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Iris: Deep Reinforcement Learning Driven Shared
Spectrum Access Architecture for Indoor

Neutral-Host Small Cells
Xenofon Foukas, Member, IEEE, Mahesh K. Marina, Senior Member, IEEE and Kimon Kontovasilis

Abstract—We consider indoor mobile access, a vital use case
for current and future mobile networks. For this key use case,
we outline a vision that combines a neutral-host based shared
small-cell infrastructure with a common pool of spectrum for
dynamic sharing as a way forward to proliferate indoor small-
cell deployments and open up the mobile operator ecosystem.
Towards this vision, we focus on the challenges pertaining to
managing access to shared spectrum (e.g., 3.5GHz US CBRS
spectrum). We propose Iris, a practical shared spectrum access
architecture for indoor neutral-host small-cells. At the core of
Iris is a deep reinforcement learning based dynamic pricing
mechanism that efficiently mediates access to shared spectrum
for diverse operators in a way that provides incentives for
operators and the neutral-host alike. We then present the Iris
system architecture that embeds this dynamic pricing mechanism
alongside cloud-RAN and RAN slicing design principles in a
practical neutral-host design tailored for the indoor small-cell
environment. Using a prototype implementation of the Iris system,
we present extensive experimental evaluation results that not
only offer insight into the Iris dynamic pricing process and its
superiority over alternative approaches but also demonstrate its
deployment feasibility.

Index Terms—Indoor mobile access, small cells, neutral host,
RAN slicing, C-RAN, shared spectrum, dynamic pricing, deep
reinforcement learning.

I. INTRODUCTION

A. Background and Motivation

MOBILE data traffic growth over the past decade and
forecasts have been driving research on scaling capacity

of mobile networks. Much of this demand is from indoors,
amounting to 80% as of 2014 according to a Gartner study and
expected to rise to over 95% by the time 5G gets deployed [1].
Indoor cellular coverage, however, has traditionally been poor.
Outdoor solutions for indoor coverage are expensive due to
building penetration losses [2]. Even Distributed Antenna
Systems (DAS) are found to be expensive except for a few large
venues like stadiums [3], [4]. Indoor small cells are considered
relatively promising to address the coverage issue and scale the
infrastructure with user density/demand. Indeed, making cells
smaller and denser has historically been the biggest contributor
to capacity scaling of cellular networks [5]. Despite this
potential, indoor small cell deployments have been hampered
due to operator concerns over deployment costs (and return on
that investment) and issues such as site access and backhaul.

For the cost-efficient and simplified deployment of indoor
small-cell networks for all operators, there is an emerging

Manuscript received December 14, 2018; revised June 27, 2019.

consensus around the notion of a “neutral-host” [6]–[15]. The
key idea is that the site owner (i.e. the neutral-host) offers indoor
mobile access as a building amenity by taking the responsibility
of deploying and managing the small-cell infrastructure and by
allowing multiple operators to share it for a fee that covers the
neutral-host’s CapEx and OpEx (e.g. deployment, management
and electricity cost), thus offering small-cells as a service1.
The neutral-host becomes the only entity that needs to address
issues such as power and backhaul, relieving the operators of
deploying their own infrastructure and dealing with the associ-
ated challenges. Considering the ever-increasing significance of
mobile access for users, the site owner is motivated to act as a
neutral-host by the need to provide a high quality of experience
for the building residents and visitors (thus increasing the value
of the property), while the operators are motivated to pay a fee
to gain indoor access rather than relying on their outdoor RAN
infrastructure in order to improve their indoor coverage [16],
[17] (although providing a service with degraded quality to
indoor users through their outdoor infrastructure is still a valid
option to avoid paying a fee to the neutral-host).

As virtualization is a natural means for sharing the small-cell
infrastructure, the neutral-host concept aligns well with the 5G
vision of supporting a diverse array of services across different
Mobile Virtual Network Operators (MVNOs) and verticals
via network slicing. From this perspective, the neutral-host
provides each operator (also referred to as a tenant henceforth)
a virtual radio access network (vRAN) spanning the area of
the indoor environment it covers; this vRAN becomes part
of the operator’s end-to-end network solution, including its
existing core network or a cloud realization of the core (e.g.,
[18]). However, a vanilla realization of the neutral-host concept
that serves just traditional mobile network operators (MNOs)
bringing their own licensed spectrum offers limited incentives
for the neutral-host and operators alike [6].

We envision that the potential of the neutral-host’s infrastruc-
ture sharing capability would be significantly amplified through
access to a pool of spectrum that is dynamically shared among
operators. Firstly, traditional MNOs would be able to gain
access to additional spectrum for increasing their capacity and
for offloading purposes. Secondly, by removing the requirement
to possess licensed spectrum (which typically only a handful of
operators have), it allows new non-traditional operators into the
fray, who may come with innovative revenue models differing

1The neutral-host is a more general concept that could also be applicable
in other settings (e.g. outdoor, rural, etc.), however our focus here is on the
indoor scenario.
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from the traditional subscription-based model (e.g., free access
that is monetized by advertising and analytics a la Internet ser-
vices and free mobile apps). Lastly, the aforementioned increase
in the network capacity offered by the additional spectrum and
the potential cost reductions offered to users (or even free ac-
cess) can greatly improve their quality of experience, which as
already mentioned is the main incentive of the site owner to act
as a neutral-host in the first place. In fact, there is more support
for the neutral-host model following the 3GPP defined multi-
operator core network (MOCN) form of network sharing, which
requires use of common spectrum shared between operators [6].

The neutral-host’s common (and dynamic) spectrum
pool could in principle be made up of licensed spectrum
pooled from different MNOs, unlicensed spectrum or shared
access spectrum [19]. Regarding the latter, recent regulatory
developments below 6 GHz allow sharing of lightly used
spectrum held by legacy or public-sector incumbents (e.g.,
radars) via tiered spectrum access models [20]–[22], offering
substantial amounts of spectrum at a lower acquisition cost
compared to licensed spectrum and without the complex
coexistence issues of unlicensed spectrum. The Citizen
Broadband Radio Service (CBRS) in the US [23] is a case
in point, allowing the shared use of the 3.5 GHz band via a
three-tier access model; a management entity called Spectrum
Access System (SAS) ensures that when higher tier users need
to use the spectrum, they get interference protection from lower
tier ones. In fact, a new LTE-based service called OnGo that
is operating over CBRS spectrum is promoted by the CBRS
Alliance as an ideal solution for neutral-host deployments [16].
Licensed shared access (LSA) model for spectrum sharing [24]
that is promoted for some bands in Europe, especially in its
dynamic form, is another such relevant development. In view of
the above, we consider the scenario where the neutral host is
powered by shared access spectrum in the style of CBRS or LSA.

B. Paper Overview and Contributions

The focus of this work is on addressing the challenges that
arise with respect to managing access to shared spectrum in an
indoor neutral-host small-cell environment, which constitute
the requirements for the desired system:

1) As the neutral-host needs to support multiple (traditional
and non-traditional) operators all competing in offering
broadly the same type of service to users, the system
should facilitate for each tenant service differentiation
over rival tenants and control over its share of resources
without requiring direct/explicit interaction among tenants.
These are key concerns from the operators perspective
to incentivize their participation in neutral-host small
cells [6]. This requirement means that tenants should
not have to reveal any private information regarding their
business model to the neutral-host; instead they should
operate in isolation with respect to each other and the
neutral-host, and should be able to dynamically change
their private spectrum valuations.

2) The system should provide a control mechanism to
enable the efficient and dynamic spectrum sharing among
tenants by aiming to closely match the spectrum supply

with the tenants’ demand. This should be done in a
way that tenants who value the spectrum most get it,
especially during periods of congestion (e.g., due to
insufficient spectrum availability). The allocation of radio
resources to tenants should be performed in a way that
respects this constraint. Being in a position to satisfy the
tenants’ demand, also implies the satisfaction of their
service level agreements (SLAs). However, given that the
shared spectrum availability can change dynamically and
unexpectedly over time, hard SLAs may be infeasible for
the tenants and therefore the desired system should aim
to provide soft SLAs instead.

3) The neutral-host should be able to cover its expenses
for offering the service, including the fixed costs (e.g.
deployment, management and electricity) and also a time-
varying spectrum acquisition cost [25], depending on the
amount of the shared spectrum acquired to meet the overall
demand. This last cost needs to be recouped from the
tenants in a dynamic manner, since any pre-agreed static
fee may either overcharge the tenants or put the neutral-
host in losses. Crucially, as already explained, the primary
goal of the neutral-host is to provide a high quality of
experience for building residents and visitors, and doing
so without incurring losses. So revenue maximization is
not the main driver although a revenue target linked with
the neutral-host’s incentive to provide the service with
some profit margin (adjusted depending on the deployment
environment) could also exist. Note that the environment
in which the neutral-host operates is not a monopoly (e.g.,
tenants could opt to use their own external RAN with
degraded quality of service).

