user has configured
parallelism information of the application operators in terms
of instances, however, to realize this into practice, a frame-
work scheduler will then accomplish this throughout a map-
ping between operator instances and physical computing
machines which will host them. We refer to such mapping
as an instance placement, which is usually carried out based

Fig. 2. A datacenter network example with 8 uplinks, 8 downlinks,
16 internal links (8 rack-to-core links, and 8 core-to-rack links).

on specific strategies including those simple ones such as
random/round-robin assignment, or more sophisticated ones
such as traffic-aware assignment [11], [18]. Once the instances
are mapped and scheduled to the hosting machines, the data
communication patterns between each pair of instances are
fixed. For example, applying round-robin placement strat-
egy to parallel version of our example application depicted
in Figure 1b over M1, M2, M3, and M4 compute machines
in Figure 2, yields to: M1← Split1, Job Extractor1, Count1;
M2←Split2, Job Extractor2, Count2; M3←Skill Extractor1,
Merge1, TopK1; M4←Skill Extractor2, Merge2.

B. Network Model

Today’s datacenters are built with the aid of rich intercon-
nectivity such as Fat-Tree [19] and Leaf-Spine multi-rooted
Clos [20], [21] modern network topologies (e.g., Figure 2),
to support full-bisection bandwidth and to potentially make
capacity of the fabric’s internal links bottleneck-free. Also,
the capacity of internal switch fabric (i.e., switching capacity)
can support more than the capacity of all ports concurrently
and the use of TCAM can even enable a high performance
matching of high volumes of data packets. However, the main
issue that remains affecting service delay and network utiliza-
tion is the bottleneck due to the volume of traffic that could
possibly overwhelm the capacity of outgoing ports.

In our analysis and implementation, we consider any data-
center fabric in which the bottleneck might occur at any link in
the network. This is important because some flows might still
happen to saturate some internal links and thus overwhelm-
ing switches buffers causing performance degradation of the
application. Example case that might cause this issue is due
to shortcomings of flow scheduling. Some flow scheduling
algorithms to the network paths, such as ECMP algorithm,
neither account for current link utilization nor flow volume.
Subsequently, this makes capacity limit of the fabric the source
of performance bottleneck.

Furthermore, the bottleneck more probably happens as a
result of placement of application instances into the machines,
which incurs some flows to mandatory traverse specific link to
the destination instance. Therefore, the machines’ directly con-
nected links (i.e., uplinks and downlinks) become the largely
potential places of bottleneck, and hence in our previous study,
we primarily focused only on machines’ directly connected
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links assuming the internal links of the fabric are always
bottleneck-free and thus modeled the datacenter fabric as a
resemblance to a big switch.

In this paper, we therefore consider a more generic network
model taking into account that contention on the bandwidth
might happen at any link in the network. With this model as
depicted in Figure 2, we define the uplink (res. downlink) of
each machine as its communication channels to (res. from) the
rack switch. Also, we define the rack-to-core (res. core-to-
rack) link of each rack (res. core) switch as its communication
channels to the core (res. rack) switch. We use the term
internal link for any of them.

Next, by optimally allocating the bandwidth of the internal
links of the fabric in addition to the machines’ uplinks
and downlinks, we step forward general settings for better
performance of application layer run on top of a multi-hop
network.

C. Communication Flows

We refer to a uni-directional data transfer between any given
pair of instances as a flow, denoted by f. A flow is called an
internal flow if its two communication instances are placed
in the same machine, otherwise it is called an external flow.
Recall in the the application we explained above about instance
placement, the data transmission from Split1 in M1 to Job
Extractor1 in M1 is an example of internal flow, while the
flow from Split1 in M1 to Skill Extractor1 in M3 is an external
flow.

As we adopt multi-hop network model, this leads to the fact
that all the external flows traverse at least two uni-directional
links. More importantly, when multiple flows are traversing
the same bottleneck link, the data packets of the flows are
queued in limited-size buffers connecting each consecutive
nodes and hence packet dropping is most likely to happen due
to the congestion. Thus, given limited-size buffers, the natural
question to ask is how much bandwidth shall be allocated to
each flow for its packet transfer on the uplink, downlink, and
internal links over the multi-hop network. The key contribution
of this paper is to share the bandwidth among these competing
flows so as to maximize application-layer welfare. The welfare
of stream application is realized by attaining low latency and
high throughput.

D. Motivation Example

In our preliminary study [22], we have measured and
analyzed the impact and importance of bandwidth alloca-
tion on streaming applications. We have conducted a mea-
surement study of different settings on a bandwidth-limited
network carries streaming application traffic and have eval-
uated an application of 4 operators with parallelism set to
1 for each operator (Figure 3a). Specifically, we measured
application-level throughput, as expressed in total number of
completely processed tuples per second (averaged over 300-
second experiments).

Figure 3b compares the overall throughput of the application
under multiple placements, as denoted by TP1, TP2 and TP3.
Under each placement strategy, we compared two different

Fig. 3. A motivation example: under three options for instance placements,
we show the performance of bandwidth allocation (with TCP) versus the
optimal (with BA).

bandwidth allocation mechanisms, the default TCP congestion
control (i.e., With TCP) and the best allocation (i.e., With BA)
we obtained throughout brute-force search. We observed that
a proper bandwidth allocation rather than vanilla congestion
control can make further improvement on the overall applica-
tion throughput. In particular, our observation is that instead of
sharing the bandwidth based on max-min fair rate allocation
as approximated by TCP, the proper sharing is to look for
max-min fair utility allocation. Based on our analysis on the
causes of performance degradation, we envision that utility
function to account for application welfare, it must lead to
that concurrent flows are processed altogether in a reasonable
time window. Hence, utility functions should infer and do a
favor for important and critical flows that otherwise application
logic stalls data processing.

Overall, in our example study in Figure 3, we found that the
best bandwidth allocation has achieved 17%, 47%, and 33%
improvement in placement TP1, TP2 and TP3, respectively.
Nonetheless, brute-force search for the best allocation, e.g.
as in [22], is too costly to be affordable in practice.

Therefore, in this paper, we rigorously develop max-min
fair utility functions and use novel metrics of flow urgency.1

for bandwidth, such that to entitle bandwidth allocation to
the optimality as driven by application layer. Recall that
such metrics are periodically retrieved such that to allow our
optimization to work online over the lifetime of long-running
stream analytics.

