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Abstract

We study a general online combinatorial auction problem in algorithmic mechanism design. A
provider allocates multiple types of capacity-limited resources to customers that arrive in a sequential
and arbitrary manner. Each customer has a private valuation function on bundles of resources that
she can purchase (e.g., a combination of different resources such as CPU and RAM in cloud comput-
ing). The provider charges payment from customers who purchase a bundle of resources and incurs
an increasing supply cost with respect to the totality of resources allocated. The goal is to maximize
the social welfare, namely, the total valuation of customers for their purchased bundles, minus the
total supply cost of the provider for all the resources that have been allocated. We adopt the com-
petitive analysis framework and provide posted-price mechanisms with optimal competitive ratios.
Our pricing mechanism is optimal in the sense that no other online algorithms can achieve a better
competitive ratio. We validate the theoretic results via empirical studies of online resource alloca-
tion in cloud computing. Our numerical results demonstrate that the proposed pricing mechanism
is competitive and robust against system uncertainties and outperforms existing benchmarks.
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1 Introduction

Many auction problems involve allocation of distinct types of resources concurrently. For example,
customers in auction-based cloud computing platforms can bid on virtual machines or containers with
a package of resources such as CPU and RAM. In these problems, customers often have preferences for
bundles or combinations of different items, instead of a single one [13]. For this reason, pricing and
allocating resources to customers with combinatorial preferences or valuations, termed as combinatorial
auctions (CAs) [21] [24], play a critical role in enhancing economic efficiency. This is also considered a
hard-core problem in algorithmic mechanism design [21].

In this paper, we study an online version of CAs for resource allocation with supply costs and capacity
limits. A single provider allocates multiple types of capacity-limited resources to customers that arrive
in a sequential and arbitrary manner. Each customer has a valuation function on possible bundles of
resources that she wants to purchase. The provider charges payment from customers who purchase a
bundle of resources and incurs an increasing marginal supply cost (i.e., the derivative of the supply cost
function) per unit of consumed resource. The goal is to maximize the social welfare, namely, the total
valuation of customers for their purchased bundles, minus the supply cost of the provider for all the
resources allocated.

When online CAs are subject to increasing supply costs and capacity limits, a fundamental challenge
is how to properly price the resources in the absence of future information. Specifically, if the resources
are sold too cheaply (i.e., too aggressive), then an excessive portion of them may be purchased by earlier
customers with low valuations. This will increase the total cost for the provider and thus the price,
which consequently prevents later customers from purchasing the resources even if their valuations are
higher than the earlier ones. On the other hand, if the price is set too high (i.e., too conservative),
then the provider may lose customers, leading to poor performance as well. This paper tackles this
challenge by proposing pricing mechanisms that achieve an optimal balance between aggressiveness and
conservativeness without future information, leading to the best-achievable competitive ratios under
arbitrary increasing marginal cost functions.

Our results are applicable to a variety of resource allocation problems in the emerging paradigms of
networking and computing systems. For example, for auction-based resource allocation in infrastructure-
as-a-service clouds, providers can charge their users with a certain payment mechanism while also paying
a considerable amount of energy costs to maintain the computing servers [12]. Another example is 5G
network slicing, one of the key elements of 5G communications [26]. The ultimate goal of network slicing
is to dynamically package different types of network resources (e.g., the base stations and the spectrum
channels) for different customers. Here, the network operator needs to consider the cost for providing
these resources. In this regard, the model studied in this paper offers a promising option to address such
resource allocation problems in 5G network slicing.

1.1 Related Work

Online CAs without supply costs, which is essentially an online set-packing problem [13], has been widely
studied, including online auctions [4], [7], online matching [18] [16], AdWords problems [14], [20], online
covering and packing problems [3], [8], and online knapsack problems [31]. Among them, the authors of [4]
studied an online CA problem and proposed an O(log(vmax/vmin))-competitive online algorithm when
there are Ω(log(vmax/vmin)) copies of each item and each customer’s valuation is assumed to be within
the interval of [vmin, vmax]. Similar results have also been reported for online knapsack problems [31]. By
assuming that the weight of each item is much smaller than the capacity of the knapsack, and that the
value-to-weight ratio of each item is bounded within the interval of [L,U ], the authors of [31] proposed
an algorithm which is (1 + ln(U/L))-competitive.

One of the common assumptions made in the above papers is that the resources can be allocated
without incurring an increasing supply cost for the provider. Although this assumption is reasonable for
the allocation of digital goods [20], it may not hold for most paradigms of network resource managements,
where the production cost or the operational cost is an increasing function of the allocated resources.
Motivated by this, Blum et al. [5] pioneered the study of online CAs with an increasing production cost.
In this setting, the provider can produce any number of copies of the items being sold (i.e., without
capacity limit), but needs to pay an increasing marginal production cost per copy. Blum et al. proposed
a pricing scheme called twice-the-index for several reasonable marginal production cost functions such
as linear, lower-degree polynomial and logarithmic functions. For each of these functions, a constant
competitive ratio was derived. Huang et al. [17] later studied a similar problem and achieved a tighter
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competitive ratio with a unified pricing framework. In particular, for power cost functions, they proved
that the optimal competitive ratio can be achieved when there is no capacity limit. In contrast to [5]
and [17], in this work we prove that in the capacity-limited case, direct application of the pricing schemes
designed in [5] and [17] is suboptimal, and a tighter (and optimal) competitive ratio can be achieved by
our newly proposed pricing schemes.

1.2 Major Contributions

We develop an optimal posted-price mechanism (PPM), dubbed PPMϕ, for online CAs with supply
costs and capacity limits. PPMϕ is optimal in the sense that no other online algorithms can achieve a
tighter/better competitive ratio. One of the key elements in PPMϕ is a strategically-designed pricing
function ϕ that determines the selling price based on the current resource utilization levels only. In the
general case where the supply cost function is convex and differentiable, we prove that the necessary and
sufficient conditions for PPMϕ to be competitive are related to the existence of an increasing pricing
function ϕ for a group of first-order two-point boundary value problems (BVPs) in the field of ordinary
differential equations (ODEs) [2, 22]. We derive structural results based on these BVPs that lead to
a fundamental characterization of the optimal competitive ratios and the optimal pricing functions.
To validate our structural results, we perform a case study when the supply cost function is a power
function (e.g., f(y) = ays), which is an important case widely exploited [5,17,28,29], and show that both
the optimal competitive ratios and the corresponding optimal pricing functions can be characterized
in analytical forms with some low-complexity numerical computations. Our optimal analytical results
for the power cost function improve or generalize the results in several previous studies, e.g., [5], [17],
[30], [27]. Moreover, our structural results can also be extended to general settings of online resource
allocation with heterogeneous supply costs and multiple time slots.

2 The Basic Resource Allocation Model

This section presents the basic model, the technical assumptions and the definition of competitive ratios
for online resource allocation with supply costs and capacity limits.

2.1 The Basic Model

We consider a single provider who allocates a set K = {1, · · · ,K} ofK types of resources to its customers.
Each type of resource k ∈ K is associated with a cost function fk(y), where fk(y) denotes the total supply
cost of providing y units of resource k. For example, if resource k represents the computing cycles in
cloud/fog/edge computing [10], then the supply cost fk(y) can represent the electricity cost of maintaining
the computing servers. In the following we will also frequently use the derivative of fk, i.e., the marginal
cost function f ′k. For simplicity of exposition, we assume that the cost functions are identical for all
types of resources, and thus we drop the index k and simply use f to denote the supply cost function of
all resource types. Our results are applicable to general cases with heterogeneous cost functions, and we
will provide our general results in Section 5.

We consider an online setting where customers arrive one at a time in some arbitrary manner. In
particular, for a set of customers N = {1, 2, · · · , N}, we denote the arrival time of customer n by tn.
Meanwhile, we assume without loss of generality that t1 ≤ t2 ≤ · · · ≤ tN , where ties are broken arbitrarily
if multiple customers arrive simultaneously. Each customer n wants to get a bundle of resources b ∈ B
based on their own preferences, where B denotes the set of all the possible bundles (including the empty
bundle ∅). A bundle b of resources is denoted by the vector (rb1, · · · , rbK), where rbk denotes the number
of units for resource k ∈ K. We consider the case of limited-supply, and normalize the capacity limit to
be 1 for each resource type. Therefore, rbk is also normalized to be the proportion of the capacity limit
accordingly. Each customer n has a private valuation function vn : B → R, where vn(b) denotes the
valuation of customer n for getting bundle b ∈ B. For simplicity of notations, we denote the valuation by
vbn = vn(b) if customer n gets bundle b ∈ B. In the following we may use vbn and vn(b) interchangeably.
We do not make any assumption regarding the valuation functions (except that vn(∅) = 0, i.e., valuation
of the empty bundle is zero).

In the standard setting of online CAs, the provider does not have any information about the customers.
Upon the arrival of each customer n ∈ N , the customer reports a valuation function v̂n to the provider.
The valuation function v̂n may or may not be the true valuation of customer n (i.e., customers may
strategically manipulate their bids). The provider collects the valuation function v̂n from customer n
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and decides an irrevocable decision about whether to accept this customer or not. The provider will
wait for the next customer n + 1 if customer n is rejected (or customer n gets an empty bundle ∅).
Otherwise, the provider needs to determine the payment πn to be collected from customer n based on
the known information (including current valuation function v̂n and all the previous valuation functions
before customer n), and then allocates a bundle bn ∈ B of resources to customer n. The resulting
payment rule (i.e., the determination of {πn}∀n) and the allocation rule (i.e., the determination of
{bn}∀n) constitute an online mechanism. An important economic objective in mechanism design is
incentive compatibility. Specifically, a mechanism is incentive compatible or truthful if each customer
maximizes its own quasilinear utility, i.e., vn(bn)− πn, by reporting the true valuation function, namely,
v̂n = vn.

The objective is to design the payment rule to incentivize customers to truthfully report their valu-
ation functions, and the allocation rule to maximize the social welfare

∑
n∈N vn(bn)−

∑
k∈K f(yk).

2.2 Assumptions

We make the following assumptions throughout the paper.

Assumption 1. The cost function f(y) is differentiable and strictly-convex in y ∈ [0, 1] and f(0) = 0.

If we denote the set of all differentiable and strictly-convex cost functions with f(0) = 0 by F , then
Assumption 1 states that we only focus on the cases when f ∈ F . In the following we will frequently use
the minimum and maximum marginal costs defined as follows:

c ≜ f ′(0), c ≜ f ′(1). (1)

Intuitively, if f is known to the provider, then c and c are known to the provider as well. Note that a
given cost function f ∈ F always has a strictly-increasing marginal cost f ′.

Assumption 2. For each resource type k ∈ K, the number of units in each bundle b ∈ B is much smaller
than the total capacity limit, i.e., rbk ≪ 1.

Assumption 2 states that allocating a bundle of resources to a single customer does not substantially
influence the overall system and market (i.e., each customer’s demand is very small), and thus allows
us to focus on the online nature of the problem with mathematical convenience. In large-scale systems
(e.g., when N is large), Assumption 2 naturally holds.

Assumption 3. The per-unit-valuation (PUV) of all customers, defined as vbn/r
b
k, is upper bounded by

p, namely,
max

n∈N ,b∈B,k∈K,rbk ̸=0

{
vbn/r

b
k

}
≤ p. (2)

We will refer to p as the upper bound hereinafter. Since rbk is finite, Assumption 3 states that the
outputs of the value function vn(·) are upper bounded, and thus it helps to eliminate those irrational cases
with extremely-high valuations. Alternatively, p can be interpreted as the maximum price customers are
willing to pay for purchasing a single unit of resource. Throughout the paper we also assume p > c in
order to ensure that the problem setup is interesting. Otherwise, no resources will be allocated.

