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Abstract

Shared edge computing platforms, which enable Application Service Providers (ASPs) to deploy

applications in close proximity to mobile users are providing ultra-low latency and location-awareness to

a rich portfolio of services. Though ubiquitous edge service provisioning, i.e., deploying the application

at all possible edge sites, is always preferable, it is impractical due to often limited operational budget

of ASPs. In this case, an ASP has to cautiously decide where to deploy the edge service and how

much budget it is willing to use. A central issue here is that the service demand received by each

edge site, which is the key factor of deploying benefit, is unknown to ASPs a priori. What’s more

complicated is that this demand pattern varies temporally and spatially across geographically distributed

edge sites. In this paper, we investigate an edge resource rental problem where the ASP learns service

demand patterns for individual edge sites while renting computation resource at these sites to host

its applications for edge service provisioning. An online algorithm, called Context-aware Online Edge

Resource Rental (COERR), is proposed based on the framework of Contextual Combinatorial Multi-

armed Bandit (CC-MAB). COERR observes side-information (context) to learn the demand patterns of

edge sites and decides rental decisions (including where to rent the computation resource and how much

to rent) to maximize ASP’s utility given a limited budget. COERR provides a provable performance

achieving sublinear regret compared to an Oracle algorithm that knows exactly the expected service

demand of edge sites. Experiments are carried out on a real-world dataset and the results show that

COERR significantly outperforms other benchmarks.

I. INTRODUCTION

The prevalence of ubiquitously connected smart devices and the Internet of Things are driving

the development of intelligent applications, turning data and information into actions that create

new capabilities, richer experiences, and unprecedented opportunities. As these applications

become increasingly powerful, they are also turning to be more computational-demanding,
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making it difficult for resource-constrained mobile devices to fully realize their functionalities

solely. Although mobile cloud computing [1] has provided mobile users with a convenient access

to a centralized pool of configurable and powerful computing resources, it is not a “one-size-

fit-all” solution due to the stringent latency requirement of emerging applications and often

unpredictable network condition. In addition, as the mobile applications (e.g. mobile gaming

and virtual/augmented reality) are becoming more data-hungry, it would be laborious to transmit

all these data over today’s already congested backbone network to the remote cloud.

As a remedy, Mobile Edge Computing (MEC) [2] has been recently proposed as a new

computing paradigm to enable service provisioning in close proximity of user devices at the

network edge, thereby enabling analytics and knowledge generation to occur closer to the data

source and providing low-latency responses. Such an edge service provisioning scenario is no

longer a mere version but becoming a reality. For example, Vapor IO’s Kinetic Edge [3] places

edge data centers at the base of cell towers and nearby aggregation hubs, thereby bringing

cloud-like services to the edge of the wireless network. Kinetic Edge has started in Chicago

and is rapidly expanding to the other US cities. It is anticipated that cloud providers, web scale

companies, and other enterprises will soon be able to rent computation resources at these shared

edge computing platforms to deliver edge applications in a flexible and economical way without

building their own data center or trenching their own fiber.

However, how to effectively and efficiently deliver edge service in such a shared edge system

faces many special issues. Firstly, the benefit of deploying application service at a certain

edge server mainly depends on the number of edge task requests received from the users, yet

this service demand is unknown to the Application Service Provider (ASP) before deploying

applications at edge servers. What’s more complicated is that the service demand is uncertain

in both temporal and spatial domains, i.e., the demand pattern of an edge site varies across

the time and the demand patterns at geographically distributed edge sites may not replicate a

global demand pattern. How to learn the service demand pattern for each edge site precisely with

cold-start (i.e., no prior knowledge available) is the very first step toward efficient edge service

provisioning. Secondly, to deploy services at the edge sites, ASP needs to rent a certain amount

of computation resource to host its applications. While renting a sufficient amount of computation

resource at every possible edge site can deliver the best Quality of Service (QoS), it is practically

infeasible especially for small and starting ASPs due to the prohibitive budget requirement. In

common business practice, an ASP has a budget on the operating expenses and desires the best
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performance within the budget [4]. This means that the ASP can only rent limited computation

resource at a limited number of edge sites and hence, which edge sites to deploy applications and

how much computation resource to rent at these sites must be judiciously decided to optimize

QoS given the limited budget. Thirdly, the service demand estimation and edge resource rental

are not two independent problems but closely intertwined during online decision making. On the

one hand, renting computing resource and deploying application service at an edge site allows

the ASP to collect historical data on the received service demand for better demand estimation.

On the other hand, accurate demand estimations help the ASP optimize its computation resource

rental and achieve a higher QoS. Therefore, an appropriate balance should be made between

these two purposes to maximize the utility of ASP in the long run. The main contributions of

this paper are summarized as follows:

1) We formulate an edge resource rental (ERR) problem where ASP rents computation resource

at edge servers to host its applications for edge service provisioning. ERR is a three-fold problem

in which the ASP needs to (i) estimate the service demand received by edge sites with cold-start,

(ii) decide whether edge service should be provided at a certain edge site, and (iii) optimize how

much resource to rent at edge sites to maximize ASP’s utility under a limited budget.

2) An online decision-making algorithm called Context-aware Online Edge Resource Rental

(COERR) is proposed to solve the ERR problem. COERR is designed in the framework of

Contextual Combinatorial Multi-armed Bandit (CC-MAB). The “contextual” nature of COERR

allows the ASP to observe the side-information (context) of edge sites for the service demand

estimation and the “combinatorial” nature of COERR enables the ASP to rent computation

resource at multiple edge servers for utility maximization.

3) We analytically bound the performance loss, termed regret, of COERR compared to an Oracle

benchmark that knows the expected service demand of each edge site. The regret bound is first

given in a general form available for arbitrary estimators and algorithm parameters. A specific

sublinear regret upper bound is then derived in a concrete setting by specifying the applied service

demand estimators and algorithm parameters, which not only implies that COERR produces

asymptotically optimal rental decisions but also provides finite-time performance guarantee.

4) We carry out extensive simulations using the real-world service demand trace in Grid Work-

loads Archive (GWA) [5]. The results show that the proposed COERR algorithm significantly

outperforms other benchmark algorithms.

The rest of this paper is organized as follows: Section II reviews related works. Section III
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presents the system model for edge resource rental problem. Section IV designs the context-aware

online edge resource rental (COERR) algorithm and provides analytical performance guarantee.

Section V discusses the extension of COERR when applied with approximated solutions for

per-slot utility maximization. Section VI shows the experiment results of the proposed algorithm

on a real-world service demand trace, followed by the conclusion in Section VII.

II. RELATED WORK

Driven by the promising properties and tempting business opportunities, Mobile Edge Com-

puting (MEC) [2], [6] is attracting more and more attention from both academia and industry.

Various works have studied from different aspects of MEC, including edge platform design

[7] for integrating edge computing platform into edge facilities (e.g., Radio Access Network

[7]), computation offloading [8] for deciding what/when/how to offload tasks from user’s mobile

devices to edge servers, and edge orchestration [9] for coordinating the distributed edge servers.

However, these edge computing topics all rest on the assumption that the computing resources

and capabilities have been provisioned to ASP at the edge sites. By contrast, this paper focuses

on the problem that how should ASP rent computation resource and place edge applications

among many possible edge sites such that the users can better enjoy the edge service access.

Service placement in shared edge systems has been studied in many contexts in the past.

Considering content delivery as a service, many prior works study caching content replicas

in traditional content delivery networks (CDNs) [10] and, more recently, in wireless caching

systems such as small cell networks [11]. However, content caching concerns only data content

caching given storage constraints at edge facilities while placing edge applications needs to

take into account the computation resources at the edge servers. Service placement for MEC

is recently studied in [12], where the authors consider a hierarchical edge-cloud system and

an online replacement policy is designed to minimize the cost of forwarding requests to Cloud

and downloading new services to edge server. While [12] uses a placing-upon-request model,

our work is in a proactive manner where the deploy applications at the beginning of each

decision cycle based on service demand estimation. The authors in [13], [14] investigate service

placement/caching to improve the efficiency of edge resource utilization by enabling cooperation

among edge servers. However, these works assume that the service demand is known a priori

whereas the service demand pattern in our problem has to be learned over time. A learning-based

edge service placement is proposed in [15], which uses bandit learning similar to the framework
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in this paper. However, it only addresses the problem of where the service should be placed

but does not optimize how much computation resource needs to rent at edge servers. However,

in practice, an ASP has to decide the amount of computing resource to rent when placing the

service application. This paper helps the ASP to determine the amount of computing resource

to rent at edge servers when placing the edge service. In addition, [15] uses a simple sample

mean to estimate the service demand, but we generalize our algorithm to work with an arbitrary

estimator.

MAB algorithms have been studied to address the tradeoff between exploration and exploita-

tion in sequential decision making under uncertainty [16]. The classic MAB algorithm, e.g.

UCB1, concerns with learning the single optimal action among a set of candidate actions with

unknown rewards by sequentially trying one action each time and observing its realized noisy

reward [17]. Combinatorial bandits extends the basic MAB by allowing multiple-play each time

(i.e. renting computation resources at multiple edge servers under a budget in our problem) [18]

and contextual bandits extends the basic MAB by considering the context-dependent reward

functions [19], [20]. While both combinatorial bandits and contextual bandits problems are

already much more difficult than the basic MAB problem, this paper tackles the even more

difficult CC-MAB problem. Recently, a few other works [21], [22], [23] also started to study CC-

MAB problems. However, these works make assumptions that are not suitable for our problem.

[21] assume that the reward of an individual action is a linear function of the contexts, which

is less likely to be true in practice. In [22], the exact solution to its per-slot problems can be

easily derived, however, in our problem, the per-slot problem is a Knapsack problem with conflict

graph (KCG) whose optimal solution cannot be efficiently derived and hence, we also investigate

the impact of approximation solution on CC-MAB framework. Though [23] also considers the

approximation solutions, it is given for a special case (greedy algorithm for submodular function

maximization). The key difference of our CC-MAB is that it does not simply decide which arms

to pull (i.e., which edge sites to place applications), it also chooses the configuration of arms

(i.e., how much resource to rent at each edge site).

III. SYSTEM MODEL

A. Network Structure and Resource Rental

We consider a typical scenario where edge computing is enabled in a heterogeneous small-

cell network as illustrated in Fig.1. The small cell network consists of a set of Small Cells
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Time 7 p.m.

# Connected devices 32

Event Concert

Weather Cloudy

Event

Weather

Observe contextASP decides where to deploy

the service and how much

computing resource to rent.

Users send tasks to cloud via

MBS if no reachable SBSs host

the service.

Users send tasks to nearby SBSs 

which are rented to host the service.

