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Fault Location in Power Distribution Systems
via Deep Graph Convolutional Networks

Kunjin Chen , Jun Hu , Member, IEEE, Yu Zhang, Member, IEEE,

Zhanqing Yu , Member, IEEE, and Jinliang He , Fellow, IEEE

Abstract— This paper develops a novel graph convolutional
network (GCN) framework for fault location in power distri-
bution networks. The proposed approach integrates multiple
measurements at different buses while taking system topology
into account. The effectiveness of the GCN model is corroborated
by the IEEE 123 bus benchmark system. Simulation results show
that the GCN model significantly outperforms other widely-used
machine learning schemes with very high fault location accuracy.
In addition, the proposed approach is robust to measurement
noise and data loss errors. Data visualization results of two com-
peting neural networks are presented to explore the mechanism
of GCNs superior performance. A data augmentation procedure
is proposed to increase the robustness of the model under various
levels of noise and data loss errors. Further experiments show
that the model can adapt to topology changes of distribution
networks and perform well with a limited number of measured
buses.

Index Terms— Fault location, distribution systems, deep
learning, graph convolutional networks.

I. INTRODUCTION

D ISTRIBUTION systems are constantly under the threat
of short-circuit faults that would cause power outages.

In order to enhance the operation quality and reliability
of distribution systems, system operators have to deal with
outages in a timely manner. Thus, it is of paramount impor-
tance to accurately locate and quickly clear faults immedi-
ately after the occurrence, so that quick restoration can be
achieved.

Existing fault location techniques in the literature can
be divided into several categories, namely, impedance-based
methods [1]–[3], voltage sag-based methods [4]–[6], auto-
mated outage mapping [6]–[8], traveling wave-based meth-
ods [9], [10], and machine learning-based methods [11]–[14].
Impedance-based fault location methods use voltage and
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current measurements to estimate fault impedance and
fault location. Specifically, a generalized fault location method
for overhead distribution system is proposed in [1]. Substation
voltage and current quantities are expressed as functions of
the fault location and fault resistance, thus the fault location
can be determined by solving a set of nonlinear equations.
To solve the multiple estimation problem, it is proposed
to use estimated fault currents in all phases including the
healthy phase to find the faulty feeder and the location of
the fault [2]. It is pointed out in [15] that the accuracy of
impedance-based methods can be affected by factors including
fault type, unbalanced loads, heterogeneity of overhead lines,
measurement errors, etc.

When a fault occurs in a distribution system, voltage drops
can occur at all buses. The voltage drop characteristics for
the whole system vary with different fault locations. Thus,
the voltage measurements on certain buses can be used to
identify the fault location. For instance, calculated fault cur-
rents can be applied to each bus in the system, and the
values of voltage drop on a small number of buses can be
obtained by calculating the power flows. The fault location
can then be determined by comparing measured and calculated
values of voltage drop [4], [5]. In [6], multiple estimations
of fault current at a given bus are calculated using voltage
drop measurements on a small number of buses, and a bus is
identified as the faulty bus if the variance of the multiple fault
current estimates takes the smallest value.

Automatic outage mapping refers to locating a fault or
reducing the search space of a fault using information
provided by devices that can directly or indirectly indi-
cate the fault location. For example, when a fault occurs,
if an automatic recloser is disconnected, smart meters down-
stream of the device would experience an outage. Smart
meters downstream of the fault itself will also feature a
loss of power. Thus, the search space of the fault can be
greatly reduced if the geographic location of each smart
meter is considered [6]. Authors in [7] proposed to use
fault indicators to identify the fault location. Each fault
indicator can tell whether the fault current flows through
itself (it may also have the ability to tell the direction of
the fault current). The location of the fault can then be
narrowed down to a section between any two fault indi-
cators. An integer programming-based method is proposed
in [8] to locate a fault using information from circuit break-
ers, automatic reclosers, fuses, and smart meters. Multiple
fault scenarios, malfunctioning of protective devices, and
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missing notifications from smart meters are also taken into
consideration.

Traveling wave-based methods use observation of origi-
nal and reflected waves generated by a fault. Specifically,
different types of traveling wave methods include single-
ended, double-ended, injection-based, reclosing transient-
based, etc. The principle and implementation of single-ended
and double-ended fault location with traveling waves are dis-
cussed in [9]. The traveling wave generated by circuit breaker
reclosing is used to locate faults in [10]. In general, however,
traveling wave-based methods require high sampling rates and
communication overhead of measurement devices [5]. Systems
such as the global positioning system (GPS) are required for
time synchronization across multi-terminal signals.

Machine learning models are leveraged for fault location in
distribution systems [16]. Using the spectral characteristics of
post-fault measurements, data with feature extraction are fed
into an artificial neural network (ANN) for fault location [13].
A learning algorithm for multivariable data analysis (LAMDA)
is used in [12] to obtain fault location. Descriptors are
extracted from voltage and current waveforms measured at
the substation. Various LAMDA nets are trained for different
types of faults. In [11], the authors first use support vector
machines (SVM) to classify the fault type, and then use ANN
to identify the fault location. Smart meter data serves as the
input of a multi-label SVM to identify the faulty lines in a
distribution system [14].

The deployment of distribution system measurement devices
or systems such as advanced metering infrastructure [14],
micro phasor measurement units [17], and wireless sensor
networks [18] improves data-driven situational awareness for
distribution systems [19], [20]. There are two major challenges
for fault location in distribution systems with the increased
number of measurements available: first, traditional fault loca-
tion methods are unable to incorporate the measurements from
different buses in a flexible manner, especially when the losses
of data are taken into consideration. Second, for traditional
machine learning approaches, the topology of the distribution
network is hard to model, let alone the possibility of topology
changes.