III. BANDWIDTH ALLOCATION IN

STREAMING APPLICATIONS

In this section, we first formulate a bandwidth allocation
problem of streaming application, followed by a discussion of
main challenges to resolving this problem.

A. Problem Formulation

Consider a datacenter network that consists of a set L =
{1, ..., L} of links of capacity Cl, l ∈ L. The network is shared
by a set F = {1, ..., F} of flows. We denote the rate of any
network flow f ∈ F by xf . Our goal is to find a vector
x = (x1, x2, ..., xF ) of flow rates that maximizes the overall

1Flow urgency is not exactly its sender demand, but rather its relative
demand to other flows according to the importance for the application.
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application welfare U(·), s.t. constraints of link capacities:

max
x

U(x) = U (x1, x2, . . . , xF ) (1)

s.t. Rx ≤ C (1a)

where, R is a binary valued routing matrix, of which R(f, l) =
1 if and only if flow f traverses link l; and C is the vector of
link capacities. The constraint (1a) means that the aggregate
flow rate at any link l cannot exceed its capacity Cl.

In our context, the overall application welfare U can be
quantified by the aggregate processing rate of the streaming
application and is associated with managing bandwidth allo-
cation among application’s network flows deployed over a
multi-hop network interconnecting a set M = {1, ..., M} of
machines with a set I = {c1, c2, . . . , cK} of internal links. We
denote the uplink starting with machine i by ui, the downlink
ending with machine j by dj , and any of the internal links
the flow traverses denoted by ck ∈ I. Furthermore, as the
application involves active flows for unbounded time, hence
the optimal control of flow rates might change over time.
We therefore denote the vector x of flow rates at time t by
x(t) and re-describe the problem in (1) as to find the optimal
x∗(t) at time t that maximizes U , s.t. capacity constraints of
machine uplinks and downlinks are satisfied.

max
x(t)

U
(
x(t)

)
= U

(
x1(t), x2(t), . . . , xF (t)

)
(2)

s.t.
∑

s(f)=i,d(f) �=i

xf (t) < Cui , ∀i ∈ M, (2a)

∑

d(f)=j,s(f) �=j

xf (t) < Cdj , ∀j ∈M, (2b)

∑

f∈Fck

xf (t) < Cck
, ∀ck ∈ I (2c)

where, s(f) and d(f) denote the source and destination of flow
f , and Fck

denotes the set of flows share the internal link ck.
The constraints (2a), (2b), and (2c) ensure that the aggregate
flow rates at any machine uplink ui, downlink dj , and internal
link ck do not exceed the uplink capacity Cui , the downlink
capacity Cdj , and internal link capacity Cck

respectively.
However, the key challenge is in defining non-clairvoyant flow
utilities U

(
x(t)

)
that through them network flows are allocated

proportional rates to their volumes [22], without prior knowl-
edge of flow volume; meanwhile, the flow volume should be
estimated in the presence of continuously- and timely-varying
load on processing pipeline. Before we show how to derive
flow utility functions and how to apply bandwidth allocation
based on them, we present following specific challenges to
network flows in stream analytics.

B. Challenges

- Unbounded flows transfer: A data stream is an
unbounded sequence of events over time. This
unbounded nature of data streams makes their cor-
responding network flows unbounded as well. Most
existing state-of-the-art approaches are focused primar-
ily on management of bounded network flows such as
network flows of MapReduce jobs or search queries.

Fig. 4. The bandwidth allocation optimization framework for stream
analytics.

For example, scheduling flows based on flow’s remain-
ing size [23], or bytes sent by each flow [24] or
coflow [25] have been introduced to minimize comple-
tion time by mimicking the Shortest Job First (SJF)
approach. However, these techniques remain hard to
adapt to unbounded network flows of stream application.

- Undetermined flows volume: Also, the unpredictability
and variability are common attributes of data stream
sources. The variability in data streams makes it hard to
obtain accurate flow information because flow volume
in terms of tuple unit size and sending rate usually
change with time. Consequently, bandwidth allocation
policies that rely on prior knowledge of flows [23] or
coflows [26] remain also inapplicable for stream appli-
cations. In result, bandwidth allocation policy has to
capture flow updates and be adaptable to changes.

Given these challenges, we introduce a cross-layer bandwidth
control framework under which streaming application and
network can be flexibly characterized to each other. We partic-
ularity show that bandwidth allocation policy we aspire to find,
can be seamlessly transpired and materialized and in online
manner.

IV. BANDWIDTH ALLOCATION

OPTIMIZATION FRAMEWORK

As we mentioned earlier, solving bandwidth allocation
problem requires deriving subtle flow utilities that through
them the uncertainty of application’s traffic can be transpired
and accordingly network flows are allocated proportionally.
To address this problem, we propose an end-to-end agent-
environment optimization framework, as shown in Figure 4.

In this framework, the agent observes a set of metrics,
measured from the environment, including flow’s state from
the application layer and network links’ available capacities
from the network layer. We develop novel metrics of flow’s
state to determine flow utility in a non-clairvoyant manner
that provides immediate insights of the urgency of the flow to
the performance of the application layer. The agent then feeds
these measured values to a bandwidth allocation algorithm,
to compose flow utilities and to perform an optimization.
Finally, the agent takes the result of the optimization as an
action, by sending a rate vector to the network for regulating
network flows in the next time interval. The entire process will
be repeated alongside the lifetime of streaming application.

In the following, we describe the components of proposed
bandwidth allocation optimization framework (Figure 4).
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A. Input Details

To control each flow rate, it is necessary to obtain at the first
place the association relationships between data transmission
flows and the underlying physical links. In streaming applica-
tion, this can be achieved by sorting out the parallel version of
application’s logical topology, together with its placement map
into the physical machines. Luckily, this information is easily
to retrieve from master of the stream processing platform (e.g.,
Nimbus of Apache Storm) or from the cluster manager (e.g.,
Application Manager of YARN or Mesos in Apache Heron and
Samza). Now that we know the the association between flows
and physical links, the second step then is to record flows’ state
information and to determine links’ available capacities. The
state information are particularly intrinsic to characterize each
flow volume in the presence of traffic variability in order to
use them in estimating each flow utility. Meanwhile, available
links capacity are required to optimize flow rates accordingly.