2.3 Competitive Analysis

We categorize all the parameters defined previously into the following two groups:

1. The Setup S: all the parameters known at the beginning, including the cost function f ∈ F , the
upper bound p, the set of resource types K, and the set of bundles B.

2. The Arrival Instance A: all the parameters revealed over time, including the set of customers N ,
their arrival times {tn}∀n∈N , and the valuation functions {vn(·)}∀n∈N .

An arrival instance A consists of all the information in the customer side that is not known to the
provider a priori. In the offline setting when we assume a complete knowledge of A, the optimal social
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welfare Wopt(A) can be obtained by solving the following mixed-integer program:

Wopt(A) = maximize
x,y

∑
n∈N

∑
b∈B

vbnx
b
n −

∑
k∈K

f (yk) , (3a)

subject to
∑
n∈N

∑
b∈B

rbkx
b
n = yk,∀k, (3b)∑

b∈B
xbn ≤ 1,∀n, (3c)

0 ≤ yk ≤ 1,∀k, (3d)

xbn ∈ {0, 1},∀n, b, (3e)

where xbn ∈ {0, 1} is a binary variable that represents the status of bundle b for customer n, and yk
denotes the total resource consumption of resource type k in the end. In particular, xbn = 1 means that
bundle b is allocated to customer n, and xbn = 0 otherwise. It is possible that xbn = 0 for all b ∈ B,
meaning that customer n will leave without making any purchase. Constraint (3c) indicates that at most
one bundle will be allocated to each customer. Constraint (3d) denotes the normalized capacity limit
for resource type k ∈ K.

In the online setting when customers are revealed one-by-one in a sequential manner, the social
welfare performance, denoted by Wonline(A), can be quantified via the standard competitive analysis
framework [6]. Specifically, an online mechanism is α-competitive if

Wonline(A) ≥ 1

α
Wopt(A) (4)

holds for all possible arrival instances A, where α ≥ 1. Our target is to design an online mechanism such
that Wonline is as close to Wopt as possible, i.e., α is as close to 1 as possible.

Algorithm 1: PPM with Pricing Function ϕ (PPMϕ)

1: Input: Setup S and ϕ, and initialize y
(0)
k = 0,∀k.

2: while a new customer n arrives do
3: Offer resource k ∈ K at price p

(n)
k as follows:

p
(n)
k = ϕ(y

(n−1)
k ). (5)

4: Customer chooses the utility-maximizing bundle
b∗ by solving the following problem:

b∗ = argmax
b∈B

vbn −
∑

k∈K
p
(n)
k rbk, (6)

where rbk denotes the units of resource k in bundle
b, and then calculates the potential payment

πn =
∑

k∈K
p
(n)
k rb∗k . (7)

5: if vb∗n − πn < 0 or y
(n−1)
k + rb∗k > 1 holds for any k ∈ K then

6: Customer n leaves without purchasing anything (i.e., xbn = 0 for all b ∈ B).
7: else
8: Customer n chooses bundle b∗ and pays πn to the provider (i.e., xb∗n = 1 and xbn = 0,

∀b ∈ B\{b∗}).
9: Provider updates the resource consumption by

y
(n)
k = y

(n−1)
k + rb∗k ,∀k ∈ K. (8)

10: end if
11: end while

4



3 PPM and Structural Results

In this section, we introduce our proposed online mechanism PPMϕ, and present the necessary and
sufficient conditions for PPMϕ to be α-competitive. Based on these conditions, we derive structural
results to characterize the minimum value of α.

3.1 PPMϕ: An Overview of How It Works

We focus on the setting of posted-price [9] and propose PPMϕ in Algorithm 1. In posted-price, the
provider cannot ask the customers to submit their valuation functions, and thus cannot run Vick-
rey–Clarke–Groves auctions [21]. Instead, the provider posts prices upon arrival of each customer n ∈ N ,
and lets customer n make her own decision on whether to purchase or not based on the posted prices. In
this regard, posted-price is privacy-preserving since it does not require customers to reveal their private
valuation functions. Meanwhile, by virtue of posted-price, our proposed PPMϕ is incentive compatible
since false reports naturally vanish [9].

In Algorithm 1, at each round when there is a new arrival of customer n ∈ N , the provider offers her

the prices {p(n)k }∀k by Eq. (5), where ϕ is referred to as the pricing function and y
(n−1)
k denotes the

utilization of resource type k ∈ K upon the arrival of customer n, i.e., after processing customer n − 1.

Note that when n = 1, the posted price for the first customer is given by p
(1)
k = ϕ(y0k), where y

(0)
k is

the resource utilization before processing the first customer, and thus is initialized to be zero. Based on

the offered prices {p(n)k }∀k, customer n selects the utility-maximizing bundle by solving the problem in
Eq. (6) and calculates the potential payment in Eq. (7). If the maximum utility of customer n, i.e.,
vb∗n − πn, is less than zero (i.e., negative utility), or the capacity limit constraint (3d) is violated, then
customer n will leave without purchasing anything1 and the provider will wait for the next customer
n+1. Otherwise, customer n will choose bundle b∗. The provider will charge this customer the payment
πn and update the total resource utilization level yk in Eq. (8). The process repeats upon arrival of
customer n+ 1.

The above processes show that the solutions found by PPMϕ, namely, {xbn}∀n,b and {y(n)k }∀n,k, are
always feasible to Problem (3). Another observation is that the pricing function ϕ plays a critical role in
PPMϕ. Indeed, it is ϕ that determines the posted prices in line 3, and then influences each customer’s
decision-making in line 4-line 8, which ultimately influences the social welfare achieved by PPMϕ, i.e.,

Wonline(A) =
∑
n∈N

vb∗n x
b∗
n −

∑
k∈K

f
(
y
(N)
k

)
. (9)

In Eq. (9), y
(N)
k denotes the final resource utilization of resource type k ∈ K, and xb∗n denotes the status

of the utility-maximized bundle b∗ for customer n, i.e., xb∗n = 1 denotes that customer n obtains bundle

b∗, and xb∗n = 0 otherwise. Note that both {xb∗n }∀n and {y(N)
k }∀k depend on the pricing function ϕ, and

thus the final competitive ratio of PPMϕ depends on ϕ as well.

3.2 Conditions for PPMϕ to Be α-Competitive

An important result in this paper is the development of the following Theorem 1, which characterizes
the sufficient and necessary conditions for the pricing function ϕ such that PPMϕ can be α-competitive.

Theorem 1. Given a setup S with p ∈ (c,+∞), we have:

• Low-Uncertainty Case (LUC): p ∈ (c, c].

– Sufficiency. For any given α ≥ 1, if ϕ(y) is a solution to the following first-order BVP:

L(α)

{
ϕ′(y) = α · ϕ(y)−f

′(y)
f ′−1(ϕ(y)) , y ∈ (0, v),

ϕ(0) = c, ϕ (v) ≥ p,

where v ≜ f ′−1(p) and f ′−1 denotes the inverse of f ′, then PPMϕ is α-competitive.

– Necessity. If there exists an α-competitive online algorithm, then there must exist a
strictly-increasing function ϕ(y) that satisfies L(α).

1We assume that customers are rational and will not purchase any bundle if they suffer from negative utilities. This is
known as the individual rationality in economics and is a common design objective in mechanism design [21].
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• High-Uncertainty Case (HUC): p ∈ (c,+∞).

– Sufficiency. For any given α ≥ 1, if ϕ(y) is a solution to the following two first-order
BVPs simultaneously:

H1(u, α)

{
ϕ′(y) = α · ϕ(y)−f

′(y)
f ′−1(ϕ(y)) , y ∈ (0, u),

ϕ(0) = c, ϕ(u) = c.

H2(u, α)

{
ϕ′(y) = α · (ϕ(y)− f ′(y)) , y ∈ (u, 1),

ϕ(u) = c, ϕ(1) ≥ p,

where u ∈ (0, 1) is the resource utilization level such that ϕ(u) = c, then PPMϕ is α-
competitive.

– Necessity. If there exists an α-competitive online algorithm, then there must exist a
resource utilization level u ∈ (0, 1) and a strictly-increasing function ϕ(y) such that ϕ(y)
satisfies {H1(u, α),H2(u, α)}.

Proof. The terms LUC and HUC arise from the fact that p indicates the uncertainty level of the PUVs
in the arrival instance A, namely, a larger p implies a wider range of the PUV distribution (note that
the PUVs are randomly distributed within [0, p] based on Assumption 3), and vice versa. We emphasize
that the division into cases LUC and HUC is not artificial, but arise from a principled online primal-dual
analysis of Problem (3). The detailed proof is given in Appendix A.

Theorem 1 consists of the conditions that are both sufficient and necessary. The sufficiency in Theorem
1 argues that PPMϕ is α-competitive as long as the pricing function ϕ is a strictly-increasing solution
to the corresponding BVPs in LUC and HUC. Hence, the discussion is within the domain of PPMs. The
necessity of Theorem 1 argues that if there exists any α-competitive online algorithm, then there must
exist a strictly-increasing solution to the corresponding BVPs. Therefore, the necessity of Theorem 1 is
not restricted to PPMs only, and thus is more general.

(Intuition of Theorem 1) In Fig. 1, we illustrate two pricing functions for both LUC and HUC. Fig.
1(a) illustrates a special case in LUC when ϕ(v) = p, where v = f ′−1(p) denotes the maximum-possible
resource utilization level for PPMϕ. Here we use the pricing function illustrated in Fig. 1(a) to briefly
explain the intuition behind the BVP of L(α). The rationality of the two BVPs in HUC follows the same
principle. Note that the ODE of L(α) in Theorem 1 can be reorganized as

ϕ(y)− f ′(y) =
1

α
ϕ′(y)f ′−1 (ϕ(y)) , y ∈ (0, v). (11)

The left-hand-side of Eq. (11) is illustrated by the grey area in Fig. 1(a). Since f(0) = 0, ϕ(0) = c, and
ϕ(v) = p, integrating both sides of Eq. (11) for y ∈ [0, v] leads to∫ v

0

ϕ(y)dy − f(v) =
1

α

∫ v

0

ϕ′(y)f ′−1 (ϕ(y)) dy =
1

α

∫ p

c

f ′−1 (ϕ) dϕ. (12)

Notice that the last integration in Eq. (12) is over the inverse of the marginal cost function, which can
be solved in analytical form so Eq. (12) is equivalently written as

α =
pv − f(v)∫ v

0
ϕ(y)dy − f(v)

. (13)

Next we show that Eq. (13) essentially captures the worst-case ratio between the optimal offline social
welfare and the social welfare achieved by PPMϕ under a special arrival instance.

Suppose we have an arrival instance Av given as follows: for all y ∈ [0, v], there is a continuum
of customers, indexed by y ∈ [0, v], whose valuations are given by vy = ϕ(y)∆y, where ∆y denotes the
units of resources that are purchased by customer y and is infinitesimally small. For y ∈ (v, 2v], there
is another continuum of customers whose valuations are given by vy = p∆y. Given the arrival instance
Av, PPMϕ will accept all the customers indexed by y ∈ [0, v]. Thus, the social welfare achieved by
PPMϕ is the denominator of the right-hand-side of Eq. (13), namely, the total valuation of all the
accepted customers less the supply cost f(v). The optimal offline social welfare, however, is to reject
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(b) HUC: p ∈ (c,+∞)

Figure 1: Illustration of the pricing function ϕ in LUC and HUC.

all the customers indexed by y ∈ [0, v] but only accept the second continuum of customers indexed by
y ∈ (v, 2v]. Therefore, the optimal offline social welfare in hindsight is given by pv − f(v), which is
exactly the numerator of the right-hand-side of Eq. (13). Therefore, a pricing function ϕ(y) that satisfies
L(α) leads to the quotient in Eq. (13), which captures the worst-case ratio α between the social welfare
achieved by the optimal offline algorithm and PPMϕ. Based on the competitive ratio definition in Eq.
(4), we can see that PPMϕ is α-competitive.