Recent advances in the field of machine learning, espe-
cially deep learning, have gained extensive attentions from
both academia and industry. One of the major develop-
ments is the successful implementation of convolutional neural
networks (CNN) in a variety of image recognition-related
tasks [21]. While the measurements on different buses in a
power distribution system are spatially distributed, it is hard to
directly implement a CNN model that use such measurements
as input. Nevertheless, when multiple buses in a distribution
system become measurable, it is possible to treat the measure-
ments as signals on a graph to which variants of traditional
data analysis tools may be applicable [22], [23]. As an
extension of CNNs for data on graphs, graph convolutional
networks (GCN) have been designed and implemented, such
that the advantages of CNNs can be exploited for data residing
on graphs [24]–[26].

In this paper, a GCN model is proposed for fault location in
distribution systems. Unlike existing machine learning models

used for fault location tasks, the architecture of the proposed
model preserves the spatial correlations of the buses and
learns to integrate information from multiple measurement
units. Features are extracted and composited in a layer-by-
layer manner to facilitate the faulty bus classification task.
We also design a data augmentation procedure to ensure that
the model is robust to varied levels of noise and errors.
In addition, the proposed model can be readily adapted or
extended to various tasks concerning data processing for
multiple measurements in modern smart grids.

The organization of the rest of the paper is as follows:
in Section II, the fault location task is formulated and the
proposed GCN model is described in detail. We also introduce
the IEEE 123 bus test case used in this paper. The effectiveness
of the proposed GCN model is validated in Section III with
extensive comparisons and visualizations. A data augmentation
procedure for training robust models is introduced. The per-
formance of the model under topology changes and on high
impedance faults is evaluated. We also implement the GCN
model on another distribution network test case and discuss
several practical concerns. Finally, Section IV concludes the
paper and points out some future works.

II. FAULT LOCATION BASED ON GRAPH

CONVOLUTIONAL NETWORKS

In this section, we first give a brief description of the fault
location task. Next, we will revisit idea of spectral convolution
on graphs, and show how a GCN can be constructed based on
that idea. Finally, we will present the test case of the IEEE
123 bus distribution system.

A. Formulation of the Fault Location Task

In this paper, we assume that the voltage and current phasor
measurements are available at phases that are connected to
loads. That is, for a given measured bus in a distribution
system, we have access to its three-phase voltage and current
phasors (V1, θ

V
1 , V2, θ

V
2 , V3, θ

V
3 , I1, θ

I
1 , I2, θ

I
2 , I3, θ

I
3) ∈ R

12.
Values corresponding to unmeasured phases are set to zero.
A data sample of measurements from the distribution system
can then be represented as X ∈ R

no×12, where no is the
number of observed buses. We formulate the fault location
task as a classification problem. More specifically, given a
data sample matrix Xi, the faulted bus ỹi is obtained by
ỹi = f(Xi), where f is a specific faulty bus classification
model. A fault is correctly located if ỹi = yi, where yi

indicates the true faulty bus corresponding to Xi.
As the convolution operation of CNN is carried out in local

regions within the input data, local features can be extracted,
and complex structures within the data can be represented with
the increase of convolution layers (for a detailed description
of CNN, the readers may refer to [27]). However, traditional
CNN models can not be applied to signals on a distribu-
tion network as the inputs for CNN are supposed to be in
Euclidean domains, such as images represented by values
on regular two-dimensional grids and sequential data that is
one-dimensional [28]. Thus, we introduce how a convolutional
network can be constructed with signals on graphs hereinafter.
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Fig. 1. The structure of the GCN model. Several graph convolution layers are followed by two fully-connected layers.

B. Spectral Convolution on Graphs

To be self-contained, we first present a brief introduction
to spectral graph theory [29]. Suppose we have an undirected
weighted graph G = (V , E ,W), where V is the set of vertices
with |V| = n, E is the set of edges, and W ∈ R

n×n is the
weighted adjacency matrix. The unnormalized graph Laplacian
of G is defined as Δu = D − W, where D is the degree
matrix of the graph with diagonal entries Dii =

∑
j Wij .

Then, the normalized graph Laplacian is given as

Δ = D−1/2ΔuD−1/2 = I − D−1/2WD−1/2, (1)

where I is the identity matrix. The eigendecomposition of
the positive semi-definite symmetric matrix Δ yields Δ =
ΦΛΦ�, where Φ = (φ1, . . . , φn) are orthonormal eigen-
vectors of Δ, and Λ = diag(λ1, . . . , λn) is the diagonal
matrix with corresponding ordered non-negative eigenvalues
0 = λ1 ≤ λ2 ≤ · · · ≤ λn. Note that the smallest eigenvalue
λ1 equals zero with the eigenvector φ1 = ( 1√

n
, · · · , 1√

n
).