Application

Service Providers

MBS

Fig. 1. Heterogeneous small-cell network for edge computing. The red machines in edge servers or Cloud denote the computation

resource rented by the ASP.

(SCs), indexed by N = {1, 2, . . . , N}, and a macro base station (MBS), indexed by 0. Each

SC has a small-cell base station (SBS) equipped with a shared edge computing platform. The

edge platforms use virtualization technology for flexible allocation of computation resource, e.g.,

CPU frequency and RAM. ASPs sign contracts with SBSs to rent computation resource at co-

located edge servers in order to host their application and provide service access to subscribed

users. SBSs provide Software-as-a-Service (SaaS) to ASPs, managing computation resources

requested by ASPs using virtualization, while the ASPs maintain its own user data serving as a

middleman between end users and SaaS Providers. As such, SBSs charge ASPs for the amount

of requested computation resource. Besides the SBSs and edge servers, there also exists an MBS

that provides ubiquitous radio coverage and is connected to the cloud server in case that edge

service is not available for users. The contract of edge resource rental is signed for a fix length of

time span (e.g., 3 hours or half a day). Therefore, we discretize the operational timeline into time

slots. At the beginning of each time slot, ASP determines the amount of computation resource

to rent from SBSs for application service deployment. In particular, we consider the processor

capacity (i.e. CPU frequency) as the key component of computing resource since it decides

the processing delay of tasks at edge servers as considered in most existing works [24], [25].

The other resource components, e.g., RAM, storage, I/O, are matched to the rented processor

capacity. Let f t
n ∈

{

0 ∪ [fmin
n , fmax

n ]
}

denote the processor capacity rented by the ASP at SBS n

in time slot t, where fmin
n is the minimal rental contract (i.e. the ASP have to at least rent fmin

n

to set up a virtualized computing platform at SBS n) and fmax
n is the maximum computation

resource that can be rented by the ASP at SBS n. Based on the state-of-the-art virtualization
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technologies, the resource allocation at edge server is often realized using containerization or

virtual machine and hence we assume that each SBS n discretized their computation resource

into containers or VMs. In this case, the feasible rental decisions at SBS n can be collected in

a rental decision set Fn. Let f t = {f t
1, f

t
2, . . . , f

t
N}, f

t
n ∈ Fn be the computation resource rented

by ASP at all SBSs. The vector f t ∈ F ,
�

n∈N Fn is referred as ASP’s rental decision in t.

Each SBS sets a price for its computation resource. Let wn(fn) denote the price charged by

SBS n if ASP rents fn processor capacity at SBS n, where wn(·) is a non-decreasing mapping

function1 that determines the price for computation resource fn. Due to the limited budget, the

resource rental decision of ASP must satisfy the budget constraint
∑N

n=1wn(f
t
n) ≤ B, ∀t, where

B is ASP’s budget. Note that fmin
n , fmax

n , Fn, and wn(·) may possibly vary across the time slots

due to certain auction strategies or stochastic resource scheduling policies carried out by SBSs.

To keep the system model simple, we assume that these parameters are constants. However,

the proposed method is also compatible with time-varying system parameters. In addition, we

consider edge resource rental problem for one ASP in this paper, the edge system may need

strategies, e.g., first-come-first-served or matching algorithms [26] to coordinate multiple ASPs.

Besides the edge servers, ASP also possesses an entrepreneur cloud or a configured platform

at the commercial cloud to provide ubiquitous application service. The processor capacity of the

cloud service is denoted by f t
0. Usually, we will have f t

0 ≫ f t
n.

B. Service Delay for Edge Computing

During a time slot, users in the edge system have computation tasks to be offloaded to

edge/cloud servers for processing. We assume that the input data size of one task is s in bits

and the number of required CPU cycles to process one task is c. If a user device is covered

by an SBS, it can offload computational tasks to the edge server co-located with the SBS. The

service delays are incurred for completing these tasks using edge computing; it consists of two

main parts: transmission delay and processing delay.

1) Transmission delay: User’s tasks are sent via the one-hop wireless connection to SBSs.

Note that the time scale of edge resource rental cycles (e.g., half a day) is much larger than that

of task offloading cycle (few seconds), an SBS may receive a large number of tasks, indexed by

1The price mapping could be non-decreasing linear/nonlinear functions or tables and each SBS may have its own mapping.
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k = 1, 2, . . . , K, in time slot t. For each task k, the uplink transmission rate can be calculated

by Shannon Capacity:

rk = Wk log

(

1 +
PkHk

I inter-cell
k + I intra-cell

k + σ2

)

, (1)

where Wk is the allocated bandwidth, Pk is the transmission power of the user, Hk is the channel

gain, I inter-cell
k and I intra-cell

k are the inter/intra-cell interferences, and σ2 is the noise power. It is

difficult to know exactly the data rate for transmitting each task during the planning stage due

to unpredictable interference, fading, etc. Instead of considering the transmission rate for each

task, we operate SBSs to work on an expected transmission rate rt in each time slot t, i.e.,

we expect 1
K

∑k=1
K rk equals rt. Such an requirement on the expected transmission rate can

be satisfied by state-of-the-art spectrum allocation method [27]. We denote by rtn the expected

uplink transmission rate of SBS n in time slot t. Then, the expected transmission delay for a user

to transmit one task to SBS n is dtx,t
n = s/rtn. To keep the system model simple, we assume the

data size of task result is small and therefore its downloading time can be neglected. However,

adding result downloading time does not make a big difference and our algorithm can still be

applied.

2) Processing delay: The processing delay of edge computing is determined by the processor

capacities rented by the ASP at SBSs. We assume that the edge server admits at most λmax

tasks in a time slot to avoid overloading and queuing delays at edge servers. Given the processor

capacity f t
n > 0, the processing delay for one task at SBS n can be obtained as: dproc,t

n (f t
n) =

c
f t
n

.

Therefore, the service delay for one task at SBS n is:

dtn(f
t
n) = dtx,t

n + dproc,t
n (f t

n) =
s

rtn
+

c

f t
n

, n = 1, 2, . . . , N. (2)

C. Service Delay for Cloud Computing

If a user has no accessible SBSs or its task request is rejected by an edge server due to

overloading, it then has to offload its tasks to Cloud via an MBS. Similarly, the service delay

for Cloud computing also consists of transmission delay and processing delay.

1) Transmission delay: Besides the wireless transmission delay incurred by sending the tasks

from users to MBS, the offloaded tasks have to travel through congested backbone Internet,

which incurs large backbone transmission delay, to reach the remote cloud server. We assume,

similar to SBSs, that the MBS applies state-of-the-art channel/power/interference management

strategies to guarantee an expected wireless transmission rate rt0 in time slot t. Therefore, the



9

expected wireless transmission delay for one task is s/rt0. The backbone transmission delay is

mainly determined by the backbone transmission rate, which is a random variable based on the

network condition. Let vt be the expected backbone transmission delay and ht be the round-trip

time in time slot t, then the expected backbone transmission delay for one task can be obtained

as s/vt+ht. Taking into account all the above components, the expected transmission delay for

one task using cloud computing can be obtained by: dtx,t
0 = s

rt0
+ s

vt
+ ht.

2) Processing delay: Since the cloud server has unlimited computation resources, we assume

that the cloud server has no admission constraints. Recall that the processor capacity allocated

for each task at ASP cloud is f t
0, the processing delay for one task using cloud computing can

be expressed easily as dproc,t
0 = c/f t

0.

The expected service delay for one task using cloud computing is therefore:

dt0 = dtx,t
0 + dproc,t

0 =
s

rt0
+

s

vt
+

c

f t
0

+ ht. (3)

We assume that the maximum service delay for one task is bounded, i.e., dt0, d
t
n ≤ dmax. This

is a practical assumption in edge computing since if the service delay of edge/cloud computing

is too large the mobile devices can always choose to process the tasks locally, which guarantees

a service delay dmax.

D. ASP Utility Function

The applications deployed at the network edge improve QoS for users by providing low-

latency response. The ASP derives utilities from the improved QoS, which is defined as delay

reduction achieved by deploying services at edge servers. Let

∆t
n(f

t
n) =







dt0 − dtn(f
t
n), fn > 0

0, fn = 0
(4)

be the delay reduction of a task processed by SBS n instead of Cloud and let λt
n be the service

demand within the coverage of SBS n. Note that λt
n does not equal the service demand received

by SBS n since task requests will be offloaded to the cloud server if the ASP rents no computation

resource at SBS n. Therefore, the total utility achieved by SBS n is:

ut
n(f

t
n;λ

t
n) = min{λt

n, λ
max(f t

n)} ·∆
t
n(f

t
n). (5)

where λmax(f t
n) is the maximum service demand can be processed by an SBS depending on the

amount of rented computing resource f t
n. Intuitively, more tasks can be process at an SBS when
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more computing resource are rented. Therefore, the function λmax(·) should be non-decreasing on

f t
n. Notice that the service delay for a task is bounded by dt0, d

t
n ≤ dmax, we have ∆t

n(f
t
n) ≤ dmax.

The total ASP utility is

U t(f t;λt) =
∑

n∈N
ut
n(f

t
n;λ

t
n) (6)

where λt = {λ1, λ2, . . . , λN} collects the service demands within the coverage of all N SBSs.

E. Problem Formulation

The edge resource rental (ERR) problem for ASP is a sequential decision-making problem.

The goal of ASP is to make rental decision f t, ∀t to maximize the expected utility up to time

horizon T . Since the service demand λt, ∀t of SBSs is not known to the ASP when making its

rental decision, we write it as λ̂t that needs to be estimated at the beginning of each time slot.

Therefore, the edge resource rental problem can be written as:

ERR : max
{f t}Tt=1

∑T

t=1
U t(f t; λ̂t) (7a)

s.t. f t
n ∈

{

0 ∪ [fmin
n , fmax

n ]
}

, ∀n ∈ N , ∀t (7b)

f t
n ∈ Fn, ∀n ∈ N , ∀t (7c)

∑N

n=1
wn(f

t
n) ≤ B, ∀t (7d)

There are several challenges to be addressed and should be addressed simultaneously to solve

the ERR problem: (i) One of the key challenges of ERR is to make precise service demand

estimation, such that the derived rental decision is able to produce the expected utility when

implemented. Since the algorithm is run with cold start, the algorithm should also collect the

historical data for making estimations. Note that the service demand received by an SBS is

revealed to ASP only when the application is deployed (fn > 0) at the SBS. Though the service

demand received by the cloud server can also be observed, it does not help much to learn the

service demand of a specific SBS due to the fact that the location information of users is usually

veiled to ASP due to the privacy concerns. Therefore, the rental decision making should take

into account the data collection for demand estimation. (ii) With the service demand estimations,

how to optimally determine the rental decision at each SBSs given the limited budget should

be carefully considered. (iii) Since the rental decisions are made based on the estimated service
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demand, the accuracy of demand estimation will have a deterministic impact on ASP’s utility.