(Dividing Threshold) Note that for the case of LUC in Fig. 1(a), the capacity limit 1 will never
be reached. Otherwise, the system may suffer from negative social welfare (i.e., added valuations are
smaller than the increased supply costs). In contrast, Fig. 1(b) illustrates a pricing function in HUC
with ϕ(0) = c and ϕ(1) = p. In this case, the capacity limit 1 can be reached as long as we have enough
customers. In particular, there exists a threshold u ∈ (0, 1) such that ϕ(u) = f ′(1) = c. In the following
we refer to u ∈ (0, 1) as the dividing threshold of pricing function ϕ. The formal definition is given as
follows.

Definition 1. Given a continuous pricing function ϕ with ϕ(0) < c and ϕ(1) > c, the dividing threshold
of ϕ is the resource utilization level u ∈ (0, 1) so that ϕ(u) = f ′(1) = c.

In HUC, for any dividing threshold u ∈ (0, 1), the whole interval of [0, 1] is divided into segments [0, u]
and [u, 1]. When the lower and upper bounds of ϕ are fixed, e.g., ϕ(0) = c and ϕ(1) = p in Fig. 2(b), the
dividing threshold u has a strong impact on the curvature of ϕ. A smaller dividing threshold u indicates
a steeper pricing curve in [0, u], and thus will perform better for arrival instances with high-PUVs. In
contrast, a larger dividing threshold u indicates a less steep pricing curve within [0, u] and thus will
perform better for arrival instances with low-PUVs. When there is no future information, we need to
find a balance between these two so that the resulting online mechanism PPMϕ has a stable performance
regardless of arrival instances. Theorem 1 captures this intuition by explicitly discriminating the pricing
function design in [0, u] and [u, 1] with two different BVPs in HUC. The next subsection shows that if
the dividing threshold u is strategically chosen, the competitive ratio of PPMϕ can be minimized.

3.3 Structural Analysis for Optimal Design

Recall that our objective is to design online mechanisms to achieve the value of α which is as small as
possible. To quantify how small α can possibly be, we define the optimal competitive ratio in the
following Definition 2.

Definition 2. Given a setup S, the competitive ratio α is optimal if no other online algorithms can
achieve a smaller competitive ratio under Assumption 1-Assumption 3.

Based on the necessity in Theorem 1, to find the optimal competitive ratio for a given setup S, it
suffices to find the minimum α so that there exist strictly-increasing solutions to the BVPs in Theorem
1. Hence, we give Proposition 1 below.
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Proposition 1. Given a setup S, if α∗(S) is defined as follows:

α∗(S) ≜ inf


α

∣∣∣∣∣
there exists a strictly-increasing
function ϕ so that i) if p ∈ (c, c],
ϕ is a solution to L(α), or ii) if
p > c, ϕ is a solution to H1(u, α)
and H2(u, α)} with a feasible
dividing threshold u ∈ (0, 1).


,

then α∗(S) is the optimal competitive ratio achievable by all online algorithms.

Proposition 1 directly follows the necessity of Theorem 1. Based on Proposition 1, we have the
following corollary.

Corollary 1. Given a setup S, there exists no (α∗(S)− ϵ)-competitive online algorithm, ∀ϵ > 0.

Based on Proposition 1, to obtain the optimal competitive ratio α∗(S), we just need to characterize
the existence conditions of strictly-increasing solutions to the BVPs in Theorem 1. Note that in LUC, for
a given setup S, L(α) is not indexed by any other parameters except the competitive ratio parameter α,
and thus, α∗(S) is the minimum α so that there exists a strictly-increasing solution to L(α). However, in
HUC, both the two BVPs are indexed by the dividing threshold u, which is a design variable that can be
flexibly chosen within (0, 1). As a result, the minimum α to guarantee the existence of strictly-increasing
solutions to {H1(u, α),H2(u, α)} will depend on u. To characterize this dependency, we define the lower
bound of α for each given u ∈ (0, 1) as follows.

Definition 3 (Lower Bound of α in HUC). Given a setup S with p ∈ (c,+∞), the lower bound of α
for any given u ∈ (0, 1), denoted by α(u), is defined as follows:

α(u) ≜ inf

α
∣∣∣∣∣ There exists a strictly-increasing
pricing function ϕ(y) that is a
solution to {H1(u, α),H2(u, α)}.

 .

Based on Definition 3, the optimal competitive ratio can be calculated as follows:

α∗(S) = α(u∗), where u∗ = arg min
u∈(0,1)

α(u), (14)

where u∗ denotes the optimal dividing threshold.

Algorithm 2: Principles of Optimal Design

1: Input: the setup S with p ∈ (c,+∞).
2: if p ∈ (c, c] then
3: Get the minimum α, denoted by α∗(S), so that

there exists a strictly-increasing solution to L(α).
4: Solve L(α∗(S)) and get the optimal pricing

function ϕ so that PPMϕ is α∗(S)-competitive.
5: else
6: Get the lower bound α(u) based on Definition 3.
7: Obtain α∗(S) and u∗ ∈ (0, 1) based on Eq. (14).
8: Solve {H1(u∗, α(u∗)),H2(u∗, α(u∗))} and get

the optimal pricing function ϕ so that PPMϕ is α∗(S)-competitive or α(u∗)-competitive.
9: end if

10: Output: α∗(S) and optimal pricing functions.

Algorithm 2 summarizes the above structural results and provides a principled way to characterize
the optimal competitive ratio and the corresponding optimal pricing function for any given setup S. The
key steps in Algorithm 2 are line 3 and line 6, in which we need to characterize the conditions for the
existence of strictly-increasing solutions to the BVPs in Theorem 1. We emphasize that characterizing
such existence conditions heavily depends on the cost function f . The next section will demonstrate how
such conditions can be derived in analytical forms when f is a power function.
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4 Case Study: f(y) = ays

We now perform a case study for f(y) = ays (i.e., power function), and show how to use Algorithm 2
to obtain the minimum value of α, the optimal dividing threshold u∗, and the corresponding optimal
pricing functions. At the end of this section, we will discuss some important structural properties about
the optimal pricing functions.

4.1 Preliminaries: The BVPs in Both Cases

We consider f(y) = ays with a > 0 and s > 1 so that the marginal cost f ′(y) = asys−1 is strictly
increasing. Such power cost functions are often used for modeling the costs that are diseconomies-of-
scale (i.e., no volume discounts). For example, when s ≥ 2, f(y) is a classic power-rate curve, reflecting
the power consumption of a general networking and computing device with the capability of speed-
scaling [28, 29], e.g., CPU, edge router, and communication link. It is also common to use s = 1 ∼ 3 to
model the power consumption of data centers in cloud computing [12,30].

When f(y) = ays, the minimum marginal cost is c = f ′(0) = 0 and the maximum marginal cost is
c = f ′(1) = as. Based on Theorem 1, L(α), H1(u, α), and H2(u, α) can be written as follows:

• LUC: p ∈ (c, c]. L(α) is given byϕ
′(y) = α · ϕ(y)−f ′(y)

(ϕ(y)/c)
1

s−1
, y ∈ (0, v),

ϕ(0) = 0, ϕ(v) ≥ p,
(15)

where v = f ′−1(p) = (p/c)
1

s−1 .

• HUC: p ∈ (c,+∞). {H1(u, α),H2(u, α)} are given byϕ
′(y) = α · ϕ(y)−f ′(y)

(ϕ(y)/c)
1

s−1
, y ∈ (0, u),

ϕ(0) = 0, ϕ(u) = c,
(16a)

{
ϕ′(y) = α ·

(
ϕ(y)− cys−1

)
, y ∈ (u, 1),

ϕ(u) = c, ϕ(1) ≥ p,
(16b)

where Problem (16a) corresponds to H1(u, α), and Problem (16b) corresponds to H2(u, α).

Following lines 3 and 6 in Algorithm 2, the next subsection will characterize the conditions for the
existence of strictly-increasing solutions to the BVPs in Eq. (15) and Eq. (16).

4.2 Lower Bound of α in LUC and HUC

4.2.1 Lower Bound of α in LUC

We first focus on LUC and give the following Theorem 2.

Theorem 2. Given a setup S with f(y) = ays and p ∈ (c, c], there exist strictly-increasing solutions
to Problem (15) if and only if α ≥ αmin

s , where αmin
s = s

s
s−1 .

Theorem 2 provides the lower bound of α so that there exists a strictly-increasing solution to Problem
(15) above. Based on Proposition 1, we can conclude that the optimal competitive ratio α∗(S) = αmin

s .
According to line 4 in Algorithm 2, the design of optimal pricing functions in LUC is equivalent to solving
Problem (15) with α = α∗(S) = αmin

s . In Section 4.4, we will discuss how to solve Problem (15) to get
a set of infinitely-many optimal pricing functions.

4.2.2 Lower Bound of α in HUC

Theorem 3 below summarizes a necessary and sufficient condition for α such that we can guarantee the
existence of a strictly-increasing solution to Problem (16a) and this solution is unique.
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Theorem 3. Given a setup S with f(y) = ays and p > c, for any u ∈ (0, 1), there exists a unique
strictly-increasing solution to Problem (16a) if and only if α ≥ α1(u), where α1(u) is given by

α1(u) =

{
αs(u) if u ∈ (0, us) ,

αmin
s if u ∈ [us, 1) .

(17)

In Eq. (17), αs(u) and us are given as follows:

αs(u) =
s− 1

u− us
, us =

(1
s

) 1
s−1

. (18)

Proof. The proof of the above two theorems is non-trivial since the right-hand-side of the ODE in Problem
(16a) (also Problem (15)) has a singular boundary condition at ϕ(0) = 0 [22]. The detailed proof is given
in Appendix B.

Theorem 3 provides a lower bound of α for each given dividing threshold u. Note that αs(us) = αmin
s .

Thus, α1(u) is continuous in u ∈ (0, 1). Meanwhile, α1(u) is non-increasing in u ∈ (0, 1) and achieves
its minimum αmin

s when u ∈ [us, 1). However, we cannot directly conclude that the optimal competitive
ratio in HUC is also αmin

s . This is because it is unclear whether there exists any strictly-increasing solution
to Problem (16b) when u ∈ [us, 1) and α = αmin

s . To answer this question, below we give Theorem 4.

Theorem 4. Given a setup S with f(y) = ays and p > c, for any u ∈ (0, 1), there exists a unique
strictly-increasing solution to Problem (16b) if and only if α ≥ α2(u), where α2(u) is the unique
root to the following equation∫ α2(u)

uα2(u)

ηs−1e−ηdη =

(
α2(u)

)s−1

exp(uα2(u))
− p

(
α2(u)

)s−1

c exp(α2(u))
. (19)

Meanwhile, α2(u) is strictly-increasing in u ∈ (0, 1).

Proof. The proof of the lower bound α2(u) is trivial since the ODE in Problem (16b) can be solved in
analytical forms. The detailed proof is given in Appendix C.

Based on Theorem 3 and Theorem 4, to guarantee the existence of strictly-increasing solutions to
Problem (16a) and Problem (16b) simultaneously, α must be jointly lower bounded by α1(u) and α2(u)
for all u ∈ (0, 1). Therefore, the lower bound of α is given by

α(u) = max {α1(u), α2(u)},∀u ∈ (0, 1), (20)

which follows our definition of α(u) in Definition 3. Note that if R(u, α) ⊂ (0, 1)× [1,+∞) is defined as
follows:

R(u, α) ≜ {(u, α)|α ≥ α(u), u ∈ (0, 1)}. (21)

Then, for any given (u, α) ∈ R(u, α), the resulting BVPs {H1(u, α),H2(u, α)} must have a strictly-
increasing solution. For this reason, we will refer to R(u, α) as the achievable region of (u, α).