By analogy with the Fourier transform in Euclidean spaces,
graph Fourier transform (GFT) can be defined for weighted
graphs using the orthonormal eigenvectors of Δ [30]. For
a signal f ∈ R

n on the vertices of graph G (each vertice
has one value in this case), GFT is performed as f̂ = Φ�f
while the inverse GFT is f = Φf̂ . Further, we can conduct
convolution on graphs in the spectral domain also by analogy
with convolution on discrete Euclidean spaces facilitated by
Fourier transform. That is, spectral convolution of two signals
g and f is defined as

g ∗ f = Φ
(
(Φ�g) ◦ (Φ�f)

)
= Φ diag(ĝ1, . . . , ĝn)Φ�f ,

(2)

where ◦ indicates element-wise product between two vec-
tors. Filtering of signal f by spectral filter B = diag(β)
with β ∈ R

n can then be expressed as ΦBΦ�f . One major
drawback of this formulation, however, is that the filters are
not guaranteed to be spatially localized, which is a crucial
feature of CNNs for data in Euclidean spaces, since localized
filters are able to extract features from small areas of interest
instead of the whole input. Using filters hα(Λ) that are smooth
in spectral domain can bypass such an issue [29], [31]. For
example, consider using a polynomial approximation

hα(Λ) =
K∑

k=0

αkΛk, (3)

where α = (α1, . . . , αK) is the vector of coefficients to be
learned for the filters and K is the degree of the polynomials.
Further, in order to stabilize the training of the polynomial fil-
ters, the truncated Chebyshev polynomial expansion of hα(Λ)
is introduced [25], [30]. Specifically, expansion of hα(Λ)
using Chebyshev polynomials Tk(Λ̃) up to order K can be
expressed as

hα(Λ) =
K∑

k=0

αkTk(Λ̃), (4)

where Λ̃ = 2Λ/λn − I. The recursive formulation of the
filtering process based on Chebshev polynomials is intro-
duced in [25], which takes the form Tk(x) = 2xTk−1(x) −
Tk−2(x) with T0 = 1 and T1 = x. Since Δk =
(ΦΛΦ�)k = ΦΛkΦ�, the filtering process Φhα(Λ)Φ�f can
be expressed as

Φhα(Λ)Φ�f = hα(Δ)f =
K∑

k=0

αkTk(Δ̃)f , (5)

where Δ̃ = 2Δ/λn − I. Consequently, with d0 = f and
d1 = Δ̃f , we can recursively calculate dk = 2Δ̃dk−1−dk−2,
and the filtering operation hα(Δ)f = [d0, · · · ,dK ]α has a
computational complexity of O(K|E|) considering the sparsity
of Δ [25]. In addition, because the Chebyshev polynomials
are truncated to the Kth order, the filter is K-hop localized
with respect to the connections embodied in Δ. To this end,
GCN can be implemented with the aforementioned spectral
convolution on graphs.

C. GCN Approach for Fault Location

The GCN model applied to the fault location task is
illustrated in Fig. 1. The input X is passed through Lc graph
convolution layers and Lf fully-connected layers followed by
a softmax activation function. Specifically, the jth feature map
of a graph convolution layer is calculated as

yj =
Nin∑

i=1

hαi,j (Δ)xi, (6)

where xi ∈ R
n is the ith input feature map, αi,j ∈ R

K is the
trainable coefficients, and Nin is the number of filters of the
previous layer. With Nout filters in the current layer, a total of
NinNoutK parameters are trainable in this layer. In particular,
Nin = 12 for the first layer of the model. The output of the last
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Fig. 2. An illustration of the IEEE 123 bus system. It is assumed that voltage and current phasors of PQ buses (connected to loads) are measured. As an
example, the 20 buses that are closest (in distance) to bus 67 are highlighted with red color and italic numbers. Normally closed switches are represented by
dashed lines.

graph convolution layer is flattened into a vector and passed to
the fully-connected layers. The index of the predicted faulty
bus, ỹ, can be obtained as ỹ = argmaxi ai, where ai is the
ith activation of the last fully-connected layer.

The weighted adjacency matrix is constructed based on
the physical distance between the nodes. First, the distance
matrix S ∈ R

n×n is formed with Sij being the length of
the shortest path between bus i and bus j. We then sort
and keep the smallest Kn values in each row of S to obtain
S̃ ∈ R

n×Kn and calculate σS =
∑

i S̃iKn/n (we have S̃ij ≤
S̃ik for j < k). Matrix W̃ ∈ R

n×Kn is then constructed with
W̃ij = e−S̃2

ij/σ2
S . By restoring the positional correspondence

of W̃ij to bus i and bus j, the weighted adjacency matrix
W ∈ R

n×n can be obtained. We can thus proceed to com-
pute D and finally obtain Δ according to (1).

D. The IEEE 123 Bus Distribution System Test Case

The IEEE 123 bus test case is used to carry out the task
of fault location in distribution systems in this paper [32].
The overall topology of the distribution system is illustrated
in Fig. 2. Note that the topology is only used to indicate
the connections of the buses rather than their geometrical
locations. Specifically, there are 128 buses in the system
(cf. Fig. 2), 85 of which are connected to loads. Most of
those loads are only connected to a single phase. Bus pairs
(149, 150r), (18, 135), (13, 152), (60, 160(r)), (61, 61s),
and (97, 197) are connected by normally closed switches.
In addition, regulators are installed at buses 9, 25, and 160.

In order to generate the training and test datasets, faults are
simulated for all buses in the system. Three types of faults
are considered, namely, single phase to ground, two phase
to ground, and two phase short-circuit. The faults have the
resistance ranging from 0.05 Ω to 20 Ω. The load level of
the system varies between 0.316 and 1. In order Fig. 3 shows

Fig. 3. The probability density of load level for the distribution system.

the discrete probability density function (PDF) with 50 equal-
length load level intervals. The PDF is obtained from the
annual load curve of the system. We randomly sample one
value from the load level distribution and set all loads in the
system to the same level. The simulations are implemented by
the OpenDSS software [33]. The voltage and current phasors
are measured during the fault. We obtain the training and test
datasets used for training and evaluating the fault location
models.