The ASP needs to decide when the estimation is accurate enough for guiding the computation

resource rental and when more data should be collected to produce a better demand estimation.

In the next section, we propose an algorithm based on the multi-armed bandit framework to

address the mentioned issues at the same time.

IV. EDGE RESOURCE RENTAL AS CONTEXTUAL COMBINATORIAL MULTI-ARMED BANDITS

In this section, we formulate our ERR problem as a Contextual Combinatorial Multi-Armed

Bandit (CC-MAB). The problem is “combinatorial” because ASP will rent computation resource

at multiple SBSs under a budget constraint. The problem is “contextual” because we will utilize

context associated with SBSs to infer their service demand. In general, the contextual bandit

is more applicable than non-contextual variants as it is rare that no context is available [28].

In our problem, the service demand received by an SBS depends on many factors, which are

collectively referred to as context. For example, the relevant factors can be the user factor (e.g.

user population, user type), temporal factor (e.g., time in a day, season), and external environment

factors (e.g., events such as concerts). This categorization is clearly not exhaustive and the impact

of each single context dimension on the service demand is unknown. Our algorithm learns to

discover the underlying connection between context and service demand pattern over time.

In CC-MAB, ASP observes the context of SBSs at the beginning of each time slot before

making the rental decision. Let xt
n ∈ X be the context of SBS n observed in time slot t, where

X is the context space. Without loss of generality, we assume that the context space is bounded

and hence can be denoted as X = [0, 1]D, D is the number of context dimension. The context

of all SBSs are collected in xt = {xt
1, x

t
2, . . . , x

t
N}. The service demand λt

n received by SBS n

is a random variable parameterized by the context xt
n. Let λn : X → Λn be the mapping that

maps a context xt
n ∈ X to SBS n’s service demand distribution λn(x

t
n). We rewrite the service

demand vector in a context-aware form: λt = {λ1(x
t
1), λ2(x

t
2), . . . , λN(x

t
N )}. In addition, we

let µn(x
t
n) , E[λn(x

t
n)] be the expected value of the service demand distribution λn(x

t
n). The

vector µt = {µ1(x
t
1), µ2(x

t
2), . . . , µN(x

t
N )} collects the expected service demands for all SBSs

given context xt.
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A. Oracle Solution and Regret

Before proceeding with the algorithm design, we first give an Oracle benchmark solution to

the ERR problem by assuming that the ASP knows exactly the context-aware service demand

µn(x), ∀x ∈ X . In such a case, the ERR problem can be decoupled into T independent

subproblems, one for each time slot t, as below:

Sub-problem : max
f t

U t(f t;µt) (8a)

s.t. f t
n ∈ {0 ∪ [fmin

n , fmax
n ]}, ∀n ∈ N (8b)

f t
n ∈ Fn, ∀n ∈ N (8c)

∑

n∈N
wn(f

t
n) ≤ B (8d)

where the service demand estimation λ̂t is replaced by µt. The above subproblem is an combina-

torial optimization problem with Knapsack constraints. The optimal solution to each subproblem

can be derived by brute-force if the size of action space F is moderate. For larger problems,

the ASP may use commercial optimizers, e.g., LINDO [29], CPLEX [30], to obtain optimal

solutions. For the coherence, we here skip the details for solving the subproblems and denote

the optimal Oracle solution for each subproblem in time slot t as f∗,t. The collection {f ∗,t}Tt=1

is the Oracle solution to ERR problem. Later in Section V, both exact and approximate solutions

for optimization problem in (8) will be discussed using the framework of Knapsack problem with

Conflict Graphs (KCG). In addition, the impact of error due to approximation on the performance

of the proposed algorithm will be analyzed.

However, in practice, the ASP does not have a priori knowledge on the users’ service demand,

and therefore the ASP has to make rental decisions f t based on the service demand estimation

λ̂t in each time slot. An online decision-making policy designs certain strategies to choose a

rental decision f t based on the estimation λ̂t. The performance of designed policy is measured

by utility loss, termed regret, compared to the utility achieved by Oracle solution. The expected

regret of a policy is defined by:

E [R(T )] =
∑T

t=1

(

E
[

U t(f ∗,t;λt)
]

− E
[

U t(f t;λt)
])

(9)

Here, the expectation is taken with respect to the decisions made by the decisions made by the

decision-making policy and the service demand distribution over context.
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B. Context-aware Online Edge Resource Rental Algorithm

Now, we are ready to present our online decision-making algorithm called Context-aware

Online Edge Resource Rental (COERR). The COERR algorithm is designed in the framework

of CC-MAB. In each time slot t, ASP operates sequentially as follows: (i) ASP observes the

contexts of all N SBSs xt = {xt
n}n∈N , xt

n ∈ X . (ii) ASP determines its rental decision f t based

on the observed context information xt in the current time slot and the knowledge (i.e., the

connection between SBS context and service demand) learned from the previous time slots. (iii)

The rental decision f t is applied. If f t
n 6= 0, the users within the coverage of SBS n can offload

computation tasks to SBS n for edge processing. (iv) At the end of the time slot, the number of

tasks received by rented SBS n (i.e. fn > 0) is observed λt
n, which is then used to update the

service demand estimation λ̂n(x
t
n) for the observed context xt

n of SBS n. The users who cannot

access the edge service will offload tasks to the cloud server.

The context of SBSs is from a continuous space and hence there can be infinitely many

contexts for an SBS. It would be extremely laborious, if not impossible, to collect historical

demand records and learn a service demand distribution for each possible context. To make

the context-aware demand estimation tractable, COERR groups similar contexts and learns the

demand pattern for a group of contexts instead of learning the service demand pattern for each

context x ∈ X . The rationale behind this strategy is the following intuition: an SBS will have

similar service demand when its contexts are similar. This is a natural assumption in practice and

is used in many existing MAB algorithms [22], [23] to facilitate the learning of context-aware

service demand. To be specific, COERR groups contexts by partitioning the context space into

small hypercubes. The context space X = [0, 1]D is split into (hT )
D hypercubes give the time

horizon T , where each hypercube is D-dimensional with identical size 1
hT

× · · · × 1
hT

. Here,

hT is an important input parameter to be designed to guarantee algorithm performance. These

hypercubes are collected in the context partition PT . Since the edge system is geographically

distributed, different SBSs may exhibit distinct service demand patterns for the same context

because of the SBS locations (e.g., considering the time factor, an SBS located in a school zone

may have higher service demand during daytime and lower service demand during night while

an SBS located in a residential area tends to have lower service demand during daytime and

higher service demand at night). Therefore, ASP should learn the service demand for each SBS.

Now, a key issue is estimating the service demand pattern for context hypercubes at each SBS.
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Fig. 2. Illustration for context space partition and counter/experience update. In the time slot t = 1, only SBS 1 is rented to

host the service and therefore the counter/experience is updated for SBS 1 only.

Note that COERR runs with cold-start and hence it needs to collect the historical service demand

data for context hypercubes by renting computation resource at SBSs and observing the received

service demand in order to produce accurate demand estimation. Specifically, (i) for each SBS

n ∈ N , ASP keeps counters Ct
n(p), one for each hypercube p ∈ PT , up to time slot t, indicating

the number of times that ASP rents computation resource at SBS n (i.e., f τ
n > 0, τ < t) when

the context xτ
n of SBS n belongs to hypercube p, i.e. xτ

n ∈ p, τ < t; (ii) ASP keeps an experience

E t
n(p) for hypercube p at each SBS n up to time slot t storing the context-demand pair (xτ

n, λ
τ
n)

when the rental decision f τ
n > 0 is taken and the context of SBS n satisfies xτ

n ∈ p. Fig.2

illustrates an example of context space partition and counter/experience update.

Given the experience E t
n(p), the service demand estimation for SBSs n with context xt

n in

hypercube p is obtained by an estimator Θn:

λ̂n(p) = Θn(E
t
n(p)), (10)

We do not specify the estimator used in COERR since the proposed algorithm is compatible

with a variety of estimators. Note that storing all the experience may be unnecessary for certain

estimators that can be updated in a recursive manner, e.g., recursive Bayesian estimator [31] and

recursive least square estimator [32]. Usually, a certain amount of historical data is required for

an estimator to produce an accurate-enough estimation, which is theoretically characterized by

Probably Approximately Correct (PAC) [33] as follows:

Assumption 1 (PAC Property). For an arbitrary hypercube p ∈ PT at a SBS n, the estimator

Θn satisfies Probably Approximately Correct (PAC) property below:

Pr
{

|Θn(E
t
n(p))− µn(p)| > ǫ

}

≤ σn(ǫ, C
t
n(p)) (11)
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where µn(p) = Ex∈p [µn(x)] (the expectation is taken on the distribution of context x in hypercube

p) and
∂σ(ǫ,Ct

n(p))
∂Ct

n(p)
≤ 0.

The term σ(ǫ, Ct
n(p)) is assumed to decrease as Ct

n(p) increases, i.e.
∂σ(ǫ,Ct

n(p))
∂Ct

n(p)
≤ 0, which

ensures that more historical data will produce a better estimation. The PAC property is critical

in guaranteeing the performance of COERR.

It is worth empathizing that service demand estimation, though important, is not the major

challenge to conquer since we can always acquire enough data for each hypercube to produce an

accurate estimation if the time horizon T is large. A more challenging issue is to decide in each

time slot whether the current demand estimation is good-enough to guide the edge resource

rental (referred as exploitation) or more service demand data should be collected to improve

the demand estimation for a certain hypercube (referred as exploration). COERR balances the

exploration and exploitation phases during online decision-making in order to maximize the

utility of ASP up to a finite time horizon T . In addition, COERR also smartly decides the

amount of computation resources to rent at different phases to achieve different purposes: in

the exploration, COERR utilizes the budget to collect as much service demand data as possible

to improve the estimation while in the exploitation, COERR aims to maximize the ASP utility

under the budget constraint.

Algorithm 1 presents the pseudo-code of COERR. In each time slot t, ASP first observes

the context xt = {xt
n}n∈N of all SBSs in N and determines for each SBS n the hypercube

ptn ∈ PT to which xt
n belongs to, i.e. xt

n ∈ ptn holds. The hypercubes of all SBSs are collected in

pt = {ptn}n∈N . The estimated service demand for SBS n in time slot t is obtained by λ̂n(p
t
n) =

Θn(E
t
n(p

t
n)). Estimations of all SBSs are collected in λ̂t = {λ̂1(p

t
1), λ̂2(p

t
2), . . . , λ̂N(p

t
N)}. CO-

ERR is in either an exploration phase or an exploitation phase. To determine the phase for

current time slot, the algorithm checks whether current contexts of SBSs have been sufficiently

explored. To this end, we define the set of under-explored SBSs U t based on the contexts xt

observed and counters Ct
n(p

t
n) in time slot t:

U t(xt) =
{

n ∈ N | Ct
n(p

t
n) < K(t), xt

n ∈ ptn
}

(12)

where K(t) is a deterministic, monotonically increasing control function, which is an input of

COERR to determine whether the amount of collected historical data in hypercube ptn is large

enough to produce an accurate service demand estimation for exploitation in time slot. K(t) has
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Algorithm 1 Context-aware Online Edge Resource Rental (COERR)

1: Input: T , hT , K(t).