4) The solution approach meeting the above requirements
should be realizable in the context of a shared spectrum
based neutral-host small cell system architecture that is
practical in terms of algorithmic complexity, signaling
overhead, etc.

Our key insight in this paper is that pricing can be
an effective control mechanism to meet the first two
aforementioned requirements. Pricing has been effectively
employed in other contexts [26]–[29] to regulate demand and
enable efficient sharing of resources with service differentiation,
while it also naturally allows meeting the third requirement
of neutral-host cost recovery and achieving a revenue goal
if it exists. Given that tenant behaviors and traffic demands
as well as spectrum availability can vary over time, a single
optimal fixed price may not exist and thus pricing has to be
dynamic. On the complementary side, we view a cloud RAN
(C-RAN) [30] architecture to be more suitable for the indoor
neutral-host small cell environment, due to the better scaling
it offers in terms of spectrum availability, number of tenants
etc., while allowing a cheaper and denser small-cell radio
infrastructure. The result is our proposed approach Iris, a novel
dynamic pricing shared spectrum access architecture for indoor
neutral-host small-cells. The key components of the proposed
Iris approach and our contributions are outlined below:

• (§III) We design a neutral-host system following C-
RAN and RAN slicing design principles that embeds
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a dynamic pricing mechanism that regulates the allocation
of spectrum to tenants by determining the price at which
tenants can obtain a share of spectrum at any given
time instant, while also considering the cost/revenue
requirements of the neutral-host.

• (§IV) In view of the stochastic nature of the neutral-host’s
environment with several unknowns (tenant behaviors,
future demands and spectrum availability), we model the
pricing decision problem as a Markov Decision Process
(MDP) and resolve it using reinforcement learning. As
the large state space and continuous action space of the
problem make common reinforcement learning techniques
slow and inefficient (as we experimentally demonstrate),
we leverage recent machine learning advances and employ
deep reinforcement learning. Unlike the Iris dynamic
pricing mechanism, existing spectrum sharing mechanisms
relevant for the neutral-host context [31]–[38] fail to
meet some of the necessary requirements listed above, as
discussed in the next section.

• (§V) We develop a prototype implementation of Iris, with
the goal of demonstrating the feasibility of our proposed
mechanism, thereby satisfying the fourth practicality
requirement above. To our knowledge, relative to existing
neutral-host designs [39]–[41], this is the first design
accounting for the peculiarities of spectrum sharing and
the indoor small cell environment, along with a concrete
implementation.

• (§VI) Using the above mentioned prototype
implementation, we demonstrate the system’s feasibility in
practice and conduct extensive experimental evaluations
— characterizing the learning behavior of Iris, its
performance in different conditions, and highlighting its
superiority with respect to static pricing and alternative
approaches from the literature [38], [42].

II. RELATED WORK

Dynamic pricing in other contexts. Fundamentally, the
pricing problem we have bears similarity with the pricing
work in the Internet congestion control context [26], [42].
In these works, pricing is used as a signal to regulate the
rates of senders for efficiently sharing network resources (e.g.,
bandwidth of links). Referring to [42], for example, each link
in the network sets a price depending on its aggregate demand
from all senders and each sender adjusts its rate independently
in a way that maximizes its net utility after accounting for the
bandwidth cost. The key difference from our case is that these
works do not have the equivalent of requirement (3) (§I-B),
regarding the need of the neutral-host to reach a revenue target
that will allow it to cover its expenses.

Dynamic pricing has also been successfully applied in vari-
ous other contexts where regulation of demand is required [28],
[29], [43]. In those cases the focus is on controlling the end-
user demand by the operators, unlike our case of spectrum
sharing among operators via the neutral-host.
Spectrum sharing in the RAN slicing context. Neutral-host
spectrum sharing can be seen as a specific form of RAN
slicing and as such, RAN slicing mechanisms are relevant.

There exist several algorithmic works [31]–[37] focusing on
either the base station level (e.g., [34], [36]) or the RAN level
(e.g., [31], [32], [35]), allocating radio resources to slices
based on their SLAs. As all these mechanisms centralize the
resource allocation at the infrastructure provider (neutral-host
in our setting), they fail to meet requirement (1) (§I-B). Also,
with the exception of [33] where revenue maximization for
the infrastructure provider is considered, others do not meet
requirement (3) of recovering costs and reaching the revenue
target of the neutral-host. With respect to requirement (2),
the focus on strict SLAs in these works may also be limiting
when dealing with shared access spectrum.

A recent work [38] explicitly targets the shared spectrum
neutral-host setting but shares the same limitations as the above
mentioned works. It presents several pre-determined spectrum
allocation policies at the neutral-host, mostly SLA based with
the exception of one that assumes all tenants have the same
utilities and allocates spectrum proportional to their traffic
loads. We consider the latter in our comparative evaluations to
highlight the service differentiation benefit of Iris.
Spectrum sharing without infrastructure sharing. The
allocation of shared spectrum has also been considered in set-
tings where operators deploy independent infrastructures [44]–
[50]. Some works assume that participating operators have
predetermined agreements regarding their priority for accessing
the spectrum in cases of congestion (e.g., [44]), while others
focus on the architectural aspect of the system (e.g., [46]) or
on the coordination among operators (e.g., [48], [49]).
Auction-based dynamic spectrum sharing mechanisms. A
rich body of literature on dynamic spectrum auction mecha-
nisms is broadly related [51]–[60]. The most relevant from
our context are [52], [53] but both have limitations from
a practicality standpoint. The mechanism in [52] requires
continual exchange of information between tenants and the
neutral-host about each end-user device, and it allows only
discrete number of traffic rates for tenant resource requests.
[53] proposes a hierarchical auction-based mechanism that
requires the involvement of end-users in the auction.

More fundamentally, any auctioning mechanism for our
setting has to handle a time-varying spectrum acquisition cost
for the neutral-host along with its revenue target, which requires
a dynamic reserve price. Setting such a reserve price statically
and in a naive way effectively leads to the same limitation
as in the case of [42] in terms of meeting requirement (3)
(something that is also demonstrated in Section VI-D). In
contrast, in this work we demonstrate the capability of Iris
to meet the aforementioned requirement and to effectively
satisfy the tenants’ demand through the system’s dynamic
pricing decisions. Furthermore, it should be noted that Iris’s
decisions could also be used as an enabler of auction-based
spectrum sharing mechanisms for our setting in cases where
price differentiation among tenants is required, i.e. by setting
the reserve prices of an auction-based scheme based on the
pricing decision of Iris.
Neutral-host system designs and specifications. A number
of recent designs that consider multi-tenancy support in
mobile RANs are applicable to the indoor neutral-host small
cell setting. Perhaps the ones most relevant are: Orion [41],
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Fig. 1: Schematic of Iris neutral-host system architecture.

SESAME [39] and ESSENCE [40]. However, these works do
not consider the use of shared spectrum and its implications,
the main focus of this paper.

In terms of specifications targeting the neutral-host setting,
nFAPI [61] is the most relevant one in which a functional
split at the MAC layer is specified and each virtual operator
is assigned a VNF implementing the higher-layer protocols.
However, in contrast to our work, each tenant is assigned a
static chunk of spectrum. Another closely related specification
is MulteFire [62], which is a form of LTE deployment in
unlicensed bands. In contrast to our work, the focus of
MulteFire is on the ways to enable co-existence with other
technologies operating over unlicensed spectrum (e.g. Wi-Fi).

III. IRIS SYSTEM ARCHITECTURE

The design of Iris builds on the observation that the small-cell
infrastructure sharing capability offered by a neutral-host is a
particular albeit compelling use case of the broader RAN slicing
in the 5G context. However, a vanilla RAN slicing system
would be insufficient to address the specific needs of shared
spectrum management and indoor small-cell environments.
The design of Iris addresses these needs (Fig. 1) by embracing
the cloud RAN (C-RAN) paradigm, with baseband processing
units (BBUs) centralized in a virtualized BBU pool located in
an edge cloud (e.g., in the basement of the indoor space) and
remote radio units (RRUs) deployed throughout the building
in a planned manner. The RRUs are connected to the BBUs
over high speed channels (e.g., 10-Gigabit Ethernet or Fiber).
This approach places most of the RAN processing on the
edge cloud which allows the system to scale better as BBU
resources can be adaptively provisioned depending on the
number of tenants and the spectrum availability. It also lowers
the form factor of the RRUs, making their deployment easier
and discreet from a building aesthetics viewpoint.