We generate 20 data samples for each fault type at each
bus. As a result, a total of 13520 data samples are generated
for both the training and test datasets. We consider buses
connected with normally closed switches or regulators as a
single bus. Thus, there are a total of 119 faulty buses to be
classified; i.e., 119 class labels for the classification task.

For the implementation of the GCN model,1 instead of using
no × 12 as the size of the input of the model, we expand
X to include all 128 buses, i.e., each input data sample

1The implementation of GCN in this paper is based on the implementation
in [25]; see https://github.com/mdeff/cnn_graph
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Fig. 4. Visualization of non-zero entries (yellow) in Δm when Kn = 20
(20 nearest buses of bus 67 are red colored as shown in Fig. 2): (a) m = 1,
(b) m = 2, (c) m = 3, and (d) m = 4.

has a size of 128 × 12. As a result, each sample matrix
has 1536 entries, 380 of which have measured values. For
the non-measured buses, we set the corresponding values to
be zero. The same measured quantity is run through the
standardization process; i.e., subtracting the mean and dividing
by the standard deviation.

III. RESULTS AND DISCUSSION

In this section, we report the performance of GCN for
fault location tested in the IEEE 123 bus benchmark system.
Comparisons with baseline models are provided in detail.
We also visualize the hidden features of samples in the test
dataset to demonstrate that the proposed GCN model is able
to learn more robust representations from data.

A. Implementation Details and Baseline Models

The hyper-parameters of the GCN model implemented in
this paper are determined using 10% of the training dataset
as the validation dataset. Specifically, the model has 3 graph
convolution layers (all with 256 filters) followed by 2 fully-
connected layers (with 512 and 256 hidden nodes). Kn is
set to 20 and the values of K for the graph convolution
layers are 3, 4, and 5, respectively. The two fully-connected
layers have a dropout rate of 0.5. The Adam optimizer with
an initial learning rate of 0.0002 is used to train the model
for 400 epochs (i.e., each data sample is used 400 times for
training) and a mini-batch size of 32. We use Tensorflow in
Python to implement the GCN model. When trained with a
Titan Xp GPU, the GCN model takes less than 2 hours to
train, and the time used to test each sample in the test dataset
is less than 0.5 ms.

We first visualize Δm with different values of m to illustrate
the locality of the spectral filters, the results of which are
shown in Fig. 4 and Fig. 5. In Fig. 4, we illustrate the

Fig. 5. Visualization of Δm when Kn = 20, (a) m = 1, (b) m = 3,
(c) m = 5, and (d) m = 10. The indexes of the buses are sorted according
to the order of bus numbers shown in Fig. 2. Absolute values of the entries
in Δm are visualized. Entries with values greater than certain thresholds
(i.e., 0.2, 0.3, 0.4, and 0.5 for (a), (b), (c), and (d), respectively) have the
same color.

support of a filter when m ranges from 1 to 4 (when m = 5,
the support of filters becomes the whole graph). In Fig. 4,
the absolute values of the entries in Δm are visualized.
Although the size of filters grows fast with the increase of m,
we can observe in Fig. 5 that relatively large absolute values
in Δm are mainly limited to entries corresponding to bus pairs
that are close to each other. Since the filters can be represented
as polynomials of Δ, we conclude that the locality of filters
are ensured when the value of Kn is chosen properly. Note
that higher-order terms in the polynomials facilitate the filters
to explore more nodes in the graph.

Three baseline models are also implemented for
comparison:

1) SVM: The dimensionality of the measurements is
reduced to 200 by principal component analysis (PCA).
The radial basis function (RBF) kernel is used for the
SVM with γ = 0.002 and C = 1.5×106. LibSVM [34]
in Python is used for the implementation in this paper.

2) Random forest (RF): The dimensionality of the measure-
ments is also reduced to 200 by PCA. The number of
trees is set to 300, the minimal number of samples per
leaf is 1, while the minimal number of samples required
for a split is set to 3.

3) Fully-connected neural network (FCNN): A three-layer
FCNN is implemented as a vanilla baseline of neural
networks. The numbers of hidden neurons for the three
layers are 256, 128, and 64, respectively. Scaled expo-
nential linear unit SELU) is used as the activation
function.

The hyper-parameters for SVM and RF are determined by
5-fold cross-validation. For the FCNN model, 10% of the
training data is used to validate the hyper-parameters.

In order to justify the effectiveness of our pro-
posed approach in real-world conditions including noise,
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TABLE I

FAULT LOCATION ACCURACIES OF DIFFERENT APPROACHES

measurement errors and communication errors, we add noise
and errors to the measurements and compare the performance
of different models. More specifically, three types of modifi-
cations of measurements are added:

1) Gaussian noise: We add Gaussian noises to the data so
that the signal to noise rate (SNR) is 45 dB, as intro-
duced in [35]. The noise has zero mean and the standard
deviation, σnoise, is calculated as σnoise = 10−

SNR
20 .

2) Data loss of buses: We randomly drop the data of Ndrop

buses (i.e., set the measured values to 0) per data sample
in the test dataset.

3) Random data loss for measured data: Each measurement
at all buses is replaced by 0 with a probability Ploss.

More specifically, we set σnoise = 10−
45
20 , Ndrop = 1 and

Ploss = 0.01 throughout the experiments unless otherwise
specified. The detailed performance comparisons are given in
the ensuing subsections.

B. Fault Location Performance of the Models

The fault location accuracies of various approaches are
presented in Table I. In addition to the traditionally defined
classification accuracy, we also use one-hop accuracy as a
metric to measure the performance of the models. Specifically,
a sample is considered correctly classified if the predicted
faulty bus is directly connected to the actual faulty bus. For
the GCN model, we repeat the trials three times and report
the mean of the accuracy values.