Based on line 7 in Algorithm 2, to get the optimal competitive ratio α∗(S) in HUC, we need to find
the optimal dividing threshold u∗ by solving the following problem

u∗ = arg min
u∈(0,1)

α(u) = arg min
u∈(0,1)

max {α1(u), α2(u)} ,

where α1(u) is analytically given in Eq. (17), and α2(u) is the unique root to Eq. (19). The next section
will show that the optimal dividing threshold u∗ always exists. However, the uniqueness of u∗ depends
on the value of p.

4.3 Optimal Competitive Ratios

To characterize the optimal dividing threshold u∗, we give the following Proposition 2 to show the unique
existence of an intersection point between α1(u) and α2(u), which we refer to as the critical dividing
threshold (CDT), denoted by ucdt.
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(b) HUC2:p ∈ (Cs,+∞)

Figure 2: Illustration of the two lower bounds α1(u), α2(u), and R(u, α).

Proposition 2. Given a setup S with f(y) = ays and p ∈ (c,+∞), there exists a unique CDT ucdt ∈
(0, 1) such that α1(ucdt) = α2(ucdt). Specifically, if we define Cs by

Cs ≜ c ·
( 1

es
− 1

ss
·
∫ αmin

s

s

ηs−1e−ηdη
)
· exp(αmin

s ), (22)

then the unique CDT can be calculated as follows:

• HUC1: p ∈ (c, Cs]. In this case, the CDT is the unique root to the following equation in variable
ucdt ∈ [us, 1): ∫ αmin

s

ucdt·αmin
s

ηs−1e−ηdη =
ss

exp(ucdt · αmin
s )

− pss

c exp(αmin
s )

.

• HUC2: p ∈ (Cs,+∞). In this case, the CDT is the unique root to the following equation in variable
ucdt ∈ (0, us): ∫ αs(ucdt)

ucdt·αs(ucdt)

ηs−1e−ηdη =
(αs(ucdt))

s−1

exp(ucdt · αs(ucdt))
− p · (αs(ucdt))s−1

c · exp(αs(ucdt))
.

Proof. This corollary follows the previous two theorems regarding the lower bound α1(u) and α2(u).
The detailed proof is given in Appendix D.

Fig. 2 illustrates α1(u) and α2(u) in two cases. As can be seen from Fig. 2(a), in HUC1 (i.e.,
p ∈ (c, Cs]), the CDT ucdt ∈ [us, 1), and the optimal competitive ratio α∗(S) = α(ucdt) = αmin

s . In this
case, any dividing threshold u ∈ [us, ucdt] and α = αmin

s will determine an optimal pricing function that
satisfies Problem (16a) and Problem (16b). Therefore, the optimal dividing threshold u∗ is not unique
and can be any value within the interval [us, ucdt]. In comparison, as shown in Fig. 2(b), in HUC2 (i.e.,
p ∈ (Cs,+∞)), the unique CDT ucdt is within the interval (0, us) and is the unique optimal dividing
threshold (i.e., u∗ = ucdt and α∗(S) = αs(ucdt)). In this case, the optimal pricing function is the unique
solution to Problem (16a) and Problem (16b) with u = ucdt and α = αs(ucdt).

Corollary 2 summarizes the optimal competitive ratios in LUC and the two sub-cases in HUC.

Corollary 2. Given a setup S with f(y) = ays, the optimal competitive ratio α∗(S) is given by

α∗(S) =


s

s
s−1 if p ∈ (c, c], (LUC)

s
s

s−1 if p ∈ (c, Cs], (HUC1)
s−1

ucdt−us
cdt

if p ∈ (Cs,+∞), (HUC2)

(23)

where Cs and ucdt can be calculated based on Proposition 2.

The optimal competitive ratio in LUC directly follows Theorem 2, and the optimal competitive ratios
in HUC1 and HUC2 follow Theorem 3, Theorem 4, and Proposition 2. Note that the first two cases of
LUC and HUC1 in Eq. (23) can be combined together. However, we keep the current three-case form so
that it clearly distinguishes LUC and HUC.
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4.4 Optimal Pricing Functions

Based on Corollary 2 and Algorithm 2: i) to get the optimal pricing function for LUC, we need to solve
L(α) with α = s

s
s−1 ; ii) to get the optimal pricing function for HUC1, we need to solve {H1(u, α),H2(u, α)}

with any u ∈ [us, ucdt] and α = s
s

s−1 ; iii) to get the optimal pricing function for HUC2, we need to solve
{H1(u, α),H2(u, α)} with u = ucdt and α = s−1

ucdt−us
cdt
.

To help characterize the optimal pricing functions for the above three cases, we first focus on the
following first-order initial value problem (IVP):{

ϕ′ivp(y) = α ·
(
ϕivp(y)− cys−1

)
, y ∈ (u, 1),

ϕivp(u) = c.
(24)

Problem (24) is the same as Problem (16b) if we exclude the second boundary condition ϕ(1) ≥ p.
Based on the Picard-Lindelöf theorem [2,22], the IVP in Eq. (24) always has a unique strictly-increasing
solution for all α ∈ R. We solve Problem (24) with α = α1(u), and denote the unique solution by
ϕivp
(
y;u
)
as follows:

ϕivp
(
y;u
)
= c · exp

(
y · α1

(
u
))(

α1

(
u
))s−1 ·

∫ α1(u)u

yα1(u)

ηs−1e−ηdη + c · exp
(
(y − u) · α1(u)

)
, y ∈ [u, 1]. (25)

Intuitively, if ϕivp(1;u) ≥ p, then ϕivp
(
y;u
)
is also a solution to Problem (16b). Below in Lemma 1 we

show that ϕivp(1;u) ≥ p holds as long as u ∈ [us, ucdt].

Lemma 1. Given p ∈ (c,+∞), for any u ∈ [us, ucdt], ϕivp
(
y;u
)
is a solution to Problem (16b) with

ϕivp(1;u) ≥ p.

We also give the following lemma to show the existence of a unique resource utilization level ρs such
that ϕivp(ρs;us) = p.

Lemma 2. If the value of ρs leads to ϕivp(ρs;us) = p, then ρs is the unique root to the following equation:∫ αmin
s ρs

s

ηs−1e−ηdη =
ss

exp(s)
− pss

c · exp(αmin
s ρs)

. (26)

The proofs of the above two lemmas are given in Appendix E. Based on Eq. (25), Lemma 1, and
Lemma 2 above, we next give Theorem 5 which summarizes the optimal pricing functions for all cases
of LUC, HUC1, and HUC2.

Theorem 5. Given a setup S with f(y) = ays, the optimal pricing functions for PPMϕ are deter-
mined as follows.

• LUC: p ∈ (c, c]. Let us define w ≜ f ′−1(p/s), then we have 0 < w < v ≤ 1, where v = f ′−1(p).

For any m ∈ [w, v], PPMϕm
achieves the optimal competitive ratio of s

s
s−1 if ϕm is given by:

ϕm(y) =

{
0 if y = 0,

c
(
φluc(y)

)s−1
if y ∈ (0,m],

(27)

where for each given y ∈ (0,m], φluc(y) is the unique root to the following equation in variable
φluc ∈ (0, 1]: ∫ φluc/y

1/m

ηs−1

ηs − αmin
s

s−1 η
s−1 +

αmin
s

s−1

dη = ln

(
m

y

)
. (28)

Meanwhile, when m = w = f ′−1(p/s), the optimal pricing function ϕw(y) is given by

ϕw(y) = sf ′(y), y ∈ [0, w]. (29)

• HUC1: p ∈ (c, Cs]. In this case, the CDT ucdt ∈ [us, 1), and for each u ∈ [us, ucdt], PPMϕu
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achieves the optimal competitive ratio of s
s

s−1 if ϕu is given by:

ϕu(y) =


0 if y = 0,

c
(
φhuc(y)

)s−1
if y ∈ (0, u),

ϕivp
(
y;u
)

if y ∈ [u, ρ],

(30)

where for any given y ∈ (0, u), φhuc(y) is the unique root to the following equation in variable
φhuc ∈ (0, 1): ∫ φhuc/y

1/u

ηs−1

ηs − αmin
s

s−1 η
s−1 +

αmin
s

s−1

dη = ln

(
u

y

)
. (31)

In Eq. (30), ρ ∈ [ρs, 1] is the maximum resource utilization level that satisfies ϕivp(ρ;u) = p,
where ρs is given by Lemma 2. In particular, if u = us, then ρ = ρs; if u = ucdt, then ρ = 1.
Meanwhile, if u = us, the optimal pricing function ϕus

(y) can be given analytically by

ϕus(y) =

{
sf ′(y) if y ∈ [0, us),

ϕivp
(
y;us

)
if y ∈ [us, ρs].

(32)

• HUC2: p ∈ (Cs,+∞). In this case, the CDT ucdt ∈ (0, us), and PPMϕucdt
achieves the optimal

competitive ratio of s−1
ucdt−us

cdt
if and only if ϕucdt

is given by:

ϕucdt
(y) =

{
f ′
(

y
ucdt

)
, if y ∈ [0, ucdt],

ϕivp(y;ucdt), if y ∈ [ucdt, 1).
(33)

Proof. The optimal pricing functions in the above three cases are derived by solving the corresponding
BVPs in Eq. (15) and Eq. (16). The details are given in Appendix F.

For Theorem 5 we make the following two points. First, the optimal pricing functions in Eq. (27)
and Eq. (30) have a separated case when y = 0. This is because Eq. (28) and Eq. (31) are not defined
at y = 0. However, we can prove that both φluc and φhuc approach 0 from the right when y → 0+, and
thus both ϕm(y) and ϕu(y) are right-differentiable at y = 0, which is consistent with the ODEs in Eq.
(15) and Eq. (16). Second, we emphasize that although many parameters in Theorem 5 are in analytical
forms (e.g., us, α

min
s , and ϕivp

(
y;u
)
, etc.), numerical computations of ucdt, φluc, and φhuc are still needed.

In particular, the CDT ucdt can be calculated offline, while the computations of φluc and φhuc must be
performed in real-time (i.e., “on-the-fly”). This should not be a concern for the online implementation
of PPMϕ since these computations are light-weight (e.g., all the root-finding can be performed efficiently
by bisection searching).

4.5 Discussion of Structural Properties

Fig. 3 illustrates the optimal pricing functions for LUC and HUC1. We do not illustrate the unique
optimal pricing function for HUC2 since it is similar to Fig. 1(b). We discuss several interesting structural
properties revealed by Theorem 5.

(Aggressiveness of Pricing Functions) In both LUC and HUC1, the optimal pricing functions are
non-unique, while the optimal pricing function is unique in HUC2. In particular, the optimal pricing
functions for LUC and HUC1 can be represented by two infinite sets of functions as follows:

Ωluc = {ϕm}∀m∈[w,v],Ωhuc1 = {ϕu}∀u∈[us,ucdt], (34)

where ϕm and ϕu are given by Eq. (27) and Eq. (30), respectively. Graphically, these two sets cover
the grey area in Fig. 3. Specifically, as shown in Fig. 3(a), all the optimal pricing functions in Ωluc are
lower bounded by ϕv and upper bounded by ϕw. Similarly, in HUC1, all the optimal pricing functions
in Ωhuc1 are lower bounded by ϕucdt

and upper bounded by ϕus
. In economics, if a pricing scheme ‘A’

sets the price cheaper than pricing scheme ‘B’, then we say pricing scheme ‘A’ is more aggressive than
pricing scheme ‘B’ [19]. In this regard, ϕucdt

(ϕv) is the most aggressive optimal pricing function in HUC1

(LUC), that is, ϕus (ϕw) is the most conservative optimal pricing function in HUC1 (LUC). Interestingly,
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Figure 3: Illustration of the optimal pricing functions in LUC and HUC1. The two red curves represent
the same function sf ′(y) but with different domains.

the pricing scheme proposed by [17] for the same setup of power cost functions is ϕw(y) = sf ′(y) (i.e.,
the red curves in Fig. 3), which is only a special case of all the optimal pricing functions characterized
in Ωluc and Ωhuc1 . Moreover, in HUC2, Theorem 5 shows that the pricing scheme ϕw is suboptimal when
p is larger than Cs. Therefore, our optimal pricing functions in Theorem 5 generalize and improve the
results in [17].

