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Abstract

The degree of the generators of invariant polynomial rings of is a long standing open
problem since the very initial study of the invariant theory in the 19th century. Motivated
by its significant role in characterizing multipartite entanglement, we study the invariant
polynomial rings of local unitary group—the tensor product of unitary group, and local
general linear group—the tensor product of general linear group. For these two groups,
we prove polynomial upper bounds on the degree of the generators of invariant polynomial
rings. On the other hand, systematic methods are provided to to construct all homogenous
polynomials that are invariant under these two groups for any fixed degree. Thus, our
results can be regarded as a complete characterization of the invariant polynomial rings. As
an interesting application, we show that multipartite entanglement is additive in the sense
that two multipartite states are local unitary equivalent if and only if r-copies of them are
LU equivalent for some r.
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1. Introduction

Multipartite entanglement is considered as an essential asset to quantum information
processing and computational tasks. The intriguing properties and potential applications
of entanglement spark many literature dedicated to quantify it as a resource. Even though
great efforts and considerable progress have been made [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13],
no complete theory can be obtained.
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Sun), nengkunyu@gmail.com (Nengkun Yu)
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The first approach for study multipartite entanglement is to study the local unitary(LU)
equivalence of multipartite states. The importance of this approach is due to the fact that
multipartite entanglement is characterized by the equivalence relation under LU. Bennett
et.al. proved the important fact that two quantum states are interconvertible by unlimited
two-way classical communication (LOCC) if and only if they are interconvertible by LU
[14]. The celebrated Schmidt decomposition provides the canonical form for bipartite pure
states under LU, which enables us to understand bipartite entanglement completely. For
multipartite system, no such decomposition is possible. Hence, understanding multipartite
entanglement is much more challenging. Lots of efforts have been made to study the LU
equivalent relation, see [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25] as a very incomplete list.

In principle, this LU equivalent relation can be characterized by the ring of invariants
polynomials under local unitary(LUIPs) [26, 27, 28]. From this point of view, multipartite
entanglement is characterized by the ring of LUIPs. A complete description of such ring
has been obtained only for bipartite system and 2 × 2 × n system [29, 30, 31]. Beyond
that, and despite the extensive literature, very little is known. One related topic in the
study of quantum information science is the stochastic local operations and classical com-
munication(SLOCC). In 2013, Gour and Wallach constructed the whole set of SL-invariant
polynomials (SLIPs) for pure states [32].

For the ring of LUIPs, it is already known that the ring of LUIPs is finitely generated. In
order to understand the the ring of LUIPs ring, two central problems have to be addressed.
The first is to construct the ring by presenting some finite generating set of LUIPs. The
second problem naturally arises after the first: bound the degree of generating set, more
precisely, present an explicit upper bound on the degree such that the ring of LUIPs can be
generated by the LUIPs with degree lower than that bound.

In this paper, we give a characterization of multipartite entanglement by conquering the
above two problems. We first provide an algorithm to construct all LUIPs for fixed degree.
Secondly, we demonstrate an explicit polynomial upper bound on the degree of generators
by employing modern techniques and concepts of invariant theory. As far as we know, no
explicit degree bound for the ring of LUIPs was computed in the literature. As an interesting
application, we are able to show that multipartite entanglement is additive in the sense that
two multipartite states are LU equivalent if and only if r-copies of these two states are LU
equivalent for some r.

Our main idea to construct LUIPs here is remarkably simple and feasible in all dimen-
sions: For each party, we construct the corresponding ring of homogenous polynomials that
are invariant under the local unitary group applied on that party, then the ring of LUIPs is
the intersection of these rings, which can be obtained by computing the intersection of finite
dimensional subspaces. To prove a polynomial upper bound on the degree of generators,
new techniques on matrix semi-invariants [34, 35] are employed.