2: Initialization: create partition PT on context space X ; set Cn(p) = 0, En(p) = ∅, ∀n, ∀p ∈

PT ; choose an estimator for each SBS Θn.

3: for t = 1, . . . , T do

4: The ASP observes the context of each SBS n ∈ N and collects them in xt = {xt
n}n∈N ;

5: Determine pt = {ptn}n∈N , ptn ∈ PT such that xt
n ∈ ptn;

6: Identify under-explored SBSs U t as in (12);

7: if U t 6= ∅ then: ⊲ Exploration

8: if
∑

n∈Ut wn(f
min
n ) ≥ B then

9: Select a subset St ⊆ U t as in (13);

10: The rental decision at SBS n is f t
n = fmin

n · 1{n ∈ St};

11: else
(

i.e.,
∑

n∈Ut wn(f
min
n ) < B

)

: Get f t by soling the optimization problem in (14);

12: else (U t = ∅): ⊲ Exploitation

13: Get the rental decision f t by solving the optimization problem in (15);

14: Observe service demand receive at SBSs with f t
n > 0;

15: for each SBS n with f t
n > 0 do ⊲ Update counters, experiences, and estimations

16: Update counters: Cn(p
t
n) = Cn(p

t
n) + 1;

17: Update experiences: En(ptn) = En(ptn) ∪ (xt
n, λ

t
n);

18: Update estimations: λ̂n(p
t
n) = Θn(En(ptn));

19: Return: f t, t = 1, 2, . . . , T .

to be designed appropriately based on the estimator property σ(ǫ, Ct
n(p)) and the parameter hT

to balance the trade-off between exploration and exploitation (discussed later in Section IV-D).

1) Exploration: If the under-explored set is non-empty, i.e., U t 6= ∅, COERR enters the

exploration phase. We may have two cases in exploration: (i) If
∑

n∈Ut wn(f
min
n ) ≥ B, COERR

can explore only a subset of SBSs in U t. Intuitively, we want to collect service demand data for

more under-explored SBSs. Therefore, COERR rents only fmin
n at SBSs such that the edge service

can be deployed at more under-explored SBSs. Specifically, COERR selects under-explored SBSs
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sequentially as follows:

sk = argminn∈Ut\{si}
k−1
i=1

wn(f
min
n ) (13)

If the SBS defined in (13) is not unique, ties are broken arbitrarily. The selection ends if the

iteration k satisfies
∑k

i=1wsi(f
min
si

) ≤ B and
∑k+1

i=1 wsi(f
min
si

) > B. The rental decision of ASP

at SBS n is f t
n = fmin

n · 1{n ∈ St} where St = {s1, . . . , sk}. The selection in (13) ensures that

the number of under-explored SBSs with f t
n > 0 is maximized. (ii) If

∑

n∈Ut wn(f
min
n ) < B,

COERR rents computation resource fmin
n at all under-explored SBSs in U t. Note the there is

still B −
∑

n∈Ut wn(f
min
n ) budget left. The rest budget is used to rent computation resources at

explored SBSs n ∈ N\U t based on the current estimation λ̂t. The rental decision of ASP f t in

this case can be obtained by:

max
f t

U t(f t; λ̂t) (14a)

s.t. f t
n = fmin

n , ∀n ∈ U t (14b)

(8b), (8c), (8d) (14c)

Constraint (14b) ensures that the computation resource fmin
n is rented at under-explored SBSs.

2) Exploitation: If the set of under-explored SBSs is empty, i.e., U t = ∅, then COERR enters

the exploitation phase in which an optimal rental decision f t is determined based on the current

service demand λ̂t. The rental decision f t is obtained by solving:

maxf t U t(f t; λ̂t) s.t. (8b), (8c), (8d) (15)

C. Performance Analysis

Next, we give an upper performance bound of COERR in terms of the regret. The regret upper

bound is derived based on the natural assumption that the service demands received by an SBS

are similar when its contexts are similar. This assumption is formalized by the following Hölder

condition [22], [23] for each SBS n ∈ N .

Assumption 2 (Hölder Condition). For an arbitrary SBS n ∈ N , there exists L > 0, α > 0

such that for any x, x′ ∈ X , it holds that |µn(x) − µn(x
′)| ≤ L‖x − x′‖α, where ‖ · ‖ denotes

the Euclidean norm in R
D.

Note that this assumption is needed for the analysis of regret but the proposed algorithm

can still be applied if it does not hold true. In that case, however, a regret bound might not
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be guaranteed. We aim to design the input parameters hT , K(t) in the proposed algorithm to

achieve a sublinear R(T ) = O(T γ) with γ < 1. A sublinear regret bound guarantees that the

proposed algorithm has an asymptotically optimal performance since limT→∞
R(T )
T

= 0 holds.

This means that the online decision made by COERR converges to the Oracle solution.

Since any time slot is either in exploration or exploitation, we divide the regret two parts

R(T ) = Rexplore(T ) +Rexploit(T ), where Rexplore(T ), Rexploit(T ) are the regrets due to exploration

and exploitation, respectively. These two parts will be bounded separately to get the total regret

bound. We first give an upper bound for exploration regret.

Lemma 1. (Bound of E[Rexplore(T )].) Given the input parameters hT and K(t), the regret

E[Rexplore(T )] is bounded by:

E[Rexplore(T )] ≤
NBλmaxdmax

wmin
(hT )

D⌈K(T )⌉

where λmax = maxf t
n
λmax(f t

n) and wmin = minf∈Fn,∀nwn(f).

Proof. Suppose time slot t is an exploration phase, then according to the algorithm design, the

set of under-explored SBSs is non-empty. Therefore, there must exist n ∈ N and a hypercube

ptn satisfies Ct
n(p

t
n) < K(t). Clearly, there can be at most ⌈K(t)⌉ exploration phases in which

computation resources at SBS n are rented by the ASP when its context satisfies xτ
n ∈ ptn, τ < t.

In each of these exploration phase, let Ψmax,t
n , maxfn,f ′

n∈Fn
|∆t

n(fn) − ∆t
n(f

′
n)| be the

maximum utility loss for one task due to a wrong rental decision fn at SBS n. Recall that

the per-task delay reduction is bounded by ∆t
n(f

t
n) ≤ dmax, ∀n, ∀t and therefore it holds that

Ψmax,t
n ≤ dmax. Let λmax = maxf t

n
λmax(f t

n), then the service demand λn(x
t
n) received by SBS n

must be bounded by λmax, the maximum utility loss at a SBS is bounded by λmaxdmax. Let wmin =

minf∈Fn,∀nwn(f), the maximum number of SBSs with the rental decision f t
n > 0 is bounded by

B/wmin. Therefore, the regret incurred in one time slot is bounded by λmaxdmaxB/wmin. Since

there are at most N(hT )
D⌈K(T )⌉ exploration phases in T , the regret incurred by the exploration

is bounded by:

E[Rexplore(T )] ≤
NBλmaxdmax

wmin
(hT )

D⌈K(T )⌉

The proof is completed.

Lemma 1 shows that the order of Rexplore(T ) is determined by the number of hypercubes

(hT )
D in partition PT and the control function K(T ).
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Lemma 2. (Bound of E[Rexploit(T )].) Given the input parameter hT and K(t), if the Hölder

condition holds true and the additional condition 2H(t) + 2dmaxNLD
α
2 hα

T ≤ Atθ is satisfied

with some H(t) > 0, A > 0, θ < 0 for all t, then E[Rexploit(T )] is bounded by:

E[Rexploit(T )] ≤
2|F|Bλmaxdmax

wmin

T
∑

t=1

∑

n∈N

σn

(

H(t)

dmaxN
,K(t)

)

+ 3dmaxNLD
α
2 h−α

T T + AT θ+1

(16)

Proof. See in online Appendix A [34].

Lemma 2 indicates that, besides the input parameters hT and K(t), the regret incurred in

exploitation also depends on the estimator’s PAC property σn(·, ·). Based on the above two

Lemmas, we will have the following Theorem for the upper bound of E[R(T )].

Theorem 1. Given the input parameter hT and K(t), if the Hölder condition holds true and

the additional condition 2H(t) + 2dmaxNLD
α
2 hα

T ≤ Atθ is satisfied with some H(t) > 0, A >

0, θ < 0 for all t, then E[R(T )] is bounded by:

E[R(T )] ≤
NBλmaxdmax

wmin
(hT )

D⌈K(T )⌉

+
2|F|Bλmaxdmax

wmin

T
∑

t=1

∑

n∈N

σn

(

H(t)

dmaxN
,K(t)

)

+ 3dmaxNLD
α
2 h−α

T T + AT θ+1

The regret upper bound in Theorem 1 is given with any input parameters ht, K(t) and applied

estimators. In addition, there is an additional condition 2H(t) + 2dmaxNLD
α
2 hα

T ≤ Atθ should

be satisfied when designing algorithm parameters hT . However, we cannot give a specific design

of hT here to guarantee the sublinear regret since it depends on the PAC property of the applied

estimator. In the next subsection, we will design input hT and K(t) based on the PAC property

σn(·, ·) of a Maximum Likelihood Estimator, which satisfy the additional condition posed in

Theorem 1 and guarantee a sublinear regret O(T γ), γ < 1. Other parameters H(t), A, θ are not

determinative which will be later shown in parameter design.

D. Example: Maximum Likelihood Estimator

Note that the regret depends partially on the estimator property σn(·, ·) and hence we need to

specify the estimators used by SBSs before designing the algorithm parameters hT and K(t).