(Pricing at Multiple-the-Index) Note that the pricing function ϕw in LUC and the first segment of

ϕus
in HUC1 can be written as sf ′(y) = f ′

(
s

1
s−1 y

)
, which uses the marginal cost function f ′ to price the

resource at s
1

s−1 -multiple-the-index, and the multiplicative factor s
1

s−1 ∈ (e, 1) when s > 1. In HUC2, the
optimal pricing function ϕucdt

also prices the resources at 1
ucdt

-multiple-the-index of f ′(y) when y ∈ [0, ucdt].
The development of such pricing schemes is not entirely new in algorithmic mechanism design. For
example, for similar setups of online CAs with supply or production costs (but without capacity limits),
the authors of [5] proposed a pricing scheme called “twice-the-index” (i.e., ϕ(y) = f ′(2y)), and the
authors of [17] proposed a more general pricing scheme of ϕ(y) = f ′(βy) with β > 1. However, to the
best of our knowledge, our work here is the first to prove that such pricing schemes are optimal even if
capacity limits are present, provided that the multiplicative factors are properly chosen.

5 Extensions: The General Model

In this section, we extend our previous results to more general settings of online resource allocation with
heterogeneous cost functions and multiple time slots.

5.1 The General Model

We consider the same problem setup as in Section 2.1, but make the following generalizations. First,
the cost function for each resource type k ∈ K is denoted by fk, which can be different among different
resource types. Second, if customer n ∈ N chooses bundle b ∈ B, let rbk(t) denote the units of resource
type k owned by customer n at time slot t, where t ∈ Tn and Tn is the duration that customer n wants
to own the resources in bundle b. Suppose bundle b is denoted by the same vector (rb1, · · · , rbK) as before,
then rbk(t) is given by

rbk(t) =

{
rbk if t ∈ Tn,
0 if t ∈ T \Tn,

(35)

where T denotes the total time horizon of interest. Based on the above generalizations, our extended
model can account for multi-period online resource allocation with heterogeneous cost functions. In
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particular, the new offline social welfare maximization problem is given by:

maximize
x,y

∑
n∈N

∑
b∈B

vbnx
b
n −

∑
k∈K

∑
t∈T

fk
(
yk(t)

)
(36a)

subject to
∑
n∈N

∑
b∈B

rbk(t)x
b
n = yk(t),∀k, t, (36b)∑

b∈B
xbn ≤ 1,∀n, (36c)

0 ≤ yk(t) ≤ 1,∀k, t, (36d)

xbn ∈ {0, 1},∀n, b, (36e)

where yk(t) is the utilization of resource type k at time t.

5.2 Generalization of Theorem 1

To generalize Theorem 1 to account for the above resource allocation model, we first need to redefine

some key parameters as follows. We assume that maxn∈N ,b∈B,rbk ̸=0 { vbn
|Tn|·rbk

} ≤ pk, ck ≜ f ′k(0), and ck ≜

f ′k(1),∀k ∈ K, where pk, ck and ck correspond to p, c and c in Section 2.2, respectively. Here, we have
an upper bound pk, a minimum marginal cost ck, and a maximum marginal cost ck for each k ∈ K. In
particular, pk can be interpreted as the maximum price customers are willing to pay for purchasing a
single unit of resource type k for each time slot.

Below we give a general version of Theorem 1. Specifically, we focus on the case of HUC only (i.e.,
pk > ck). The case of LUC (i.e., pk ≤ ck) is similar and is omitted for brevity.

Theorem 6. For any k ∈ K, if fk ∈ F and the upper bound pk ∈ (ck,+∞), then we have:

• Sufficiency. For any given αk ≥ 1, if ϕk(y) is a solution to the following two first-order BVPs
simultaneously: {

ϕ′k(y) = αk · ϕk(y)−f ′
k(y)

f ′−1
k (ϕk(y))

, y ∈ (0, uk),

ϕk(0) = ck, ϕk(uk) = ck.
(37a){

ϕ′k(y) = αk · (ϕk(y)− f ′k(y)) , y ∈ (uk, 1),

ϕk(uk) = ck, ϕk(1) ≥ pk,
(37b)

where uk ∈ (0, 1) is the dividing threshold of ϕk, then PPMϕ is maxk∈K{αk}-competitive.

• Necessity. If there is an α-competitive online algorithm, then for all k ∈ K, there must exist
a dividing threshold uk ∈ (0, 1) and a strictly-increasing pricing function ϕk(y) such that
ϕk(y) satisfies Problem (37a) and Problem (37b) with a feasible competitive ratio parameter
αk ∈ [1, α].

The proof of Theorem 6 is similar to that of Theorem 1, and the details are given in Appendix
A.3. Based on the two BVPs in Theorem 6, for each resource type k ∈ K, we can define the minimum
competitive ratio parameter α∗

k in a similar way as Proposition 1. The final competitive ratio is then
given by α∗(S) = max

k∈K
{α∗

k}. We can also define the lower bound of αk according to Definition 3.

The principles in Algorithm 2 can thus be applied for characterizing the competitive ratios and the
corresponding pricing functions in the general case. Meanwhile, our analytical results for the setup with
power cost functions also hold with some slight modifications. The details are omitted for brevity.

6 Empirical Evaluation

In this section we evaluate the performance of our designed online mechanism via extensive empirical
experiments of online job scheduling in cloud computing.
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6.1 Simulation Setup

(Supply Costs) We consider two types of resources (K = 2), namely, CPU and RAM. We use the
traces of one-month computing tasks in a Google cluster [25]. We assume each bundle b ∈ B is given by
(rbcpu, r

b
ram), where r

b
cpu and rbram can be any value in {0.001, 0.003, 0.005} units of the total normalized

capacity 1. Therefore, in total we have |B| = 9 bundles. We assume T = 3600 time slots and each
time slot is 10 seconds. The cost functions for CPU and RAM are given by fcpu(y) = acpuy

scpu and
fram(y) = aramy

sram , respectively. Following [28–30], we assume scpu = 3 and sram = 1.2. We set up
the coefficients (acpu, aram) = (0.223, 8.38× 10−6) by keeping the ratio of acpu/aram based on [11], where
the dominate power consumption is from CPU. This setup of cost functions follows the typical power
consumption models of data centers [12]. The minimum marginal costs are zero and the maximum
marginal costs are given by ccpu ≈ 0.67 and cram ≈ 1.01× 10−5. Since cram is much smaller than ccpu, our
simulation mainly focuses on the power costs of CPU consumptions. For simplicity, we write ccpu = 0.67
hereinafter without the approximation sign.

(Job Arrivals) We consider the total number of jobs is N = 4000. The arrival time and duration of
each job follow the job arrival and departure times in Google cluster trace [25]. For job n, the valuation
vbn is given by vbn = p|Tn|rbcpu, where |Tn| denotes the duration of job n and p is a random variable
constructed as follows:

1. Uniform-Exact Case (Case-UE). The sequences of p are uniformly distributed within [0, p] and the
pricing functions are designed based on the exact value of p.

2. Extreme-Exact Case (Case-EE). This extreme case evaluates the performance robustness of online
mechanisms. For the first-half of the total jobs, the sequences of p are uniformly distributed
within [0, p2 ]. While for the second-half, the sequences of p are uniformly distributed within [p2 , p].
Meanwhile, the pricing functions are designed based on the exact value of p.

3. Uniform-Inexact Case (Case-UI). The sequences of p are uniformly distributed within [0, p]. However,
the pricing function is designed based on the estimated upper bound pestimate = p(1+ δ), where δ ∈
[−0.8, 2.4], meaning that p can be underestimated (overestimated) for as much as 80% (240%). We
use this case to evaluate the impact of underestimations/overestimations of p on the performances
of different online mechanisms.

4. Extreme-Inexact Case (Case-EI). This is a mixture of the second and third case. Specifically, the
sequences of p are generated in the same way as those in Case-EE, and pestimate follows the same
setup as Case-UI.

(Performance Metrics) Given any arrival instance A, we define the empirical ratio (ER) by

ER(A) ≜
Wopt(A)

Wonline(A)
,

where Wopt(A) is the optimal objective of Problem (3). For each sample of A, we solve Problem (3) by
Gurobi 8.1 via its Python API2, and then evaluate ERs over 1000 samples of A’s to get the average ER
of each online mechanism.

(Benchmarks) We refer to our proposed PPM with optimal pricing as PPM-OP, and compare it
with the offline benchmark and two existing PPMs as follows:

• PPM with Twice-the-index Pricing (PPM-TP). This PPM is first proposed in [5] and later extended
for cloud resource allocation problems in [30]. By PPM-TP, when y ∈ [0, 0.5], the pricing function
is ϕ(y) = f ′(2y); when y ∈ (0.5, 1], the pricing function is exponential and the detailed expression
is referred to [30].

• PPM with Myopic Pricing (PPM-MP). This PPM prices the resources based on the current
marginal costs, i.e., ϕ(y) = f ′(y), and thus is myopic in the sense that the resources will be
allocated aggressively without reservation for potential high-PUV customers in the future.

For any given resource utilization level y ∈ (0, 1), PPM-TP always has the highest posted prices
and PPM-MP always has the cheapest ones. Therefore, among the three online mechanisms, PPM-TP
(PPM-MP) is the most conservative (aggressive) one3.

2http://www.gurobi.com
3Based on (29), the most conservative optimal pricing function is ϕw(y) = sf ′(y), which is still more aggressive than

f ′(2y) = 2sf ′(y) when s > 1.
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Figure 4: ERs and total resource utilizations of different online mechanisms in Case-UE. Each point in
the left figure is an average of 1000 instances. The right figure is for one instance of p = 2ccpu = 1.34.
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Figure 5: ERs and total resource utilizations of different online mechanisms in Case-EE. Each point in
the left figure is an average of 1000 instances. The right figure is for one instance of p = 2ccpu = 1.34.

6.2 Numerical Results

Fig. 4 compares the different online mechanisms in Case-UE. As shown in Fig. 4(a), p varies within
[ccpu, 9ccpu], where ccpu = 0.67 and 9ccpu = 6.03. Note that based on Eq. (22), we have Cs ≈ 4.21 ≈
6.28ccpu, and thus the setup of p ∈ [ccpu, 9ccpu] in Fig. 4(a) covers all the cases of LUC, HUC1, and HUC2.
We can see that the ERs of our proposed PPM-OP are roughly around 1.12 ∼ 1.22, which strictly
outperforms both PPM-TP and PPM-MP. An interesting result revealed by Fig. 4(a) is that the ER
performance of PPM-OP (PPM-TP) first improves (deteriorates) and then deteriorates (improves) when
p increases within [ccpu, 9ccpu]. We argue that the ER behaviours of PPM-OP for p ∈ [ccpu, 6ccpu] are
reasonable although the optimal competitive ratios are the same when p ∈ [ccpu, 6ccpu] ⊂ [ccpu, Cs]. The
insight is that when p slightly increases from ccpu to 3ccpu, the uncertainty level of the arrival instances
also slightly increases, and this is beneficial for the online posted-price control since whatever decisions
made now may have remedies in the future. However, when p > 3ccpu, the ER performance of PPM-OP
becomes worse whenever p increases. This is because the uncertainty level of the arrival instances is too
high so that it becomes challenging to perform online posted-price control without future information.
The differences of the three online mechanisms can also be seen by their total CPU resource utilizations
in Fig. 4(b). PPM-MP is the most aggressive and thus the total capacity is quickly depleted (i.e., 100%
utilization). PPM-TP is the most conservative and reserves over 40% capacity for future jobs. The
total CPU resource utilization of PPM-OP (around 85% maximum utilization) stays between those of
PPM-MP and PPM-TP, and achieves a better balance between aggressiveness and conservativeness.