Each tenant is allocated a Virtual RAN Controller, deployed
as a Virtual Network Function (VNF) over the edge cloud.
The controllers interface with the BBUs using message-based
communication and provide tenant-specific functions such as
schedulers and mobility managers, as well as an agent for the
allocation of shared spectrum (discussed shortly).

At the heart of Iris lies the spectrum manager, a centralized
controller managed by the neutral-host. This controller informs

the BBUs about the amount and type of available spectrum
(shared or privately owned) and about its valid allocations,
depending on the access rights of tenants, distinguishing in
particular between tenants operating exclusively over shared
spectrum and tenants that can also use their own private licensed
spectrum. A shared spectrum acquisition manager acquires the
shared spectrum in a demand driven manner through a public
repository (e.g., SAS in the CBRS context). Moreover, this
controller manages interference among small cells. Due to
the system’s C-RAN based design, the VNF of the spectrum
manager co-exists with the virtualized BBU pool over the
same edge cloud, simplifying its coordination with the BBUs
through low-latency and high bandwidth channels and enabling
the use of advanced interference management techniques like
Coordinated Multipoint (CoMP) [63].
Shared spectrum allocation process in Iris. Crucially, the
spectrum manager hosts a pricing policy agent and is respon-
sible for dynamically deciding the price for the tenants to use
shared spectrum resources. The dynamic pricing mechanism of
Iris follows a time slotted operation for the allocation of shared
spectrum, with each slot referred to as an epoch henceforth.
The functionality of the dynamic pricing mechanism is
distributed among three distinct agents as illustrated in Fig. 2.

Fig. 2: Iris agents involved in dynamic pricing mechanism.

The pricing policy agent initiates the shared spectrum alloca-
tion process in each epoch, deciding on the price for each cell
using a deep reinforcement learning algorithm that is described
in depth in §IV-C. The pricing policy agent announces the
current epoch, the spectrum availability and the cell specific
prices to the respective cell agents residing in the BBUs, which
in turn convey the price to the tenant agents residing in the
tenants’ virtual RAN controllers. Each tenant considers the
announced price along with its traffic load at the cell in question
to decide on quantity of resource to be requested as dictated by
its internal private policy. The tenant requests are aggregated at
the cell agent, which distributes the available shared spectrum
proportionally to the tenants’ requests and notifies the pricing
policy agent about the allocated resources, the load of the
tenants etc. The schedulers running in the virtual RAN
controllers of the tenants use the allocated resources to serve the
traffic of their UEs as per the tenants’ internal policies. Once
the allocation process is complete, the pricing policy agent uses
the feedback obtained from the cells in terms of the behavior of
the tenants and decides on a new price for the upcoming epoch.
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IV. IRIS DYNAMIC PRICING MECHANISM

In this section, we describe the core component of Iris – its
dynamic pricing mechanism.

A. System Model

Tenant resource requests. In our model, tenants express
their resource requests in terms of radio resource blocks
(RBs) through the Iris tenant agents. We assume that tenants
have a way to map their aggregate throughput demands into
the number of RBs required (e.g., by assuming an average
spectral efficiency for every RB). Such a mapping is reasonable,
considering that indoor small cell deployments are typically
planned to provide near-optimal performance to users (UEs)
within 20-30m [64].

Neutral-host and tenant interaction. As already described,
the neutral-host follows a time slotted operation in the form of
epochs for the allocation of shared spectrum. The duration of
an epoch is expected to be short (e.g., 20-100ms), allowing the
neutral-host to allocate radio resources in real-time. In each
epoch t, the neutral-host determines a resource block price
pt ∈ [pmin, pmax] through its pricing policy agent with which
the tenants can buy the available resources. Our model does not
assume predetermined bounds to the range of prices, providing
enough flexibility to set pmin and pmax according to the pricing
characteristics of the specific domain in which Iris is deployed.
The range of possible prices is assumed to be known to the
tenants a priori (e.g., specified in their contract), allowing them
to develop their radio resource acquisition policies according
to the expected prices. Without loss of generality, we consider
dynamic pricing for the allocation of downlink radio resources;
the uplink can be treated similarly.

In each epoch t, all tenants see the price pt announced by
the neutral-host (through the cell agents) and decide how many
resources to buy. The neutral-host is oblivious to the behavior
of the tenants, not knowing the internal mechanism (possibly
changing over time) that governs their decisions. Consequently,
the high level goal of the neutral host would be to “predict”
the demand of tenants at any point in time and dynamically
decide on a price that would utilize the resources as efficiently
as possible while recovering its cost and maximizing the tenant
satisfaction, by allocating the radio resources according to the
expressed tenant demands. The model presented here is com-
patible with very general tenant behavior patterns, deterministic
(e.g., driven by the optimization of utility functions) or not.
Due to this generality, our model does not require a concrete
definition of the tenants’ behavior and simply relies on the fact
that tenants express their demands in terms of resource block
requests. It is noted that in Section VI and for the sake of
concreteness of our evaluation, we model the different tenant
behaviors in the form of a rich set of utility functions, which
are used to demonstrate the effectiveness of Iris.

To model the temporal evolution of the tenants’ demand,
we divide a day into H periods, each e epochs long, so that
He epochs make up 24h in the day. This construction makes
a period correspond to an appropriate time interval within
a day (e.g., an hour in a day) so that tenants’ behavior is
not expected to vary within a period but could across periods.

Clearly, the shorter the period, the finer the granularity at which
tenant behavioral changes can be captured. Without restricting
generality, one may index periods within a day in the range
0 ≤ h < H and may take the evolution of the system to start at
epoch t = 0 coinciding with the beginning of a day. With this
convention, the index of the current epoch t maps to the index of
the current period of the day as: h(t) = (tdive) mod H. It should
be noted that the scheme imposes a natural synchronization, in
which all tenants can always refer to the correct current epoch.
In the rest of this section, we will use superscripts of the form
·t to denote the time dependency of any quantity including
cases when it occurs indirectly through h(t).

Shared spectrum acquisition cost and revenue target of
the neutral-host. Let nt ∈ Z be the number of RBs obtained
by the neutral-host from an external/public spectrum repository
in epoch t. To maintain flexibility, the pricing mechanism
regards the interaction between the public repository and the
neutral-host in abstract terms. Consequently, { nt, t ≥ 0 } is a
stochastic process and the neutral-host, although informed about
the current value nt , is unaware of the process’ future dynamics
so dynamics of a very general form can be accommodated.
The only assumption (to enable the MDP framework discussed
later) is that nt+1, conditioned on the value of nt , follows a
probability distribution (unknown to the neutral-host) that may
depend on t and/or the current load of the tenants. This is a
very mild assumption compatible with virtually all scenarios
of practical interest.

To capture the neutral-host’s incentive for participation, we
introduce a target revenue level T . The value of T represents
the per epoch revenue that the neutral-host expects to obtain
through the dynamic pricing scheme for the particular small-
cell in question. Generally, T can change dynamically as
the neutral host seeks to offset its OpEx that encapsulates
not just fixed costs like electricity and management of the
infrastructure, but also dynamic costs like the the cost for
the amount of RBs nt obtained from the external spectrum
repository in epoch t. In the following we will use the notation
T(nt ) to signify this functional dependence. This notion of a
target revenue level is general enough to also capture other
types of expenses (e.g. electricity) and could also be used
to accommodate more general profit aims of the neutral-host
(e.g., to dynamically adjust its profit margin according to the
conditions of its environment).

System dynamics and neutral-host’s small-cell resource
allocation. Let I be the set of tenants served by the system.
For each tenant i ∈ I, the expected load of a cell in epoch
t is denoted by lti , representing the total traffic that tenant i is
expected to serve during epoch t. For example, this could be
the bytes stored in the transmission buffers of all the UEs of
the tenant in the cell and a forecast of any new traffic expected
during epoch t. This can accommodate very general dynamics
for the evolution of lti , for all i ∈ I. The only assumption made
(to enable the MDP formulation) is that lt+1

i , conditioned on
the value of lti , follows a probability distribution that may
depend on one or more of: the time t, the amount of radio
resources nt , and the price pt .

The tenant i’s behavior at epoch t is captured through its
RB request νti ∈ Z. The dynamics of νti can be general, the
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only restriction being that νt+1
i , conditioned on the value

of νti , follows a probability distribution (unknown to the
neutral-host), whose form may depend on one or more of: the
time t, the current tenant load lti and the price pt .