In Table I, it is shown that the GCN model has the highest
classification accuracy. SVM and RF (both with PCA) also
have good performance, especially for one-hop accuracy. The
accuracy obtained by FCNN is relatively low, but its one-hop
accuracy is still satisfactory.

The performance of the models with measurement modi-
fications on the test dataset are shown in Table II. Results
corresponding to the individual and combined modifications
are reported therein. A major observation is that the two
data loss errors greatly lower the classification accuracy of
the models. Nevertheless, the GCN model is quite robust
to various modifications and significantly outperform other
schemes. In addition, the FCNN model has higher accuracy
than SVM and RF when data loss errors are involved, even
though its classification accuracy is roughly 10% lower than
those two models.

A more realistic setting is adding Gaussian noise to the data
samples in the training dataset and observe the performance
of the models. Table III gives the results of fault location
accuracy corresponding to such a setup. The results for SVM
and FCNN are in general consistent with the accuracy values

Fig. 6. Visualization of test data processed by PCA with 200 components
and t-SNE with two components. Dots with the same color (except for small
gray dots) correspond to the same faulty bus.

in Table II. For RF, however, the accuracies for modifications
including data loss errors all increase by more than 10%.
Mild improvements are also observed for GCN. In summary,
the GCN model has superior performance when measurement
modifications are added to the data. Note that the modifications
with data loss errors are not taken into account in the training
phase. This indicates that the robustness of the GCN model
may be generalizable to other types of errors in the data.
In all subsequent experiments in the paper, the samples in
both training and test datasets are added with Gaussian noise
of 45 dB unless otherwise stated.

In the next subsection, we visualize the data upon the
transformation by the FCNN model and the GCN model. Such
visualizations facilitate our understanding of the performance
differences induced by various schemes.

C. Visualization of Data After Transformations

Visualizing transformed data in two-dimensional spaces
enables assessment of the ability of the models to extract
useful information from the input data. In this paper, we use
t-distributed stochastic neighbor embedding (t-SNE) with two
components to visualize high-dimensional data [36]. Specif-
ically, t-SNE is used to investigate the local structure of
the input data (i.e., normalized raw measurements), the data
transformed by FCNN, and the data transformed by GCN.
In particular, we are interested in studying how closely the
samples corresponding to the same faulty bus are distributed.

In Fig. 6, we visualize the data samples in the test dataset
with t-SNE after the dimensionality of data is reduced to
200 by PCA, which is also used to speed up the calculation
process of t-SNE). In order to highlight the distribution of
data belonging to the same class (faulty bus), 6 groups of data
samples of bus 1, 21, 66, 85, 111, and 250 are marked with
colors. Data samples of other buses are plotted as the gray
dots. It can be seen in the figure that the dots of different
colors scatter around such that it is hard to separate the data
samples from different classes.

We then visualize the data samples in the test dataset
after they are transformed by the FCNN and the GCN
models, as shown in Fig. 7. Both models are trained with
added Gaussian noise while the test data is also added with
Gaussian noise. We extract the data from the outputs of the
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TABLE II

FAULT LOCATION ACCURACIES OF THE MODELS UNDER VARIOUS MEASUREMENT MODIFICATIONS

TABLE III

FAULT LOCATION ACCURACIES OF THE MODELS UNDER VARIOUS MEASUREMENT MODIFICATIONS WHEN TRAINED WITH NOISY DATA

Fig. 7. Visualization of hidden features of test data added with Gaussian
noise using t-SNE with two components: (a) the FCNN model, and (b) the
GCN model. The models are trained with added Gaussian noise.

fully-connected layer right before the final output layer. For
the FCNN model, each data sample is 64-dimensional, while
the dimensionality of data samples is 256 for the GCN model.
In Fig. 7 (a), the data samples of the same class hardly cluster
together, except for the dark green dots in the upper-right
corner. In Fig. 7 (b), however, most samples of the same color
appear closely together, except that only a small fraction of
blue dots are separated from its main cluster. Note that the
visualization in Fig. 7 corresponds to the “Noise” column of
Table III. That is, the improved feature extraction capability
of the GCN model gives a performance boost in classification
accuracy of more than 10%.

As shown in Table II and Table III, the two types of
data loss errors have significant impact on the classification
performance of all models. Thus, in Fig. 8 we proceed to
visualize the data samples that are added with Gaussian noise
and two types of data loss errors. A lot of small sample
clusters of the six colored faulty buses can be seen at multiple
locations in Fig. 8 (a), which indicates that the FCNN model
has difficulty in generalizing its feature extraction capability
to the data modified with the two types of data loss errors.
On the contrary, the GCN model still preserves the structures
of the data to a large extend. The proportion of data samples
that are separated from the main clusters is relatively small.
Such a capability of preserving data structure gives rise to

Fig. 8. Visualization of hidden features of test data added with all three types
of modifications using t-SNE with two components: (a) the FCNN model,
and (b) the GCN model. The models are trained with added Gaussian noise.

more than 30% performance gain for the proposed GCN,
as shown in the last column of Table III.

