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Abstract

We investigate the fundamental limit of quantum-secure covert communication over the lossy

thermal noise bosonic channel, the quantum-mechanical model underlying many practical channels.

We assume that the adversary has unlimited quantum information processing capabilities as well as

access to all transmitted photons that do not reach the legitimate receiver. Given existence of noise

that is uncontrolled by the adversary, the square root law (SRL) governs covert communication: up to

c
√

n covert bits can be transmitted reliably in n channel uses. Attempting to surpass this limit results

in detection with unity probability as n → ∞. Here we present the expression for c, characterizing

the SRL for the bosonic channel. We also prove that discrete-valued coherent state quadrature phase

shift keying (QPSK) constellation achieves the optimal c, which is the same as that achieved by a

circularly-symmetric complex-valued Gaussian prior on coherent state amplitude. Finally, while binary

phase shift keying (BPSK) achieves the Holevo capacity for non-covert bosonic channels in the low

received signal-to-noise ratio regime, we show that it is strictly sub-optimal for covert communication.
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I. INTRODUCTION

Covert, or low probability of detection/intercept (LPD/LPI), communication prevents trans-

mission’s detection by an adversary. This is a stricter security requirement than protection

of transmission’s content from unauthorized access provided by the standard methods, e.g.,

encryption and quantum key distribution (QKD). While covert communication has many practical

applications, its fundamental limits were underexplored until [1], [2] proved that square root law

(SRL) governs covert communication over additive white Gaussian noise (AWGN) channel: no

more than c
√

n covert bits can be transmitted with arbitrarily small decoding error probability to

the intended receiver in n uses of the channel, where c is a constant and n = TW is the product

of the transmission duration T (in seconds) and the bandwidth W (in Hz) of the source around its

center frequency. Attempting to transmit more results in either detection by the adversary with

high probability as n → ∞, or unreliable transmission. Even though the capacity of the covert

channel is zero (since limn→∞
c
√

n
n = 0), as n increases, SRL allows transmission of a significant

number of covert bits for large n. Subsequent work extended [1], [2] by characterizing c [3],

[4], showing the SRL for discrete memoryless channels (DMCs) [3]–[5], and determining it up

to the second order [6]. A tutorial explanation of the SRL and its implications is offered in

[7]. Consider an optical channel with additive thermal noise. The use of laser light modulation

at the transmitter and coherent detection (homodyne or heterodyne) at the receiver induces an

AWGN channel, with covert communication governed by the SRL in [1], [2]. Fundamentally,

however, electromagnetic waves are quantum mechanical: they are boson fields. Currently, noises

of quantum-mechanical origin limit the performance of advanced high-sensitivity photodetection

systems [8]–[10]. Therefore, analysis of the ultimate limits of any communications system

requires quantum information theory [11]. This led to the development of the SRL for covert

communication over the lossy thermal noise bosonic channel, which is the underlying quantum-

mechanical description of many practical channels, including optical, microwave, and radio-

frequency (RF) [12]. The single-mode bosonic channel, depicted in Fig. 1 and formally defined



Fig. 1. Single-mode bosonic channel E n̄B
η modeled by a beamsplitter with transmissivity η and an environment injecting a

thermal state ρ̂n̄B with mean photon number n̄B. â, ê, b̂, and ŵ label input/output modal annihilation operators.

in Section II-A, is parametrized by the power coupling (transmissivity) η between the transmitter

Alice and the intended receiver Bob, and the mean photon number n̄B per mode injected by the

environment, where a single spatial-temporal-polarization mode is our fundamental transmission

unit. In our analysis (as in [12]) we do not assume a specific receiver structure for the adversary

Willie. Willie has access to all transmitted photons that are not captured by Bob, on which he can

perform arbitrary quantum information processing, including joint detection measurement, and

use of unlimited quantum memory and computing resources. This makes our system quantum-

secure. Furthermore, we assume that Willie has knowledge of all communication system details

(including the start time, center frequency, duration, and bandwidth of the transmission), except

for a secret shared between Alice and Bob before communication begins. We use this secret to

enable covertness irrespective of channel conditions1 and note that this meets the “best practices”

of secure system design as the security of the system only depends on the shared secret [13].

Finally, we assume existence of noise that is not under Willie’s control. Not only is this well-

grounded, but also is necessary for covertness, as otherwise, transmissions cannot be hidden

[12, Th. 1]. We use standard asymptotic notation [14, Ch. 3.1], where f (n) = O(g(n)) and

1While this assumption seems onerous, in many scenarios the cost of having transmission detected greatly exceeds that of

sharing a secret. Furthermore, classical results [3], [5] suggest that the secret is unnecessary if Alice has a better channel to

Bob than to Willie, however, ensuring this in practice may be harder than exchanging a secret.



f (n) = o(h(n)) denote g(n) and h(n) as asymptotically tight and loose upper bounds on f (n),
respectively. The SRL implies that the number M of reliably transmissible covert bits using n

modes is:

M =
√

nδccovcrel + o(
√

n), (1)

where δ parametrizes the desired level of covertness (formally defined in Section II-B), ccov

characterizes the mean transmitted photon number per mode n̄S = δccov/
√

n that is covert given

both the channel and the modulation scheme, while crel captures the amount of information that

can be transmitted reliably (i.e., with arbitrarily small decoding error probability) by encoding

it in n̄S photons/mode. Our main focus is ccov, which determines the number of covertly-

transmissible photons. We show that the optimal ccov is:

ccov =

√
2ηn̄B(1 + ηn̄B)

1 − η , (2)

and note that ccov does not depend on Bob’s receiver. We then prove that it is achievable using

quadrature phase shift keying (QPSK) modulation over coherent states (which describe ideal

laser light quantum-mechanically). Since binary phase shift keying (BPSK) is known to achieve

the Holevo capacity of (non-covert) communication over lossy thermal noise bosonic channel in

the low received signal-to-noise ratio (SNR) regime [15], we evaluate its covertness properties.

We find that it is strictly suboptimal to QPSK, which further underscores the differences between

covert and non-covert communications. However, the optimality of QPSK modulation leads to

exact characterization of the optimal coding strategy and crel. We show how QPSK is combined

with any channel code while maintaining covertness and describe how optimal crel is achieved

in expectation. We also discuss a promising approach to solving the general coding problem for

covert communications over bosonic channels, leaving the full treatment to future work. The

work presented in this paper allows construction of communications systems for many practical

channels (including optical, microwave, RF, and others) that are provably covert against the

most powerful adversaries allowed by the laws of physics. As such, these systems are future-

proof. Our results also have far-reaching implications beyond covert communication. At the heart



of our proof lies a new result on quantum state discrimination of a discrete set of displaced

thermal states, which would lead to fundamental insights into optical state discrimination in loss

and noise. This has applications to optical communications and sensing, as well as structured

designs for optimal receivers for these tasks—a topic wide open for future research. This paper

is organized as follows: next we present formally the lossy thermal noise bosonic channel model

and the mathematical criteria for covertness. In Section III we prove the converse by showing

that our covertness criterion does not allow ccov to exceed the right hand side (RHS) of (2). In

Section IV we investigate discrete coherent state constellations, focusing on QPSK and BPSK,

and show that QPSK achieves the RHS of (2) while BPSK does not. In Section V we discuss

the characterization of crel and the coding strategies for covert communication.