1) Flow Buffer: To discern what bandwidth is needed for
each flow f of unkown volume Vf in streaming application,
instead of using flow rate to express flow volume, we propose
a flow state model to determine the state of the flow with
changes through time. The reason of not using flow rate
to express flow need is because rate observed presumably
depends on cross-traffic in the network which does not reflect
what bandwidth is really needed for this flow. Conversely,
the state model can infer flow volume by profiling the actual
data transfer of the flow and its status at endpoints (i.e., sender
and receiver), as depicted in Figure 5.

To obtain actual data transfer of the flow, we keep recording
amount of sent tuples at the application-level sender function,
expressed in MB; meanwhile, for flow status, we keep track
flow backlogs at flow endpoints via maintaining and measuring
each endpoint with a dedicated queue. The sender endpoint
backlog is computed as a queue length in MB of data tuples
that are waiting in the queue for transfer service across
network link. We use this metric to indicate how sending
rate of the flow’s sender endpoint is higher than available
bandwidth for this flow. This case is used in each fork instance
of the application. On contrary, the receiver endpoint backlog
is computed as a queue length in MB of received data tuples
that have been waiting in a queue for processing service.
However, the latter case is used in each join instance of
the application. For example, consider a receiving instance
that performs join processing of tuples originating from flows
of multiple sending instances. In such a case, the receiving
instance might be stalled if some of the required flow’s
data tuples have not received yet due to network congestion.
This leads to that flow of available tuples can not be further
processed, and thereby not only this flow processing will be
delayed, but also the entire pipeline processing. Due to also
constant streaming of data tuples, we observed that the delay
of flow processing overruns instance’s memory capacity which
might largely cause memory overflow (e.g., OOM). Therefore,
we use queue length in this context to indicate the degree of
instance stalling. Thus, to alleviate stalling, the unavailable
flow’s data tuples should be brought much faster by allocating
it higher bandwidth than delayed flow.

Fig. 5. A model of flow state.

The output of buffer profiling is a 5-metric tuple char-
acterizing state of each flow f ∈ F in a time interval
(t, t + Δt), as depicted in Figure 5. The metrics include
queue length of the flow f at the sender and receiver at
time t denoted by Ls

f (t) and Lr
f (t); the queue length of the

flow f at the sender and receiver at time t + Δt denoted by
Ls

f(t + Δt) and Lr
f (t + Δt), and the actual flow’s data size

transferred within t and t + Δt denoted by Vf (t, t + Δt).
A 3-metric tuple < Ls

f(t), Vf (t, t + Δt), Ls
f (t + Δt) > is

used for characterizing the flow state at the uplink and another
3-metric tuple < Lr

f(t), Vf (t, t + Δt), Lr
f (t + Δt) > is used

for characterizing the flow state at the downlink. For the flows
contending for uplink, the higher values queue length of the
flow, the higher demands of link bandwidth; while the flows
contending for downlink the lower values queue length of the
flow, the higher demands of link bandwidth. The profiling
of flow states is thereby useful to compose flow utilities in
order to serve each network flow need not only according to
underlying network available capacity but rather based on flow
importance to application performance. Shortly, we shall see
how each flow state, expressed by the 5-metric tuple, is used
to compose flow utilities and to define optimization policy over
these utilities that allocates bandwidth in proportional to each
flow importance in the application performance.

2) Link Bandwidth: The bandwidth allocation algorithm
has to know in addition to flow state, the network links
allocatable capacities (i.e., available bandwidth). However, link
allocatable capacity can be computed as a difference between
its total capacity and the active flows rates over this link.
Strikingly, in a cooperative SDN-based cluster in which a
single administrative entity controls the network, all packets
are transferred as instructed by forwarding rules stored in the
network devices. This ensures that all network flows belong to
multiple applications should be known over all machines links.
Therefore, we leverage OpenFlow statistics features to collect
flow statistics in order to estimate used bandwidth of each
link. We use symbols Cui and Cdj to correspond respectively
to allocatable capacities of uplink ui and downlink dj .

B. Bandwidth Allocation Algorithm

In Algorithm 1, we summarize the end-to-end procedure
of optimization of bandwidth allocation for improving the
performance of stream processing application. The algorithm
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works in a time period (Δt) basis to capture the change
in the system. This allows the algorithm to work online in
real-time to collect the measurement of flow state in the past
immediate Δt and to respond by allocating flow rates for the
next immediate Δt. Given the network model in Section II-B
in which machine’ uplinks, downlinks, and the internal links
(line 2) subject to their available bandwidth (line 7) are the
resources of target for optimal use. Also, given that flow
assignment over these links are determined (lines 4, 5, and
6 respectively) and each flow state (line 16) is also obtained
based on the model in Figure 5, thus the mechanism of
bandwidth allocation is as follows.

Algorithm 1 Online Bandwidth Allocation
1: Input:
2: Uplinks u = {ui : i ∈ M}, downlinks d = {dj : j ∈ M},

internal links I = {c1, c2, . . . , cK}
3: Network flows F = {1, . . . , F}
4: Machine’s uplinks flow set {Fui : i ∈M}
5: Machine’s downlinks flow set {Fdj : j ∈M}
6: Internal links flow set {Fck

: ck ∈ I}
7: Allocatable capacities of links {Cl : l ∈ L}
8: Output:
9: Proportional bandwidth fair share xf during next time

interval Δt for each bottlenecked flow f
10: Initialization:
11: Bottlenecked uplinks, downlinks, internal links and flows

are ωb ⊂ u, φb ⊂ d, ϕb ⊂ I and Fb ⊂ F respectively;
12: t← 0;
13: Ls

f (t)← 0, Lr
f(t)← 0, ∀f ∈ Fb

14: do
15: run the streaming system for time Δt;
16: record Vf (t, t+Δt), Ls

f(t+Δt) and Lr
f (t+Δt), ∀f ∈ Fb

17: for each uplink ui ∈ ωb do
18: Solve the optimization problem (3)
19: end for
20: for each downlink dj ∈ φb do
21: Solve the optimization problem (4)
22: xf (t + Δt) = min{(xu

f (t + Δt), (xd
f (t + Δt)}.