The collective request across all tenants may exceed the
amount of available resources, i.e., it is possible for

∑
i∈I ν

t
i >

nt . In such a case, the neutral-host would allocate the available
resources proportionally to the tenants’ requests. By using uti
to denote the resources actually allocated to tenant i in epoch t,
this allocation rule translates into

uti (®ν
t ) =

νti∑
j∈I ν

t
j

min{ nt,
∑
j∈I

νtj }, ∀i ∈ I, (1)

where ®νt stands for a vector containing the tenants’ requests.
Always,

∑
i∈I uti ≤ nt . And uti = ν

t
i for all i ∈ I, when nt ≥∑

i∈I ν
t
i .

B. Problem Formulation

Given the system model just described, we now formulate
the neutral-host’s dynamic pricing problem as a discrete-time,
continuous state and action space MDP. Essentially, the neutral-
host observes the state of its environment and makes a decision
for an action (price pt ) based on this observation, getting a
reward while transitioning the environment into a new state.
We denote this action as at ∈ A where at = pt .

The state (xt ) of the neutral-host’s environment in epoch t is
made up of the vector ®νt−1 of virtual radio resources requested
by the tenants in the previous epoch t−1, a vector ®lt containing
the current loads lti of the tenants and the number of available
radio resources at the neutral-host nt . That is,

xt := (®νt−1, ®lt, nt ) ∈ X . (2)

Note that xt is known to the neutral-host as it either contains
information maintained by itself or obtained from the tenants
every time they request resources.

The reward function of the neutral-host is designed so that
it can capture the first three requirements of the system as
identified in Section I-B. Using the action notation at for the
price decision pt , the reward function is defined as

r(xt+1, at | xt ) = f (
nt−

∑
i∈I ν

t
i

nt )g(
at ∑

i∈I u
t
i (
®νti )

T (nt )
). (3)

Indeed, the first requirement of the system is met, as the tenant
behaviors are hidden from the neutral-host, which only has
tenant resource requests (νti ) to glean that information (as part
of the state given as input to the reward function).

The second requirement, i.e., avoiding a mismatch between
resource supply and demand is handled through the first
factor on the right hand side of (3). In the argument of the
function f , this mismatch is expressed in a relative sense to
make the reward function behave in the same way regardless
of the amount of available spectrum. A zero value of this
argument signifies a desirable perfect match between supply
and demand. Positive values of the argument signify resource
under-utilization (nt >

∑
i∈I ν

t
i ). Avoiding it would leave

room to allocate more resources to tenants and increase
their satisfaction. Negative values of the argument signify

excess demand (nt <
∑

i∈I ν
t
i ). This should be avoided, as

the proportional allocation in rule (1) gives some tenants fewer
RBs than those requested at this price, leading to a decrease in
their satisfaction. These are all met by defining the function f as

f (x) = e−x
2/σ2

, σ > 0. (4)

With this Gaussian form, the highest contribution to the
reward is attained when x = 0 (perfect match) while positive
or negative mismatches are penalized at an exponential rate.
The parameter σ tunes the “sensitivity” of f – smaller values
of σ penalize resource mismatches more aggressively.

The second factor of (3) corresponds to the third system
requirement of avoiding a mismatch between the actual and
target levels of revenue. The argument of the function g is
the ratio of these two levels. The ideal case is when this
argument is equal to 1, a perfect match between actual and
target revenues. When the argument is smaller than 1, the
actual revenue is below the target. This should be avoided as
it signifies a reduced incentive for the neutral-host to provide
the service (the neutral-host is experiencing losses). When the
argument is greater than 1, the revenue exceeds the target level.
This should also be avoided as it suggests that a lower price
could also satisfy the goal of the neutral-host which could
potentially improve the satisfaction of the tenants. All these
features can be incorporated, by letting

g(x) =
( min{1, x}
max{1, x}

)δ
, δ ≥ 0. (5)

The highest reward contribution occurs when there is a perfect
match (x = 1) while mismatches are penalized according to a
power law. The value of δ tunes the sensitivity of g, higher
values of δ penalizing revenue mismatches more aggressively.
Moreover, the joint tuning of the parameters σ and δ can adjust
the relative importance between the two factors f and g of
the reward function. By making the values of any of these
parameters smaller, the neutral-host tends to care more about
the utilization of resources by the tenants and to disregard its
own level of revenue. Increasing the values of the parameters
has a reciprocal effect.

With the reward function (3), the behavior of the neutral-
host is defined by a policy π, which maps the states to a
probability distribution over the actions π : X → Pr(A).
With the mild assumptions stated in §IV-A and the neutral-
host’s state as in (2), the state transitions from xt to xt+1

given the action at satisfy the Markov property and thus,
applying a policy π to this MDP defines a Markov chain.
We denote expectations over this chain by Eπ . We define the
return from a state xt as the sum of the discounted future
rewards: Rt =

∑∞
τ=t γ

(τ−t)r(xτ+1, aτ | xτ) for a discounting
factor γ ∈ [0, 1] [65]. The goal of the neutral-host then is to
find a pricing policy that will maximize its expected returns
from the start state Eπ

[
R0] over an infinite horizon. It should

be noted that the choice for using a discounted rather than an
average reward was mainly driven by the unpredictability of
the environment, which can potentially change over time (e.g.
tenants changing their spectrum acquisition policy).
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C. Deep Reinforcement Learning Solution

Reinforcement learning is a common way to solve MDP
problems where an exact model describing the dynamics of the
environment (e.g., tenant behavior and network traffic in our
case) is unavailable. Q-learning [66] is a well-known algorithm
for such problems. Q-learning employs an action-value function
Qπ which describes the expected future return after taking the
action at in some state xt and following policy π from that
point on, i.e.,

Qπ(xt, at ) = Eπ
[
Rt |xt, at

]
. (6)

This function can be expressed through a recursive relationship
known as the Bellman equation:

Qπ(xt, at ) = Er t,xt+1∼X

[
r(xt, at ) + γQπ(xt+1, π(xt+1))

]
. (7)

The policy used for the estimation of the discounted fu-
ture reward of Q-learning is the greedy policy π(x) =
arg maxa Q(x, a) whereas an exploration policy is employed
for the state transitions (e.g., take random actions). This makes
Q-learning an off-policy method in that the policy π used to es-
timate the discounted future reward is different from the policy
used for the action of the learning agent in a state transition.

Though an obvious choice, Q-learning is not appropriate
to our problem for several reasons. Firstly, it uses a table to
store its Q-values. When the state space of the problem is
continuous or very large (as in our problem due to the range
of possible values for li , νi and n), calculating Qπ using a
table becomes challenging. To overcome this, we need to rely
on function approximators [67] parametrized by θQ. These
parameters can be optimized by minimizing the loss:

L(θQ) = Eπ′
[
(Q(xt, at |θQ) − yt )2

]
, (8)

where
yt = r(xt, at ) + γQ(xt+1, π(xt+1)|θQ). (9)

In addition to the large state space, we also have to deal with
a continuous action space (the announced price) which needs
to be discretized in order to use Q-learning. However, there
is no obvious or straightforward way to discretize the prices
since the price range and its interpretation can be environment
dependent [67].

We find that policy gradient actor-critic algorithms (e.g., [68])
are more suitable for our purpose. Such algorithms maintain a
parametrized actor function π(x |θπ) that estimates an action
policy and a parametrized critic function Q(x, a|θQ) that
estimates the Q-values of action-state pairs through the Bellman
equation, as in Q-learning. The actor policy is improved at each
step by performing a gradient descent considering the estimated
values of the critic. Recent works (e.g., [69]–[72]) show that
using deep neural networks as the function approximators for
the estimation of actors and critics can produce better results
compared to using linear approximators, when the learning
task presents similar complexity to the one we have in terms
of its dimensionality, including higher rewards (avoiding local
optima) and improved convergence speed in some cases.

In view of the above, we choose to use a state-of-the-art deep
reinforcement learning actor-critic algorithm called DDPG [69],
which has been shown to consistently provide good results

for a wide range of problems and learning environments [71],
[73]. The use of deep neural network approximators allows
DDPG to scale to high-dimensional state spaces and operate
over continuous action spaces, ideal for our problem. One of
its key features is the use of replay buffers (a type of cache)
to sample prior transitions (xt, at, xt+1, at+1) which are used to
train the neural networks. It also uses a technique called batch
normalization that improves the effectiveness of the learning
process when using features with different units and ranges
(e.g., RBs and time). Finally, it uses a technique that employs
slow-changing copies of the actor and critic networks, called
target networks, which are used for calculating yt . This has been
shown to greatly improve the stability of the learning method.