II. PREREQUISITES

A. Channel model

Consider a single mode lossy thermal noise channel E n̄B
η in Fig. 1. This is the quantum

mechanical description of the transmission of a single (spatio-temporal-polarization) mode of

the electromagnetic field at a given transmission wavelength (such as optical or microwave) over

linear loss and additive Gaussian noise (such as noise stemming from blackbody radiation). A

beamsplitter with transmissivity (fractional power coupling) η models loss. The input-output

relationship between the bosonic mode operators of the single-mode Alice-to-Bob channel, b̂ =
√
ηâ +

√
1 − ηê, requires the “environment” mode ê to ensure

[
b̂, b̂†

]
= 1, and preserve the

Heisenberg uncertainty law of quantum mechanics. Contrarily, power attenuation in a classical

channel is captured by the relationship b =
√
ηa, where a and b are complex amplitudes of

input and output mode functions. Bob captures a fraction η of Alice’s transmitted photons,

while Willie is assumed to have access to the remaining 1 − η fraction. Noise is modeled by

mode ê being in a zero-mean thermal state ρ̂n̄B , which is expressed in the coherent state and



Fig. 2. Covert communication over lossy thermal noise bosonic channel. Alice has a lossy thermal noise bosonic channel

depicted in Fig. 1 to legitimate receiver Bob and adversary Willie. Alice encodes message x with blocklength n code, and

chooses whether to transmit it using E n̄B
η n times. Willie observes his channel from Alice to determine whether she is quiet

(null hypothesis H0) or not (alternate hypothesis H1). Covert communication system must ensure that any detector Willie uses

is close to ineffective (i.e., a random guess between the hypotheses), while allowing Bob to reliably decode the message (if one

is transmitted). Alice and Bob share a secret prior to transmission.

Fock (photon number) bases as follows:

ρ̂n̄B =
1
πn̄B

∫
C

exp
[
− |α |

2

n̄B

]
d2α |α〉 〈α | =

∞∑
k=0

tk |k〉 〈k | , (3)

where

tk =
n̄k

B
(1 + n̄B)k+1 (4)

and n̄B is the mean photon number per mode injected by the environment. Our covert commu-

nication framework is depicted in Fig. 2. We treat each mode as the fundamental transmission

unit and assume that n = 2TW modes are available to Alice and Bob. TW is the number of

orthogonal temporal modes, which is the product of the transmission duration T (in seconds)

and the optical bandwidth W (in Hz) of the source around its center frequency. The factor of

two corresponds to the use of both orthogonal polarizations. Alice attempts to communicate

reliably to Bob without detection by Willie as depicted. She uses a secret shared with Bob prior

to the start of communication. If she decides to transmit message x, she modulates an n-mode

state ρ̂An

x using the shared secret. While we assume that the bosonic channel acts on each input



mode independently, ρ̂An

x may be entangled across n modes. Alice and Bob desire reliability: for

any ε > 0, Bob’s decoding error probability P(b)e ≤ ε for n sufficiently large. Bob may employ

joint detection (entangling) measurement across n modes. Willie performs a quantum-optimal

hypothesis test to determine whether Alice transmitted, which we discuss next.

B. Hypothesis testing and covertness criteria

As described in Fig. 2, Willie observes a product thermal state ρ̂Wn

0 = ρ̂⊗n
ηn̄B

when Alice

does not transmit and some other state ρ̂Wn

1 when she does. Hypothesis H0 corresponds to no

transmission, and H1 to transmission. Willie can err in raising a false alarm or missing Alice’s

transmission. We denote Willie’s probability of false alarm by PFA = P(choose H1 |H0) and his

probability of missed detection by PMD = P(choose H0 |H1). Assuming equally likely hypotheses

P(H0) = P(H1) = 1
2 , Willie’s detection error probability is P(w)e =

PFA+PMD
2 , which gives rise to

the following covertness criterion:

Criterion 1. A system is covert if, for any δP > 0, P(w)e ≥ 1
2 − δP for n large enough.

Subscript “P” refers to “probability of detection error” limit: since random decision results

in P(w)e = 1
2 , small δP ensures that any detector that Willie constructs is similarly ineffective.

Criterion 1 applies even when the hypotheses are not equally likely [16]. A quantum-optimal

receiver yields min P(w)e = 1
2 −

1
4 ‖ ρ̂Wn

0 − ρ̂
Wn

1 ‖1, where ‖ ρ̂ − σ̂‖1 is the trace distance between

quantum states ρ̂ and σ̂ [11, Section 9.1.4]. Thus, Criterion 1 is satisfied if 1
4 ‖ ρ̂Wn

0 − ρ̂
Wn

1 ‖1 ≤ δP.

However, quantum relative entropy (QRE) D(ρ̂‖σ̂) = Tr [ρ̂ log ρ̂ − ρ̂ log σ̂] is a more conve-

nient measure of covertness because it is additive over product states: D (ρ̂1 ⊗ ρ̂2‖σ̂1 ⊗ σ̂2) =
D (ρ̂1‖σ̂1) + D (ρ̂2‖σ̂2). It is related to performance of optimal hypothesis test by the quantum

Chernoff-Stein lemma [17] and Pinsker’s inequality ‖ ρ̂ − σ̂‖1 ≤
√

2D(ρ̂‖σ̂) [11, Th. 10.8.1].

Therefore, instead of Criterion 1, in the analysis that follows we use the following:

Criterion 2. A system is covert if, for any δQRE > 0, D
(
ρ̂Wn

1 ‖ ρ̂
Wn

0

)
≤ δQRE for n large enough.



By Pinsker’s inequality, setting δQRE = 2δ2
P, Alice maintains a slightly higher level of covert-

ness. Classical version of Criterion 2 has been used in covert communication proofs over standard

classical channels [3], [4]; we follow the same methodology here, setting δ =
√
δQRE in (1).

III. ULTIMATE LIMIT OF COVERT COMMUNICATION OVER BOSONIC CHANNEL

Criterion 2 imposes a constraint on Alice’s transmitted mean photon number per mode n̄S:

Theorem 1 (Converse). D
(
ρ̂Wn

1 ‖ ρ̂
Wn

0

)
≤ δRE implies that n̄S ≤

√
2ηn̄B(1+ηn̄B)

1−η

√
δQRE

n .

Proof: Alice transmits one of 2M equally-likely M-bit messages by choosing an element

from an arbitrary codebook C = { ρ̂An

x , x = 1, . . . , 2M}, where a state ρ̂An

x = |ψx〉A
nAn〈ψx | encodes

an M-bit message x, and C is kept secret from Willie. |ψx〉A
n

=
∑

m∈Nn
0

am(x) |m〉 is a general

n-mode pure state, where |m〉 ≡ |m1〉 ⊗ |m2〉 ⊗ · · · ⊗ |mn〉 is a tensor product of n Fock states. The

mean photon number of an n-mode codeword ρ̂An

x is N̄S,n(x) =
∑

m∈Nn
0
(∑n

k=1 mi)|am(x)|2. We

limit our analysis to pure input states since, by convexity, using mixed states as inputs can only

deteriorate the performance (it is equivalent to transmitting a randomly chosen pure state from

an ensemble and discarding the knowledge of that choice). When Alice transmits ρ̂An

x , Willie

receives a mixed state ρ̂Wn

x with the mean photon number (1− η)N̄S,n(x)+ ηnn̄B. Willie does not

have the codebook and must run a hypothesis test between a product thermal state ρ̂Wn

0 = ρ̂⊗n
ηn̄B

and a mixed state ρ̄Wn

1 = 1
2M

∑2M

x=1 ρ̂
Wn

x . The QRE is:

D
(
ρ̄Wn

1




ρ̂⊗n
ηn̄B

)
= −S

(
ρ̄Wn

1

)
− Tr

[
ρ̄Wn

1 log ρ̂⊗n
ηn̄B

]
, (5)

where S(ρ) = −Tr[ρ log ρ] is the von Neumann entropy. Denote Willie’s photon number operator

associated with the k th mode by N̂k = ŵ†k ŵk , where ŵk is Willie’s annihilation operator associated

with the k th mode. Since N̂k is diagonal in Fock basis, by the properties of operator exponential,

ρ̂⊗n
ηn̄B
=

n⊗
k=1

1
ηn̄B + 1

(
ηn̄B

ηn̄B + 1

) N̂k

(6)