D. Increasing Model’s Robustness by Data Augmentation

We have shown that the GCN model is quite robust to mild
noise and data loss errors (i.e., the SNR is 45 db, Ndrop = 1,
and Ploss = 0.01). The data collected from the field, however,
may have lower SNR and higher data loss rates. Thus, it is
desirable if the model is able to generalize to different levels
of noise and data loss errors. In light of this, we implement
data augmentation during training of the model by adding
various levels of noise and data loss errors to the input data.
Specifically, for the ith input sample in a mini-batch, we first
add Gaussian noises with σnoise = σ̃i to the measurements
and randomly set measurements to 0 with Ndrop = ñi and
Ploss = p̃i. We randomly choose σ̃i, ñi, and p̃i from [0, 10−

45
20 ,

10−
40
20 , 10−

35
20 , 10−

30
20 , 10−

25
20 ], [0, 1, 2, 3, 4, 5], and [0, 0.01,

0.02, 0.03, 0.04, 0.05], respectively, with equal probability.
Note that the data augmentation is applied to each mini-batch,
thus a new data sample is generated for the jth data sample
in each epoch unless σ̃j = ñj = p̃j = 0, in which case the
data sample is unchanged.

We report the performance of the GCN model under various
noise and data loss levels with and without data augmentation
in Fig. 9. Specifically, case 1 has the lowest level of noise
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Fig. 9. Performance of the proposed GCN model with and without data
augmentation. The values of σnoise, Ndrop, and Ploss are (10−

45
20 , 1, 0.01),

(10−
40
20 , 2, 0.02), (10−

35
20 , 3, 0.03), (10−

30
20 , 4, 0.04), and (10−

25
20 , 5, 0.05)

for the 5 cases.

and data loss errors while case 5 has the highest level. It is
shown in the figure that the proposed data augmentation
procedure greatly improves the fault location accuracies, and
the one-hop accuracies for cases 1, 2, and 3 are higher
than 95%. The one-hop accuracy when data augmentation is
applied is higher than 84% even for case 5, for which the
SNR is 25, measurements from 5 buses are lost, and each
measurement may also be lost with a probability of 0.05.

Although the accuracy with data augmentation for case 1
is quite high, some samples are still assigned to wrong
buses. In order to examine the characteristics of misclassified
samples, we collect the samples with predicted faulty buses
more than two hops away from the correct faulty buses.
Note that random noise and data losses are added to the test
samples, so the results are different for each trial. Specifically,
the collected bus pairs are (25r, 250), (30, 25r), (33, 25r),
(53, 56), (61s, 62), (61s, 68), (89, 79), (92, 95), (99, 105),
(108, 102), (151, 49), (250, 28), and (250, 25r) (the first
number is the correct bus). The majority of the two buses in
the bus pairs are three hops away. In addition, 4 buses, namely,
29, 34, 76, and 108 are used to illustrate the characteristics of
misclassified samples for case 5. The buses are located near
the four corners of the network illustrated in Fig. 2. While bus
34 has no misclassified samples, the lists of wrong predictions
more than two hops away for bus 29, 76, and 108 are [18 (5),
21 (4), 22 (5), 23 (3), 26 (3), 27 (4), 31 (4)], [60 (3), 61s (4),
66 (8), 74 (3), 75 (4), 79 (3), 81 (4), 83 (6), 97 (3), 99 (5)], and
[61s (6), 97 (3), 98 (4), 100 (6), 111 (3), 450 (7)], respectively
(the number of hops between the correct and predicted buses
are included in the brackets). While hop numbers up to 8 exist
in the results, most of the hop numbers are lower than 5. As the
two-hop accuracy for case 5 is 92.49%, it can be concluded
that the GCN model is able to locate a fault within the vicinity
of its exact location under severe data loss errors in most cases.

In previous experiments, the values for the hyper-parameters
Kn and K are 20 and [3, 4, 5] (the K for 3 graph convolution
layers), respectively. It is expected that when data losses occur
in some of the measurements close to a fault, information
from other measurements may help the model locate the fault.
In order to justify the choice of Kn and K , we report the

Fig. 10. Performance of the proposed GCN model with data augmentation
and different hyper-parameter choices. The original hyper-parameters are
K = [3, 4, 5] and Kn = 20. Two experiments, namely, changing K to
[1,1,1] and changing Kn to 5 are implemented for comparison.

performance of the GCN model with relatively small values
of Kn and K in Fig. 10. Specifically, for one experiment we
change Kn to 5, and for the other experiment we set K to
[1, 1, 1]. It can be observed that the GCN model with the
original hyper-parameters has higher accuracies. In addition,
setting K to [1, 1, 1] hurts the performance of the model as it
severely limits the range of measurements a node in the GCN
can obtain information from.

E. Performance Under Distribution Network Reconfiguration

The configuration of a distribution network may change in
order to reduce loss or balance the loads [37]. The reconfigu-
ration of a network can be achieved by opening some of the
normally closed switches and closing some of the normally
open switches. The IEEE 123 bus system has a three-phase
normally open switch between node 151 and node 300 (see
Fig. 2), which can be used to guarantee electricity supply of
the system if some of the normally closed switches are open.

In this work, we consider two cases of network
reconfiguration:

1) Open the switch connecting node 18 and node 135, and
close the switch connecting node 151 and node 300.

2) Open the switch connecting node 97 and node 197, and
close the switch connecting node 151 and node 300.

In order to evaluate the performance of the proposed model
under network reconfiguration, we generate 5 samples for each
fault type at each bus for the two cases and directly use the
GCN model trained with data augmentation to identify the
faulty buses. As a result, the fault location accuracies and
one-hop accuracies for the two cases are 88.37% (98.28%),
and 91.89% (98.61%), respectively. As the reconfiguration
scenarios are not considered during the training phase of the
model, the results indicate that the GCN model has high
stability against unseen network reconfiguration scenarios.