Algorithm 1 Iris Dynamic Pricing Mechanism Outline
1: procedure DYNAMICPRICE
2: t ← 0
3: Receive initial network state x0 (state in first
epoch of the day)

4: loop:
5: Choose a price pt given the policy of the actor
6: at ← pt + ε , where ε is exploration noise
7: Execute action at (announce price to tenants)
8: Collect the radio resource requests of tenants ®νt and distribute

the allocated RBs ut
i
( ®νt ), ∀i ∈ I

9: Calculate the reward r t and transition to the state xt+1

10: Update the actor-critic parameters θQ and θπ (DDPG)
11: t ← t + 1
12: goto loop.
13: end procedure

Algorithm 1 gives an outline of the dynamic pricing
mechanism in Iris. A new price pt is selected at each epoch
t (line 5) using the policy of the actor π(x |θπ). Some
exploration noise ε is added to the price to allow the agent to
explore other states. The price is announced to tenants (line
7) and their radio resource requests are collected in return2.
Based on these requests, Iris neutral-host allocates the radio
resources following the rule in (1) (line 8); then calculates
the reward r t and transitions into a new state xt+1 (line
9). The parameters of the actor and the critic network are
updated based on the DDPG algorithm (line 10), which
is the training step, and a new epoch t + 1 begins. Note that
the learning process of Iris never stops, allowing the pricing
mechanism to re-train and adapt to new environments (e.g.,
as the tenants change their valuations for the radio resources
over time). To achieve this Iris employs a constant learning
rate for both the actor and the critic to update policies and, as
already mentioned, uses a discounted reward to account for
the unpredictability of the environment.

Regarding the complexity of Iris’s dynamic pricing mecha-
nism and based on the description of Algorithm 1, it can be
seen that Iris only depends on the number of tenants sharing the
infrastructure and is independent of the actual number of UEs
associated with each tenant of the system and the traffic that
each UE generates. As a result, the computational complexity
in the neural networks of the actor and the critic employed
by the DDPG algorithm increases linearly in the number of

2An empty request is assumed if a tenant fails to respond at some epoch.
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input layer units as the number of tenants grow, with each
tenant adding one load li and one request νi feature to the
input layer. Furthermore, the message exchanges required by
the proposed algorithm also increase linearly with the number
of tenants. More specifically, assuming N tenants, each round
of the algorithm requires 3N message exchanges among the
neutral-host and the tenants – N messages for the announcement
of the price by the neutral-host to the tenants, N messages
for the radio resource requests from the tenants to the neutral-
host and N messages for the actual allocation of the radio
resources to the tenants by the neutral-host. The computational
complexity and communication overhead of Iris allows it to
scale in all settings of practical interest, as demonstrated in
the evaluation results presented in Section VI-B.

V. IRIS IMPLEMENTATION

Following the design and dynamic pricing mechanism
described above and in order to be able to assess the system’s
practicality for a real deployment (as explored in §VI-B), we
developed a prototype of Iris, considering LTE as the radio
access technology (RAT). To realize RAN slicing, we leveraged
the Orion RAN slicing system [41], which provides functionally
isolated virtual control planes (RAN controllers) for tenants
and virtualized radio resources revealed to them through a
Hypervisor. Orion is in turn built on top of the OpenAirInterface
(OAI) LTE platform [74]. OAI has built-in C-RAN support
offering three functional splits: lower-PHY, higher-PHY and
nFAPI [61]. Although in principle any of these functional
splits could be used in Iris, the Orion implementation is only
compatible with the first two. Between them, considering their
differences in fronthaul bandwidth requirements (1Gbps with
lower-PHY versus 280Mbps for higher-PHY for a 20MHz
carrier) [75], [76], we opt for the higher-PHY split.
Edge Cloud Deployment. To realize the Iris system design,
we leveraged the OpenStack edge cloud deployment of the
University of Edinburgh presented in [77], which is composed
of 5 compute nodes (24-core Xeon CPUs @2.1GHz and 32GB
RAM each), optimized for real-time operation (disabled CPU
C-states, low-latency Linux kernel, no CPU frequency scaling,
VNF CPU pinning). For the RRUs, we employed USRP B210
Software-Defined Radios (SDRs), each interfaced to a small
form factor PC (UP board with 4GB of RAM and Intel Atom
x5 Z8350 CPUs @1.92GHz), the latter acting as a compute
node for running the lower part of the PHY operations and for
communication with the BBUs (over Gigabit Ethernet).
Spectrum Manager. We implemented a prototype Python-
based spectrum manager to host the Iris pricing policy agent,
employing an existing implementation of DDPG [78] that uses
Tensorflow for the training of the deep neural networks. Given
our hardware constraints, we used a Tensorflow flavor that
supports execution only on CPU (no GPU). Regarding the
parameters of DDPG, we retained the default values provided
in the aforementioned implementation, with the actor and the
critic neural networks both having two hidden layers with 400
and 300 units, respectively. For the representation of the state
and action space, we employed the OpenAI Gym [79] toolkit.

In a full implementation, shared spectrum support would
make use of carrier aggregation. However, given that this

functionality is not currently supported by OAI, we used a
contiguous band of spectrum to simulate scaling the available
shared spectrum up/down (by the spectrum manager through
signaling messages to the cell agents).
Cell Agents. Each cell agent in Iris is realized via modified
Orion Hypervisor in the BBU. The radio resource allocation
scheme of Iris following rule (1) was introduced into the
radio resource manager of the Hypervisor. The Hypervisors
were interfaced with the spectrum manager using Google
Protocol Buffers3 and ZeroMQ4. Finally, the protocol used
for the communication of the Hypervisors with the virtual
control planes of tenants was extended to support the messages
required for the shared spectrum price announcements and
the radio resource requests of the Iris tenant agents.
Tenant Agents. On the tenant side, we leveraged the Orion
virtual control plane implementation, which we extended with
the Iris tenant agents. Note that our design (specifically the
dynamic pricing mechanism) is agnostic to tenant behaviors.
For the sake of evaluations, our implementation supports a rich
set of tenant behaviors enacted in the form of utility functions
(described in §VI-A). However, our implementation could
also support other ways of expressing the tenant behaviors.

VI. EXPERIMENTAL EVALUATION

A. Evaluation Setup

For our evaluations, we employ the prototype implementation
of Iris (§V). The default experimental setup corresponds to 4
tenants per cell. For experiments with a single small cell, real
UEs (LTE smartphones and dongles), one per tenant, and the
D-ITG traffic generator [80] were used to generate a simulated
aggregate UDP traffic for the tenant. UEs were simulated for
scenarios with multiple small-cells due to the complexity of
managing the experimental setup. It should be noted that even
though certain aspects of the system like the generated traffic
were simulated (and therefore a simpler simulation setup could
also be used), employing the prototype implementation is still
crucial for the evaluation, since it provides critical insights
regarding the applicability and the overhead of the proposed
mechanism in real settings, as discussed in §VI-B.
Tenant traffic loads and spectrum availability. To model
the traffic loads of tenants, we employed the daily aggregate
traffic pattern presented in [81] for an entertainment area,
a representative indoor environment. We assume that the
aggregate incoming hourly traffic of each tenant follows a
normal distribution with mean and variance depending on
the particular hour in the day considered as shown in Fig. 3a.
With no real-world data to rely on, we consider a reasonable
spectrum availability profile in Fig. 3b. The idea behind this
profile is that the available shared spectrum is re-adjusted
(with some delay) by the spectrum manager to approximately
match the traffic load. While some of the experiments span
the whole day and use the full profiles in Fig. 3, others focus
on a particular hour and so use the traffic and spectrum values
for that hour. The default evaluation configuration is for the
hour starting at 3pm and a cell with 5MHz of available shared

3https://developers.google.com/protocol-buffers/
4http://zeromq.org/
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(a) Traffic load

(b) Spectrum availability

Fig. 3: Daily traffic profile of tenants and spectrum availability
profile over a day at the neutral-host.