Substitution of (6) into (5) yields:

D
(
ρ̄Wn

1




ρ̂⊗n
ηn̄B

)
= −S

(
ρ̄Wn

1

)
− Tr

[
ρ̄Wn

1 log
n⊗

k=1

1
ηn̄B + 1

(
ηn̄B

ηn̄B + 1

) N̂k
]

(7)

= −S
(
ρ̄Wn

1

)
− Tr

[
ρ̄Wn

1

n∑
k=1

log

[
1

ηn̄B + 1

(
ηn̄B

ηn̄B + 1

) N̂k
] ]

(8)

= −S
(
ρ̄Wn

1

)
− Tr

[
ρ̄Wn

1 n log
[

1
ηn̄B + 1

]
+ log

[
ηn̄B

ηn̄B + 1

] n∑
k=1

ρ̄Wn

1 N̂k

]
(9)

= −S
(
ρ̄Wn

1

)
+ n log[ηn̄B + 1] − n[(1 − η)n̄S + ηn̄B] log

[
ηn̄B

ηn̄B + 1

]
, (10)

where (10) is because n̄S =
1

n2M

∑2M

x=1 N̄S,n(x). Now, denote by ρ̄W
1,k the state of the k th mode of

ρ̄Wn

1 that is obtained by tracing out the n − 1 other modes. Let n̄k be the mean photon number

of ρ̄W
1,k . We upper-bound S

(
ρ̄Wn

1

)
by:

S
(
ρ̄Wn

1

) (a)
≤

n∑
k=1

S
(
ρ̄Wn

1,k

) (b)
≤

n∑
k=1

g(n̄k)
(c)
≤ ng((1 − η)n̄S + ηn̄B), (11)

where (a) follows from the sub-additivity of the von Neumann entropy, (b) is because the

maximum von Neumann entropy of a single-mode state with mean photon number constraint n̄

is g(n̄), where g(x) = (1+ x) log2(1+ x)− x log2 x [18], and (c) follows from Jensen’s inequality.

Substituting (11) into (10), expanding g(x), and re-arranging terms yields:

D
(
ρ̄Wn

1




ρ̂⊗n
ηn̄B

)
≥ n

(
((1 − η)n̄S + ηn̄B) log

[
1 +
(1 − η)n̄S
ηn̄B

]
− (1 + (1 − η)n̄S + ηn̄B) log

[
1 +
(1 − η)n̄S
1 + ηn̄B

] )
. (12)

Since x − x2

2 ≤ log(1 + x) ≤ x − x2

2 +
x3

3 for x ≥ 0, we obtain:

D
(
ρ̄Wn

1




ρ̂⊗n
ηn̄B

)
≥

n(1 − η)2n̄2
S

2ηn̄B(1 + ηn̄B)
+ o(n̄2

S). (13)

Discarding low-order terms, and solving (13) for n̄S yields the proof.



The equality (2) is implied by matching upper and lower bounds on n̄S in Theorem 1 and [12,

Th. 2], respectively. However, the lower bound in [12, Th. 2] is developed from a random coding

argument which uses an isotropic complex-valued Gaussian modulation of coherent states. While

such arguments are useful in mathematical proofs, they are a poor choice in practice because

of 1) exponential complexity of random codes, 2) unbounded storage required for complex

numbers, and, 3) lack of peak power constraint. Discrete modulation of coherent states is not

only practical, but also achieves the Holevo capacity for the low received SNR [15]. Discrete

constellations also simplify coding: a polar code can be used over a discrete alphabet to achieve

the channel capacity afforded by that alphabet. Since covert communication naturally operates

in the low SNR regime, we consider the discrete modulation of coherent states next.

IV. DISCRETE MODULATION FOR COVERT COMMUNICATION OVER BOSONIC CHANNELS

A. Construction of transmitted sequence

Consider Alice transmitting an independent and identically distributed (i.i.d.) sequence a of

n symbols drawn from a discrete alphabet A = {al, l = 1, . . . , L, al ∈ C} with probability p(l).
This corresponds a transmission using either:

• Secret random code: Alice and Bob secretly create a random code that maps M-bit input

blocks to n-symbol codewords from An by generating 2M codeword sequences C = {c(x)},
x = 1, . . . , 2M for messages {x} according to p(c) =∏n

k=1 p(ck) where p(ck = al) = p(l).
• Secret random sequence: Before communicating Alice and Bob secretly draw a sequence

r ∈ {1, . . . , L}n of length n where p(r) = ∏n
k=1 p(rk). Message x is mapped to an n-

symbol codeword c(x) ∈ {1, . . . , L}n using a code that is known to Willie. Alice transmits

a sequence from An corresponding to a = (c(x) + r) mod L, with element-wise modulo.

Bob uses r to decode (e.g., by adding r modulo L to the received transmission before

decoding).

We consider binary and quadrature shift keying (BPSK and QPSK) modulation with correspond-

ing alphabets Ab = {a,− ja} and Aq = {a, ja,−a,− ja}. Probabilities are p(a) = p(−a) = 1
2 for



(a) Quadrature Phase Shift Keying (QPSK) (b) Binary Phase Shift Keying (BPSK)

Fig. 3. Discrete coherent state constellations used by Alice’s modulator.

BPSK and p(a) = p( ja) = p(−a) = p(− ja) = 1
4 for QPSK. On each mode, Alice transmits

a coherent state with amplitudes corresponding to symbols from either Ab or Aq, with the

resulting constellations depicted in Fig. 3.

B. Willie’s received state

When Alice transmits |a〉, Willie receives a displaced thermal state ρ̂ηn̄B(
√

1 − ηa), where

ρ̂n̄B(a) =
1
πn̄B

∫
C

exp
[
− |β − a|2

n̄B

]
d2β |β〉 〈β | . (14)

However, Alice’s scheme described in Section IV-A results in Willie observing a mixture ρ̂W
1,L =∑L

l=1 p(l)ρ̂ηn̄B(
√

1 − ηal) of L displaced thermal states in each of n modes. This is because the

secret random code has no structure of use to Willie, and the secret random sequence2 destroys

any structure in the public code that could be used by Willie. Note that neither the transmitted

2This scheme resembles an application of a one-time pad that is typically used in cryptography to ensure absolute secrecy

[19]. Its use for covert communication is described in [2, Remark after Th. 1.2].



codeword from the random codebook nor the random sequence r can be re-used. Since Alice’s

modulated sequence is i.i.d., Willie observes ρ̂Wn

1,L =
(
ρ̂W

1,L

)⊗n
. The QRE is thus:

D
(
ρ̂Wn

1,L ‖ ρ̂
Wn

0

)
= nD

(
ρ̂W

1,L ‖ ρ̂ηn̄B

)
. (15)

Thus, to maintain Criterion 2, Alice must employ a modulation scheme such that

D
(
ρ̂W

1,L ‖ ρ̂ηn̄B

)
≤
δQRE

n
. (16)

Next we prove that QPSK constellation achieves the fundamental limit of covert communication

over the lossy thermal noise bosonic channel. This is because it allows the transmission of the

maximal mean photon number characterized by (2) while maintaining Criterion 2. Since BPSK

modulation achieves the Holevo capacity for the low received SNR regime [15], which is natural

for covert communication, we analyze the performance of BPSK. We show that it is strictly

suboptimal, and that maintaining covertness requires reducing the mean photon number over

QPSK, further underscoring the differences between covert and non-covert communications.

We conclude this section by showing how to make a constant amplitude QPSK constellation

covert, and allow the use of practical channel codes. Before we continue, we state useful lemmas.

Suppose Â(t) and B̂(t) are non-singular operators parametrized by t, and Î is the identity operator.