Fig. 5 shows the ERs of online mechanisms in Case-EE. The first result revealed by Fig. 5(a)
is intuitive, namely, the ERs of all the three online mechanisms are worse than the ERs in Case-UE.
Second, our proposed PPM-OP achieves a very competitive performance even in this extreme case: the
ERs of PPM-OP are always below 1.4, which outperforms PPM-TP by more than 15% in average. Third,
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Figure 6: Comparison between PPM-OP and PPM-TP when the estimated upper bound pestimate is
inexact, where pestimate = p(1 + δ) and p denotes the real upper bound. Each point in the figure is an
average of 1000 instances.

Fig. 5(a) also shows that the greedy mechanism PPM-MP is significantly worse than both PPM-TP and
PPM-OP when p is small, but outperforms PPM-TP when p is large. However, due to the greedy nature
of PPM-MP, the ERs of PPM-MP are considerably less robust than those of PPM-OP and PPM-TP,
as illustrated in Fig. 5(a). Fig. 5(b) shows the total CPU resource utilizations of different mechanisms
when p = 2ccpu. Since in Case-EE the first-half (second-half) of the total jobs have low (high) PUVs,
the total CPU resource utilization profile of the offline benchmark depicts two distinct levels within the
duration of t ∈ [0, 300] and t ∈ [300, 600]. We can see that PPM-MP completely fails to achieve such a
two-level utilization profile by quickly reaching the capacity limit before t = 200 min; PPM-TP performs
better than PPM-MP, but reserves too much available capacity for future jobs (too conservative). In
comparison, PPM-OP shows the capability of distinguishing the two different intervals, and has a similar
utilization profile to that of the offline benchmark.

We next demonstrate the impact of inexact estimations of p on the ER performances of PPM-OP
and PPM-TP (note that the performance of PPM-MP is independent of p). We perform an indepth
comparison between PPM-OP and PPM-TP in both Case-UI and Case-EI with p = ccpu ∈ (0, ccpu] (i.e.,
LUC), p = 3ccpu ∈ (ccpu, Cs] (i.e., HUC1), and p = 9ccpu ∈ (Cs,+∞) (i.e., HUC2), where Cs ≈ 6.28ccpu.
Hence, we have six cases in total, which correspond to the six sub-figures in Fig. 6. We note that the
choices of p = 3ccpu and p = 9ccpu have no specific reasons other than making them in HUC1 and HUC2,
respectively.

• Fig. 6(a) and Fig. 6(b) show that the ER performances of both PPM-OP and PPM-TP are
insensitive to δ in LUC. The insensitivity of PPM-TP is reasonable since the first segment of the
pricing function of PPM-TP, i.e., ϕ(y) = f ′(2y), is independent of p. Therefore, when p = ccpu,
the highest resource utilization level will not significantly exceed 50% of the total capacity (since
p ≤ ccpu = f ′(2 ∗ 0.5)). As a result, the first segment of the pricing function of PPM-TP is the
major active part for most of the time slots. Meanwhile, it is also not surprising that PPM-OP is
insensitive to δ in LUC since pestimation does not influence PPM-OP when pestimation ≤ Cs ≈ 6.28ccpu.

• Fig. 6(c) and Fig. 6(d) show that the ER performance of PPM-TP always deteriorates with the
increase of δ in HUC1 (underestimation is always better than overestimation). The ER behaviors
of PPM-TP are interesting but quite reasonable since an overestimation of p will make the second
segment of the pricing function of PPM-TP over conservative, leading to a worse ER performance.
Similar results have also been reported by [30]. Unlike PPM-TP, PPM-OP is insensitive to the
estimation error δ when δ < Cs/p− 1 ≈ 1.1, meaning that as long as the overestimation of p does
not change the design of optimal pricing functions from HUC1 to HUC2, the ERs of PPM-OP will
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Figure 7: Impact of overestimations of p on the ER performance of PPM-OP. Each point in the figure is
an average of 1000 instances.

be the same. However, a larger estimation error δ > 1.1 will slightly worsen the ER performance
of PPM-OP as the optimal pricing function in HUC2 is too conservative in HUC1.

• Fig. 6(e) and Fig. 6(f) show that the ER performances of PPM-TP and PPM-OP have opposite
behaviors w.r.t. the estimation error δ in HUC2. Specifically, overestimations of p still increase
the ERs of PPM-TP, similar to the results in HUC1. In contrast, PPM-OP will benefit from
overestimating p when δ is within a certain range (e.g., when δ ∈ (0, 1.6) in Fig. 6(e)), and then
deteriorate when the estimation error δ is too large (e.g., when δ > 1.6 in Fig. 6(e)). Note that
the ER behaviors of PPM-OP are very counter-intuitive since an overestimation of p in HUC2 will
inevitably make the optimal pricing functions in PPM-OP more conservative, which intuitively
should lead to a worse ER performance. However, Fig. 6(e) and Fig. 6(f) show that, the ER
performance of PPM-OP will deteriorate only if the overestimation of p exceeds some threshold
(e.g., 1.6 in Fig. 6(e) and 1.2 in Fig. 6(f)).

The above illustrations indicate that underestimations of p should always be avoided when using
our proposed PPM-OP. This is because a negative δ either has no impact on the ER performance of
PPM-OP in LUC and HUC1 (the first four sub-figures in Fig. 6), or makes it even worse in HUC2 (the
final two sub-figures in Fig. 6). Meanwhile, it is generally beneficial to slightly overestimate p when p is
larger than Cs.

To further evaluate the impact of overestimations of p on the ER performance of PPM-OP, in par-
ticular, to quantify how much overestimation will lead to a worse ER performance than using the exact
value of p, we change the uniform distribution of p in Case-UI to a truncated normal distribution as
follows:

p ∼ N(µ, σ2, 0, p),

where µ, σ, 0, and p denote the mean, the standard deviation, the lower bound, and the upper bound
of random variable p, respectively. We set µ = ccpu and p = 9ccpu, and assume similarly as Case-UI
that the optimal pricing function is designed based on the estimated upper bound pestimate = p(1 + δ),
where σ > 0 since here we only consider overestimation. We plot the ER performances of PPM-OP
with different variances in Fig. 7. It can be seen that when the variance is small, e.g., σ = 1 in Fig.
7(a), the ER performance of PPM-OP becomes worse w.r.t. the increase of δ > 0. When the variance is
higher, e.g., σ = 2 in Fig. 7(b) and σ = 10 in Fig. 7(c), the ER performance of PPM-OP first improves
and then deteriorates w.r.t. the increase of δ > 0, similar to the results in Fig. 6 when p is uniformly
distributed. An interesting result revealed by Fig. 7 is that PPM-OP can tolerate a higher estimation
error of p when the variance of p is higher. In other words, when the arrival instance is highly uncertain
or volatile, it tends to be more beneficial for the provider to overestimate p. This insight shows that when
there exists no exact statistical model about future arrivals, the information uncertainty is not always a
disadvantage. Instead, the provider can artificially amplify the estimation of p so as to benefit from the
uncertainty of arrival instances. We argue that this is another advantage of our proposed PPM-OP as
the prior theoretic analysis does not provide such a guarantee.
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7 Conclusion

We studied the online combinatorial auctions for resource allocation with supply costs and capacity
limits. In the studied model, the provider charges payment from customers who purchase a bundle of
resources and incurs an increasing supply cost with respect to the total resource allocated. We focused
on maximizing the social welfare. Adopting the competitive analysis framework we provided an optimal
online mechanism via posted-price. Our online mechanism is optimal in that no other online algorithms
can achieve a better competitive ratio. Our theoretic results improve and generalize the results in prior
work. Moreover, we validated our results via empirical studies of online resource allocation in cloud
computing, and showed that our pricing mechanism is more competitive than existing benchmarks. We
expect that the model and algorithms presented in this paper will find application in different paradigms
of networking and computing systems. Meanwhile, leveraging techniques in artificial intelligence and
machine learning to extend our model is an interesting future direction, e.g., posted-price via online
learning.
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A Proof of Theorem 1

Our proof of Theorem 1 is based on the online primal-dual analysis and first-order two-point boundary
value problems (BVPs). In the following we first give some mathematical preliminaries, and then prove
the sufficient and necessary conditions in Theorem 1 separately.

A.1 Mathematical Preliminaries

In this section we present some mathematical preliminaries to help our proof of Theorem 1.

A.1.1 Online Primal-Dual Analysis

Let us consider the following convex optimization problem:

maximize
x,y

∑
n∈N

∑
b∈B

vbnx
b
n −

∑
k∈K

f̄ (yk) , (38a)

subject to
∑
n∈N

∑
b∈B

rbkx
b
n ≤ yk, (pk) (38b)∑

b∈B
xbn ≤ 1,∀n, (µn) (38c)

xbn ≥ 0,∀n, b; yk ≥ 0,∀k, (38d)

where pk, µn denote the corresponding dual variables of each constraint. The above convex program
differs from the original social welfare maximization problem (3) in the following aspects.

• First, in the objective function of Problem (38), we modify the cost function f to f̄ as follows:

f̄(y) =

{
f(y) if y ∈ [0, 1],

+∞ if y ∈ (1,+∞).
(39)

Therefore, f̄ is an extended version of f for the whole range of [0,+∞). In optimization theory, f̄ is
often regarded as a barrier function of f . It is know that performing such a transformation does not
change the optimization problem itself.

• Second, we relax the binary status variable xbn to be a continuous variable within [0, 1] for all n, b.

• Third, the equality constraint in Eq. (3b) is relaxed to be an inequality one in Eq. (38b). Since the
cost function f(·) is increasing, constraint (38b) will always be binding.

Based on the above discussions, the only difference between Problem (3) and Problem (38) is the
relaxation of {xbn}∀n,b. Given the convex program in Problem (38), the dual problem can be expressed
as follows:

minimize
p,µ

∑
n∈N

µn +
∑
k∈K

f#(pk) (40a)

subject to µn ≥ vbn −
∑
k∈K

pkr
b
k,∀n, b, (40b)

p ≥ 0,µ ≥ 0, (40c)

where f# is the convex conjugate of f̄ , and is given by

f#(p) = max
y≥0

py − f̄(y). (41)

Solving the above optimization leads to the expression of f# as follows:

f#(p) =


0 if p ∈ [0, c],

pf ′−1(p)− f(f ′−1(p)) if p ∈ (c, c),

p− f(1) if p ∈ [c,+∞].

(42)
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If we denote the optimal objective of the relaxed primal problem (38) and its dual (40) by Wr-primal

and Wr-dual, respectively, then we have

Wopt ≤Wr-primal ≤Wr-dual, (43)

where Wopt is the optimal objective of the original offline problem (3). In particular, the first inequality
in Eq. (43) is due to the relaxation of {xbn}∀n,b and the second inequality comes from weak duality.

The key to the design of PPMϕ is to link the pricing function p
(n)
k = ϕ(y

(n−1)
k ) to the offline shadow

price pk. Specifically, when there is no future information, it is impossible to know the exact value of pk.

Our idea is to design the posted price p
(n)
k as a function of the current total power consumption y

(n−1)
k ,

and using p
(n)
k to approximate the exact shadow price at each round.