Here, we take Maximum Likelihood Estimation (MLE) as an example. The purpose of a MLE

estimator Θn(E(ptn)) is to estimate the expected service demand µn(p
t
n) for hypercube ptn. We



20

assume that the historical service demands λn(x
τ ), xτ ∈ ptn collected in E(ptn) follow a normal

distribution denoted by N (µn(p
t
n), δ

2
n(p

t
n)), where δ2n(p

t
n) is the standard deviation. Then, an

unbiased estimation for µn(p
t
n) using MLE is:

λ̂n(p
t
n) =

1

Ct
n(p

t
n)

∑

(x,λ)∈E(ptn)
λ (17)

Note that the normal distribution of historical service demand in E(ptn) is only used for deriving

the above MLE estimator. COERR can be applied other historical data distributions, but the

unbiased MLE estimator can be different accordingly. The MLE estimator in (17) guarantees

the following PAC condition based on the Chernoff-Hoeffding bound [35]:

Pr
(

λ̂t
n(p

t
n)− µn(p

t
n) > ǫ

)

≤ σn(ǫ, C
t
n(p

t
n)) = e

−
2Ct

n(ptn)ǫ2

(λmax)2 (18)

and it holds that
∂σ(ǫ,Ct

n(p))
∂Ct

n(p)
≤ 0. Now, we can design hT and K(T ) to ensure a sublinear regret

of COERR.

Theorem 2 (Regret upper bound). Let hT = ⌈T
1

3α+D ⌉ and K(t) = t
2α

3α+D log(t). If the proposed

algorithm runs with these parameters, SBSs use MLE for estimation, and the Hölder condition

holds true, then the leading order of the regret E[R(T )] is:

O

(

2DNBλmaxdmax

wmin
T

2α+D
3α+D log(T )

)

.

Proof. See in online Appendix B [34].

The leading order of regret upper bound given in Theorem 2 is sublinear. In addition, the

regret bound is valid for any T and therefore providing a bound on the performance loss for any

time horizon. This also can be used to characterize the convergence speed of COERR. However,

we see that the order of upper bound regret can be close to 1 when the dimension of context

space D is large. In this case, the learner may need to apply dimension reduction techniques

based on empirical experience to cut down the context dimension.

Though the algorithm parameter hT and the regret upper bound is given based on a known

time horizon T , COERR can be easily extended to work with unknown time horizon with the

assistance of doubling-trick [36], [37]. The key idea of doubling-trick is to partition the time into

multiple phases (j = 1, 2, 3, ...) with doubling length (T1, T2, · · · ), e.g., if the length of phase

is T1 = T , then the length of j-th phase is 2j−1T . In each phase, COERR is run from scratch

without using any information from the previous phase. A salient property of doubling-trick is

that it does not change the order of the upper regret bound.
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E. Complexity and Scalability

The memory requirement of COERR is mainly determined by the number of counters Ct(p)

and experiences E t(p) maintained for hypercubes. Since the counter is an integer for each

hypercube, its memory requirement is determined by the number of created hypercubes. The

experience E t(p) is a set of observed service demand records up to time slot t which needs a

higher memory requirement. However, storing all historical data is actually unnecessary since

most estimators, including MLE in (17), can be updated in a recursive manner. Therefore, the

ASP only needs to keep current service demand estimation for a hypercube which is a floating

point number. If COERR is run with the parameters in Theorem 2, the number of hypercubes

is (hT )
D = ⌈T

1
3α+D ⌉D. Hence, the required memory is sublinear in the time horizon T . This

means that when T → ∞, COERR would require infinite memory. Fortunately, in the practical

implementations, ASP only needs to keep the counters and experiences of hypercubes which at

least one of the observed contexts belongs to. Therefore, the number of counters and experiences

to keep is actually much smaller than the analytical requirement.

V. EXTENSION: SOLUTIONS FOR SUBPROBLEMS

A. Exact and Approximate Solutions for Sub-problems

In this section, we discuss in detail the solutions for optimization problems in (8), (14), and

(15). Since these optimization problems have the same form, we take the Oracle subproblem (8)

as an example. Note that the problem is solved for each time slot t, the time index is dropped

in this section for ease of notation. The subproblem is a combinatorial optimization which can

be formulated as a Knapsack problem [38]. The Knapsack problem is a classic combinatorial

optimization: given a set of items, each with a weight and value, determine the items to include

in a collection such that the total weight is less than or equal to a given limit and the total value

is as large as possible. In ERR subproblems, each rental decision at a SBS is an item in the

Knapsack problem: for an “item” fn, its “weight” is the rental cost wn(fn) and its “value” is

the utility gain un(fn, µn(x)) (x is the context of SBS n in a certain time slot), and the limit is

ASP budget B. However, the standard formulation of Knapsack problem cannot exactly capture

the ERR problem since the ASP can only take one rental decision for one SBS, which means

items associated to one SBS cannot be included at the same time. Such an extension of standard

Knapsack problem with addition conflict restrictions, stating that from a certain set of items at
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most one item can be selected, is known as the Knapsack problem with conflict graph (KCG).

In the following, we formulate the subproblem as KCG problem and discuss its solutions.

These conflict constraints is represented by a undirected graph G = (V,E).

• V (Vertices): each rental decision at a SBS f ∈ Fn, ∀n corresponds to a vertex in the

undirected graph G.

• E (Edges): for an arbitrary pair of vertices f, f ′ ∈ V , add an edge e(f, f ′) between f and

f ′ if f, f ′ ∈ Fn are rental decisions for a same SBS.

The vertices/items in fk ∈ V are indexed by k = 1, 2, . . . , K and for a vertex fk ∈ Fn, we

define its weight as bk = wn(fk) and its value as zk = max{µn(x), λ
max}∆n(fk). In addition,

we introduce an indicator yk ∈ {0, 1} for each vertex fk indicating whether item fk is taken

(yk = 1) or not (yk = 0). Then, the KCG for subproblem can be written as:

max
∑K

k=1
zkyk (19a)

s.t.
∑K

k=1
bkyk ≤ B (19b)

yk + yj ≤ 1, ∀(yk, yj) ∈ E, k, j ∈ {1, 2, . . . , K} (19c)

yk ∈ {0, 1}, k = 1, 2, . . . , K (19d)

KCG is a well-investigated problem. Several existing algorithms, e.g., Branch-and-Bound [39],

can be directly used to derive an exact solution for KCG problem. If an exact solution for each

KCG/subproblem is obtained. Then, COERR can provide the expected performance as analyzed

in the previous section. However, these exact algorithms can be computational-expensive when

the number of items is large and therefore their runtime may become a bottleneck in certain

applications (though the runtime is less likely to be an issue in our ERR problem since the time

scale of the considered problem is relatively large, e.g., several hours). To facilitate the solution

of KCG, approximation algorithms are studied to efficiently derive approximate solutions in

polynomial runtime. Next, we will discuss the performance of the proposed algorithm when

approximate solutions are derived for subproblems.

B. Performance Analysis with Approximate Solutions

We assume that the approximation algorithm guarantees a performance bound (δ-approximation)

compared to the optimal solution as define below:
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Definition 1 (δ-approximation). An approximation algorithm is a δ-approximation if the objective

value U δ achieved by the approximate solution f δ satisfies δU δ ≥ U∗, δ > 1 where U∗ is the

optimal object value achieve by a optimal solution f∗.

Definition 1 indicates that a δ-approximation algorithm achieves no less than 1
δ

of the optimum.

Many existing approximation algorithms can be directly applied, e.g., Fully Polynomial Time

Approximation Schemes (FPTAS) [40], to solve the KCG problems. The assumption of δ-

approximation prevents the approximate solution from being arbitrarily bad and enables the

performance analysis for COERR.

Now we are ready to analyze the performance of proposed algorithm with approximate

solution. From Theorem 2, we see that the leading order of the regret upper bound is mainly

determined by the exploration regret E[Rexplore(T )]. A sublinear upper bound of exploration regret

is derived by limiting a sublinear number of time slots that COERR enters the exploration phase

with properly designed hT and K(t). Note that COERR is either in exploration or exploitation,

a sublinear number of exploration slots indicates that the number of exploitation slots is non-

sublinear. In this case, it is difficult, if not impossible, to guarantee a sublinear regret with

approximate solutions even if we have perfect estimation in each exploitation: due to the δ-

approximate, the worst performance loss of approximate solution with perfect estimation in one

time slot is δ−1
δ
U∗,t. Let Texploit be number of exploitation slots which is non-sublinear, the upper

bound of exploitation regret (with approximate solutions) must be larger than δ−1
δ
TexploitE[U

∗,t]

which is also non-sublinear. To address this problem, we slightly change the definition of regret

by defining the δ-regret below:

Rδ(T ) =
∑T

t=1

(

1

δ
U t(f∗,t;λt)− U t(f δ,t;λt)

)

(20)

The rental decision f∗,t is still the optimal Oracle solution for subproblems in (8). The rental

decision f δ,t is the online decisions made by the proposed algorithm with approximation algo-

rithm, i.e., solutions to the optimization problem in (14) during exploration and the optimization

problem in (15) is approximated by a δ-approximation algorithm. In (20), the online decisions

derived by COERR with δ-approximation algorithm is actually compared by the lower bound

of approximated Oracle solution (i.e., Oracle also use a δ-approximation algorithm to solve the

subproblem in (8). Such a definition of regret is often used in MAB framework where optimal

solution cannot be derived in each round [23].
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Theorem 3 (δ-regret upper bound). If the proposed algorithm is run with parameters and

conditions given in Theorem 2 and a δ-approximation is applied for optimization, then the

leading order of δ-regret E[Rδ(T )] is:

O

(

2DNBλmaxdmax

δwmin
T

2α+D
3α+D log(T )

)

.

Proof. See in online Appendix C [34].

Theorem 3 indicates that our algorithm is able to work well even if the subproblem in each

time slot can only be approximately solved and a sublinear δ-regret can be achieved based on

the performance guarantee of δ-approximation algorithms.

VI. EXPERIMENTS

In this section, we carry out systematic experiments in a real-world dataset to verify the

efficacy of the proposed algorithm.

A. Experiment Setup

We use the real-word service demand trace collected by the Grid Workloads Archive (GWA)

[5]. The GWA datasets record the task requests received by large-scale multi-site infrastructures

(girds) that provide computational support for e-Science. The experiment is mainly run on the

GWA dataset, AuverGrid, which collects around 400,000 task requests of 5 grids. To fit the

AuverGird data in our ERR context, we assume each grid corresponds to an SBS in the edge

network. In some parts of the experiments, we combine other GWA datasets with AuverGrid to

increase the number of sites and show the impact of SBS numbers on the algorithm performance.