This method can also be used to study the SLOCC equivalence of multipartite states.
For pure states, we provide an alternative algorithm to compute SLIPs rather than [32]. For
mixed states, we focus on the so called one term SLOCC equivalence relation.
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2. Preliminaries and Notations

2.1. Notations

During this paper, we consider the n-partite Hilbert space

H = H1 ⊗H2 ⊗ · · · ⊗ Hn,

where Hilbert space Hi has dimension di. Then the dimension of H is Πn
i=1di.

Let U(s) be the group of s×s unitary matrices. Then local unitary(LU) group is defined
as

LU ≡ U(d1) ⊗ U(d2) ⊗ · · · ⊗ U(dn).

For |Ψ〉 ∈ H, the orbit LU|Ψ〉 := {g|Ψ〉 : g ∈ LU} consists of quantum states in the LU
equivalent class of |Ψ〉. The orbit characterizes the multipartite entanglement in the sense
that the entanglement of |Ψ〉 is the same as that of any state in LU|Ψ〉. Therefore, the goal
of characterizing multipartite entanglement can be accomplished by separating different LU
orbits, in other words, determining the LU equivalence relation.

This problem can be formalized as: For two given states |Ψ〉, |Φ〉 ∈ H, determine whether
there exists g ∈ LU such that

|Ψ〉 = g|Φ〉.

To demonstrate the importance of LU equivalence of pure states, we would like to point out
the following fact that the problem of the LU equivalence of mixed states can be reduced to
the same problem of pure states, i.e., two n-partite mixed states are LU equivalent if and only
if their purifications, two n+ 1-partite pure states, are LU equivalent [20], where two mixed
states ρ, σ in Hilbert space H are called LU equivalent if there exists (U1⊗U2⊗· · ·⊗Un) ∈ LU

such that ρ = (U1 ⊗ U2 ⊗ · · · ⊗ Un)σ(U1 ⊗ U2 ⊗ · · · ⊗ Un)†.
The LU equivalence of mixed states can be used to study the equivalence between quan-

tum channels, where two quantum channels E and F are said to be equivalent if there are
unitary channels U V such that

F = V ◦ E ◦ U .

Here, unitary channels U and V can be regarded as encoding channel and decoding channel,
respectively. It is direct to verify that E and F have the same ability on transmit information,
quantum (classical, private) capacity. One can observe that E ,F : L(HA) :7→ L(HB) are
equivalent if and only if their Choi-matrices are LU equivalent, where the Choi-matrix of
E is defined as the bipartite mixed state (non-normalized) ρAA′ = (IA′ ⊗ E)(|ϕ〉〈ϕ|) with
|ϕ〉 =

∑d
j=1 |i〉|i〉, and the noiseless channel IA′ on quantum system HA′ which has the same

dimension d as system HA.
Another widely studied equivalence relation is the SLOCC equivalence. Two pure states

|Ψ〉, |Φ〉 ∈ H are called SLOCC equivalent if there is some g ∈ G and λ ∈ C such that

g|Ψ〉 = λ|Φ〉

with G = SL(d1,C)⊗ · · ·⊗ SL(dn,C) and SL(di,C) standing for the set of di × di invertible
matrices with determinant 1.
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This problem becomes much more complicated for mixed states: Two mixed states ρ, σ
in Hilbert space H are called SLOCC equivalent if there exists hi = (Ai,1⊗Ai,2⊗· · ·⊗Ai,n)
and mj = (Bj,1 ⊗ Bj,2 ⊗ · · · ⊗ Bj,n) such that

ρ =
∑

i

hiσh
†
i ,

σ =
∑

j

mjρm
†
j

with Ai,k and Bj,k being dj × dj matrices for all i, j, k.
To determine the SLOCC equivalence between mixed states, even between pure state

and mixed state, becomes very difficult. To see this, we notice that |0〉|0〉 · · · |0〉 is SLOCC
equivalent to any separable states. That is, to see whether a given state is SLOCC equivalent
to |0〉|0〉 · · · |0〉, we need to test whether it is separable, that problem has been widely studied
and it is known to be NP-Hard [37]. To simplify the problem of SLOCC equivalence, we
focus on the so called on term SLOCC equivalence. Two mixed states ρ, σ are called one
term SLOCC equivalent if there exists g ∈ G and λ ∈ C such that

ρ = λ gσg†.