F. Performance Under Multiple Connection
Scenarios of Branches

In this subsection, the performance of the models under
multiple connection scenarios of several branches is examined.
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TABLE IV

FAULT LOCATION ACCURACIES OF THE MODELS WITH ADDITIONAL DATA
GENERATED WITH CHANGED PHASES OF CHOSEN BRANCHES

Specifically, the connected phase of a branch in a distribution
network may change from time to time and it is expected that
the model can deal with such changes. Three branches in the
IEEE 123 bus system are considered:

1) The branch connecting bus 36, 38, and 39.
2) The branch connecting bus 67 to 71.
3) The branch connecting bus 108 to 114.

Phase 1 and 2 of bus 36, and all three phases of bus 67 and
bus 108 are connected to the distribution system. The buses
on the branches use only one of the phases for connection.

Unlike network reconfiguration achieved by opening and
closing of switches, changing the connected phase of a
single-phase branch requires additional data to train the mod-
els. We implement a simple data generation process in order to
add data with changed phases of aforementioned branches into
the training and test datasets. Specifically, we change the phase
of only one of the branches to another available phase and
generate 5 data samples for each fault type at each bus. Thus,
both the new training and test datasets contain 30420 data
samples.

Fault location accuracies of the models with additional
phase-changed data are presented in Table IV. The results
for faults at all buses and at modified buses with changed
phases are included. For all schemes, the accuracies for faults
at modified buses are lower than the counterparts of faults at
all buses. The GCN model has the highest accuracies for all
scenarios while the one-hop accuracies are more than 99%.
Comparing the column of “All Buses” of Table IV with the
“Noise” column of Table III, we can see that the additional
data has almost no impact on GCN, while the accuracies for
other models decrease by 1-5%. Thus, we conclude that the
GCN model is robust to the change of connected phases of
single branches if the training dataset covers samples of the
additional connection scenarios.

G. Performance on High Impedance Faults

The detection of high impedance faults in distribution
networks is a challenging task as the current magnitude is
generally close to the level of load current [38]. In this
subsection, we evaluate the performance of the GCN model
on locating high impedance faults. Specifically, we add single-
phase-to-ground faults with high fault resistance to the training
dataset and report the fault location results on various ranges
of fault resistance. For the construction of the training dataset,
in addition to the data samples with small fault resistance
values, we generate 40 samples for each phase at each bus
and the fault resistance is uniformly sampled between 100 Ω

Fig. 11. Performance of the proposed GCN model for high impedance faults
within various fault resistance ranges.

and 5000 Ω. Five fault resistance ranges, namely, 100 Ω to
1000 Ω, 1000 Ω to 2000 Ω, 2000 Ω to 3000 Ω, 3000 Ω to
4000 Ω, and 4000 Ω to 5000 Ω are used to generate test
samples. For each range, 5 test samples are generated for each
type of fault at each bus. In order to test the generalizability
of the GCN model, we further split the fault resistance ranges
into two sets of intervals (the length of each interval is 10 Ω),
namely, {R1|20k < R1 < 20k + 10, k ∈ Z : 5 ≤ k ≤ 249},
and {R2|20k + 10 < R2 < 20(k + 1), k ∈ Z : 5 ≤ k ≤ 249},
where R1 is used for samples in the training dataset and R2

is used to generate samples in the test datasets.
The accuracies for high impedance faults with different

ranges of fault resistance are shown in Fig. 11. As the zero-hop
and one-hop accuracies are relatively low, we also report the
two-hop and three-hop accuracies. It is seen in the figure that
with the increase of fault resistance, the fault location accuracy
drops. Although the increased fault resistance makes it hard
to find the exact fault location, the accuracies increase rapidly
with the increase of the number of hops, which indicates that
the model is still able to capture a part of fault characteristics
for high impedance faults.

H. Discussion on the Types of Measurements
Used for the Model

As the proposed GCN model uses amplitudes and phase
angles of both voltage and current measurements as inputs,
it is necessary to examine the contributions of the different
measurements to the performance of the model. Specifically,
the first concern is that the measured currents are the injected
currents at the loads, which provide less information about
the faults compared with currents flowing in the branches
connecting the buses. The second concern is the contribution
of phase angle to the fault location accuracy as measuring
the phase angle requires additional installation of phasor
measurement devices.

In light of the concerns, we compare the performance of
the GCN model under different measurement scenarios and
present the results in Table V. The results for the last row are
the same as the row of GCN in Table III. It is shown in the
table that the results with voltage phasors are quite similar to
the results with both voltage and current phasors. The results
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TABLE V

FAULT LOCATION ACCURACIES OF THE GCN MODEL WITH DIFFERENT MEASUREMENT SCENARIOS

Fig. 12. An illustration of the IEEE 37 bus system.

with current phasors, however, is much lower than the results
with voltage phasors. Further, when only voltage amplitudes
are used, the accuracies with data loss errors are dramatically
lower than other scenarios. Two conclusions can be drawn
from the results:

1) For the design of the GCN model in this paper, the per-
formance of the model mainly relies on the voltage
phasors. Other types of current measurements such as
currents flowing in the branches may be added in order
to improve the fault location accuracy.

2) It is important to include phase angles in the inputs for
the GCN model, especially when data loss errors are
considered.

I. Implementation of the GCN Model on Another
Distribution Network

As the previous experiments are all carried out in the IEEE
123 bus system, we implement the GCN model to the IEEE
37 bus system to verify that the model can perform well in
a new distribution network. The topology of the IEEE 37 bus
system is shown in Fig. 12. Similar to the implementation
for the IEEE 123 bus system, we measure the voltage and
current phasors at the phases connected to loads. The gen-
eration scheme for training and test datasets described in
Section II. D is used. A series of hyper-parameters are used to
see if the performance of the model is sensitive to the choice
of hyper-parameters.