Each task request record has a “SubmitTime” (in second) that indicate the time of task arrival

and a “RunSiteID” that indicates the site for task execution. The rental decision cycle is set as 3

hrs. With this information, we are able to analyze the service demand trace at each SBS. Fig.3(a)

depicts the service demand trace of three SBSs. It can be observed that the demand patterns

are different at different SBSs and hence it is necessary to learn the service demand pattern for

each SBS. The context space of SBSs has two dimension: “time in a day” and “daily report

demand”. The context “time in a day” indicates the time when a rental decision is made, and

the context “daily report demand” is the total service demand received by a SBS in the previous

day which is provided by the site daily report. Fig.3(b) shows the expected service demand of

hypercubes in the context partition of Site 1. We see that the service demand is closely related to
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Fig. 3. Real-world service demand. Fig.3(a) shows the service demand of three sites in AuverGrid: Site 1: clrlcgce01, Site2:

clrlcgce02, Site2: clrlcgce03. Fig.3(b) shows the expected service demand for each hypercube maintained by Site 1 (notice that

the partition is created as an example and may be different from the partition designed by the proposed algorithm).

the considered contexts. The optimization problems in (14), and (15) are transformed into KCG

and solved using Brunch-and-Bound algorithm [39]. The computing resource at edge server is

discretized as Virtual Machines (VMs) and the rental decision is the number of VMs to rent at

SBSs: f t
n ∈ Fn = {0, 2, 4, 6}, ∀n. The processor capacity of each VM is 2GHz. Therefore, if

the rental decision f t
n = 2 then the rented processor capacity at SBS n is 4GHz. Other important

parameters are given in Table I.

The proposed algorithm COERR is compared with following benchmarks:

1) Oracle: the Oracle algorithm knows precisely the expected service demand of SBS with any

observed context. In each time slot, Oracle chooses rental decisions at SBSs to maximize the

ASP utility as in (8) based on the expected service demand of observed context.

2) Combinatorial UCB (CUCB) [41]: CUCB is developed based on a classic MAB algorithm,

UCB1. The key idea of CUCB create combinations of rental decisions at all SBSs to enumerate all

ASP’s rental decision f . CUCB runs in the UCB1 framework with feasible ASP rental decisions

f that satisfies
∑

n∈N wn(fn) ≤ B and learns the expected utility for feasible f overtime.

3) LinUCB [42]: LinUCB considers SBSs’ context when running CUCB. LinUCB also learns

the expected utility for feasible rental decision f , but LinUCB now observes the context of SBSs

and assume the expected utilities of rental decisions linearly depend on the SBSs’ context.

4) COERR-ORX: COERR-ORX (Zero or X) is a variant of the proposed algorithm COERR. In



26

TABLE I

ALGORITHM COMPLEXITY

Parameter Value

Input data size of one task, s 1MB

Required CPU cycles for one task, c 109

Pricing mapping function, wn(fn) wn(fn) = 1 · fn

Maximum service demand processed at SBSs, λmax(fn) λmax(fn) = 150 · fn

Path-loss with random shadowing PL = 20 log(d[km]) + 28 +N(0, 52)

Expected wireless transmission rate of SBSs 5Mbps

Expected wireless transmission rate of MBS 2Mbps

Bandwidth, W Spectrum Allocation Scheme [27]

Dimension of context space, D 2

α in Hölder 1

Time horizon T 2700

hT in COERR 5

COERR-ORX, ASP only chooses where to rent computation resource and does not decide how

much to rent, i.e., if ASP chooses to rent computation at SBS n, it can only take one rental

decision fn = X . Such edge resource rental problem has been considered in [15]

5) Random: The algorithm simply chooses one feasible ASP rental decision in each time slot.

B. Results and Discussions
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Fig. 4. Comparison on cumulative utilities.

1) Comparison on Cumulative Utilities: Fig.4 shows the cumulative utilities and rewards

achieved by COERR and the other 6 benchmarks during 2,700 time slots. For the cumulative util-
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ity in Fig.4(a), we see that Oracle, as expected, achieves the highest cumulative utility which gives

an upper bound to the other algorithms. Among the others, COERR significantly outperforms the

other benchmarks and achieves a close-to-Oracle cumulative utility. The benefit of considering the

context of SBSs can be appreciated by comparing the performance of context-aware algorithms

(COERR, LinUCB and, COERR-ORX) and context-unaware algorithms (CUCB and Random).

In addition, we see that the cumulative utility of CUCB is almost the same as the random

algorithm. The malfunction of CUCB is due to two reasons:(i) a CUCB arm is a combination of

rental decisions at all SBSs and hence the CUCB arm set can be very large. This means CUCB

can be easily stuck in the exploration. (ii) CUCB fails to capture the connection between context

and service demand. Further analyzing the cumulative utility achieved by LinUCB, we know

that considering the context for each possible CUCB arm is not effective to produce a good

result due to the large arm set. Comparing the performances of COERR-OR2, COERR-OR4,

and COERR, we see that offering more rental decision options at SBSs helps the ASP efficiently

utilize its budget and results in a higher cumulative utility.

Fig.4(b) explicitly depicts the regret incurred by the 6 algorithms. It clearly shows that the

proposed algorithm incurs only a sublinear regret (the discontinuity point around slot 1750 is

due to the service demand burst at certain sites).

2) Impact of Budget: Fig. 5 shows the cumulative utilities achieved by Oracle, COERR,

LinUCB, and Random in a total of 2700 time slots. It can be observed that COERR achieves

higher cumulative utility compared to LinUCB and Random. In addition, the cumulative utilities

achieved by all four algorithms grow with the increase in ASP budget. The reason is intuitive:

a larger budget allows the ASP to rent more resource at more SBSs, which means more users

can access the edge service and enjoy the low service delay. It is worth noticing that the regrets

incurred by COERR, LinUCB, and Random decrease as the budget increase. This is because the

ASP can simply place application service at all SBSs without judicious decisions. Though the

budget distribution among the SBS may not be optimal, it can avoid large utility loss by using

the cloud server.

3) Impact of Rental Decision Set: Fig.6 shows the cumulative utility of COERR and LinUCB

under different rent decision sets F . By comparing the cumulative utilities under rental decision

sets with the same size, e.g., Fn = [0, 2, 4], Fn = [0, 2, 6], and Fn = [0, 4, 6], we see that both

COERR and LinUCB can achieve higher cumulative utility with smaller fmin
n . This is because

the ASP can allocation its budget more flexible among SBSs with smaller fmin
n . Also, COERR
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can explore more under-explored arms in one exploration phase with a smaller fmin
n , which

improves the efficiency of exploration and reduce the regret.

In addition, we see that COERR achieves a higher cumulative utility when the size of rental

decision set |F | is larger. A larger rental decision set F loosens the constraint in per-slot problem

(8), e.g., the constraint in (8c) becomes looser if we change the rental decision set Fn = [0, 2, 4]

to Fn = [0, 2, 4, 6]. Therefore, we may have a higher utility in each exploitation phase with

Fn = [0, 2, 4, 6]. By contrast, a larger F is not always better for LinUCB, e.g., the cumulative

utility of Fn = [0, 2] is larger than that of Fn = [0, 2, 6]. This is because LinUCB creates more

arm with larger F , which tends to incur higher regret.

4) Running More SBSs: We also vary the number of SBSs in the considered edge system.

Since the AuverGrid dataset only records the task request received by 5 distributed sites, we

merge it with another GWA dataset, SHARCNET, to get real-world service demand traces for

more sites. The merged dataset is used to generate service demand traces for a total of 10 SBSs.

The performances of COERR and other benchmarks on the merged dataset are shown in Fig.7

where Fig.7(a) depicts the cumulative utility during runtime and Fig.7(b) depicts regret. The

general trend of cumulative utility in Fig.7(a) is similar to that in Fig.4(a) and it is can be

clearly observed that COERR achieves a sublinear regret.

Comparing Fig.7(a) to Fig.4(a), we see that COERR incurs a larger regret when running with

10 SBSs. To further analyze the impact of SBS number on the regret, we show the cumulative

reward achieved by Oracle, COERR, and CUCB in 2,700 time slots in Fig.8 and calculate their

regrets. There is a general trend that both COERR and CUCB incur a larger regret when there

are more SBSs in the edge system. This is because the number of hypercubes created by COERR

and the number of ASP rental decisions created by CUCB become larger when there are more
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Fig. 7. Runtime performance with 10 SBSs.

SBSs, which means COERR and CUCB need to spend more time slots in exploration and hence

tend to incur larger regret. In addition, we see that the regret of COERR grows slower with the

increase in SBS number compared to that of CUCB. The reason for this is that the number of

hypercubes for COERR to explore is a linear function of N whereas the number of ASP rental

decisions for CUCB is an exponential function of N . Table II shows the number of hypercubes

and the number of ASP rental decisions for three experiment setting. Therefore, COERR has

better scalability for edge system compared to CUCB.
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VII. CONCLUSION

In this paper, we investigated the edge resource rental problem to facilitate the edge service

provisioning in a shared edge system. An online decision-making policy, called Context-aware

Online Edge Resource Rental (COERR), is designed for ASP to make appropriate edge resource
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TABLE II

ALGORITHM COMPLEXITY

# SBSs (N ) N = 5 N = 8 N = 10

# hypercubes for COERR (N · (hT )
D) 125 200 250

# arms for CUCB 121 487 991

rental decisions while learning the service demand pattern for each individual edge sites. COERR

is developed based on the framework of contextual combinatorial multi-armed bandit, where ASP

observes the context of SBSs and learns context-aware service demand to guide the resource

at multiple edge sites. The proposed algorithm is easy to implement and guarantees provable

asymptotically optimal performance. However, there are still efforts left to be done to improve

COERR. First, we currently use a static partition of context space. Considering dynamic partition

may help improve the algorithm performance since it generates more appropriate hypercubes for

learners in each time slot. Second, we currently only consider the edge resource rental for one

ASP. Extending our algorithm to the multi-ASP scenario would be more beneficial in practice.
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APPENDIX A

PROOF OF LEMMA 2

Proof. Before proceeding, we first define several auxiliary variables: for a hypercube p main-

tained by SBS n, we define µ̄n(p) = supx∈p µn(x) and
¯
µn(p) = infx∈p µn(x) be the best and

worst expected demand of SBS n over all contexts in hypercube p. Let

µ̄(pt) = {µ̄1(p
t
1), µ̄2(p

t
2), . . . , µ̄N(p

t
N)}

¯
µ(pt) = {

¯
µ1(p

t
1),

¯
µ2(p

t
2), . . . ,

¯
µN(p

t
N)}

In some steps of the proofs, we need compare the service demands at different positions in

a hypercube. As a point of reference, we define the context at the (geometrical) center of a

hypercube p as ẋ(p). Let µ̇(pt) = {µ1(ẋ(p
t
1)), µ2(ẋ(p

t
2)), . . . , µN(ẋ(p

t
N ))}. We also define the

rental decision ḟ (pt) which is derived based on the expected service demand µ̇(pt) by solving

the following problem in time slot t:

ḟ(pt) = argmaxf∈F U t(f ; µ̇(pt)) s.t. (8b), (8c), (8d) (21)

The rental decision ḟ(pt) is used to identify the bad rental decisions when the hypercubes of

contexts xt is pt. Let

L(pt) =
{

f ∈ F | U t(ḟ(pt);
¯
µ(pt))− U t(f ; µ̄(pt)) ≥ Atθ

}

(22)

be the set of suboptimal rental decisions when the SBSs’ contexts belong to pt. The parameter

A > 0 and θ < 0 are only used in the regret analysis. We call a rental decision f ∈ L(pt)

suboptimal for pt, since the ASP utility achieved by the rental decision ḟ(pt) is at least an

amount Atθ higher than that achieved by the rental decision f ∈ L(pt). We call the rental

decisions in F\L(pt) near-optimal for pt. Then, the regret of Rexploit(T ) can be divided into the

following two summands:

E[Rexploit(T )] = E[Rs(T )] + E[Rn(T )] (23)

where the term E[Rs(T )] is the regret due to the suboptimal rental decision in exploitation and

E[Rn(T )] is the regret due to the near-optimal rental decision in exploitation. In the following,

we will show that each of the two summands is bounded. We first give the bound of E[Rs(T )]

in Lemma 3.