spectrum, emulating a CBRS-like service using LTE band 7.
Small cells use a SISO transmission mode, which for 5MHz
spectrum corresponds to a max throughput of 16Mbps.
Dynamic pricing mechanism settings. The epoch duration
is set to 30ms (based on results in §VI-B), while the presented
results correspond to the parameter σ = 1 for (4) and δ = 1
for (5). The price range is set to [0, pmax] with pmax = 2500.
In setting the target revenue level T , we consider the case
where the neutral-host is concerned only with recovering the
cost associated with shared spectrum acquisition. Accordingly,
we set T(n) = pcn, where pc is the cost incurred to the small
cell for the acquisition of a single RB. We use the value
pc = 850, unless explicitly stated otherwise.
Modeling different tenant behaviors. As already discussed
in Section IV-A, our model is compatible with very general
tenant behavior patterns. For the sake of concreteness of our
evaluation and to demonstrate the effectiveness of Iris, we
modeled the behavior of tenants through dis-utility functions
possessing generic parameterizable structure, formulated on the
basis of detailed analysis that can be found in the appendix of an
extended version of this work in [82] (omitted here due to space
constraints). Specifically, the dis-utility functions have the form

Ū(b; d, p) =
(
α(max(0, d − b))γd + (pb)γp

)1/γp
, (10)

where p denotes the price announced by the pricing policy
agent while d and b, respectively, represent a tenant’s traffic

load and requested resources in terms of RBs. All arguments
here refer to the same epoch. The parameters α, γd and γp
characterize the individual tenant behavior; the settings of these
parameters determine the sensitivity of the dis-utility function
to the current load or price and can therefore allow modeling
different tenant behaviors and reactions to price changes.
These parameters can be modified on-the-fly, allowing the
tenants to dynamically change their shared spectrum allocation
policy. Raising the sum in (10) to the power 1/γp expresses
the value of the dis-utility in units of “cost”, bearing the
same interpretation for all tenants. This allows introducing the
notion of “total dis-utility” calculated as the sum of dis-utilities
over all tenants. Through (10) and given the price pt and the
level of traffic load lti , corresponding to d(lti ) RBs, the agent
of each tenant i requests from the Iris cell agent the number of
RBs that minimizes its dis-utility i.e., arg minb Ūi(b; d(lti ), p).

Based on the above, we created 4 tenant profiles for our
evaluations (Table I), using different parameterizations of (10)
to model different tenant behaviors. The choice of parameters
for these profiles was made based on the analysis in the
appendix of [82] with the goal of capturing a wide range
of sensible and diverse tenant behaviors that would allow
a more accurate and realistic evaluation of our mechanism.
Unless explicitly stated otherwise, tenants were assigned these
profiles in a cyclic manner, i.e., tenant 1 to profile 1, tenant
2 to profile 2, tenant 5 to profile 1 etc.

B. Deep Learning Benefits, Feasibility and Scalability

We begin by examining the choice of employing deep
reinforcement learning against simpler reinforcement learning
algorithms for solving the problem formulated in §IV-B. We
compare the performance of Iris when using DDPG against the
stochastic policy gradient algorithm of [83], which employs
linear function approximators for the actor and the critic
(Lin-PG). As illustrated in Fig. 4a, DDPG converges faster
than Lin-PG and attains a much higher overall reward, both
of which are critical characteristics for the success of the
proposed mechanism in a real deployment.

Another very important aspect in terms of the mechanism’s
practicality is that the benefits of deep reinforcement learning
and the requirement for the real-time communication of tenants
with the neutral-host should not come at the expense of the
system’s feasibility and scalability. For this reason, we use
our prototype implementation to evaluate the performance
of Iris for deployments supporting up to 8 tenants, in order
to capture the effects of the scale that we envision for
most practical deployments of the system. Our results are in
accordance with the analysis of the computational complexity
and communication overhead presented earlier in Section IV-C.
As illustrated in Fig. 4b, the time required to calculate the new
parameters of the actor and the critic functions by DDPG in
a single training step increases linearly with the number of
tenants, but remains below 22ms even for 8 tenants. This linear
effect correlates with the computational complexity introduced
by the linear increase in the number of input layer units in
the neural networks of the actor and critic as the number of
tenants grow and is in line with the complexity discussion in
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TABLE I: Tenant profiles with different parameterizations of the generic disutility function and the resulting behaviors.

Profile Type α γp γd Effect

1. “Best effort” 3.5 × 108 2 1
The main focus of the tenant is to maintain a network presence, providing best effort services
with a small amount of radio resources regardless of the price. The tenant is only willing to
cover its load for low prices.

2. Price-driven 2 × 109 2 1 The tenant fully covers its load when the cost is low (e.g. off peak hours with no congestion).
For high prices, it only covers part of its load.

3. Demand-driven 0.203 1 2
The tenant focuses on providing data-demanding services to its users (e.g. video streaming, IPTV).
In times of high load the tenant is willing to buy a large amount of resources regardless of the,
price. In other times, the tenant will queue its traffic until the load increases enough to buy in bulk.

4. “Medium” QoS
level 1.1 × 105 2 2 Tenant tries to provide a medium level of service, asking a price-dependent fraction of its load.

(a) Comparison of DDPG and policy gradient algorithm
using linear function approximators.

(b) Iris single training step time and bandwidth requirements
for Iris agents message exchanges

Fig. 4: Benefits/feasibility of deep reinforcement learning.

Section IV-C. When setting the epoch duration, the additional
overhead introduced by the message exchanges between the
various Iris agents should also be taken into account. Therefore,
setting the epoch duration to 30ms is a reasonable choice (also
used in all our consecutive experiments), that provides a very
fine granularity in terms of the neutral-host agent’s training
speed. Offloading the training computations to GPUs (rather
than using the CPU as in our current implementation) can
potentially lead to significant reductions in the execution time,
which in turn allows a lower epoch duration and enables Iris
to learn even faster. The bandwidth requirements of Iris for the
message exchanges between pricing policy and cell agents as

well as between cell and tenant agents are also illustrated in
Fig. 4b. These requirements are minimal (less than 0.4Mbps)
for all practical deployment scenarios of up to 8 tenants and
posing a negligible overhead to the edge cloud deployment.

It should be noted that, as discussed in Section IV-C, the
results illustrated in Fig. 4b only depend on the number of
tenants sharing the infrastructure and are independent of the
amount of traffic and the way it was generated (simulated or
real traffic) or of the actual number of UEs associated with the
tenants of the system. Therefore, our prototype implementation
provides us with a very accurate depiction of Iris’s overhead,
demonstrating the feasibility of the system’s deployment.

C. Characterizing Iris Spectrum Management

Next, we characterize the behavior of the proposed
allocation mechanism, considering various aspects of the
dynamic pricing model and their effects to reinforcement
learning in terms of efficiency and time convergence.

Learning behavior for various traffic loads. We evaluate the
learning behavior of the pricing policy agent for four tenants
under three different scenarios, each considering a cell with a
different aggregate traffic load: (i) a congested cell (Cell 1),
corresponding to the conditions at 3pm from the daily traffic
and spectrum availability profiles of Fig. 3; (ii) an uncongested
cell (Cell 2) with low traffic load, corresponding to 8am; and
(iii) a cell with high traffic loads (Cell 3) but not in congested
state, corresponding to 11am.

Fig. 5 shows the results for the reward obtained by the
pricing policy agent for each of the three scenarios considered.
It also shows the average mismatch between the amount nt

of RBs available during an epoch and the amount
∑

i∈I ν
t
i

collectively requested by all tenants, as well as the actual
(target) revenue received (set) by the neutral-host, normalized
by the maximum possible revenue for an epoch (equal to
pmaxnt ). In view of this normalization, the value of the target
revenue T (dashed line) maintains the same value (equal to
pc/pmax) for all three scenarios.

In the congested (cell 1) case, the agent begins with a
very high RB mismatch, which gets close to 0 after the first
20000 epochs, indicating that the pricing policy agent is
effectively and quickly learning how to control the requests
of the tenants. The neutral-host achieves this by increasing
the price of the RBs as evident from its revenue increase. It
should also be noted that the big difference between achieved
and target revenue levels has an effect to the overall reward
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(a) Reward received by neutral-host per pricing epoch.

(b) RB mismatch and achieved revenue vs target revenue
(dashed line).

Fig. 5: Learning behavior of pricing policy agent for cells with
different levels of congestion/loads.

of the neutral-host (through function g), which converges to
a value that is less than half of the max reward 1.

For cell 2, the mismatch is always positive (underutilization)
and close to 500, since the load of the tenants is very low
and the demand can never match the supply. Due to the very
low load, it is infeasible for the neutral-host to fully recover
its costs for acquiring the shared spectrum, regardless of the
pricing policy it follows, something reflected in its reward that
is scaled down by (5).