We first evaluate the performance of the GCN model with
different values of Kn and K (the other hyper-parameters
remain unchanged), and the accuracies are shown in Table VI.
For each column in the table, the lowest two values are
highlighted with underlines while the highest two values are
marked in bold. It is observed that the performance of the

TABLE VI

FAULT LOCATION ACCURACIES OF THE GCN MODEL FOR THE IEEE
37 BUS SYSTEM WITH DIFFERENT VALUES OF Kn AND K

TABLE VII

FAULT LOCATION ACCURACIES OF THE GCN MODEL FOR THE IEEE
37 BUS SYSTEM WITH DIFFERENT NUMBERS OF LAYERS

GCN model is quite stable under different values of Kn

and K . In Section III. D, we have shown that properly
choosing the values of Kn and K can increase the model’s
robustness against data loss errors. When data loss errors are
not considered, however, the negative effect of setting Kn and
K to small values is insignificant. This indicates that laborious
tuning of hyper-parameters is not needed when implementing
the GCN model to a new distribution network.

Another important hyper-parameter is the number of graph
convolution layers. Although the GCN model does not require
a large number of layers, it is expected that the model may not
have enough learning capacity when the number of layers is
not enough. We report the performance of the GCN model with
different numbers of graph convolution layers in Table VII.
It is clearly observed in the table that increasing the number
of layers improves the fault location accuracy, but the gain of
adding another layer decreases when the third layer is added.

Finally, we use the IEEE 37 bus system to discuss some
practicability issues. The first concern is the number of mea-
sured buses required for the GCN model. In the original
scenario, the phases connected to loads at 25 buses are
monitored. We gradually reduce the number of monitored
buses and compare the performance of the model under these
reduction cases. Specifically, the lists of removed buses are
[714, 733, 737, 738, 744], [720, 727, 734], [724, 728, 735],
[701, 712, 713, 730, 741], and [718, 722, 729, 731, 736].

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on August 21,2023 at 09:41:45 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: FAULT LOCATION IN POWER DISTRIBUTION SYSTEMS VIA DEEP GCNs 129

Fig. 13. Performance of the proposed GCN model with different cases
of reduction on number of measured buses. Case 1 represents the original
scenario with 25 measured buses.

TABLE VIII

FAULT LOCATION ACCURACIES OF THE GCN MODEL FOR THE IEEE
37 BUS SYSTEM WITH DIFFERENT SIZES OF TRAINING DATASETS

Although this is only one possibility of reduction, we try to
remove the buses evenly across the network to avoid large
areas of unmonitored buses. When the 4th list of buses are
removed, only 9 buses at the end of branches are left. The final
reduction case leaves the model with only 4 measured buses,
namely, 725, 732, 740, and 742. The accuracies of the different
reduction cases are illustrated in Fig. 13. Apparently, reducing
the number of measured buses has a negative effect on the fault
location accuracies. The two-hop accuracy, however, is not
very sensitive to the reduction of measured buses until the
last reduction. Four case 5, specifically, the two-hop accuracy
is 94.12% with measurements from only 9 buses at branch
ends. The results indicate that it is harder for the GCN model
to find the exact fault locations when a large proportion of
the measured buses are excluded, but the ability to find the
vicinity of the faulty bus only requires a small proportion of
buses to be measured.

The second concern is the number of training data needed
to train the GCN model. The above mentioned dataset for
the IEEE 37 bus system contains 20 samples for each fault
type at each bus. With this as the size of 100%, we reduce
the number of generated samples for each fault type at each
bus to 10, 5, 2, and 1, and compare the accuracies of the
scenarios in Table VIII. The size of the test dataset remain the
same. It is seen in the table that the performance of the GCN
model degrades as the size of the training dataset reduces.
With only 1 sample for each fault type at each bus, the two-
hop accuracy is a little above 50%. As it is hard to collect
field data with varied fault types, fault resistances and load
levels, a more practical solution is to combine field data with

synthetic data simulated according to the need of the model.
With the help of transfer learning [39], the model can transfer
the knowledge learned from simulated data to locate faults
using actual measurements from the system. Such a problem
formulation is beyond the scope of this paper, but the results
in our work provides an upper bound for the performance of
the GCN model as we use simulated data only.

IV. CONCLUSION AND FUTURE WORK

In this paper, we develop a GCN model for the task of
fault location in distribution systems. Simulation results tested
with the IEEE 123-bus and 37-bus systems show that the
proposed GCN model is significantly effective in processing
fault-related data. The proposed model is more robust to mea-
surement errors compared with many other machine learning
approaches including SVM, RF, and FCNN. Visualization of
the activations of the last fully-connected layer shows that
the GCN model extracts features that are robust to missing
entries in the measurements. Further experiments show that the
model can adapt to topology changes and perform well with a
limited number of measured buses. In a nutshell, the present
paper proposes a flexible and widely-applicable energy data
analytics framework for improving situational awareness in
power distribution systems.

The proposed framework and approach open up a few
interesting research directions. First, the effectiveness of the
GCN model in more realistic settings needs further investiga-
tion (e.g., use field data to fine-tune the model trained with
synthetic data, or train the model with both field data and
synthetic data by transfer learning). Second, it is valuable to
develop new schemes for transferring a learned model to other
distribution systems with different topologies. A new challenge
comes from the integration of distributed generation, which
introduces high-level uncertainties into the grids, and may alter
the characteristics of the measurements during faults.
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