2.2. Invariant Polynomials

In this subsection, we demonstrate some basic notions of invariant polynomials under
LU and under SLOCC, respectively.

We use the concept of LUIPs, namely the polynomials invariant under local unitary
transformations, to study the LU equivalence. Formally, a function f : H 7→ C is an LUIP,
if f(|Ψ〉) is the homogenous polynomial on entries of |Ψ〉〈Ψ|(Ψ in short), and

f(g|Ψ〉) = f(|Ψ〉), ∀g ∈ LU and ∀|Ψ〉 ∈ H.

Notice that any polynomial can be written as a linear combination of homogenous polyno-
mials, and the invariance follows naturally.

Let C[H]LU denote the set of the LUIPs. It is direct to see that C[H]LU is a ring. In
other words, it is an abelian group under addition, a monoid under multiplication. Moreover,
polynomial multiplication is distributive with respect to addition.

It is well known that the entanglement of bipartite state |Ψ〉AB is completely determined
by its vector of Schmidt coefficients, says (λ1, · · · , λd)(λ1 ≥ · · · ≥ λd), or equivalently
determined by

∑d
j=1 λ

k
j = tr(ΨA)k for k ∈ N. By noticing that tr(ΨA)k is value of LUIP for

|Ψ〉AB, we know that two bipartite states are LU equivalent if and only if LUIPs have the
same value for them.

In general, multipartite quantum states |Ψ〉 and |Φ〉 are LU equivalent if and only if
f(|Ψ〉) = f(|Φ〉) holds for every LUIP f .

SL-invariant polynomials (SLIPs) can be used to study the SLOCC equivalence between
quantum states.
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To see the power of our method on constructing LUIPs, we apply it on studying the
SLOCC equivalence where SLIP is a polynomial f : H 7→ C such that

f(g|Ψ〉) = f(|Ψ〉), ∀g ∈ G and ∀|Ψ〉 ∈ H.

Very recently, Gour and Wallach present an algorithm for constructing the SLIPs for
fixed degree using Schur-Weyl duality.

3. Main results

In this section, we first provide a new view of LUIPs which leads to an algorithm to
compute the ring of LUIPs. We also demonstrate an explicit upper bound such that any
LUIP can be generated, using addition, subtraction and product, by LUIPs with degrees
no more than the bound. Based on this characterization, we are able to show that two
multipartite states are LU equivalent if and only if r-copies of these two states are LU
equivalent for some r.

Let Ij be the identity operator of system Hj , and Ii = {Ij}, we can define group Ui as
follows,

Ui = I1 ⊗ · · · ⊗ Ii−1 ⊗ U(di) ⊗ Ii+1 · · · ⊗ In.

A useful observation is
Ui ⊂ LU, and LU = U1U2 · · ·Un.

The advantage of this observation on studying the polynomial invariants is based on the
following relation between the polynomial invariants of LU, says P , and those polynomial
invariants of Uis, says Pis,

P =

n
⋂

i=1

Pi. (1)

First, we observe that P ⊂ Pi by noticing Ui ⊂ LU. Thus, P ⊂
⋂n

i=1 Pi.
On the other hand, one can verify that for any p ∈

⋂n
i=1 Pi, g = g1g2 · · · gn ∈ LU with

gi ∈ Ui and |ϕ〉 ∈ H, we have p ∈ P by observing

p(g|ϕ〉)

= p(g1 · · · gn|ϕ〉)

= p(g2 · · · gn|ϕ〉)

= · · ·

= p(|ϕ〉).