Finally, in the case of cell 3 the agent presents a stable be-
havior, with its RB mismatch and revenue remaining relatively
static throughout the experiment. The aggregate traffic of the
tenants requires an amount of RBs that is roughly equal to the
RBs that are available in the system, while the revenue that is
achieved by the neutral-host is very close to the target revenue,
leading to an overall reward for the neutral-host agent that is
much closer to the max compared to the other two cases.
Effect of reward function. We explore how the configuration
of the reward function affects the neutral-host’s learning process,
considering four variants of the reward function with different
combinations for the parameters σ and δ, as shown in Fig. 6. In
accordance with the discussion in §IV-B, we can observe that
as the value of σ increases, the RB mismatch becomes more

(a) RB mismatch.

(b) Neutral-host revenue.

Fig. 6: Effect of reward function parameters on pricing behavior.

unstable and/or higher from one round to the next (Fig. 6a), but
at the same time the achieved revenue gets closer to the target
revenue T (dashed line in Fig. 6b). The reason for this behavior
is that higher values of σ can tolerate higher RB mismatches
(since the bell curve of (4) widens). Therefore, even high
mismatches yield relatively significant reward contributions
from (4), something that simplifies the pricing decision, by
making the pricing policy to be mainly driven by the other
factor (5) of the reward function. The results in Fig. 6 also
indicate (as per discussion in §IV-B) that increasing the value
of δ also promotes a closer match between actual and target
revenue levels (driven by a more significant effect of (5)).
Naturally, this has also an effect in the achieved RB mismatch,
which increases. This is because the effort to match actual and
target revenue levels triggers a lower price per RB, subsequently
leading to an increased demand by the tenants.
Different number of tenants. We evaluate the learning
behavior of the dynamic pricing mechanism as the number
and behavior of active tenants vary (recall that the behavior
of each tenant depends on its index, as explained in §VI-A).
We consider three cases with two, four and six tenants and a
congested cell with the aggregate traffic of 16Mbps across all
tenants with equal levels of traffic. Fig. 7a shows the average
RB mismatch and the pricing choices of the neutral-host.
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(a) Effect of number of tenants in learning. (b) Prior training effect to pricing mechanism.

(c) Adaptation to dynamic policy changes. (d) Impact of target revenue.

Fig. 7: Behavior of Iris pricing mechanism under different conditions: varying number of tenants; prior training; dynamic tenant
policy changes; and different costs for acquiring shared spectrum.

For four and six tenants the system begins with a negative
mismatch, while for two tenants with a positive mismatch.
This is related to the effect of neutral-host’s pricing choices to
the tenants, given their loads and shared spectrum allocation
profiles. For two tenants, the initial prices are considered high,
leading to the underutilization of the resources, despite the
cell congestion. On the other hand, for four and six tenants
and given the increased competition, the price is low, leading
to excess demand. In all cases, the agent adapts and discovers
an appropriate pricing policy to minimize the mismatch.

Effect of prior training. We evaluate the effect of prior
training to the results achieved by the neutral-host. We perform
an experiment for two consecutive days, starting from a state of
no training and focus on the results obtained during the same
hour of the day (3pm from the daily profile). As it can be seen
in Fig. 7b, the second day yields improved results compared
to the first day (zero training), which is evident both from the
better mean reward (the brief drops of the instantaneous reward,
lasting for less than a minute each, are inconsequential), as
well as from the reduced average RB mismatch during the
second day. However, the differences between the two days
are small, demonstrating the effectiveness of the mechanism
even without any substantial prior training.

Effect of dynamic policy changes. This experiment demon-

strates the adaptiveness of the dynamic pricing mechanism
when tenants make policy changes dynamically. In this scenario,
the experiment runs for 120000 epochs using the default tenant
profiles. When this period elapses, and once the agent has
identified an appropriate pricing policy for the given load, the
first tenant’s policy changes to profile #2 (Table I). This leads
to a temporary failure of the agent to appropriately price the
available radio resources, which is translated into a major RB
mismatch (Fig. 7c). However, after about 30000 epochs (150000
epochs in the experiment), the neutral-host agent manages to
re-adapt to the new behavior of tenant 1.

Effect of target revenue level/shared spectrum acquisition
cost. We evaluate the effect of the target revenue level to
the pricing decisions. Since we employ target revenue levels
of the form T(n) = pcnt , changes to the target revenue level
correspond to changes in the shared spectrum acquisition
price pc . We proceed by applying different values of pc and
comparing the actual (target) revenues received (set) by the
neutral-host, again both normalized by the maximum possible
revenue for an epoch. As it can be seen in Fig. 7d, both revenue
levels increase along with pc . For the lower acquisition prices,
and due to the high load (traffic at 3pm) and the network
congestion, tenants are willing to buy the RBs in prices much
higher than pc . Therefore, the neutral-host finds a balance on
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the goals of (3) by announcing lower prices (creating excess
demand) in order to bring the actual and target revenue levels as
close as possible (avoiding the overcharging of tenants for the
resources). On the other hand, as the acquisition price increases,
the gap between the target and actual revenue levels decreases,
with the target surpassing the actual revenue for pc = 2000. At
the same time, the RB mismatch becomes smaller and turns
from excess demand to excess supply (positive mismatch) for
pc = 1500 and pc = 2000. This is because the neutral-host,
driven by its reward function, learns pricing policies that make
the tenants buy less RBs on average, but at higher prices.

D. Comparison with Alternative Approaches

We compare the performance of the Iris dynamic pricing
mechanism with alternative approaches in terms of the benefits
provided to tenants. We consider the traffic generated for a
whole day (full profile presented in Fig. 3) for four tenants
with their behaviors defined in Table I. The agent is evaluated
against other schemes without any prior training. This worst-
case scenario is important to benchmark the effectiveness of
the neutral-host agent’s operation in volatile environments.

We compare the dynamic pricing mechanism of Iris against
the distributed optimization algorithm proposed in [42]. Based
on that, the neutral-host iteratively adjusts the price of the
available RBs in order to control the behavior of tenants
that are driven by the goal of minimizing their dis-utilities.
Assuming a static environment, the algorithm in [42] has been
shown to converge to an optimal solution in terms of the
utilization of the available resources, but does not inherently
capture the requirement of Iris regarding the revenue target
of the neutral-host. For this, we consider two variants of [42]:
(i) the vanilla version in which the neutral-host does not set
a reserve price for the resources it distributes to the tenants
(Distributed No Reserve Price—DNRP) and; (ii) a modified
version, in which the neutral-host sets a reserve price equal
to the cost of a resource block (pc = 850), in an attempt to
avoid experiencing losses (Distributed Reserve Price—DRP).

Another alternative we compare against and which could be
viewed as a variant of the optimal solution is an unrealistic
myopic pricing scheme in which the neutral-host knows the
dis-utility functions of the tenants. Using this knowledge, it
determines at each epoch, the price to charge the tenants
by minimizing the sum of tenant dis-utilities, subject to the
resource availability constraint and the requirement that the
neutral-host matching or exceeding the target revenue level, i.e.,

min
p,®ν

∑
i∈I

Ūi(νi; d, p)

s.t. p
∑

νi ≥ T(n),
∑

νi ≤ n, νi ≥ 0, ∀i ∈ I

The neutral-host allocates the resources myopically during each
epoch (in the sense that it views each epoch in isolation) so that
it does not incur losses even in the short-term. A side-effect of
this is that under very low traffic load, the neutral-host forces
the tenants to buy more resources than they actually need, to
recover the acquisition cost for the spectrum. It is noted that the
comparative evaluation does not consider as a baseline the unre-
alistic but “optimal” solution which optimizes the allocation of

Fig. 8: Comparison of Iris with alternative approaches in terms
of total dis-utility of tenants and profit of neutral-host.

resources considering the network dynamics (traffic, spectrum
cost, tenant behaviors) throughout the whole day. The complex
modeling requirements accounting for the dependency across
epochs, the high computational complexity of obtaining the op-
timal solution and the fact that this needs to be performed over
and over again in time makes it impractical even as a baseline.

In addition to the myopic scheme outlined above, we also
consider four static pricing schemes, where the price announced
by the agent during each epoch t is fixed to pmax/8 ≈ 312
(Static Low), 3pmax/8 ≈ 937 (Static Med-L), 5pmax/8 ≈ 1562
(Static Med-H) and 7pmax/8 ≈ 2187 (Static High) correspond-
ingly, to capture the whole range of possible prices.

We begin by looking at the average dis-utility of the tenants
for each pricing scheme and the total normalized revenue above
the target level made by the neutral-host (Fig. 8). The revenue
is normalized by the maximum possible revenue of the neutral-
host, i.e., selling all the available resources at the max price of
pmax . In terms of the dis-utility, we can observe that Iris per-
forms worse than DNRP and DRP as well as two of the lowest
static pricing schemes (Static Low and Static Med-L). However,
through the revenue results, we observe that for those four
schemes the neutral-host experiences losses (negative profit),
disincentivizing the neutral-host to provide its service in the first
place. This could have been avoided if the pricing policy dynam-
ically adapted not only based on the utilization of the resources,
but also based on the revenue target set by the neutral-host.