Then the following two lemmas hold:

Lemma 1 ( [20, Th. 6]). d
dt log Â(t) =

∫ 1
0 ds

[
sÂ(t) + (1 − s)Î

]−1 dÂ(t)
dt

[
sÂ(t) + (1 − s)Î

]−1
.

Lemma 2 ( [20, lemma in Sec. 4]). d
dt B−1(t) = −B−1(t)dB̂(t)

dt B−1(t).

C. Quadrature phase shift keying

Theorem 2. QPSK modulation achieves n̄S ≤
√

2ηn̄B(1+ηn̄B)
1−η

√
δQRE

n while maintaining

D
(
ρ̂Wn

1 ‖ ρ̂
Wn

0

)
= nD

(
ρ̂W

1,m‖ ρ̂ηn̄B

)
.

Proof: Consider ρ̂1,q =
1
4 (ρ̂00 + ρ̂01 + ρ̂10 + ρ̂11), as the equal-weighted mixture of displaced

thermal states where ρ̂00 ≡ ρ̂n̄T(u), ρ̂01 ≡ ρ̂n̄T( ju), ρ̂10 ≡ ρ̂n̄T(−u), and ρ̂11 ≡ ρ̂n̄T(− ju) with ρ̂n̄T(β)



defined in (14). Subscript “q” stands for QPSK, since setting u =
√

1 − ηb and n̄T = ηn̄B yields

ρ̂00, ρ̂01, ρ̂10, and ρ̂11 as the displaced thermal states observed by Willie when Alice transmits

|b〉, | jb〉, |−b〉, and |− jb〉, respectively, and zero-mean thermal state ρ̂0 ≡ ρ̂n̄T(0) when she

does not transmit. Thus, setting ρ̂W
1,m = ρ̂1,q and dropping W from superscript for brevity yields

D
(
ρ̂1,q‖ ρ̂0

)
as the left hand side of (16). There are no known closed form expressions for

D
(
ρ̂1,q‖ ρ̂0

)
, therefore, we evaluate its Taylor series expansion. To do so, we must find the first

four derivatives of ρ̂1,q with respect to displacement u, and set u = 0. The derivatives of ρ̂00,

ρ̂01, ρ̂10, and ρ̂11 are as follows [21, Ch. VI, Eq. (1.31)]:

dρ̂00
du
= n̄−1

T

(
(â − u)ρ̂00 + ρ̂00(â† − u)

)
, (17)

dρ̂01
du
= −n̄−1

T

(
( j â + u)ρ̂01 − ρ̂01( j â† − u)

)
, (18)

dρ̂10
du
= −n̄−1

T

(
(â + u)ρ̂10 + ρ̂10(â† + u)

)
, (19)

dρ̂11
du
= n̄−1

T

(
( j â − u)ρ̂11 − ρ̂11( j â† + u)

)
, (20)

where â† and â denote Alice’s creation and annihilation operators, respectively. These allow us

to differentiate ρ̂1,q with respect to displacement u. For each, setting u = 0 yields:

dρ̂1,q

du

���
u=0
=

d3 ρ̂1,q

du3

���
u=0
= 0, (21)

d2 ρ̂1,q

du2

���
u=0
=

2
n̄2

T

(
â ρ̂0â†

)
− 2

n̄T
(ρ̂0) , (22)

d4 ρ̂1,q

du4

���
u=0
=

12ρ̂0

n̄2
T
− 6

n̄3
T
(â ρ̂0â†) + 1

n̄4
T

(
â4 ρ̂0 + 6â2 ρ̂0(â†)2 + ρ̂0(â†)4

)
(23)

Denote by K̂q = ρ̂1,q log ρ̂1,q − ρ̂1,q log ρ̂0 the term inside the trace in the definition of QRE

D
(
ρ̂1,q‖ ρ̂0

)
. Now, let’s evaluate each term of the Taylor series expansion of D

(
ρ̂1,q‖ ρ̂0

)
.

1) First term: Using Lemma 1, the first derivative of K̂q with respect to u is as follows:

dK̂q

du
=

dρ̂1,q

du
log ρ̂1,q + ρ̂1,q

∫ 1

0
dsσ̂−1

1 (s)
dρ̂1,q

du
σ̂−1

1 (s) −
dρ̂1,q

du
log ρ̂0, (24)



where σ̂1(s) = s ρ̂1,q + (1 − s)Î. Setting u = 0 yields:

dK̂q

du

�����
u=0

=
dρ̂1,q

du

����
u=0

log ρ̂0 + ρ̂0

∫ 1

0
dsσ̂−1

0 (s)
dρ̂1,q

du

����
u=0

σ̂−1
0 (s) −

dρ̂1,q

du

����
u=0

log ρ̂0 (25)

= ρ̂0

∫ 1

0
dsσ̂−1

0 (s)
dρ̂1,q

du

����
u=0

σ̂−1
0 (s), (26)

where σ̂0(s) = s ρ̂0 + (1 − s)Î. Since dρ̂1,q
du

���
u=0
= 0 by (21), dK̂q

du

���
u=0
= 0. Thus, Tr

[
dK̂q
du

���
u=0

]
.

2) Second term: Using Lemma 2, the second derivative of K̂q with respect to u is as follows:

d2K̂q

du2 = 2
dρ̂1,q

du

∫ 1

0
dsσ̂−1

1 (s)
dρ̂1,q

du
σ̂−1

1 (s) − 2ρ̂1,q

∫ 1

0
sdsσ̂−1

1 (s)
dρ̂1,q

du
σ̂−1

1 (s)
dρ̂1,q

du
σ̂−1

1 (s)

+ ρ̂1,q

∫ 1

0
dsσ̂−1

1 (s)
d2 ρ̂1,q

du2 σ̂−1
1 (s) +

d2 ρ̂1,q

du2 log ρ̂1,q −
d2 ρ̂1,q

du2 log ρ̂0. (27)

Setting u = 0 in (27), discarding terms containing dρ̂1,q
du

���
u=0
= 0, and canceling the positive and

negative d2 ρ̂1,q
du2

���
u=0

log ρ̂0, we have:

d2K̂q

du2

�����
u=0

= ρ̂0

∫ 1

0
dsσ̂−1

0 (s)
d2 ρ̂1,q

du2

�����
u=0

σ̂−1
0 (s) (28)

Substitution of (22) into (28) yields the following:

d2K̂q(u)
du2

������
u=0

=
2
n̄2

T
ρ̂0

∫ 1

0
dsσ̂−1

0 (s)â ρ̂0â†σ̂−1
0 (s) −

2
n̄T
ρ̂0

∫ 1

0
dsσ̂−1

0 (s)ρ̂0σ̂
−1
0 (s) (29)

Now note that σ̂0(s) is diagonal in the Fock state basis, implying:

σ̂−1
0 (s) =

∞∑
k=0
(stk + (1 − s))−1 |k〉 〈k | , (30)

where we implicitly substitute n̄T for n̄B in (4). Now,∫ 1

0
dsσ̂−1

0 (s)ρ̂0σ̂
−1
0 (s) =

∫ 1

0
ds
∞∑

k=0
tk(stk + (1 − s))−2 |k〉 〈k | = Î (31)∫ 1

0
dsσ̂−1

0 (s)â ρ̂0â†σ̂−1
0 (s) =

∫ 1

0
ds
∞∑

k=0
(k + 1)tk+1(stk + (1 − s))−2 |k〉 〈k |

=
n̄T

1 + n̄T

∞∑
k=0
(k + 1) |k〉 〈n| , (32)



since
∫ 1

0 ds(sq+ (1− s))−2 = 1
q for q > 0. Here, the traces of the two terms in (29) cancel. Thus,

Tr
[

d2K̂q
du2

���
u=0

]
= 0.