Therefore, P ⊃
⋂n

i=1 Pi ⇒ P =
⋂n

i=1 Pi.
We only need to compute Pi for fixed i, the ring of invariant polynomials under unitary

group Ui. To study the action of Ui on H, one may regard the whole space H as a bipartite
space: system Hi and the rest. Now, the problem becomes to compute the invariants
of one party unitary for bipartite pure state. Formally, suppose |ϕ〉 =

∑

xj1···jn|j1 · · · jn〉
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with variables xj1···jn ∈ C. According to Uhimann’s theorem [33], the set of the entries of
ϕī = Tri|ϕ〉〈ϕ|, those quadratic polynomials, form a generating set of Pi.

For any degree l, the relation (1) enables us to compute the whole set of degree l ho-
mogenous elements of P . One can verify that any LUIP is of even degree.

In order to accomplish the characterization of LUIPs, we need the following theorem
which explicitly provides an upper bound on the degree to generate the ring of LUIPs.

Theorem 3.1. The set of all LUIPs is generated by the LUIPs with degree no more than

N(d1, d2, · · · , dn) = 3
8
(
∏

i d
2
i ) · max(di)

2n · (
∑

i di)
2(
∑

i
d2
i
−n).

Remark:—Although it is known that the ring of LUIPs is finitely generated, as far as
we know, no explicit bound was reported in the study of quantum information theory. In
modern invariant theory, such an explicit bound for the degree of generating set is known for
linearly reductive algebraic group acting rationally on linear spaces [? ]. Here, the LU group
is not a linearly reductive algebraic group. In order to apply this theory on our problem, we
resort to the concept “complexification” from [39]. For readability, we postpone the detailed
proof of this conclusion to section 4. An upper bound for SLIPs is also included, whose
detailed definition is given in the later of this paper. Note that the bound for SLIPs was
not computed in the literature before this work.

Thus, two quantum states |Ψ〉, |Φ〉 ∈ H are LU equivalent if and only if fi(|Ψ〉) = fi(|Φ〉)
holds for a basis LUIPs fi with degree less than N(d1, d2, · · · , dn).

This characterization of LUIPs can be regarded as a demonstration of the decidability of
LU equivalence. Although this fact can also be observed according to Tarski-Seidenberg’s
famous result, our result is still valuable since it contains physical background and can bring
new insight of the entanglement while Tarski-Seidenberg’s result does not provide. As an
illustration, the following proof of the additivity of entanglement crucially depends on the
structure of LUIPs provided above.

Consider the LU equivalence of the r-copy set of states Hr := {|ϕ〉⊗r : |ϕ〉 ∈ H =
⊗n

i=1Hi}, where |ϕ〉⊗r is regarded as n−partite state of system
⊗n

i=1H
⊗r
i . Thus, |Ψ〉⊗r, |Φ〉⊗r ∈

Hr are called LU equivalent if there exists local unitary
⊗n

i=1 Ui with Ui being unitaries of
system H⊗r

i such that |Ψ〉⊗r =
⊗n

i=1 Ui|Φ〉⊗r.
One can observe that if |Ψ〉, |Φ〉 are LU equivalence then |Ψ〉⊗r, |Φ〉⊗r are LU equivalence

in the above sense. Here, we are interested in the converse direction.
For the bipartite case, one can conclude that the converse is also true by using the fol-

lowing argument: Without loss of generality, assume |Ψ〉AB =
∑d

j=1

√

λj|jj〉 and |Φ〉AB =
∑d

j=1

√

δj|jj〉. Since |Ψ〉⊗r
AB, |Φ〉⊗r

AB are LU-equivalent, we know that Ψ⊗r
A and Φ⊗r

A share
eigenvalues with ΨA and ΨA being the reduced density matrices of |Ψ〉AB and |Φ〉AB re-
spectively. Thus,

∑d
j=1 λ

rk
j =

∑d
j=1 δ

rk
j for all k, and one can conclude that the Schmidt

coefficients λis are identical with δis. That is, |Ψ〉, |Φ〉 are LU-equivalent.
Interestingly, the converse is also true for general multipartite system. To prove such a

claim, we need to use a new tool rather than Schmidt coefficients–the LUIPs.