23: end for
24: for each internal link ck ∈ ϕb do
25: D(ck) =

∑
f∈Fck

xf (t + Δt)
26: if D(ck) > Cck

then
27: xf (t + Δt) = xf (t+Δt)Cck

D(ck) , ∀f ∈ Fck

28: end for
29: xf (t + Δt) = min{xf (t + Δt)}, ∀ck � f
30: t← t + Δt

31: While ( ∃f | f ∈ Fb ∧ ( Ls
f(t) 
= 0 ∨ Lr

f (t) 
= 0) )

As we mentioned earlier, from our analysis of mapping
of application’s flows into machines uplinks and downlinks,
we observed that stream applications follow a Fork-Join like
communication pattern in common. In the Fork stage, network
flows of instance(s) co-located at the same machine compete(s)
for machine’s uplink, while in the Join stage, the instance(s)
at certain machine, receive(s) multiple flows from some other
instances that compete for machine’s downlink. One more

important observation is that majority of streaming applica-
tions flows sharing network bandwidth have to be concurrent
within a reasonable time window in order to be processed
together. We use these two observations to derive bandwidth
allocation algorithm to maximize the aggregate processing rate
of streaming application, based on optimization problem (2).
Therefore, to achieve this, the algorithm should make sure that
if the input speed of data generated by the sender machines
keeps unchanged during the next period of time, so as to assist
the system processing all flow backlogs in all machines in the
shortest time.

min
xu

f (t+Δt)
max

f∈Fui

Vf (t, t+Δt)+2Ls
f(t+Δt)−Ls

f(t)
xu

f (t+Δt)
(3)

s.t.
∑

f∈Fui

xu
f (t+Δt) = Cui , x

u
f (t+Δt) ≥ 0 (3a)

min
xd

f (t+Δt)
max

f∈Fdj

Lr
f (t + Δt) + xd

f (t + Δt)Δt

[Vf (t, t + Δt)− Lr
f(t + Δt) + Lr

f (t)]/Δt

(4)

s.t.
∑

f∈Fdj

xd
f (t + Δt) = Cdj , x

d
f (t + Δt) ≥ 0 (4a)

Next, we use this idea to derive time-utility functions
that express the time urgency of each flow. Based on them,
we explain the derivation of the optimization problems (3)
and (4) of our algorithm. If an uplink ui is shared by multiple
flows whose set is denoted by Fui , then it is under the Fork
pattern. Thus to define flow utility for any flows f ∈ Fui ,
the data amount of the flow f generated by the sender machine
i during the time interval (t, t+Δt) is Vf (t, t+Δt)+Ls

f(t+
Δt) − Ls

f(t), i.e., the data size Vf (t, t + Δt) of the flow
f transferred plus the variation Ls

f(t + Δt) − Ls
f(t) of the

queue length of the flow f in the sender machine i during the
time interval (t, t + Δt). If the generating speed of the data
of the flow f keeps unchanged during the next time interval
(t + Δt, t + 2Δt), then there will exist the data of the size
Vf (t, t + Δt)+ 2Ls

f(t + Δt)−Ls
f(t) needed to be transferred

during the time interval (t+Δt, t+2Δt). Under the bandwidth
xu

f (t + Δt) allocated to the flow f during the time interval
(t + Δt, t + 2Δt), the total time to finish transferring the data
is at least

[
Vf (t, t+Δt)+2Ls

f(t+Δt)−Ls
f(t)

]
/xu

f (t+Δt).
Because our goal is to make the system finish processing all
backlogs of the flows sharing the link i in the shortest time,
which usually occurs when the maximum of the transferring
times

[
Vf (t, t+Δt)+2Ls

f(t+Δt)−Ls
f(t)

]
/xu

f (t+Δt) among
the flows of sharing the uplink i is minimized, we derive the
optimization problem (3). Based on a similar idea, we can also
derive the optimization problem (4).

We empirically measured how different values of Δt in
optimization problem (4) affect rate allocation and observed
that Δt slightly affecting the rate allocation decisions and
accordingly the transferring times. The mean accuracy is more
than 99% and with standard deviation of 0.02. Thus, Δt

remains a constant factor among all flows. Conversely, flows’
state metrics keep accumulating with respect to the time during
Δt, hence it is conceivable that these metrics differentiate the
flow’s necessity for the bandwidth. Furthermore, it is worthy
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to note that Δt as event (not as parameter in Equation 4) to
inquiry and update the system depends on the the magnitude
of the time variation of the load on the analytics pipeline.
If the flow’s volume changes rapidly, the Δt is better to be
relatively small such that to capture the changes on the flow
state quickly and to update the system with the new optimal
rate allocation.

Having solved optimization problems (3) and (4), we suc-
cinctly reveal problem’s abstract formulation (2) and fulfill
its main goal. The constraints, (3a) ensures that aggregate of
allocated flow rates at any machine uplink ui does not exceed
uplink capacity Cui , and (4a) ensures that aggregate of allo-
cated flow rates at any machine downlink dj does not exceed
downlink capacity Cdi . The symbols xu and xd are per-flow
f allocated rate at flow’s uplink and downlink, respectively,
and the flow will be given the minimum allocated rate xf

of either (line 22). Besides, if the data flow traverses any of
the congested internal links, then the flow will be allocated
proportional rate (line 27) to its informed rate (line 22) in
the uplink and downlink. In case the flow shares multiple
bottleneck internal links, then it will be allocated the minimum
rate among them (line 29).

Overall, when network flows share bottleneck uplink, down-
link, or internal links are unequal in their volumes (i.e.,
estimated by flow state) and are required to be processed
concurrently (i.e., time urgency), the default transport (e.g.,
TCP) in processing frameworks is obviously ill-suited because
it is unaware of the application atop how such variabilities
impact its performance. On contrary, our algorithm checks
state of each flow at each congested uplink, downlink, and
internal links and rigorously solves optimization problems to
distill the optimal rate for each flow over respective links (lines
10-29). This continues alongside any of the flow buffers are
not empty (line 31) and in each time interval outputs per-flow
optimal allocation.