3) Third term: Again using Lemma 2, the third derivative of K̂q with respect to u is:

d3K̂q

du3 = 3
d2 ρ̂1,q

du2

∫ 1

0
dsσ̂−1

1 (s)
dρ̂1,q

du
σ̂−1

1 (s) − 6
dρ̂1,q

du

∫ 1

0
sdsσ̂−1

1 (s)
dρ̂1,q

du
σ̂−1

1 (s)
dρ̂1,q

du
σ̂−1

1 (s)

+ 3
dρ̂1,q

du

∫ 1

0
dsσ̂−1

1 (s)
d2 ρ̂1,q

du2 σ̂−1
1 (s) − 3ρ̂1,q

∫ 1

0
sdsσ̂−1

1 (s)
d2 ρ̂1,q

du2 σ̂−1
1 (s)

dρ̂1,q

du
σ̂−1

1 (s)

+ 6ρ̂1,q

∫ 1

0
s2dsσ̂−1

1 (s)
dρ̂1,q

du
σ̂−1

1 (s)
dρ̂1,q

du
σ̂−1

1 (s)
dρ̂1,q

du
σ̂−1

1 (s)

− 3ρ̂1,q

∫ 1

0
sdsσ̂−1

1 (s)
dρ̂1,q

du
σ̂−1

1 (s)
d2 ρ̂1,q

du2 σ̂−1
1 (s)

+ ρ̂1,q

∫ 1

0
dsσ̂−1

1 (s)
d3 ρ̂1,q

du3 σ̂−1
1 (s) +

d3 ρ̂1,q

du3 log ρ̂1,q −
d3 ρ̂1,q

du3 log ρ̂0. (33)

Since dρ̂1,q
du

���
u=0
= 0 and d3 ρ̂1,q

du3

���
u=0
= 0 by (21), d3K̂q

du3

���
u=0
= 0.

4) Fourth term: We use Lemma 2 once again, however, for brevity we omit writing terms

containing dρ̂1,q
du and d3 ρ̂1,q

du3 , as these are zero operators when u = 0. Therefore, we have:

d4K̂q

du4 = 6
d2 ρ̂1,q

du2

∫ 1

0
dsσ̂−1

1 (s)
d2 ρ̂1,q

du2 σ̂−1
1 (s) − 6ρ̂1,q

∫ 1

0
sdsσ̂−1

1 (s)
d2 ρ̂1,q

du2 σ̂−1
1 (s)

d2 ρ̂1,q

du2 σ̂−1
1 (s)

+ ρ̂1,q

∫ 1

0
dsσ̂−1

1 (s)
d4 ρ̂1,q

du4 σ̂−1
1 (s) +

d4 ρ̂1,q

d4u
log ρ̂1,q −

d4 ρ̂1,q

d4u
log ρ̂0. (34)

Setting u = 0 yields:

d4K̂q(u)
du4

�����
u=0

= 6
d2 ρ̂1,q

du2

�����
u=0

∫ 1

0
dsσ̂−1

0 (s)
d2 ρ̂1,q

du2

�����
u=0

σ̂−1
0 (s)

− 6ρ̂0

∫ 1

0
sdsσ̂−1

0 (s)
d2 ρ̂1,q

du2

�����
u=0

σ̂−1
0 (s)

d2 ρ̂1,q

du2

�����
u=0

σ̂−1
0 (s)

+ ρ̂0

∫ 1

0
dsσ̂−1

0 (s)
d4 ρ̂1,q

du4

�����
u=0

σ̂−1
0 (s). (35)



Substitution of (22) in the first term of (35) and taking the trace yields:

Tr

[
6

d2 ρ̂1,q

du2

�����
u=0

∫ 1

0
dsσ̂−1

0 (s)
d2 ρ̂1,q

du2

�����
u=0

σ̂−1
0 (s)

]
=

24
n̄4

T
Tr

[
â ρ̂0â†

∫ 1

0
dsσ̂−1

0 (s)â ρ̂0â†σ̂−1
0 (s)

]
− 24

n̄3
T

Tr
[
â ρ̂0â†

∫ 1

0
dsσ̂−1

0 (s)ρ̂0σ̂
−1
0 (s)

]
−24

n̄3
T

Tr
[
ρ̂0

∫ 1

0
dsσ̂−1

0 (s)â ρ̂0â†σ̂−1
0 (s)

]
+

24
n̄2

T
Tr

[
ρ̂0

∫ 1

0
dsσ̂−1

0 (s)ρ̂0σ̂
−1
0 (s)

]
. (36)

The four terms in (36) are evaluated using (31) and (32):

24
n̄4

T
Tr

[
â ρ̂0â†

∫ 1

0
dsσ̂−1

0 (s)â ρ̂0â†σ̂−1
0 (s)

]
=

24(1 + 2n̄T)
n̄2

T(1 + n̄T)
(37)

−24
n̄3

T
Tr

[
â ρ̂0â†

∫ 1

0
dsσ̂−1

0 (s)ρ̂0σ̂
−1
0 (s)

]
= −24

n̄2
T

(38)

−24
n̄3

T
Tr

[
ρ̂0

∫ 1

0
dsσ̂−1

0 (s)â ρ̂0â†σ̂−1
0 (s)

]
= −24

n̄2
T

(39)

24
n̄2

T
Tr

[
ρ̂0

∫ 1

0
dsσ̂−1

0 (s)ρ̂0σ̂
−1
0 (s)

]
=

24
n̄2

T
. (40)

Summing (37)-(40) yields the first term of (35):

Tr

[
6

d2 ρ̂1,q

du2

�����
u=0

∫ 1

0
dsσ̂−1

0 (s)
d2 ρ̂1,q

du2

�����
u=0

σ̂−1
0 (s)

]
=

24(1 + 2n̄T)
n̄2

T(1 + n̄T)
− 24

n̄2
T

(41)

Substitution of (22) in the second term of (35) and taking the trace yields:

Tr

[
−6ρ̂0

∫ 1

0
sdsσ̂−1

0 (s)
d2 ρ̂1,q

du2

�����
u=0

σ̂−1
0 (s)

d2 ρ̂1,q

du2

�����
u=0

σ̂−1
0 (s)

]
= −24

n̄4
T

Tr
[
ρ̂0

∫ 1

0
sdsσ̂−1

0 (s)â ρ̂0â†σ̂−1
0 (s)â ρ̂0â†σ̂−1

0 (s)
]

+
24
n̄3

T
Tr

[
ρ̂0

∫ 1

0
sdsσ̂−1

0 (s)ρ̂0σ̂
−1
0 (s)â ρ̂0â†σ̂−1

0 (s)
]

+
24
n̄3

T
Tr

[
ρ̂0

∫ 1

0
sdsσ̂−1

0 (s)â ρ̂0â†σ̂−1
0 (s)ρ̂0σ̂

−1
0 (s)

]
−24

n̄2
T

Tr
[
ρ̂0

∫ 1

0
sdsσ̂−1

0 (s)ρ̂0σ̂
−1
0 (s)ρ̂0σ̂

−1
0 (s)

]
. (42)



Since
∫ 1

0 sds(sq + (1 − s))−3 = 1
2q2 for q > 0,∫ 1

0
sdsσ̂−1

0 (s)â ρ̂0â†σ̂−1
0 (s)â ρ̂0â†σ̂−1

0 (s) =
∫ 1

0
sds

∞∑
k=0

(k + 1)2t2
k+1 |k〉 〈k |

(stk + (1 − s))3

=
n̄2

T
2(1 + n̄T)2

∞∑
k=0
(k + 1)2 |k〉 〈k | . (43)

Thus, the first term of (42) is:

−24
n̄4

T
Tr

[
ρ̂0

∫ 1

0
sdsσ̂−1

0 (s)â ρ̂0â†σ̂−1
0 (s)â ρ̂0â†σ̂−1

0 (s)
]
= −12(1 + 2n̄T)

n̄2
T(1 + n̄T)