Theorem 3.2. If |Ψ〉⊗r, |Φ〉⊗r are LU equivalent for some r ∈ N, then |Ψ〉, |Φ〉 are LU

equivalent.
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Proof:— Consider the local unitary invariants of Hr = {|ϕ〉⊗r : |ϕ〉 ∈ H}, where these
invariants are regarded as polynomials of |ϕ〉〈ϕ| with |ϕ〉 =

∑

xj1···jn |j1 · · · jn〉 and variables
xj1···jn ∈ C. The set of local unitary invariants is the intersection of rings Qi, where Qi is
the ring generated by the entries of triϕ

⊗r = (triϕ)⊗r.
We have the relation between the local unitary invariants of Hr and the LUIPs of the

original system H as follows: Suppose f1, f2, · · · , fk of degree 2l1, 2l2, · · · , 2lk are LUIPs of
the original system. We have fj lies in the linear span of the entries of (triϕ)⊗li. Then
Πr

j=1fj is a local unitary invariants of Hr for the case
∑

lk divisible by r. To see this, we
only need to observe that Πr

j=1fj is an element of Qi since Πr
j=1fj can be generated by entries

of (triϕ)⊗
∑

k

i=1
li = [(triϕ)⊗r]⊗

∑
k

i=1
li/r, therefore, it can be generated by entries of (triϕ)⊗r.

For any LUIP of the original system H, g with degree 2l, we now show that g(|Ψ〉) =
g(|Φ〉). To see this, we first choose a degree 2 LUIP f0 be the square of 2-norm function,
which satisfies that f0(|Ψ〉) ≡ f0(|Φ〉) according to the LU equivalence of |Ψ〉⊗r, |Φ〉⊗r. Then
the following equation is valid with i+ l divisible by r,

f i
0(|Ψ〉)g(|Ψ〉) = f i

0(|Φ〉)g(|Φ〉)

Therefore, g(|Ψ〉) = g(|Φ〉) is valid for any LUIP g.
By invoking the result that LUIPs are sufficient to separate any two distinct orbits under

local unitary, we can conclude that |Ψ〉, |Φ〉 are LU equivalent. �

Similar statements are true for mixed states, and for quantum channels by recalling
the relation of LU equivalence between pure states, mixed states, and unitary equivalence
between quantum channels.

4. SLOCC equivalence and SLIPs

In the following, we provide an alternative algorithm to construct SLIPs. It is direct to
verify that we only need to compute the invariant polynomials of group SLi, with SLi =
I1 ⊗ · · · ⊗ Ii−1 ⊗ SL(di) ⊗ Ii+1 · · · ⊗ In. We regard the multipartite state as a bipartite pure
state which is isomorphic to a matrix, says X , and the action of the group is the left matrix
multiplication, i.e., X → LX with det(L) = 1. Fortunately, the invariant polynomials of
such map are fully characterized by the ring generated by the determinant of all square
matrix with columns catching from X , see [36] for more details. Then, it is direct to obtain
the invariant ring of SLi, says Ri. After that, we can present an algorithm to construct the
ring of SLIPs for the multipartite system H, which is

⋂n
i=1Ri.

Observe that Ri is generated by polnomials with degree di, the local dimension, then the
degree of any element of Ri is divisible by di. One can confirm the following result which
was obtained by Gour and Wallach in [32]

Observation 1. Any SLIP has degree divisible by lcm{d1, d2, · · · , dn}, the least common

multiple of d1, d2, · · · , dn.

In the following, we study the equivalence between general mixed states under the action
by SLOCC by employing local invariant polynomials. Two quantum states ρ and σ of system

7



H are called equivalent under one term SLOCC if there exists invertible di × di matrices Ai

such that
ρ = (A1 ⊗A2 ⊗ · · · )σ(A1 ⊗ A2 ⊗ · · · )†.