V. IMPLEMENTATION

In this section, we present the details of integrating SDN
into analytics platform and how cross-layer information can
be exchanged in an automated and flexible manner so as to
provide a high-performance analytics pipeline. To accomplish
this, we translate our optimization framework described in
Section IV into a multi-tier architecture (Figure 6): Streaming
application management plane (tier 1), SDN-based control
plane (tier 2), and SDN-based forwarding devices plane (tier
3). We materialize streaming application manager in Storm
framework [2], the popular open-source stream processing
platform. Meanwhile, we implement SDN-based control in
OpenDaylight SDN controller [16], the largest community-led
and industry-supported open source SDN framework. For
the SDN-based forwarding plane, this is the tier wherein
network bandwidth resources reside and in need of effec-
tive management to maximize streaming application perfor-
mance. In tier 3, to interoperate with above tiers, we adopt
SDN-based devices which dispense with arriving data packets
of streaming application according to the desired performance
goals elaborated by the management plane. Taken together,
the streaming application manager in tier 1 will then quickly

Fig. 6. SDN-based implementation of proposed bandwidth allocation
algorithm.

and dynamically program the network devices in tier 3 via
some of the abstract interfaces supported by network controller
in tier 2, as follows.

A. Tier 1: Streaming Application Manager

This tier is the core of our solution, it implements the
agent decision-maker in above agent-environment framework.
By observing the state of all network flows encompass stream-
ing application and the available links bandwidth, streaming
application manager then solves optimization problems based
on proposed bandwidth allocation algorithm and provides the
optimal rates allocated to network flows for next time period.
The main components of this manager are summarized as
follows.

1) Flow Mapper: To determine the optimal bandwidth for
each flow, bandwidth allocation algorithm should know as a
first step application flows to network links mapping over all
machine uplinks, downlinks, and internal links. We built a
customized scheduler instead of Storm default scheduler in
order to maintain a deterministic map of streaming applica-
tion’s instances over the compute machines.

2) Application Profiler: This entity is also known as flow
buffer, it aims to monitoring and collecting the state of all
network flows to feed them as input to the bandwidth optimizer
component. Driven by our model of flow state, application
profiler keep tracks each flow in the application and records
its amount of transferred data (MB) and backlog (MB) at both
flow’s receive queue of received messages and flow’s send
queue of sent messages, is depicted in Figure 5.

3) Bandwidth optimizer: This module is responsible for
execution of bandwidth optimization algorithm. At each time
interval, it pulls the application and the network to get the
inputs and sends the outputs of the algorithm. Specifically,
the optimizer collects the input from flow mapper, applica-
tion profiler, and link stats collector to execute optimization
algorithm and subsequently sends the output of the algorithm
(i.e., optimal flow rates) to the network controller.

For this purpose, we develop a socket-based client-server
interface to enable 2-way communication between bandwidth
optimizer resides at tier 1 (i.e., at application layer) and
bandwidth enforcer resides in SDN-based control at tier 2
(i.e., at network layer). Conversely, for the modules co-located
in the same tier, they can access each others via local APIs.
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B. Tier 2: Network Controller

This tier is implemented in the world’s largest open source
SDN platform, an OpenDaylight (ODL) controller, which acts
as middleware that orchestrates and facilitates exchange of
control messages between application manager (tier 1) and
Openflow-based physical network (tier 3). For our purpose,
in addition to the core components of ODL controller,
we develop a native MD-SAL compliant network application
within the controller to primarily implement bandwidth allo-
cation and to collect link measurements and statistics infor-
mation. In particular, this application consists of bandwidth
enforcer and link statistics collector modules. Technically
speaking, our development of such a native application in
ODL encompass different technologies such as OSGI, Karaf,
YANG modeling, blueprint container, and a set of distinctive
messaging patterns including RPC, publish-subscribe, and
datastores accesses [16]. We skip the modular design and
implementation details for the sake of brevity.

1) Bandwidth Enforcer: This module is built to dynamically
update the rates of network flows according to the output
of optimization algorithm. Instead of directly modifying the
underlying transport mechanisms (such as TCP), we lever-
age the metering API feature supported in OpenFlow-based
networks to enforce the output rates received by bandwidth
optimizer into the datapath of the underlying network devices.
Specifically, we associate each network flow with a meter
under which the packets belonging to this flow are allowed
to pass through the egress ports of the switch for up to
specific upper-bound rate (e.g., the rate decided by bandwidth
optimizer). Subsequently, the bandwidth enforcer instructs
OpenFlow plugin to translate allocated rates into OpenFlow
messages and to install them into the networking devices.

2) Link Statistics Collector: We implement this module
to estimate the available bandwidth of the link particularly
when the network is injected with cross traffic from multiple
applications. In OpenFlow network, all packets belong to
network flows are transferred based on flow forwarding rules
stored in the network devices. Meanwhile, we register all
these rules with statistics service module in ODL. The module
then uses the service APIs implemented by OpenFlow plugin
to send statistics requests to network devices to report flow
statistics including packets count, bytes count, and duration.

3) OpenFlow Plugin: This component is one of the essen-
tial components in ODL which implements OpenFlow protocol
to mediate the communication between underlying network
devices and network control applications. It is used in tan-
dem with functions of network application developed in tier
2 to interact with the underlying network devices supporting
OpenFlow protocol.

C. Tier 3: SDN-Based Forwarding Devices

This tier is primarily the data plane of the network intercon-
necting machines using SDN-enabled devices that can be pro-
grammed directly by the centralized network controller resides
in tier 2, using OpenFlow protocol. Each device contains a
pipeline of flow tables used to store flow rules installed by the
controller under which the main set of network functions such

as forwarding, rate control, and routing are supported. More
recently, some SDN-enabled devices also support a meter table
to store meter entries to implement bandwidth-limiting in the
ingress processing of received packets. The meter works like
a token bucket policer which measures and controls the rate
of packets belongs to each flow for up to specific pre-defined
rate (e.g., the rate advised by bandwidth optimizer).

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our proposed
bandwidth allocation model with a real hardware testbed. Our
testbed experiments illustrate proposed model’s good perfor-
mance for realistic and synthetic workloads of real streaming
applications. Our detailed experiments confirm that our model
also achieves close-to-TCP in terms of network utilization.

A. Setup

1) Testbed Experiments: We use brocade ICX-6610 24-port
Gigabit SDN-enabled hardware switch with 1Gbps uplinks
and downlinks to test proposed optimizing algorithm in a
non-blocking setting where the congestion is only restricted
to machine’ directly connected links. Furthermore, to evaluate
the proposed optimization particulars in a more general setting
with multi-hop network, we built a fat-tree like testbed of
7 switches, as shown in Fig. 2(c). In this setting, we throttle
the internal links capacities such that to shift the bottleneck
from the machines’ uplinks and downlinks to the internal links
of the testbed.