Following this idea, let us denote the primal and dual objective by Pn and Dn after processing
customer n, respectively. Intuitively, P0 and D0 denote the initial values (i.e., before processing the
first customer), and PN and DN represent the terminal values (i.e., after processing the last customer of
interest). Obviously, P0 = 0 and D0 is given by

D0 =
∑
k∈K

f#
(
p
(1)
k

)
=
∑
k∈K

f#

(
ϕ(y

(0)
k )
)
=
∑
k∈K

f# (ϕ(0)) , (44)

where ϕ(0) represents the initial price when the resource utilization level is zero.
(Principles of the Online Primal-Dual Approach) The principle of the online primal-dual ap-

proach is that, if the pricing function ϕ is constructed in a certain way so that i) D0 = 0 and the solutions
found by PPMϕ are feasible, and ii) the following incremental inequality Pn−Pn−1 ≥ 1

α (Dn −Dn−1)

holds for each round with a constant α, then PN =
∑N
n=1 (Pn − Pn−1) ≥ 1

α

∑N
n=1 (Dn −Dn−1) =

1
αDN .

Note that PN denotes the social welfare achieved by PPMϕ, i.e., Wonline = PN . Based on Eq. (43), we
have

Wonline = PN ≥ 1

α
DN ≥ 1

α
Wr-dual ≥

1

α
Wopt,

which thus indicates that PPMϕ is α-competitive.

A.1.2 Convex Conjugates and Properties

In the following we will heavily rely on the properties of convex conjugates and Fenchel duality. Below
we introduce some properties regarding f#.

Lemma 3 (Properties of f#). f# has the following properties:

1. f#(p) is increasing in p ∈ [c,+∞] and f#(c) = 0.

2. f#(p) is convex and differentiable in p ∈ [c,+∞], even if the original cost function f(y) is non-
convex and non-differentiable.

3. For any y ∈ [0, 1], if f ′(y) = p, then f ′#(p) = y and f(y) + f#(p) = py.

4. The derivative of f#(p) w.r.t. p ∈ [c,+∞] is given by

f ′#(p) =


0 if p ∈ [0, c),

f ′−1(p) if p ∈ [c, c),

1 if p ∈ [c,+∞].

(45)

We omit the proof of Lemma 3 for brevity. For a detailed discussion of the properties of the conjugate
function f#, please refer to [15].

A.1.3 First-Order Two-Point BVPs

In the field of differential equations, a first-order boundary value problem (BVP) is a first-order ordinary
differential equation (ODE) with a set of additional boundary conditions. When there is only one
additional condition other than the ODE, the resulting problem is a first-order initial value problem
(IVP), whose standard form is written as follows:{

q′(ω) = Q(ω, q), ω ∈ Ω,

q(ω0) = q0,
(46)
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where q(ω0) = q0 is usually termed as the initial condition. When there is one more condition, the
resulting first-order two-point BVP can be written in the following standard form{

q′(ω) = Q(ω, q), ω ∈ Ω,

q(ω1) = q1, q(ω2) = q2,
(47)

where (ω1, q1) and (ω2, q2) are two points in the domain of Q. A solution to the first-order two-point
BVP in Eq. (47) is a function q(ω) that satisfies the ODE and also satisfies the two boundary conditions
simultaneously.

Key to the analysis of IVPs and BVPs is the existence and uniqueness of solutions [2, 23]. For first-
order IVPs, the existence and uniqueness theorem is well understood. In particular, the Picard–Lindelöf
theorem guarantees the unique exsitence of solutions as long as the function Q satisfies a certain Lipschitz
continuity conditions [23]. Meanwhile, there are numerous iterative methods off-the-shelf that can solve
IVPs numerically [2]. However, for BVPs, there is no general uniqueness and existence theorem. As
argued by [23], it is even non-trivial to obtain numerical solutions for some BVPs in the most basic
two-point case as Eq. (47).

A.2 The Proof of Theorem 1

We first prove the sufficient conditions in Theorem 1. Below we give Theorem 7 which summarizes the
sufficient conditions to guarantee a bounded competitive ratio for PPMϕ.

Theorem 7 (Sufficiency). Given a setup S with p ∈ (c,+∞), PPMϕ is α-competitive if the
pricing function ϕ satisfies the following differential equation

ϕ(y)− f ′(y) =
1

α
· df#(ϕ(y))

dy
, y ∈ [0, 1] (48)

with the following boundary conditions:{
ϕ(0) = c, ϕ(v) ≥ p, if p ∈ (c, c], (LUC)

ϕ(0) = c, ϕ(1) ≥ p, if p ∈ (c,+∞), (HUC)
(49)

where v ≜ f ′−1(p).

Proof. The proof of this theorem is based on showing that once the pricing function ϕ satisfies the
conditions in Theorem 7, then the following incremental inequality

Pn − Pn−1 ≥ 1

α
(Dn −Dn−1) (50)

holds at each round with D0 = 0. To prove the above incremental inequality holds at each round, we
only need to focus on the case when customer n indeed purchases a bundle of resources, say bundle b∗.
Otherwise, Pn − Pn−1 = Dn −Dn−1 = 0 and the incremental inequality holds obviously.

We first calculate the change of the primal objective after processing customer n. Based on Problem
(38), we can calculate the difference between Pn and Pn−1 as follows:

Pn − Pn−1 = vb∗n −
∑
k∈K

(
f̄
(
y
(n)
k

)
− f̄

(
y
(n−1)
k

))
= µn +

∑
k∈K

p
(n)
k rb∗k −

∑
k∈K

(
f̄
(
y
(n)
k

)
− f̄

(
y
(n−1)
k

))
(i)
= µn +

∑
k∈K

ϕ
(
y
(n−1)
k

)
rb∗k −

∑
k∈K

(
f̄
(
y
(n)
k

)
− f̄

(
y
(n−1)
k

))
(ii)
= µn +

∑
k∈K

ϕ
(
y
(n−1)
k

)(
y
(n)
k − y

(n−1)
k

)
−
∑
k∈K

(
f̄
(
y
(n)
k

)
− f̄

(
y
(n−1)
k

))
,

where (i) comes from constraint (40b) in the dual problem, namely, we set µn = vb∗n −∑k∈K ϕ(y
(n−1)
k )rb∗k ,

and (ii) is because rb∗k = y
(n)
k − y

(n−1)
k based on line 9 in Algorithm 1.
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Similarly, we calculate the change of the dual objective after processing customer n. Based on Problem
(40), we have

Dn −Dn−1 = µn +
∑
k∈K

f#

(
ϕ(y

(n)
k )

)
−
∑
k∈K

f#

(
ϕ(y

(n−1)
k )

)
, (51)

where ϕ(y
(n)
k ) denotes the posted price after processing customer n (i.e., the posted price for customer

n + 1). Since µn ≥ 0 holds for all n ∈ N , to guarantee the incremental inequality holds at each round,
the following inequality must be satisfied:∑

k∈K
ϕ(y

(n−1)
k )

(
y
(n)
k − y

(n−1)
k

)
−
∑
k∈K

(
f̄(y

(n)
k )− f̄(y

(n−1)
k )

)
≥ 1

α

(∑
k∈K

f#

(
ϕ(y

(n)
k )

)
−
∑
k∈K

f#

(
ϕ(y

(n−1)
k )

))
. (52)

Since the posted-price is designed for each type of resource, the above inequality holds if the following
inequality holds

ϕ(y
(n−1)
k )

(
y
(n)
k − y

(n−1)
k

)
−
(
f̄(y

(n)
k )− f̄(y

(n−1)
k )

)
≥ 1

α

(
f#
(
ϕ(y

(n)
k )

)
− f#

(
ϕ(y

(n−1)
k )

))
, (53)

which can be equivalently written as follows:

ϕ(y
(n−1)
k )−

f̄
(
y
(n−1)
k + rb∗k

)
− f̄

(
y
(n−1)
k

)
y
(n−1)
k + rb∗k − y

(n−1)
k

≥ 1

α
·
ϕ
(
y
(n−1)
k + rb∗k

)
− ϕ

(
y
(n−1)
k

)
y
(n−1)
k + rb∗k − y

(n−1)
k

·
f#

(
ϕ
(
y
(n−1)
k + rb∗k

))
− f#

(
ϕ
(
y
(n−1)
k

))
ϕ
(
y
(n−1)
k + rb∗k

)
− ϕ

(
y
(n−1)
k

) .

Since rb∗k is very small (Assumption 2), the above equality can be written as follows:

ϕ(y
(n−1)
k )− f̄ ′(y(n−1)

k ) ≥ 1

α
· ϕ′(y(n−1)

k ) · f ′#
(
ϕ(y

(n−1)
k )

)
. (54)

Therefore, if the above inequality holds for any realization of y
(n−1)
k ∈ [0, 1), namely,

ϕ (y)− f̄ ′ (y) ≥ 1

α
· ϕ′ (y) · f ′# (ϕ(y)) =

1

α
· df#

(
ϕ(y)

)
dy

,∀y ∈ [0, 1], (55)

then the incremental inequality Pn−Pn−1 ≥ 1
α (Dn −Dn−1) holds at each round when y ∈ [0, 1]. Recall

that when y ∈ [0, 1], f̄ = f , and thus the above inequality in Eq. (55) can be written as

ϕ (y)− f ′ (y) ≥ 1

α
· df#

(
ϕ(y)

)
dy

,∀y ∈ [0, 1]. (56)

Therefore, if Eq. (56) holds for all y ∈ [0, 1], then the incremental inequality holds at each round when
y ∈ [0, 1]. However, we emphasize that this does not mean the incremental inequality holds at each
around for all y ∈ [0,+∞).

We next show why we need the two boundary conditions of ϕ(0) = c and ϕ(1) ≥ p. First, according

to Eq. (44), when ϕ(0) = c, we have D0 =
∑
k f#
(
ϕ(y

(0)
k )
)
=
∑
k f#(c) = 0, where we use the property

of f#(c) = 0 based on Lemma 3. Therefore, the boundary condition of ϕ(0) = c is to guarantee that
D0 = 0. Second, taking integration on both sides of Eq. (56) leads to∫ y

0

(ϕ(η)− f ′(η)) dη =

∫ y

0

ϕ(η)dη − f(y) ≥ 1

α

(
f#
(
ϕ(y)

)
− f#

(
ϕ(0)

))
=

1

α
f#
(
ϕ(y)

)
. (57)

As can be seen from Fig. 1, the left-hand-side of Eq. (57) is the area of the grey region between ϕ(y)
and f ′(y). Based on Eq. (42), the above inequality in Eq. (57) can be written as follows:∫ y

0

ϕ(η)dη − f(y) ≥
{

1
α

(
ϕ(y) · f ′−1 (ϕ(y))− f

(
f ′−1(ϕ(y))

))
if ϕ(y) ∈ (c, c],

1
α

(
ϕ(y)− f(1)

)
if ϕ(y) ∈ (c,+∞),

(58)
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Let us first focus on the second case when ϕ(y) > c, where y ∈ [0, 1]. The above integral inequality must
hold for any y ∈ [0, 1]. Therefore, when y = 1, the second case of the right-hand-side of Eq. (58) is given
by ∫ 1

0

ϕ(η)dη − f(1) ≥ 1

α
·
(
ϕ(1)− f(1)

)
. (59)

On the other hand, when p ∈ (c,+∞), PPMϕ is α-competitive indicates that the pricing function must
satisfy the following inequality ∫ 1

0

ϕ(η)dη − f(1) ≥ 1

α
·
(
p− f(1)

)
. (60)

Note that the rationality of Eq. (60) follows the same analogy to our analysis in Section 3.2 regarding
the special arrival instance Av when p ∈ (c, c]. Based on Eq. (59) and Eq. (60), to guarantee Eq. (60)
holds, it suffices to have ϕ(1) ≥ p.