This definition captures the SLOCC equivalence between pure states and keeps the tensor
structure of the group, which enables us to characterize the local invariants. One can verify
that

Proposition 1. ρ and σ are equivalent under one term SLOCC if and only if there is

some s ∈ SLU such that |Ψ〉 is proportional to s|Φ〉, where |Ψ〉, |Φ〉 ∈ H ⊗ Hn+1 are some

purification of ρ, σ with dn+1 being the dimension of Hn+1, and

SLU ≡ SL(d1) ⊗ SL(d2) ⊗ · · · ⊗ SL(dn) ⊗ U(dn+1).

Now we are ready to study the local invariant polynomials of SLU: We define invariant
polynomials of SLU as follows. A function f : H⊗Hn+1 7→ C is an invariant polynomial of
SLU, if f(|Ψ〉) is the homogenous polynomial on entries of Ψ, and

f(s|Ψ〉) = f(|Ψ〉), ∀s ∈ SLU and ∀|Ψ〉 ∈ H ⊗Hn+1.

Given |ϕ〉 =
∑

xj1···jn+1
|j1 · · · jn+1〉 with variables xj1···jn+1

∈ C, one can notice that the
invariant ring, Tn+1, of the action of U(dn+1) is generated by trn+1ϕ, some polynomials of
entries of ϕ. For i < n + 1, one can obtain the invariant ring of SLi–Ri, as our previous
argument in the study of SLOCC equivalence between pure states. Note that one can
not directly compute the intersection of Ri and Tn+1 since unlike Tn+1, Ri is generated by
polynomials of |ϕ〉, not entries of ϕ. In order to characterize the local invariant polynomials
of SLU, one should define Ti be the ring generated by elements of Ri and R∗

i , with R∗
i

standing for the complex conjugate ring of Ri. Thus,
⋂n+1

i=1 Ti is the ring of local invariant
polynomials of SLU.

5. Proof of Theorem 1

In this section, we give a detailed proof of the upper bound on the degree of generators
of LUIPs (Theorem 1) and SLIPs respectively. Before doing so, we recall the celebrated
result of Derksen [? ] on the degree bounds in invariant theory.

Let G be a linearly reductive algebraic group over an algebraically closed field K of
characteristic 0, acting rationally on an s−dimensional vector space V , specified as follows.
G is given by polynomials h1, . . . , hℓ ∈ K[z1, . . . , zt] such that G is the zero set of these
polynomials. The action of G on V is as follows: there are polynomials ai,j for i, j ≤ s,
ai,j ∈ K[z1, . . . , zt] such that g : G → GL(V ) is given by g → (ai,j(g))1≤i,j≤s, where GL(V )
is the general linear group of V , i.e., the group of invertible matrices.

By fixing a basis of V , the polynomial functions over V are identified asR = K[x1, . . . , xs],
and G induces an action on R. The invariant ring of G on V , denoted as RG, consists of
polynomials in R invariant under G, i.e.,

RG = {r : r(g · v) = r(v), r ∈ R, ∀g ∈ G, v ∈ V }.
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It is known that RG is finitely generated. The question here is to derive an explicit degree
bound for this finite generation. To obtain this degree bound, another intermediate quantity
is useful, and for this we recall the concept of nullcone of RG: it is defined as the common
zero set of all homogeneous polynomials in RG with positive degree.

Let β(V,G) be the minimal k such that RG is generated by invariants of degree less than
k, and σ(V,G) be the minimal k such that the invariants of degree less than k defines the
nullcone of RG. Derksen shows that [? ]

σ(V,G) ≤ H t−dAd, and β(V,G) ≤ max(2,
3

8
s · σ(V,G)2),

where A = max{deg(ai,j) | i, j ≤ s}, H = max deg(hi), and d = dim(G), the dimension of
G as an algebraic variety [38].

To begin with, let us apply Derksen’s bound to obtain an explicit upper bound for the
degree to generate the ring of SLIPs. Let S = SL(d1,C) × · · · × SL(dn,C) acts on H in the
natural way, where SL(di,C) is the group of invertible di × di matrices with determinant 1.
In this case R is a polynomial ring over C in

∏

i di variables, identified as the coordinate
ring of H. Our object is then the invariant ring RS.