In both aforementioned settings, we set up 10-machine
Storm cluster, each of 4-core Intel Xeon E5-1620 3.5GHz
CPUs, 16GB of RAM, and 1TB HDDs. One machine is con-
figured to run Storm master (known as nimbus), Zookeeper,
and bandwidth optimizer. Eight machines are designated
for Storm worker nodes (known as supervisors) to run
the instances of experimental streaming applications. During
experiments, the worker nodes were kept in sync by using
the standard network time protocol (NTP) on the Ubuntu
Linux. We also use one machine to host OpenDaylight SDN
controller including our proposed bandwidth enforcer and
statistics control plane applications.

2) Test Applications and Benchmarks: We have imple-
mented two real-time stream analytics applications on top of
Apache Storm: Trending Topics (TT) and Trucking IoT (TI).
Figure 7 shows the topologies of the TT and TI applications.
TT application considers a topic as trending when it has
been among the top K topics in a given window of time.
We implement a topology of this application which consists
of chain of five operators, in which each operator has one or
more instances. The first operator is source of the topology that
emits unbounded sequence of data streams to next operator to
split them into words and emits them to the next operator,
word count operator (WCT), to perform and maintain word
counting. Then, WCT waits a time equals to K arrivals
and performs emitting to an aggregator operator. The latter
will jointly process the receiving tuples from multiple WCT
instances, extracts the top K trending topics from all of them,
and emits the results to report operator. For TT, we use a
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Fig. 7. Topologies of two test streaming applications.

real dataset from twitter which contains millions of tweets for
about 3 years. We set the sliding window to 30 seconds and
emulate average arrival rate of 1000 tweets per second.

The TI application, is the widely used one in its topol-
ogy design by many of streaming applications such as fre-
quent pattern detection [13] and distributed computer-vision
pipelines [27]. Trucking IoT service performs real-time analy-
sis on IoT data streams coming from multiple sources. This
topology receives two different streams, one stream reports
data about truck status while the other one about traffic
congestion status. The application processes both streams
concurrently in a way that data from the truck is combined
with the most up-to-date congestion data and reports a timely
action that should happen accordingly. For TI, we use two
synthetic datasets of different data tuple sizes which emulate
the sizes of real tuple sizes reported by each of the truck
sensor and traffic congestion online source service. We also
emulate the arrival rate of 250 tuples per second of each
stream.

With the TT and TI applications, we evaluate the perfor-
mance of streaming application when the network bandwidth
is the bottleneck possibly, i.e., the derived tuples rate from
the application or data stream ingestion rate is higher than
available network bandwidth, respectively.

3) Baseline: We use the standard TCP bandwidth allocation
model as our baseline. It is the default model used by stream-
ing frameworks like Storm [2], Heron [3], and Flink [5].
We compare TCP against our proposed bandwidth allocation
for streaming applications, which we call it, App-ware, for
purpose of identification.

We ran a series of experiments each with 600 seconds.
In all experiments, we set a sampling rate for the per flow’s
5-metric tuple to 1 per second in order to report flows backlog
to application profiler. Also, we set the timer interval Δt to
5 seconds to periodically perform new bandwidth allocation
by bandwidth optimizer. We repeat each experiment 4 times
over the cluster of different available bandwidth. In particular,
we set link bandwidth to 10Mbps, 15Mbps, and 20Mbps to
evaluate impact of different bandwidth bottlenecks for running
application. We also run the applications on the cluster with
bottleneck-free setting (i.e., sufficient available capacity).

B. Performance Improvement

For evaluating the performance of streaming application,
we use the widely used metrics of interest by streaming
frameworks, application throughput and average end-to-end

Fig. 8. Application Throughput (in uplink/downlink bottleneck).

Fig. 9. Application Throughput (in a multi-hop bottleneck).

latency. Application throughput is the average number of
successfully processed tuples per unit time by the sink operator
of streaming application, while average end-to-end latency is
the average time taken over all tuples from the point each
tuple leaves the source until it gets completely processed by
sink operator.

a) Application Throughput: Figure 8 contrasts throughput
of TT and TI based on App-aware versus TCP over each
of 10Mbps, 15Mbps and 20Mbps settings, in which the link
bottleneck is restricted only to the machine’ directly connected
links (i.e., uplinks and downlinks). The experimental results
confirm that App-aware outperforms TCP by 25%, 27%, and
15% in TT, and by 30.93%, 30.27%, and 30.80% in TI. Also,
Figure 9 illustrates similar results but in the multi-hop network
bottleneck. In particular, the experimental results confirm that
App-aware outperforms TCP by 19.21%, 19.52%, and 15.69%
in TT, and by 22.09%, 23.09%, and 23.98% in TI.

b) End-to-End Latency: Figure 10 contrasts average end-
to-end latency of TT and TI based on App-aware versus TCP
over each of 10Mbps, 15Mbps and 20Mbps settings in the
restricted bottlenck setting. The experimental results confirm
that App-aware outperforms TCP by 14.27%, 26.24%, and
50.17% in TT and by 5.72%, 10.10%, and 17.28% in TI.
Furthermore, Figure 11 shows partially similar results but
in the multi-hop network bottleneck setting. In particular,
the experimental results confirm that App-aware outperforms
TCP by 11.20%, 15.90%, and 60.89% in TT, but the latency
results in TI almost look similar in both. The reason is actually
because the internal links are heavily congested, and hence the
data packets experiencing the worst delays which might be
preferentially dropped or last long time in the switches buffer.
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Fig. 10. End-to-end Latency (in uplink/downlink bottleneck).

Fig. 11. End-to-end Latency (in a multi-hop bottleneck).

In link bottleneck setting, the improvement in application
throughput and end-to-end latency can be interpreted by the
fact that App-aware strives to allocate bandwidth to the flows
proportionally to their importance (e.g., time urgency for
window-based join processing) in application performance
rather than based on bandwidth fairness as what TCP does.
In TI, each combiner instance requires existence of data
tuples from both source instances. Therefore, in TCP large
data tuples flows often get throttled by some other very
frequent small data tuples flows which leads to processing
stall of the combiner. In contrary, App-aware relies on flow
metrics and then smartly allocates the flows proportional
bandwidth, which in turns alleviates instance’s stalled time
and speeds up needed data tuples arrival. For TT, key-based
grouping along with accumulating top K word at the WCT
instances create flows with unbalanced sizes. Those flows
are required by TopK aggregator to decide the final Top
K. Hence, TCP falls short to express such imbalance, while
App-aware captures such imbalance and allocates the proper
bandwidth which greatly helps application achieves better
performance. In bottlenck-free setting, for both applications,
the performance of App-aware is much similar to TCP and
sometimes it performs better.