34

Lemma 3. (Bound of E[Rs(T )].) Given the input parameters hT and K(t), if the Hölder condition

holds true and the additional condition 2H(t)+2dmaxNLD
α
2 hα

T ≤ Atθ is satisfied with H(t) > 0

for all t, then E[Rs(T )] is bounded by

E[Rs(T ) ≤
2|F|Bλmaxdmax

wmin

T
∑

t=1

∑

n∈N

σn

(

H(t)

dmaxN
,K(t)

)

Proof. Let W (t) = {U t = ∅} be the event that the algorithm enters the exploitation phase. By

the definition of U t, we will have Ct
n(p

t
n) > K(t) for all ∀n. Let Vf (t) be the event that rental

decision f is taken in time slot t. Then, it holds that

Rs(T ) =

T
∑

t=1

∑

f∈L(pt)

I{Vf ,W (t)} ×
(

U t(f∗,t;λt)− U t(f ;λt)
)

(24)

In each of the summands, the utility loss is considered due to taking a suboptimal decision

f ∈ L(pt) instead of the optimal Oracle decision f ∗,t. Since the maximum utility loss at a SBS

is bounded by λmaxdmax, and the maximum number of SBSs that hosting the edge service is

B/wmin, we have

Rs(T ) ≤
B

wmin
λmaxdmax

T
∑

t=1

∑

f∈L(pt)

I{Vf (t),W (t)}, (25)

Taking the expectation, the regret due to suboptimal decisions is bounded by

E [Rs(T )] ≤
B

wmin
λmaxdmax

T
∑

t=1

∑

f∈L(pt)

E

[

I{Vf (t),W (t)}

]

=
B

wmin
λmaxdmax

T
∑

t=1

∑

f∈L(pt)

Pr {Vf(t),W (t)}

Based on the algorithm design, we know that if a rental decision f is taken in exploration (i.e.,

the event Vf (t)), we must have U t(f , λ̂t) ≥ U t(ḟ(pt), λ̂t), Thus. we have

Pr {Vf(t),W (t)} ≤ Pr
{

U t(f , λ̂t) ≥ U t(ḟ(pt), λ̂t),W (t)
}

(26)

The right-hand side of (26) implies at least one of the three following events with any H(t) > 0:

E1 =
{

U t(f , λ̂t) ≥ U t(f , µ̄(pt)) +H(t),W (t)
}

,

E2 =
{

U t(ḟ(pt), λ̂t) ≤ U t(ḟ(pt),
¯
µ(pt))−H(t),W (t)

}

,
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E3 =
{

U t(f , λ̂t) ≥ U t(ḟ(pt), λ̂t),

U t(f , λ̂t) < U t(f , µ̄(pt)) +H(t),

U t(ḟ (pt), λ̂t) > U t(ḟ(pt),
¯
µ(pt)−H(t),W (t)

}

.

Hence, we have for the original event in (26)

{

U t(f , λ̂t) ≥ U t(ḟ (pt), λ̂t),W (t)
}

⊆ {E1 ∪ E2 ∪ E3} (27)

The probability of these three events E1, E2, and E3 will be bounded separately. Let us start

with E1. Recall that the best expected service demand for the hypercube p at SBS n is µ̄n(p) =

supx∈p µn(x) and we must have Ex∈p[µn(x)] = µn(p) ≤ supx∈p µn(x) = µ̄n(p) in Assumption

1, we will have:

Pr{E1} = Pr
{

U t(f , λ̂t) ≥ U t(f , µ̄(pt)) +H(t),W (t)
}

= Pr

{

∑

n∈N

λ̂n(p
t
n)∆

t
n(f

t
n) ≥

∑

n∈N

µ̄n(p
t
n)∆

t
n(f

t
n) +H(t),W (t)

}

≤ Pr

{

∑

n∈N

λ̂n(p
t
n)∆

t
n(f

t
n) ≥

∑

n∈N

µn(p
t
n)∆

t
n(f

t
n) +H(t),W (t)

}

≤
∑

n∈N

Pr

{

λ̂n(p
t
n)∆

t
n(f

t
n) ≥ µn(p

t
n)∆

t
n(f

t
n) +

H(t)

N
,W (t)

}

≤
∑

n∈N

Pr

{

λ̂n(p
t
n) ≥ µn(p

t
n) +

H(t)

dmaxN
,W (t)

}

Considering the PAC condition of the estimators Pr
{

λ̂n(p
t
n)− µn(p

t
n) ≥ ǫ

}

= σn(ǫ, C
t
n(p

t
n)),

we have

Pr{E1} ≤
∑

n∈N

σn

(

H(t)

dmaxN
,Ct

n(p
t
n)

)

Analogously, it can be proven for event E2 that

Pr{E2} ≤
∑

n∈N

σn

(

H(t)

dmaxN
,Ct

n(p
t
n)

)

To bound event E3, we first make some additional definition. First, we rewrite the service

demand estimation λ̂n(p
t
n) as below:

λ̂n(p
t
n) = µn(x

t
n) + ζ tn
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where ζ tn denotes the deviation of estimation λ̂n(p
t
n) from the expected service demand of SBS

n with context xt
n. Additional, we define the best and worst context in the hypercube ptn as

xbest(ptn) = argmaxx∈ptn µ(x) and xworst(ptn) = argminx∈ptn
µ(x), respectively. Let

λbest
n (ptn) = µn(x

best(ptn)) + ζ tn

λworst
n (ptn) = µn(x

worst(ptn)) + ζ tn

By the Hölder condition, it can be shown that

λbest
n (ptn)− λ̂(ptn) = µn(x

best(ptn))− µn(x
t
n) ≤ LD

α
2 h−α

T

λ̂(ptn)− λworst
n (ptn) = µn(x

t
n)− µn(x

worst(ptn)) ≤ LD
α
2 h−α

T

Applying the above results, we will have

U t(f ,λbest(pt))− U t(f , λ̂t) ≤ dmax
∑

n∈N

LD
α
2 h−α

T (28)

U t(ḟ (pt), λ̂t)− U t(ḟ(pt),λworst(pt)) ≤ dmax
∑

n∈N

LD
α
2 h−α

T (29)

where λbest(pt) = {λbest
1 (pt1), . . . , λ

best
N (ptN)} and λworst(pt) = {λworst

1 (pt1), . . . , λ
worst
N (ptN)}. By the

definition of λbest(pt) and λworst(pt), it holds for the first component of E3 that

E3.1 =
{

U t(f , λ̂t) ≥ U t(ḟ (pt), λ̂t),
}

⊆
{

U t(f ,λbest(pt)) ≥ U t(ḟ(pt),λworst(pt))
}

For the second component, using (28), we have

E3.2 =
{

U t(f , λ̂t) < U t(f , λ̄(pt)) +H(t),
}

⊆

{

U t(f ,λbest(pt))− dmax
∑

n∈N

LD
α
2 h−α

T < U t(f , λ̄(pt)) +H(t)

}

=

{

U t(f ,λbest(pt)) < U t(f , λ̄(pt)) + dmax
∑

n∈N

LD
α
2 h−α

T +H(t)

}

For the third component, using (29), we have

E3.3 =
{

U t(ḟ (pt), λ̂t) > U t(ḟ(pt),
¯
λ(pt))−H(t)

}

⊆

{

U t(ḟ (pt),λworst(pt)) + dmax
∑

n∈N

LD
α
2 h−α

T > U t(ḟ (pt),
¯
λ(pt))−H(t)

}

=

{

U t(ḟ (pt),λworst(pt)) > U t(ḟ (pt),
¯
λ(pt))− dmax

∑

n∈N

LD
α
2 h−α

T −H(t)

}
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We want to find a condition under which the probability of E3 is zero. To this end, we design

the parameter H(t), such that

2H(t) + 2dmaxNLD
α
2 h−α

T ≤ Atθ (30)

Since f ∈ L(pt), we have U t(ḟ (pt);
¯
λ(pt)) − U t(f t; λ̄(pt)) ≥ Atθ, which together with (30),

implies that:

U t(ḟ (pt);
¯
λ(pt))− U t(f ; λ̄(pt))− 2H(t)− 2dmaxNLD

α
2 h−α

T ≥ 0

Rewriting yields:

U t(ḟ(pt);
¯
λ(pt))− dmaxNLD

α
2 h−α

T −H(t) ≥ U t(f ; λ̄(pt)) + dmaxNLD
α
2 h−α

T +H(t) (31)

If (31) holds true, the three components of E3 cannot be satisfied at the same time: combining

E3.2 and E3.3 with (31) yields U t(f ,λbest(pt)) < U t(ḟ(pt),λworst(pt)), which contradicts the

E3.1. Therefore, under the condition (30), Pr{E3} = 0.