Note that S is the zero locus of det(z
(k)
i,j )i,j∈[dk] = 1, k = 1, . . . , n. In this setting,

t =
∑

i d
2
i , H = max{di | 1 ≤ i ≤ n}, dim(S) = t− n, and A = n. Thus

σ(H, S) ≤ max(di)
n · n

∑
i
d2
i
−n.

As s = dim(RS) ≤
∏

i di, we get

β(H, S) ≤
3

8
· (
∏

i

di) · max(di)
2n · n

∑
i
2d2

i
−2n.

Therefore, the whole set of SLIPs can be generated by SLIPs with degree no more than
3
8
· (
∏

i di) · max(di)
2n · n

∑
i
2d2

i
−2n.

Now we prove Theorem 1.
Proof of Theorem 1:—For a linear operation ρ in H, g ∈ LU ≤ GL(H) acts on ρ by

sending ρ to gρg† = gρg−1. Let R be the polynomial ring in (
∏

i di)
2 variables, identified as

the coordinate ring of L(H,H), and RLU be LUIPs, i.e., the invariant ring of local unitary
operations.

It is not feasible to apply Derksen’s bound directly, as U cannot be viewed as zero set
of polynomials over algebraically closed field C. This can be fixed by considering the com-
plexification. (For the notion of complexification of compact groups, we refer the reader
to [39, Page 546]. For our purpose here, the concept of complexification associates a com-
pact connected semisimple Lie group with a semisimple connected complex Lie group, s.t.
their irreducible representations “match.”) In our case, the complexification of U yields
G = GL(d1,C) × · · · × GL(dn,C) ≤ GL(H). Recall that we can view R as the space of
representations of LU and G, and note that each invariant polynomial corresponds to the
identity representation. Then by the correspondence between irreducible representations of
LU and G, RLU = RG. Thus it is enough to get a degree bound for the action of G.

9



To get a degree bound for the action of G on R, we further notice that for this particular
action, the invariants of G and S = SL(d1,C) × · · · × SL(dn,C) coincide. This allows us to
apply Derksen’s bounds to the group action of S as follows.

Firstly s = dim(RS) ≤
∏

i d
2
i . To bound σ(H, S), we observe that t =

∑

i d
2
i , H =

max{di | i = 1, . . . , n}, d = dim(S) = t− n, and A =
∑

i di. Thus

σ(L(H,H),G)

= σ(L(H,H), S)

≤ max(di)
n · (

∑

i

di)
∑

i
d2
i
−n,

⇒ β( L(H,H),G)

= β(L(H,H), S)

≤
3

8
(
∏

i

d2i ) · max(di)
2n · (

∑

i

di)
2(
∑

i
d2
i
−n).

�

It is worth mentioning that the bounds present here is not optimal in general.

6. LUIPs for two-qubit, three qubit system

In this section, a set of local unitary invariant polynomials(LUIPs) for two-qubit system
is obtained by using our method as an illustrating example.

For two-qubit system, let |ψ〉AB =
∑

ij=0,1 xij |ij〉, then

ρA =

(

|x00|
2 + |x01|

2 x00x
∗
10 + x01x

∗
11

x∗00x10 + x∗01x11 |x10|
2 + |x11|

2

)

ρB =

(

|x00|
2 + |x10|

2 x00x
∗
01 + x10x

∗
11

x∗00x01 + x∗10x11 |x01|
2 + |x11|

2

)

.

Let SA, SB be sets of polynomials as,

SA = {|x00|
2 + |x01|

2, x00x
∗
10 + x01x

∗
11, x

∗
00x10 + x∗01x11, |x10|

2 + |x11|
2},

SB = {|x00|
2 + |x10|

2, x00x
∗
01 + x10x

∗
11, x

∗
00x01 + x∗10x11, |x01|

2 + |x11|
2}.