. (44)

Using a similar approach, we obtain the other terms:

24
n̄3

T
Tr

[
ρ̂0

∫ 1

0
sdsσ̂−1

0 (s)ρ̂0σ̂
−1
0 (s)â ρ̂0â†σ̂−1

0 (s)
]
=

12
n̄2

T
(45)

24
n̄3

T
Tr

[
ρ̂0

∫ 1

0
sdsσ̂−1

0 (s)â ρ̂0â†σ̂−1
0 (s)ρ̂0σ̂

−1
0 (s)

]
=

12
n̄2

T
(46)

−24
n̄2

T
Tr

[
ρ̂0

∫ 1

0
sdsσ̂−1

0 (s)ρ̂0σ̂
−1
0 (s)ρ̂0σ̂

−1
0 (s)

]
= −12

n̄2
T
. (47)

Summing (44)-(47) yields the second term of (35):

Tr

[
−6ρ̂0

∫ 1

0
sdsσ̂−1

0 (s)
d2 ρ̂1,q

du2

�����
u=0

σ̂−1
0 (s)

d2 ρ̂1,q

du2

�����
u=0

σ̂−1
0 (s)

]
= −12(1 + 2n̄T)

n̄2
T(1 + n̄T)

+
12
n̄2

T
(48)

Substitution of (23) in the third term of (35) and taking the trace yields a sum of five terms,

however, the trace is zero for terms comprised of products of states that are diagonal in Fock basis

and have unequal number of creation and annhihilation operators (e.g., Tr[ρ̂0σ̂0(s)â2 ρ̂0σ̂0(s)] =
0). The terms with a non-zero trace are as follows:

Tr

[
ρ̂0

∫ 1

0
dsσ̂−1

0 (s)
d4 ρ̂1,q

du4

�����
u=0

σ̂−1
0 (s)

]
=

12
n̄2

T
Tr

[
ρ̂0

∫ 1

0
dsσ̂−1

0 (s)ρ̂0σ̂
−1
0 (s)

]
− 24

n̄3
T

Tr
[
ρ̂0

∫ 1

0
dsσ̂−1

0 (s)â ρ̂0â†σ̂−1
0 (s)

]
+

6
n̄4

T
Tr

[
ρ̂0

∫ 1

0
dsσ̂−1

0 (s)â
2 ρ̂0(â†)2σ̂−1

0 (s)
]
. (49)



The first two terms of (49) can be evaluated using (31) and (32):

12
n̄2

T
Tr

[
ρ̂0

∫ 1

0
dsσ̂−1

0 (s)ρ̂0σ̂
−1
0 (s)

]
=

12
n̄2

T
(50)

−24
n̄3

T
Tr

[
ρ̂0

∫ 1

0
dsσ̂−1

0 (s)â ρ̂0â†σ̂−1
0 (s)

]
= −24

n̄2
T

(51)

Since ∫ 1

0
dsσ̂−1

0 (s)â
2 ρ̂0(â†)2σ̂−1

0 (s) =
∫ 1

0
ds
∞∑

k=0
(k + 1)(n + 2)tk+2(stk + (1 − s))−2 |k〉 〈k |

=
n̄2

T
(1 + n̄T)2

∞∑
k=0
(k + 1)(k + 2) |k〉 〈k | , (52)

the third term of (49) is:

6
n̄4

T
Tr

[
ρ̂0

∫ 1

0
dsσ̂−1

0 (s)â
2 ρ̂0(â†)2σ̂−1

0 (s)
]
=

12
n̄2

T
. (53)

Summing (50), (51), and (53) yields the third term of (35):

Tr

[
ρ̂0

∫ 1

0
dsσ̂−1

0 (s)
d4 ρ̂1,q

du4

�����
u=0

σ̂−1
0 (s)

]
= 0 (54)

Summing (41), (48), and (54) yields the fourth term in the Taylor series 1
4!

d4K̂q
du4 =

1
2n̄T(1+n̄T) . Since

u =
√

1 − ηb and n̄T = ηn̄B, we have:

D
(
ρ̂1,q‖ ρ̂ηn̄B

)
=
(1 − η)2n̄2

S
2ηn̄B(1 + ηn̄B)

+ o(n̄2
S). (55)

Combining (55) with (16) (with ρ̂W
1,m set to ρ̂1,q), dropping low order terms, and solving for n̄S

yields the proof.

D. Binary phase shift keying

While BPSK is known to achieve the Holevo capacity of (non-covert) communication over

lossy thermal noise bosonic channel in the low received SNR regime [15], here we argue that it

is strictly suboptimal for achieving covertness. We use the definitions of u and n̄T as in Section



IV-C. We define ρ̂1,b =
1
2 (ρ̂00 + ρ̂10), where subscript “b” stands for BPSK. We evaluate the

Taylor series expansion as we did for QPSK. The first and third derivatives of ρ̂1,b with respect

to u evaluated at u = 0 are zero. The second and fourth derivatives are as follows:
d2 ρ̂1,b

du2

����
u=0
=

1
n̄2

T

(
â2 ρ̂0 + 2â ρ̂0â† + ρ̂0(â†)2

)
− 2

n̄T
ρ̂0, (56)

d4 ρ̂1,b

du4

����
u=0
=

12ρ̂0

n̄2
T
− 12

n̄3
T

(
â2 ρ̂0 + 2â ρ̂0â† + ρ̂0(â†)2

)
+

1
n̄4

T

(
â4 ρ̂0 + 4â3 ρ̂0â† + 6â2 ρ̂0(â†)2 + 4â ρ̂0(â†)3 + ρ̂0(â†)4

)
(57)

Here, K̂b = ρ̂1,b log ρ̂1,b− ρ̂1,b log ρ̂0. The first three terms of the Taylor series expansion are zero

for the BPSK case as their form is similar to the QPSK ones. Let’s evaluate the fourth term.

Using Lemma 2, the fourth derivative of K̂b with respect to u evaluated at u = 0 is:

d4K̂b

du4

����
u=0
= 6

d2 ρ̂1,b

du2

����
u=0

∫ 1

0
dsσ̂−1

0 (s)
d2 ρ̂1,b

du2

����
u=0

σ̂−1
0 (s)

− 6ρ̂0

∫ 1

0
sdsσ̂−1

0 (s)
d2 ρ̂1,b

du2

����
u=0

σ̂−1
0 (s)

d2 ρ̂1,b

du2

����
u=0

σ̂−1
0 (s)

+ ρ̂0

∫ 1

0
dsσ̂−1

0 (s)
d4 ρ̂1,b

du4

����
u=0

σ̂−1
0 (s). (58)

When evaluating the trace of (58), we use the fact that σ̂0(s) is diagonal in Fock basis, and

that the trace is zero for terms comprised of states that are diagonal in Fock basis and unequal

numbers of creation and annihilation operators, just as we did in evaluating the trace of the third

term of (49). Thus, substitution of (56) in the first term of (58) and taking the trace yields:

Tr
[
6

d2 ρ̂1,b

du2

����
u=0

∫ 1

0
dsσ̂−1

0 (s)
d2 ρ̂1,b

du2

����
u=0

σ̂−1
0 (s)

]
=

6
n̄4

T
Tr

[
â2 ρ̂0

∫ 1

0
dsσ̂−1

0 (s)ρ̂0(â†)2σ̂−1
0 (s)

]
+

6
n̄4

T
Tr

[
ρ̂0(â†)2

∫ 1

0
dsσ̂−1

0 (s)â
2 ρ̂0σ̂

−1
0 (s)

]
+

24
n̄4

T
Tr

[
â ρ̂0â†

∫ 1

0
dsσ̂−1

0 (s)â ρ̂0â†σ̂−1
0 (s)