The results are opposite for the myopic and the higher
static pricing schemes (Med-H and High) in that with these
schemes the neutral-host obtains a revenue that is higher than
the set target at the expense of a higher tenant dis-utility
compared to Iris. For the static pricing schemes, this is due to
the inability of the pricing mechanism to adapt to the traffic
loads, charging high prices even at times of no congestion
(e.g., 1am-10am when the traffic load is low or 6pm-9pm
when there is abundance of spectrum). For the myopic scheme,
however, this is due to the neutral-host agent forcing tenants to
buy resources not needed to myopically recover its spectrum
acquisition cost within each epoch. These behaviors are better
seen in the hourly breakdown of the tenants’ dis-utilities and
corresponding prices decided by the neutral-host as shown in
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Fig. 9. The Iris dynamic pricing mechanism manages to draw
a balance between the needs of the tenants and the neutral-host
more effectively, learning the right pricing policy that keeps
the tenants as satisfied as possible, but without incurring a
low revenue that would disincentivize the neutral-host.

In terms of the offered service, we measure the total traffic
served by a cell throughout the day and calculate the average
bits per price unit that the tenants bought for each pricing
scheme. The results are in Fig. 10a. We omit DNRP, DRP
and the static Low and Med-L schemes, given the losses
they incur to the neutral-host. As we can observe, Iris offers
the cheapest service, benefiting from the adaptiveness of its
pricing scheme. Note that, although the same adaptiveness is
also offered by the myopic scheme, the fact that tenants might
be forced to buy unwanted resources raises the overall service
cost. Another interesting observation is that, the total traffic
served in the High static pricing scheme is significantly lower
than that of Iris. This is because, due to the high prices, the
tenants avoid buying radio resources despite the availability
(evident from the fact that the other pricing schemes served
more traffic with the same overall amount of resources).

Finally, we compare the service differentiation offered by
Iris against the myopic scheme and the spectrum allocation
policy proposed in [38]. The latter allocates RBs to the tenants
proportionally to their load, so it can be viewed as a purely
load dependent but pricing agnostic scheme. For this result,
the myopic scheme can act as a baseline, since the neutral-host
is aware of the dis-utility functions of the tenants and thus
optimally distributes the resources among them. The results
appear in Fig. 10b. As we can observe, Iris provides service
differentiation among tenants, with results that are close to
that of the myopic scheme. For the proportional scheme, no
differentiation can be achieved (since every tenant generates
the same traffic load). This can have a negative impact to the
tenants’ satisfaction, since the tenants that value the available
spectrum the most end up getting less resources than they
would like during hours of congestion (e.g., 12-6pm).

VII. DISCUSSION AND FUTURE DIRECTIONS

We believe that our work opens up a number of interesting
research opportunities, which we discuss here.
Strategic tenants. In the current work it is assumed that tenants
present a behavior that is invariant to the choices of other
tenants and to their capability of affecting the price announced
by the neutral-host through their actions. However, it is natural
to expect that in many cases tenants could also develop strategic
behavior, e.g. use their own learning agents, making resource
requests that optimize their long-term benefits given the prices
announced by the neutral-host. In such scenarios, we no longer
have time-invariant transition rates from the point of view
of any one agent (neutral-host or tenant), which can make
the problem of solving the model much harder. One way to
overcome this challenge could be to consider the problem in
the context of a multi-agent reinforcement learning framework
like [84]. Another approach could be to restrict the way that
tenants behave and request resources, by enforcing the use of a
mechanism that prohibits strategic behavior. Such a mechanism

could for example restrict the frequency with which tenants can
change their policy or to employ a domain specific language
through which the Iris tenant agents could express their business
models and demands in a constrained way.
Tenant tradeoffs driving the use of the neutral-host de-
ployment. The focus of this work has been on the neutral-
host side and on how to identify a radio resource pricing
policy that can allow the neutral-host to match the available
radio resource supply with the tenant demand while reaching a
certain revenue target. As already mentioned, our work makes
no assumptions about how the tenant spectrum acquisition
behavior should be modelled, as long as the interactions of
tenants with the neutral-host adhere to the dynamic pricing
mechanism presented in Section III. Regardless of the method
used to model the tenant behavior (e.g. utility function or
something else), a very important factor that most probably
should be taken into account is the revenue that the tenant
is expected to make by distributing the obtained resources to
its associated UEs and how this relates to the tenant’s OpEx.
Since different tenants can have different business models,
developing a variety of Iris tenant agent implementations that
can capture the demands of those business models is a very
interesting and important problem for future research.

Another important factor that can drive the tenant behavior
is that, as already mentioned at the outset, traditional operators
have the option to serve users in indoor spaces either by using
their own outdoor RAN infrastructure or by using the indoor
neutral-host deployment after paying some fee. Due to these
options that operators have, a complementary problem to the
one considered here is how operators should decide whether it
is preferable to use the neutral-host’s infrastructure or to rely
on their own. This decision could involve aspects like the level
of the fee charged by the neutral-host, the number of users
that would benefit from the presence of the operator in the
indoor space, as well as the performance improvement that the
users would experience through that.
Co-existence of multiple neutral-hosts in other settings.
As already explained, in the setting of this work only a
single neutral-host is expected to exist (e.g. due to indoor
space constraints and regulations), with its main incentive for
providing its service being the improvement of the quality of
experience of residents and visitors. However, when considering
settings where multiple neutral-hosts could be co-located (e.g.
outdoor settings) the goals of the system could change. In such
settings, attracting more users and maximizing profit would also
be equally significant for the neutral-host in addition to the ones
like the regulation of spectrum among tenants considered in
this paper. In such scenarios an alternative framework would be
required (e.g. a game-theoretic framework) to drive the behavior
of each individual neutral-host, considering the actions of the
other neutral-hosts.
Spectrum management related issues. One obvious extension
of Iris is to expand its scope to also support pooled licensed
as well as unlicensed spectrum. While our system design and
dynamic pricing mechanism would still form the core solution
in both of these cases, modifications would also be required due
to the idiosyncrasies that these scenarios present. For pooled
licensed spectrum, pricing needs to additionally account for
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Fig. 9: Hourly breakdown of tenants’ total dis-utility and average price selected by neutral-host in Iris against alternative
approaches.

revenue sharing with MNOs contributing licensed spectrum to
the pool. On the other hand, in the case of unlicensed spectrum,
coexistence issues with other technologies like Wi-Fi need
to be addressed (e.g. using a technology like MulteFire [62]).

The dynamics of the interaction between the spectrum
manager of Iris and the external repositories for shared spectrum
acquisition is another relevant topic. Deciding on the amount
of spectrum to request from an external repository can be a
challenging problem for the neutral-host, due to the different
loads and demands presented by different small-cells, which
create a requirement to draw a balance between the spectrum
acquisition cost and the satisfaction of the tenants’ demands.
Multi-RAT support. Another interesting research topic
is providing support for Iris in multi-RAT settings.
Accommodating multiple disparate radio access technologies
(e.g., 5G New Radio, LTE and Wi-Fi) as part of the same
neutral-host system architecture is an approach in line with the
5G vision of native multi-access with an access agnostic core
network architecture. However multi-RAT support presents
its own set of challenges, with the main problem being on
how tenants should decide which of the available technologies
to use to accommodate the needs of their users, considering
that each technology presents its own pros and cons in terms
of performance, cost, capacity etc.

VIII. CONCLUSIONS

We have presented Iris, a system architecture for neutral-host
indoor small-cells based on shared spectrum. The design of Iris
follows a C-RAN approach that allows scalable and efficient use
of resources in the edge cloud while enable denser and cheaper
small-cell radio infrastructure indoors. At the core of Iris lies a
novel dynamic pricing radio resource allocation mechanism for

shared spectrum. This mechanism employs deep reinforcement
learning to discover pricing policies that allow tenants to
request shared spectrum resources on demand, ensuring the
differentiation of their services based on their valuation of the
spectrum, while meeting the revenue target of the neutral-host
that includes recouping the costs for shared spectrum acquistion.
Using our prototype implementation of Iris developed for LTE,
we have conducted extensive experimental evaluations to char-
acterize the dynamic pricing mechanism of Iris under different
conditions, show the benefits of the Iris approach compared to
alternative approaches and examine its deployment feasibility.
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