According to the method of our main result, we can compute the LUIPs as following.
Degree 2 LUIP lies in the intersection of subspaces spanned by SA and SB, one only need

to deal with the following equation:

α0(|x00|
2 + |x01|

2) + α1(x00x
∗
10 + x01x

∗
11) + α2(x

∗
00x10 + x∗01x11) + α3(|x10|

2 + |x11|
2)

≡ β0(|x00|
2 + |x10|

2) + β1(x00x
∗
01 + x10x

∗
11) + β2(x

∗
00x01 + x∗10x11) + β3(|x01|

2 + |x11|
2).

By comparing the coefficients of this equation, we know that α0 = α3 = β0 = β3 and
α1 = α2 = β1 = β2 = 0, which means that the only (up to a scalar) degree 2 LUIP is

〈ψ|ψ〉 =
∑

ij=0,1

|xij|
2.

10



The degree 4 LUIPs lies in the intersection of the subspaces spanned by S2
A and S2

B, one
only need to deal with the following equation:

α0(|x00|
2 + |x01|

2)2 + α1(|x00|
2 + |x01|

2)(x00x
∗
10 + x01x

∗
11) + α2(|x00|

2 + |x01|
2)(x∗00x10 + x∗01x11)

+ α3(|x00|
2 + |x01|

2)(|x10|
2 + |x11|

2) + α4(x00x
∗
10 + x01x

∗
11)

2 + α5(x00x
∗
10 + x01x

∗
11)(x

∗
00x10 + x∗01x11)

+ α6(x00x
∗
10 + x01x

∗
11)(|x10|

2 + |x11|
2) + α7(x

∗
00x10 + x∗01x11)

2 + α8(x
∗
00x10 + x∗01x11)(|x10|

2 + |x11|
2)

+ α9(|x10|
2 + |x11|

2)2

≡ β0(|x00|
2 + |x10|

2)2 + β1(|x00|
2 + |x10|

2)(x00x
∗
01 + x10x

∗
11) + β2(|x00|

2 + |x10|
2)(x∗00x01 + x∗10x11)

+ β3(|x00|
2 + |x10|

2)(|x01|
2 + |x11|

2) + β4(x00x
∗
01 + x10x

∗
11)

2 + β5(x00x
∗
01 + x10x

∗
11)(x

∗
00x01 + x∗10x11)

+ β6(x00x
∗
01 + x10x

∗
11)(|x01|

2 + |x11|
2) + β7(x

∗
00x01 + x∗10x11)

2 + β8(x
∗
00x01 + x∗10x11)(|x01|

2 + |x11|
2)

+ β9(|x01|
2 + |x11|

2)2.

By comparing the coefficients of this equation, we know that α0 = α9 = β0 = β9 = α3+α5

2
=

β3+β5

2
and α1 = α2 = α4 = α6 = α7 = α8 = β1 = β2 = β4 = β6 = β7 = β8 = 0, which means

that the degree 4 LUIPs are spanned by

(|x00|
2 + |x01|

2 + |x10|
2 + |x11|

2)2 = tr2(ρA) = tr2(ρB),

(|x00|
2 + |x01|

2)2 + (|x10|
2 + |x11|

2)2 + 2|x00x
∗
10 + x01x

∗
11|

2

= (|x00|
2 + |x10|

2)2 + (|x01|
2 + |x11|

2)2 + 2|x00x
∗
01 + x10x

∗
11|

2 = tr(ρ2A) = tr2(ρ2B).

It is well known that for two-qubit pure states, the degree 2 and 4 LUIPs can generate the
whole ring of LUIPs.

7. Conclusion

In this paper, we give a characterization of multipartite entanglement by exploiting a
systematic method to describe the ring of all LUIPs. More precisely, we then provide an
algorithm to construct a set of generators of the ring of LUIPs. By employing our structure
description of LUIPs, we are able to show that multipartite entanglement is additive in the
sense that two multipartite states are LU equivalent if and only if r-copies of these two states
are LU equivalent for some r. This idea gives an alternative way to study the multipartite
entanglement in terms of equivalence classes of states under SLOCC, even for mixed states.
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