]
− 24

n̄3
T

Tr
[
â ρ̂0â†

∫ 1

0
dsσ̂−1

0 (s)ρ̂0σ̂
−1
0 (s)

]
−24

n̄3
T

Tr
[
ρ̂0

∫ 1

0
dsσ̂−1

0 (s)â ρ̂0â†σ̂−1
0 (s)

]
+

24
n̄2

T
Tr

[
ρ̂0

∫ 1

0
dsσ̂−1

0 (s)ρ̂0σ̂
−1
0 (s)

]
. (59)



Since
∫ 1

0 ds(sq + (1 − s))−1(sr + (1 − s))−1 =
log( qr )

q−r for q, r > 0 and q , r , we have:∫ 1

0
dsσ̂−1

0 (s)ρ̂(â
†)2σ̂−1

0 (s) =
∫ 1

0
ds
∞∑

k=0

√
k(k − 1)tk |k〉 〈k − 2|

(stk + (1 − s))(stk−2 + (1 − s))

=
2n̄2

T
1 + 2n̄T

log
(
1 +

1
n̄T

) ∞∑
k=0

√
k(k − 1) |k〉 〈k − 2| . (60)

The second term is obtained similarly to (60). Thus, the first two terms of (59) are:

6
n̄4

T
Tr

[
â2 ρ̂0

∫ 1

0
dsσ̂−1

0 (s)ρ̂0(â†)2σ̂−1
0 (s)

]
=

24
1 + 2n̄T

log
(
1 +

1
n̄T

)
(61)

6
n̄4

T
Tr

[
ρ̂0(â†)2

∫ 1

0
dsσ̂−1

0 (s)â
2 ρ̂0σ̂

−1
0 (s)

]
=

24
1 + 2n̄T

log
(
1 +

1
n̄T

)
(62)

Comparing (59) and (36) yields (61) and (62) as the only terms unique to (59) while the rest

are shared. Thus, summing (61), (62), and the shared terms in (41) yields the first term of (58):

Tr
[
6

d2 ρ̂1,b

du2

����
u=0

∫ 1

0
dsσ̂−1

0 (s)
d2 ρ̂1,b

du2

����
u=0

σ̂−1
0 (s)

]
=

48
1 + 2n̄T

log
(
1 +

1
n̄T

)
+

24(1 + 2n̄T)
n̄2

T(1 + n̄T)
− 24

n̄2
T
.

(63)

Substitution of (56) in the second term of (58) and taking the trace yields:

Tr
[
−6ρ̂0

∫ 1

0
sdsσ̂−1

0 (s)
d2 ρ̂1,b

du2

����
u=0

σ̂−1
0 (s)

d2 ρ̂1,b

du2

����
u=0

σ̂−1
0 (s)

]
= − 6

n̄4
T

Tr
[
ρ̂0

∫ 1

0
sdsσ̂−1

0 (s)â
2 ρ̂0σ̂

−1
0 (s)ρ̂0(â†)2σ̂−1

0 (s)
]

− 6
n̄4

T
Tr

[
ρ̂0

∫ 1

0
sdsσ̂−1

0 (s)ρ̂0(â†)2σ̂−1
0 (s)â

2 ρ̂0σ̂
−1
0 (s)

]
−24

n̄4
T

Tr
[
ρ̂0

∫ 1

0
sdsσ̂−1

0 (s)â ρ̂0â†σ̂−1
0 (s)â ρ̂0â†σ̂−1

0 (s)
]

+
24
n̄3

T
Tr

[
ρ̂0

∫ 1

0
sdsσ̂−1

0 (s)ρ̂0σ̂
−1
0 (s)â ρ̂0â†σ̂−1

0 (s)
]

+
24
n̄3

T
Tr

[
ρ̂0

∫ 1

0
sdsσ̂−1

0 (s)â ρ̂0â†σ̂−1
0 (s)ρ̂0σ̂

−1
0 (s)

]
−24

n̄2
T

Tr
[
ρ̂0

∫ 1

0
sdsσ̂−1

0 (s)ρ̂0σ̂
−1
0 (s)ρ̂0σ̂

−1
0 (s)

]
. (64)



Since
∫ 1

0 sds(sq + (1 − s))−2(sr + (1 − s))−1 =
r−q+u log( qr )

q(q−r)2 for q, r > 0 and q , r ,∫ 1

0
sdsσ̂−1

0 (s)â
2 ρ̂0σ̂

−1
0 (s)ρ̂0(â†)2σ̂−1

0 (s)

=

∫ 1

0
sds

∞∑
k=0

(k + 1)(k + 2)t2
k+2 |k〉 〈k |

(stk + (1 − s))2(stk+2 + (1 − s))

=

(
2n̄4

T
(1 + 2n̄T)2

log
(
1 +

1
n̄T

)
−

n̄4
T

(1 + n̄T)2(1 + 2n̄T)

) ∞∑
k=0
(k + 1)(k + 2) |k〉 〈k | . (65)

The second term is evaluated similarly to (65). Thus, the first two terms of (64) are:

− 6
n̄4

T
Tr

[
ρ̂0

∫ 1

0
sdsσ̂−1

0 (s)â
2 ρ̂0σ̂

−1
0 (s)ρ̂0(â†)2σ̂−1

0 (s)
]
= −24(1 + n̄T)2
(1 + 2n̄T)2

log
(
1 +

1
n̄T

)
+

12
1 + 2n̄T

(66)

− 6
n̄4

T
Tr

[
ρ̂0

∫ 1

0
sdsσ̂−1

0 (s)ρ̂0(â†)2σ̂−1
0 (s)â

2 ρ̂0σ̂
−1
0 (s)

]
=

24n̄2
T

(1 + 2n̄T)2
log

(
1 +

1
n̄T

)
− 12

1 + 2n̄T
.

(67)

Comparing (64) and (42) yields (66) and (67) as the only terms unique to (64) while the rest

are shared. Summing (66), (67), and the shared terms in (48) yields the second term of (58):

Tr
[
−6ρ̂0

∫ 1

0
sdsσ̂−1

0 (s)
d2 ρ̂1,b

du2

����
u=0

σ̂−1
0 (s)

d2 ρ̂1,b

du2

����
u=0

σ̂−1
0 (s)

]
= − 24

1 + 2n̄T
log

(
1 +

1
n̄T

)
− 12(1 + 2n̄T)

n̄2
T(1 + n̄T)

+
12
n̄2

T
. (68)

Substitution of (57) in the third term of (58) and taking the trace yields:

Tr
[
ρ̂0

∫ 1

0
dsσ̂−1

0 (s)
d4 ρ̂1,b

du4

����
u=0

σ̂−1
0 (s)

]
=

12
n̄2

T
Tr

[
ρ̂0

∫ 1

0
dsσ̂−1

0 (s)ρ̂0σ̂
−1
0 (s)

]
− 24

n̄3
T

Tr
[
ρ̂0

∫ 1

0
dsσ̂−1

0 (s)â ρ̂0â†σ̂−1
0 (s)

]
+

6
n̄4

T
Tr

[
ρ̂0

∫ 1

0
dsσ̂−1

0 (s)â
2 ρ̂0(â†)2σ̂−1

0 (s)
]
. (69)



Comparison of (69) and (49) shows that they are equal. Since (54) shows this term to be zero,

the third term of (58) is zero. Summing (63) and (68) yields the fourth term in the Taylor series:

1
4!

d4K̂b(u)
du4 =

1
2n̄T(1 + n̄T)

+
1

1 + 2n̄T
log

(
1 +

1
n̄T

)
(70)

The QRE for BPSK is as follows:

D
(
ρ̂1,b‖ ρ̂ηn̄B

)
= (1 − η)2n̄2

S

[
1

2ηn̄B(1 + ηn̄B)
+

1
1 + 2ηn̄B

log
(
1 +

1
ηn̄B

)]
+ o(n̄2

S). (71)

This is strictly larger than D
(
ρ̂1,q‖ ρ̂ηn̄B

)
in (55). Therefore, to maintain Criterion 2, n̄S must be

set strictly less than the optimal value in (2).