C. Link Utilization

Besides, link utilization is an important property for
any bandwidth allocation algorithm to use the entire available
bandwidth. To evaluate network utilization due to dynamic
bandwidth allocation by our model, we use average link
throughput, the average of aggregate throughput over all
bottlenecked links in the cluster.

Fig. 12. Link utilization.

Though TCP congestion mechanism is application-agnostic,
it utilizes bottleneck links very well. Figure 12 contrasts
average link throughput of TT and TI as results of bandwidth
allocation based on App-aware and TCP model. App-aware
provides an average of 99% and 97% link utilization much
the same as TCP link utilization for TT and TI, respectively.
The model utilizes all available bandwidth and in case some
bandwidth remains, the model performs backfilling pass to
allocate the remaining bandwidth among the flows according
to their proportional share in the previous pass.

D. Overhead of Bandwidth Optimizer and Enforcer

In our solution framework, the switches periodically
send/receive updates to/from the ODL network controller.
Although the timing interaction between the controller and
the switches is important. However, in our solution of
stream application running for unbounded time, the interaction
requirement is not in milliseconds or microseconds scale, but
rather in seconds scale. Thus, the majority of the packets are
parsed in the data-plane without going through ODL and only
a periodic update of the available bandwidth and decisions
of flow rate are exchanged. It is thus why the processing load
for both switches and controller due to our design is not much
heavy.

Specifically, the most important components that influence
solution decision of the whole framework are computation
and communication overhead of bandwidth optimizer and
enforcer, respectively. To evaluate the computation overhead
of bandwidth optimizer, we report CPU time at time step
of new allocation in Trucking IoT application running for
600 seconds. We observed that optimizer took 6 milliseconds
on average to extract flow statistics and to calculate the optimal
bandwidth allocation. Further, to evaluate the communication
overhead of bandwidth enforcer, we log the completion time
of each flow rate update at one time step of the new allocation.
We observed that time for the controller to completely update
the switch with new flow’s rate (i.e., meter table update) ranges
from 100s of microseconds to 10s of milliseconds. As a result,
such timing’s overhead is negligible based on the interaction
requirement of our model and therefore is able to cope with
dynamic changes during application optimization.

VII. FURTHER EXTENSION FOR MULTIPLE APPLICATIONS

App-aware mechanism that we have introduced ensures
a utility fairness according to urgency of the flow to the
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performance of the application layer. This mechanism is
mainly focused on the performance improvement of an indi-
vidual real-time streaming application, however, it is likely that
multiple streaming applications and cross-traffic that might
also belong to different users can coexist in the same cluster.
Such heterogeneity leads to fundamental tradeoffs in network
resource allocation which might possibly lead to unpredictable
performance for both users and cloud network providers [28].
Thus, it is still an open question as how to investigate
performance particulars to best regulate sharing of network
resources among multiple streaming applications with varied
performance objectives and in the presence of cross-traffic.

As mentioned at the beginning of the paper, when the
link becomes congested many of TCP variants approximate
max-min bandwidth fairness on a flow-basis, hence it is com-
mon practice that application of many flows is likely to receive
higher portion of bandwidth than others. In [28], theoretical
allocation policies have been introduced as starting points in
navigating the tradeoffs space of bandwidth allocation in cloud
network, but remain of need to practical deployment. Here,
we make a step forward and discuss how tier 2 of our solution
framework can be leveraged to schedule multiple streaming
applications that might have different degree of sensitivity to
the bandwidth allocation. Such differences can be declared
by defining different utility functions and are optimized by
defining appropriate bandwidth allocation mechanism. In this
space, we implement a point solution by assuming that optimal
solution to the utility functions corresponds to the fairness
of bandwidth allocation between the competing applications.
That is, ensuring max-min fair allocation not only between
the flows as what TCP can approximate but also between
the applications as whole, regardless of number of flows
belong to each application. An approach to implement this
solution is by grouping applications into clusters of different
priorities and by giving higher priority to applications of
low achieved throughput. Similar applications in achieved
average throughput μ(t) up to time t or in past immediate
throughput μ(Δt) during period Δt could share a portion of
link bandwidth collectively. Thus, we measure the throughput
of an application i at time (t + Δt) as given by:

μ
(t+Δt)
i ← α× μ

(t)
i + (1 − α)× μ

(Δt)
i , (5)

where α is a constant weighting factor between 0 and 1.
c) Implemenation of Group Scheduling: We use Link

Statistics Collector of our framework in Figure 6 to peri-
odically record statistics of all flows belong to the active
applications. Based on the idea of Equation 5, the groups are
then identified with a simple clustering technique. Thereafter,
the clusters are ready to be assigned priorities to allocate
bandwidth that deserve. We assign group with lowest average
throughput the highest priority and implement group priorities
with a multi-level strict priority scheduler among a set Q =
{q1, . . . , qm} of queues, where m = 8 in our testbed. We asso-
ciate the flows from applications belong to the same group
into in same queue index among all egress ports. To control
downlinks and uplinks, the queues for controlling downlink
are readily available at egress port’s in the hardware OpenFlow
switches, while for uplinks the use of Open vSwitch (OVS)

Fig. 13. Application-level Fairness.

queues comes in handy to control the flows sharing the uplink.
Both of them, namely the queues attached to downlinks and
uplinks, can be easily programmed online via SDN controller
so as to dynamically associate the flows to them based on
scheduling algorithm.

To avoid starvation among the applications and to ensure
that each application receives a non-zero bandwidth, the algo-
rithm uses the periodic time-based measure of average
throughput and signifies that to be fair the application should
be displaced from one group to another in the next immediate
schedule.