To sum up, under condition (30), the probability Pr{Vf(t),W (t)} is bounded by

Pr{Vf(t),W (t)} ≤ Pr{E1 ∪ E2 ∪ E3}

≤ Pr{E1}+ Pr{E2}+ Pr{E3}

≤ 2
∑

n∈N

σn

(

H(t)

dmaxN
,Ct

n(p
t
n)

)

≤ 2
∑

n∈N

σn

(

H(t)

dmaxN
,K(t)

)

where the last inequality is due to the estimator property
∂σ(ǫ,Ct

n(p))
∂Ct

n(p)
≤ 0 in Assumption 1 and

the fact that in the exploration phase an arbitrary counter satisfies Ct
n(p

t
n) ≥ K(t). Therefore,

the regret bound for E[Rs(T )] is

E[Rs(T )] ≤
B

wmin
λmaxdmax

T
∑

t=1

∑

f∈L(pt)

Pr{Vf(t),W (t)}

≤
2|F|Bλmaxdmax

wmin

T
∑

t=1

∑

n∈N

σn

(

H(t)

dmaxN
,K(t)

)

Next we bound the regret due to choosing near-optimal rental decisions, which is given in the

Lemma below.
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Lemma 4. (Bound for E[Rn(T )]). Given the input parameters hT and K(t), if the Hölder

condition holds true, the regret E[Rn(T )] is bounded by

E[Rn(T )] ≤ 3dmaxNLD
α
2 h−α

T T + AT θ+1

Proof. For an arbitrary time slot t, let the event W (t) denotes that the algorithm enters the

exploration phase. Let Q(t) be the event that an near optimal rental decision f t ∈ F\L(pt) is

taken in time slot t. The loss due to the near-optimal subsets can be written as:

Rn(T ) =

T
∑

t=1

I{W (t),Q(t)} ×
(

U t(f ∗,t;λt)− U t(f t;λt)
)

Taking the expectation of Rn(T ), by the definition of conditional expectation, we have:

E[Rn(T )] =
T
∑

t=1

Pr{W (t), Q(t)} · E
[

U t(f∗,t;λt)− U t(f t;λt) | W (t), Q(t)
]

≤
T
∑

t=1

E
[

U t(f∗,t;λt)− U t(f t;λt) | W (t), Q(t)
]

.

Since f t ∈ F\L(pt), it holds that

U t(ḟ (pt);
¯
λ(pt))− U t(f t; λ̄(pt)) < Atθ.

To bound the regret, we have to give an upper bound on

T
∑

t=1

E
[

U t(f ∗,t;λt)− U t(f t;λt) | W (t), Q(t)
]

=
T
∑

t=1

U t(f ∗,t;µt)− U t(f t;µt).

Applying Hölder condition several times yields

U t(f ∗,t;µt)− U t(f t;µt)

≤U t(f ∗,t; µ̇(pt)) + dmaxNLD
α
2 h−α

T − U t(f t;µt)

≤U t(ḟ (pt); µ̇(pt)) + dmaxNLD
α
2 h−α

T − U t(f t;µt)

≤U t(ḟ (pt);
¯
µ(pt)) + 2dmaxNLD

α
2 h−α

T − U t(f t;µt)

≤U t(ḟ (pt);
¯
µ(pt)) + 3dmaxNLD

α
2 h−α

T − U t(f t; µ̄(pt))

≤3dmaxNLD
α
2 h−α

T + Atθ

Therefore, E[Rn(T )] can be bounded by

E[Rn(T )] ≤
T
∑

t=1

(

3dmaxNLD
α
2 h−α

T + Atθ
)

≤ 3dmaxNLD
α
2 h−α

T T + AT θ+1
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Then the regret E[Rexploit(T )] is therefore bounded by

E[Rexploit(T )] ≤
2|F|Bλmaxdmax

wmin

T
∑

t=1

∑

n∈N

σn

(

H(t)

dmaxN
,K(t)

)

+ 3dmaxNLD
α
2 h−α

T T + AT θ+1.

APPENDIX B

PROOF OF THEOREM 2

Proof. Let K(t) = tz log(t), 0 < z < 1 and hT = ⌈T γ⌉, 0 < γ,< 1
D

, then E[Rexplore(T )] in

Lemma 1 can be rewrite as

E[Rexplore(T )] ≤
NBλmaxdmax

wmin
(hT )

D⌈K(T )⌉

=
NBλmaxdmax

wmin
⌈T γ⌉D⌈T z log(T )⌉

Since ⌈T γ⌉D ≤ (2T γ)D, it holds that

E[Rexplore(T )] ≤
NBλmaxdmax

wmin
2DT γD(T z log(T ) + 1)

=
NBλmaxdmax

wmin
2D(T z+γD log(T ) + T γD)

Consider the Lemma 2, we let H(t) = Nλmaxdmaxt−z/2. Given σn(ǫ, C
t
n(p

t
n)) = exp

(

−
2Ct

n(p
t
n)ǫ

2

(λmax)2

)

,

the first term in (16) can be written as

2|F|Bλmaxdmax

wmin

T
∑

t=1

∑

n∈N

σn

(

H(t)

dmaxN
,K(t)

)

=
2|F|Bλmaxdmax

wmin
N

T
∑

t=1

exp

(

−
2K(t)H2(t)

(λmaxdmaxN)2

)

=
2N |F|Bλmaxdmax

wmin

T
∑

t=1

exp (−2 log(t))

=
2N |F|Bλmaxdmax

wmin

T
∑

t=1

t−2

≤
N |F|Bλmaxdmax

wmin
· 2

∞
∑

t=1

t−2

≤
N |F|Bλmaxdmax

wmin

π2

3
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Note that in the second term of (16), h−α
t = ⌈T γ⌉−α ≤ T−γα .Now the total regret is bounded

by

E[R(T )] ≤
NBλmaxdmax

wmin
2D(T z+γD log(T ) + T γD)

+
N |F|Bλmaxdmaxπ2

3wmin
+ 3dmaxNLD

α
2 T 1−γα + AT θ+1

The summands above contribute to the regret with leading orders O(T z+γD log(T )), O(T 1−γα),

and O(T θ+1). In order to balance the leading orders, we let z = 2α
3α+D

∈ (0, 1), γ = z
2α

∈ (0, 1
D
),

θ = −z
2
, and A = 2Nλmaxdmax + 2dmaxNLDα/2. With these parameters, the conditions in

Lemma 2 are satisfied. Now the regret E[R(T )] reduces to

E[R(T )] ≤
NBλmaxdmax

wmin
2D(T

2α+D
3α+D log(T ) + T

D
3α+D )

+
N |F|Bλmaxdmaxπ2

3wmin
+ 3dmaxNLD

α
2 T

2α+D
3α+D + AT

2α+D
3α+D

The proof is completed.

APPENDIX C

PROOF OF THEOREM 3

Proof. The proof of Theorem 3 is similar to that of Theorem 2 and hence we only provide a

sketch of proof for Theorem 3. The expect δ-regret is also divided into two parts:

E[Rδ(T )] = E[Rδ
explore(T ) +Rδ

exploit(T )]

The approximation algorithm does not have much influences in bounding E[Rδ
explore(T )] since

the worst-case utility loss λmaxdmax is used to provide a upper bound of the regret incurred by

a wrong rental decision at a SBS. According to the definition of δ-regret, the worst-case utility

loss becomes 1
δ
λmaxdmax. By following the steps in proof of Lemma 1, E[Rδ

explore(T )] is bounded

by:

E[Rδ
explore(T )] ≤

NBλmaxdmax

δwmin
(hT )

D⌈K(T )⌉

Letting hT = ⌈T
1

3α+D ⌉ and K(t) = t
2α

3α+D log(t), we have

E[Rδ
explore(T )] ≤

NBλmaxdmax

δwmin
2D(T

2α+D
3α+D log(T ) + T

D
3α+D )

To provide a upper bound of E[Rδ
exloit(T )], we also need to identify suboptimal and near-

optimal set of arms using:

Lδ(pt) =
{

f ∈ F | U t(ḟ δ(pt);
¯
µ(pt))− U t(f ; µ̄(pt)) ≥ Atθ

}
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where ḟ δ(pt) is the δ-approximation solution to the following problem

maxf∈F U t(f ; µ̇(pt)) s.t. (8b), (8c), (8d)

and E[Rδ
exloit(T )] = E[Rδ

s (T )]+E[Rδ
n(T )] is divided into two parts, which are bounded separately.

For the regret of choosing suboptimal decisions in Lδ(pt) during exploitation, i.e., E[Rδ
s (T )],

we have

E[Rδ
s(T )] =

T
∑

t=1

∑

f∈Lδ(pt)

E

[

I{Vf ,W (t)} ×

(

1

δ
U t(f ∗,t;λt)− U t(f ;λt)

)]

≤
1

δ

B

wmin
λmaxdmax

T
∑

t=1

∑

f∈Lδ(pt)

Pr {Vf(t),W (t)}

Following similar steps in the proof of Lemma 3, it holds that

E[Rδ
s (T )] ≤

2|F|Bλmaxdmax

δwmin

T
∑

t=1

∑

n∈N

σn

(

H(t)

dmaxN
,K(t)

)

For the regret of choosing near-optimal decisions in F\Lδ(pt) during exploitation, i.e., E[Rδ
s (T )],

we have

E[Rδ
n(T )] =

T
∑

t=1

Pr{W (t), Q(t)} · E

[

1

δ
U t(f∗,t;λt)− U t(f t;λt) | W (t), Q(t)

]

≤
T
∑

t=1

E

[

1

δ
U t(f∗,t;λt)− U t(f t;λt) | W (t), Q(t)

]

.

Since f t ∈ F\Lδ(pt), it holds that

U t(ḟ δ(pt);
¯
λ(pt))− U t(f t; λ̄(pt)) < Atθ.

To bound the regret, we have to give an upper bound on

T
∑

t=1

E

[

1

δ
U t(f ∗,t;λt)− U t(f t;λt) | W (t), Q(t)

]

=

T
∑

t=1

1

δ
U t(f∗,t;µt)− U t(f t;µt).

Applying Hölder condition several times yields

1

δ
U t(f∗,t;µt)− U t(f t;µt) ≤

1

δ
U t(f∗,t; µ̇(pt)) + dmaxNLD

α
2 h−α

T − U t(f t;µt)

≤
1

δ
U t(ḟ(pt); µ̇(pt)) + dmaxNLD

α
2 h−α

T − U t(f t;µt)

≤U t(ḟ δ(pt); µ̇(pt)) + dmaxNLD
α
2 h−α

T − U t(f t;µt)

≤U t(ḟ δ(pt);
¯
µ(pt)) + 2dmaxNLD

α
2 h−α

T − U t(f t;µt)

≤U t(ḟ δ(pt);
¯
µ(pt)) + 3dmaxNLD

α
2 h−α

T − U t(f t; µ̄(pt))

≤3dmaxNLD
α
2 h−α

T + Atθ
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and therefore

E[Rδ
exploit(T )] ≤

2|F|Bλmaxdmax

δwmin

T
∑

t=1

∑

n∈N

σn

(

H(t)

dmaxN
,K(t)

)

+ 3dmaxNLD
α
2 h−α

T T + AT θ+1.

Letting hT = ⌈T
1

3α+D ⌉ and K(t) = t
2α

3α+D log(t), and assuming that MLE is applied for service

demand estimation, we have

E[Rδ
exploit(T )] ≤

N |F|Bλmaxdmaxπ2

3δwmin
+ 3dmaxNLD

α
2 T

2α+D
3α+D + AT

2α+D
3α+D

The proof is completed by comparing the leading orders of the upper bounds of E[Rδ
explore(T )]

and E[Rδ
exploit(T )].
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