E. Use of practical transmitters and arbitrary codes

Typical optical transmitters operate at a constant mean photon number per mode n̄S, and much

of coding theory assumes that n̄S is independent from n. However, covertness requires n̄S to decay

with n. We address this by modifying the construction of the secret random sequence described

in Section IV-A. First, Alice and Bob secretly select a subset of modes S for communication

by flipping a random coin n times with probability of heads τ. The k th mode is chosen if the

k th flip is heads. They then generate the secret random sequence as described in Section IV-A,

and use a public code on the modes in set S of expected size E[|S|] = τn. Let Alice use the

coherent state QPSK modulation. Since Willie does not have S, when she transmits, he observes

ρ̂1,τ = (1− τ)ρ̂0 + τρ̂1,q on each of n modes, with ρ̂0 and ρ̂1,q defined in Section IV-C. Note that
dn ρ̂1,τ

dun = τ
dn ρ̂1,q

dun . Replacing dn ρ̂1,q
dun

���
u=0

with dn ρ̂1,τ
dun

���
u=0

in (34) yields:

D
(
ρ̂1,τ‖ ρ̂ηn̄B

)
=
(1 − η)2τ2n̄2

S
2ηn̄B(1 + ηn̄B)

+ o(τ2n̄2
S). (72)

We discard low order terms, fix n̄S, and solve for τ that maintains Criterion 2:

τ =

√
2ηn̄B(1 + ηn̄B)
(1 − η)n̄S

√
δQRE

n
. (73)

This method was used in a covert communication experiment described in [12]. When a Holevo-

achieving code is used (with a constant n̄S) it enables the achievability of the ultimate limit of



covert communication over the bosonic channel in expectation, as described in Section V. We

also note that it requires O(
√

n log n) bits of shared secret [2, App.]. We conjecture, based on the

results for classical channels [3], that at most O(
√

n) shared secret bits are needed for reliable

covert communication under any conditions on Alice’s channels to Bob and Willie. However,

the perspective methods to achieve this scaling (e.g., extension of [22] to arbitrary channel

conditions) are impractically complex. We offer simplicity and robustness of existing codes at

a mere log n factor increase in shared secret size, which is an acceptable trade-off in many

applications given significantly lower power consumption of flash memory vs. computers.

V. CODING FOR COVERT COMMUNICATION OVER BOSONIC CHANNEL

Constant crel determines the number of covert bits that are reliably transmissible over the

bosonic channel. Here we provide the lower and upper bounds, show how the latter can be met

in expectation, and offer a roadmap to the complete characterization of crel in the future work.

The lower bound crel is straightforward: restrict Bob to a heterodyne receiver, yielding a classical

AWGN channel that is characterized in [23, Eq. 1.3]. We then employ the known results [3], [4] to

obtain crel ≥ η((1−η)n̄B)−1. For the upper bound, observe that the Holevo capacity of the bosonic

channel is additive. Thus, the number of covert bits that can be transmitted reliably over such

channel with transmissivity η and mean thermal noise photon number n̄B is M = nB(n̄S; η, n̄B),
where B(n̄S; η, n̄B) is the number of transmissible bits using n̄S photons per mode. The Holevo

capacity of the lossy thermal noise bosonic channel upper bounds B(n̄S; η, n̄B) ≤ χ(n̄S; η, n̄B),
and has been characterized for non-covert scenarios [24]. Since n̄S is small for large n, we can

upper-bound crel ≤ crel, χ by the first Taylor series term of χ(n̄S; η, n̄B) [24, Eq. (10)] expanded

at n̄S = 0: crel, χ = η log
(
1 + ((1 − η)n̄B)−1) . This bound can be achieved in expectation using the

coin flip method described in Section IV-E by setting n̄S to a constant and employing a Holevo

capacity achieving code. Holevo–Schumacher–Westmoreland (HSW) theorem [11, Sec. 20.3.1]

allows the construction of such code over the subset of modes chosen by the coin flip process

since n̄S is constant. A polar code [25], [26] over QPSK constellation achieves the Holevo



capacity at low signal to noise ratio (SNR) [15]. Thus E[M] =
√

nδccovcrel, χ, with the expectation

taken over the binomial random variable B(τ, n), where τ is defined in (73). However, we

conjecture that the crel, χ is achievable in general. In covert communication n̄S = δccov/
√

n, and

this dependence of n̄S on n complicates the application of HSW theorem. Classical results [3],

[4] overcome this problem using information spectrum methods and resolvability. The quantum

predecessors of these classical methods have been used to strengthen the capacity results for

classical-quantum channels [27], [28]. Unfortunately, their use in bosonic channel setting has

been limited because of their dependence on the finite dimensionality of the Hilbert space for

the output quantum states, while the output of the lossy thermal noise bosonic channel lives in

an infinitely-dimensional Hilbert space. That being said, one could conceivably adapt the proofs

in [27], [28] to the special case of finite output state constellation, which is indeed what we

showed to be optimal under the covertness constraint.

VI. CONCLUSION

Our main objective was to establish the theoretical groundwork necessary for implementation

of quantum-secure covert communication over practical channels. Hence we focused on the

bosonic channel model, which is the underlying quantum-mechanical description of many sig-

nificant communication channels (including optical, microwave, and RF). We have characterized

the constant ccov in the expression for mean photon number per mode n̄S = δccov/
√

n in

the SRL for the lossy thermal noise bosonic channel by proving the converse that matched

a previous achievability result [12, Th. 2]. We proved that coherent state QPSK modulation

carries the maximum mean photon number that covertness requirement allows, and showed

that it yields optimal covert throughput over the bosonic channel in expectation, provided that

QPSK modulation achieves Holevo capacity (which it does at low SNR [15]). While we left

the full characterization of covert channel code for future work, we believe that our result

opens a clear path to use polar codes for quantum-secure covert communications, as the explicit

successive cancellation decoder structure is known for discrete constellations [25], [26]. More



importantly, we showed that we can ensure quantum-secure covertness using practical systems

that employ constant-amplitude lasers and coherent receivers. There are many avenues for future

research. Here we assume that the adversary knows when the transmission may start and end,

as well as its center frequency and bandwidth. Asynchronous covert communication lifts these

assumptions. It has been shown that the number of reliable covert bits increases substantially

in classical AWGN scenario [29], [30]. This result was later extended to discrete memoryless

channels (DMCs) [31]. Bosonic channel is a natural setting for further exploration of this topic.

While QRE is mathematically convenient, the trace distance carries more operational significance

from its direct relationship to the minimum detection error probability. Extension of [6] to

quantum systems would enable analysis of covert communication that is quantum-secure under

Criterion 1. It might also reveal a path to the evaluation of second-order constants for covert

communications over the bosonic channel. Also, the characterization of covert communication

over arbitrary quantum channels has been elusive. While the achievability was proven in [32] by

extending the techniques of [3] to finite-dimensional memoryless quantum channels (modeled

by trace-preserving completely positive maps), the known converse is restricted to product state

transmission. Recent result [33] on covert QKD opens a new perspective on this problem.

Finally, optical receiver designs for quantum-optimal state discrimination are not known beyond

binary pure state discrimination [34]. For discriminating a constellation of size m > 2, the same

physical resources that achieve optimal m = 2 state discrimination (linear optics, laser local

oscillator, photon detector, and electro-optical feedback) do not suffice [35]. For mixed states

such as displaced thermal states, the optimal receiver design is not known even for the binary

case. We expect a similar quantum resource divide in this case as in the pure state case, and

the separation in discriminability between BPSK and QPSK that we showed may lead to new

insights into this problem.
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