We evaluate the performance of the described mecha-
nism, by experimentation of five competing applications for
10 minutes on the same testbed described in Section VI-A.1.
To determine whether applications are receiving a fair share
of bandwidth, we contrast TCP and our mechanism toward
application-level fairness, named App-Fair in Figure 13, under
differen values of Δt and α. In TCP, the aggregate throughput
of each application, App-i, where i is number of flows belong
to each application, is proportional to number of flows, while
App-Fair attempts to fairly share the bandwidth among the
applications regardless of their number of flows. Based on Jain
index as a fairness measure [29], the preliminary results show
that App-Fair is fairer than TCP. In particular, the fairness
index of TCP based allocation is 84%, while App-Fair fairness
index equlas 98%, 99%, 99%, and 98% at α equals 0.25, 0.50,
0.75, and 1 respectively and Δt = 10 seconds.

Furthermore, it is important to note that grouping mech-
anism can be adapted to provide any desirable fairness via
differential bandwidth allocation to meet some preference
criteria.

VIII. RELATED WORK

A. Scheduling and Management in Datacenter

There has been a plethora of recent work on scheduling
and management of tasks of datacenter applications with
various performance objectives. Most of them aim to minimize
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completion time of flows belong to user-facing applications
(e.g., web search) [23], [24], while others aim to minimize
the completion time of data-intensive jobs (known as coflows,
e.g., MapReduce jobs) as whole [25], [26], [30]. In principle,
the basis behind introducing these solutions is driven based
on the intuition of segregation (co)flows into short and long
(co)flows, and then schedule each of them, broadly speaking,
on a SJF basis. However, this kind of classification can
not be directly applied for those applications do not have
transfer boundary (e.g., streaming applications). On contrary,
one aspect of our model design is addressed to overcome
this limitation. It has the ability to inform the state of the
flow based on its current and historic attributes regardless of
its length. Moreover, recent research efforts focus more on
sophisticated objectives such as scheduling mix-flows in com-
modity datacenters [31], or supporting bandwidth allocation
of different service-level objectives ignoring application layer
objectives [32].

B. SDN-Based Traffic Management

Much like typical programming languages offer APIs to
manage workload of computation resources, SDN interestingly
offers APIs (e.g., OpenFlow) to manage workload of network-
ing resources. Hence, SDN-based traffic management [33] has
been adopted to enable efficient and dynamic management
of network resources in datacenters during runtime of the
applications. Hedera [34] and MicroTE [35] manage network
flows using centralized network-wide scheduler in order to
increase network throughput. Recently, Alkaff et al. [36] pro-
posed to adopt SDN-based traffic management for optimiz-
ing cloud applications. They focused on the coordination
between the application layer’s task placement with network
layer’s route/path selection strategies. To our best knowledge,
no recent work integrates SDN with real-time distributed
streaming analytics to cooperatively optimize network band-
width allocation for achieving the application-level perfor-
mance requirements. Further, Wang et al. [37], investigate
potential of integrating SDN controller with big-data appli-
cation to facilitate more informed scheduling and placement
decisions. Xiong et al [38] propose an SDN-based framework
to improve the performance of queries over distributed rela-
tional databases.

C. Resources Auto-Scaling in Stream Applications

DRS [13] has been introduced to schedule and provision
computation resources to meet a real-time constraints.

SnailTrial [39] has been recently proposed to determine the
importance of an execution activity in the transient critical
paths of computation pipeline and to provide an immediate
feedback for applications to perform automatic reconfigura-
tion, dynamic scaling, or adaptive scheduling. DS2 [40] is a
scaling controller for distributed streaming has been introduced
to maximize system throughput via estimating the optimal
level of parallelism for each operator. While these proposals
are significant towards improving the performance of stream-
ing pipeline, on contrary, our work address I/O-bound stream
applications and introduce a bandwidth scaling model that is

able to dynamically increase or decrease bandwidth allocation
on a performance-centric basis of stream application. To the
best of our knowledge, no recent work addresses network
bandwidth allocation matter in streaming applications.

D. Traffic-Ware Placement in Stream Applications

Several proposals [11], [12], [41], [42] have been proposed
to avoid network transfers as much as possible. They aim
primarily to collocate application instances in a few machines
in order to minimize inter-machine communication. However,
while these solutions to some extent improve the performance
of the application, it is inevitable to distribute the applications
into many more machines to not overload the CPUs of partic-
ular machines. Further, Typhoon [9] has recently presented an
approach to optimize broadcast transfer pattern, but it is rather
limited to specific pattern and further difficult to be applied
because it requires modifying the routing table per instance
involved in the broadcast transfer.

Nonetheless, optimization of bandwidth allocation is orthog-
onal to traffic-ware solutions. In our measurement-based
study [22], we have shown that optimal placement is not
sufficient either, but rather effective bandwidth allocation
alongside optimal placement is required to ensure further
optimal application-level performance.

E. Network Utility Maximization (NUM)

A long line of optimization frameworks [43] began with
Kelly’s seminal paper [44] have been proposed for resource
allocation based on NUM. While several of these frameworks
have also been generalized to implement various flow utility
functions such as rate, delay, jitter, and reliability [45], and
recently NUMFabric [32] for different objectives such as
weighted flow fairness, and minimizing flow completion times,
we believe that none of them has capabilities to optimize
application layer specific objectives to streaming analytics.

IX. CONCLUSION

As we have observed that TCP-based bandwidth allocation
of bottleneck links largely hurts application-level performance
of streaming applications. As opposed to TCP and its variants,
we have introduced a novel bandwidth allocation model that
performs well with awareness of the application layer perfor-
mance requirements. To make the proposed model practical,
we have developed a cross-layer SDN-based framework which
utilizes smartly the instantaneous information obtained from
the application layer and provides on-the-fly and dynamic
bandwidth allocation during the runtime of the streaming
applications.

We have thoroughly investigated the performance of pro-
posed solution through a series of testbed experiments with
real-world stream analytics. The results reveal that applica-
tion’s performance resulted from our solution outperforms the
standard TCP-based bandwidth allocation employed by most
of streaming frameworks, and with a negligible overhead.
It also performs comparable to TCP in network utilization.
We believe that proposed model can be used not only by
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streaming analytics, but it can also be employed by several
platforms involving parallel and pipelined network flows.

In addition, we have introduced an exemplary mechanism
that leverages SDN framework to assist in sharing of band-
width and reasoning of performance among multiple applica-
tions and we show a case for approximating application-level
fairness. However, much more remains to be done in exploring
the tradeoffs in bandwidth allocation for multiple streaming
applications with varied performance objectives and in the
presence of cross-traffic.
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