Therefore, when Eq. (56) holds for all y ∈ [0, 1] with the boundary conditions of ϕ(0) = c and
ϕ(1) ≥ p, then the incremental inequality holds at each round for all y ∈ [0,+∞). Summarizing the
above analysis, when p ∈ (c,+∞) (i.e., HUC), if the differential equation in Eq. (48) holds with the
boundary conditions of ϕ(0) = c and ϕ(1) ≥ p, then PPMϕ is α-competitive. We skip the proof for the
case of LUC as it is similar to that of HUC. Hence, we finish the proof of Theorem 7.

As we mentioned in Section 3.2, the division of the two cases of LUC and HUC is not artificial, it is
derived from the online primal-dual analysis of the original social welfare problem in Eq. (3). Note that
substituting f ′# into the differential equation in Eq. (48) leads to the two BVPs in HUC in Theorem 1.
We thus complete the proof of the sufficient conditions in Theorem 1.

We next prove the necessity of Theorem 1 by giving the following Theorem 8.

Theorem 8 (Necessity). Given a setup S with p ∈ (c,+∞), if there exists an α-competitive online
algorithm, then there must exist a strictly increasing function ψ(η) that satisfies:{∫ p

0
ηψ′(η)dη − f

(
ψ(p)

)
= f#(p)

α ,∀p ∈ [c, p],

ψ (c) = 0, ψ(p) ≤ 1.
(61)

Proof. An online algorithm is α-competitive indicates that the social welfare achieved by this online
algorithm is at least 1/α of the optimal offline social welfare for all possible arrival instances. In the
following we first prove that, if there exists an α-competitive online algorithm, then there must exist a
monotonically non-decreasing function y = ψ(p) such that∫ p

c

ηψ′(η)dη − f
(
ψ(p)

)
≥ 1

α
f#(p) (62)

holds for all p ∈ [c, p] with ψ(c) = 0 and ψ(p) ≤ 1. After that, we will prove that there exists a
strictly-increasing function ψ(p) that satisfies the inequality in Eq. (62) with equality.

Our proof is based on constructing a special arrival instance such that any α-competitive online
algorithm must satisfy the inequality in Eq. (62) in order to achieve at least 1

α of the offline optimal
social welfare in hindsight. Specifically, for any p ∈ [c, p], we construct a special arrival instance Ap as
follows. Let us assume for each η ∈ [c, p], there is a continuum of groups of customers indexed by η,
where each group η contains infinitely-many identical customers and has a total demand of f ′#(η) (i.e.,
each customer’s demand is infinitesimally small). The PUV of all the customers in group η is η, namely,
the total valuation of all the customers in this group is given by vη = ηf ′#(η). Note that f ′#(η) is the
maximum units of resource that can be provided when the marginal cost is η per unit. Based on Lemma
3, when η ∈ [c, c], f ′#(η) = f ′−1(η); when η ∈ (c,+∞), f ′#(η) = 1.

For a given arrival instance Ap with p ∈ [c, p], the social welfares achieved by the optimal offline
algorithm and the α-competitive online algorithm are given as follows:

• Offline: the optimal offline result in hindsight is to allocate f ′#(p) units of resources to the customers
in the last group, i.e., group p, and none to all the previous continuum of customers. The optimal
social welfare is thus

Wopt = pf ′#(p)− f (f ′#(p)) = f#(p), (63)

where we use the third property of Fenchel duality in Lemma 3.
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• Online: for the α-competitive online algorithm, let y = ψ(η) denote the total resource consumption
after processing the customers in group η ∈ [c, p], and thus ψ(η) represents the resources sold to
the continuum of groups of customers in [c, η]. Intuitively, ψ(c) = 0 and ψ(η) is monotonically non-
decreasing in η ∈ [c, p]. The social welfare achieved by this online algorithm is thus the total valuation
minus the total cost, namely,

Wonline =

∫ ψ(p)

ψ(c)

ηd(ψ(η))− f
(
ψ(p)

)
=

∫ p

c

ηψ′(η)dη − f
(
ψ(p)

)
(64)

The online algorithm is α-competitive means that∫ p

c

ηψ′(η)dη − f
(
ψ(p)

)
≥ 1

α
f#(p) (65)

holds for all p ∈ [c, p]. According to the definition of ψ, we have ψ(c) = 0 and ψ(p) ≤ 1 holds for all
p ∈ [c, p], and thus ψ(p) ≤ 1 holds as well. Therefore, if there exists an α-competitive online algorithm,
then there must exit a non-decreasing function ψ(η) that satisfies Eq. (65).

Next we prove that there exists a strictly-increasing function ψ(p) that satisfies Eq. (65) with equality.
Suppose for a given p ∈ [c, p], ψ(η) is a feasible solution to Eq. (65) and there is another non-decreasing

function ψ̂(η) such that ψ(η) ≤ ψ̂(η) and ψ̂(p) = ψ(p) ≜ ψp, then we have∫ p

c

ηψ′(η)dη = pψ(p)−
∫ p

c

ψ(η)dη ≥ pψ̂(p)−
∫ p

c

ψ̂(η)dη =

∫ p

c

ηψ̂′(η)dη, (66)

which indicates that we can find another function ψ̂ so that the following inequality holds:∫ p

c

ηψ′(η)dη − f(ψ(p)) ≥
∫ p

c

ηψ̂′(η)dη − f(ψ̂(p)) ≥ 1

α
f#(p). (67)

This means that for any given solution ψ(η) to Eq. (65), it is always possible to get a new solution ψ̂(η)

to Eq. (65) by pushing ψ(η) up while keeping the initial and terminal points fixed (i.e., ψ(c) = ψ̂(c) = 0

and ψ(p) = ψ̂(p) = ψp).
Recall that for a given p ∈ [c, p], when ψ(η) is a feasible solution to Eq. (65), we have∫ p

c

ηψ′(η)dη − f(ψ(p)) = pψ(p)− f(ψ(p))−
∫ p

c

ψ(η)dη ≥ 1

α
f#(p). (68)

Based on the above analysis, we can prove that there always exists a strictly-increasing function ψ∗(η) ≥
ψ(η) and ψ∗ has the same boundary conditions as ψ such that

pψ(p)− f(ψ(p))−
∫ p

c

ψ(η)dη ≥ pψ∗(p)− f(ψ∗(p))−
∫ p

c

ψ∗(η)dη =
1

α
f#(p). (69)

We can prove this as follows. Since ψ(p) = ψ∗(p) and ψ(η) ≤ ψ∗(η), the first inequality definitely holds.
We just need to prove that such a strictly-increasing function ψ∗(η) exists so that the second equality in
Eq. (69) holds.

Our proof is based on constructing a strictly-increasing function as follows: suppose ϵ ∈ (0, p − c]
and ξ ∈ (0, ψp]. We assume that ψ∗(η) is strictly-increasing in η ∈ [c, c + ϵ] with ψ∗(c) = 0 and
ψ∗(c+ ϵ) = ψp − ξ; ψ∗(η) is strictly-increasing in η ∈ [c+ ϵ, p] with ψ∗(c+ ϵ) = ψp − ξ and ψ∗(p) = ψp.
For such a function ψ∗(η), when ξ = 0, we have

pψ∗(p)− f(ψ∗(p))−
∫ p

c

ψ∗(η)dη

= pψ∗(p)− f(ψ∗(p))− ψ∗(p)(p− c− ϵ)−
∫ c+ϵ

c

ψ∗(η)dη

= ψ∗(p)(c+ ϵ)− f(ψ∗(p))−
∫ c+ϵ

c

ψ∗(η)dη.
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Figure 8: Illustration of how to construct a strictly-increasing function ψ∗(η) to satisfy Eq. (65) with
equality.

In particular, when ϵ approaches 0, based on the mean value theorem, we have

pψ∗(p)− f(ψ∗(p))−
∫ p

c

ψ∗(η)dη = pψ∗(p)− f(ψ∗(p)) < 0 ≤ 1

α
f#(p).

On the other hand, ψ(η) is a feasible solution to Eq. (65) means that we have at least
∫ p
c
ψ∗(η)dη =∫ p

c
ψ(η)dη so that pψ∗(p) − f(ψ∗(p)) −

∫ p
c
ψ∗(η)dη ≥ 1

αf#(p). Therefore, it is always possible to adjust

the values of ϵ ∈ (0, p − c] and ξ ∈ (0, ψp] to get a strictly-increasing function ψ∗(η) so that Eq. (69)
holds, namely, Eq. (65) holds with equality. Hence, we complete the proof of Theorem 8.

Notice that, based on Theorem 7 and Theorem 8, if we assume p = ϕ(y) and y = ψ(p), then ϕ and
ψ are inverse to each other since ϕ and ψ are both strictly increasing. In particular, the following two
equations are basically equivalent to each other:∫ p

c

ηψ′(η)dη − f
(
ψ(p)

)
=

1

α
f#(p) ⇔

∫ y

0

ϕ(η)dη − f(y) =
1

α
f#(ϕ(y)). (70)

Therefore, if there exits an α-competitive online algorithm, there must exit a strictly-increasing function
y = ψ(p) that satisfies Eq. (61) for all p ∈ [c, p], and the inverse of y = ψ(p), denoted by p = ψ−1(y), is
the pricing function that satisfies the conditions in Theorem 7. Therefore, we complete the proof
of the necessary conditions in Theorem 1.

A.3 Proof of Theorem 6

The proof of Theorem 6 is similar to that of Theorem 1. In particular, the following two corollaries
directly follow Theorem 7 and Theorem 8, respectively.

Corollary 3 (Sufficiency). Given a setup S with pk ∈ (ck,+∞),∀k ∈ K, PPMϕ is max{αk}-
competitive if ϕ = {ϕk}∀k and for all k ∈ K, the pricing function ϕk satisfies{

ϕk(y)− f ′k(y) =
1
αk

· df
k
# (ϕk(y))
dϕk

, y ∈ (0, 1),

ϕk(0) = ck, ϕk(1) ≥ pk.
(71)

Corollary 4 (Necessity). Given a setup S with pk ∈ (ck,+∞),∀k ∈ K, if there exists an α-competitive
online algorithm, then for all k ∈ K there must exist a strictly increasing function ψk(η) and a constant
αk ∈ [1, α] that satisfy: {∫ p

0
ηψ′

k(η)dη − fk
(
ψk(p)

)
=

fk
# (p)
αk

,∀p ∈ (ck, pk),

ψk (ck) = 0, ψk(pk) ≤ 1.
(72)

We skip the proofs of the above two corollaries since they follow the same principle as our previous
proof of Theorem 1. Theorem 6 directly follows the above two corollaries. Note that here we only
consider the case of HUC. The discussion of LUC is similar and thus is omitted for brevity.
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B Proof of Theorem 2 and Theorem 3

B.1 Preliminaries

We first give some preliminaries to aid our following proofs of the two lower bounds in Theorem 2 and
Theorem 3.

B.1.1 Characteristic Polynomial

The first step of our lower bound analysis is to show that the ODE of Problem (15) and Problem (16a),
i.e., the following ODE

ϕ′(y) = α · ϕ(y)− f ′(y)

(ϕ(y)/c)
1

s−1

, (73)

can be expressed in a separable form of differential equations. In particular, when we assume φ =

(ϕ/c)
1

s−1 , we have

φ′ = α
φs−1 − ys−1

(s− 1)φs−1
= α · (φ/y)

s−1 − 1

(s− 1) (φ/y)
s−1 . (74)

Let us assume χ = φ/y, then the ODE in Eq. (74) becomes

−χs−1

χs − α
s−1χ

s−1 + α
s−1

dχ =
1

y
dy. (75)

Taking integration on both sides of Eq. (75) leads to∫ χ

0

−ηs−1

ηs − α
s−1η

s−1 + α
s−1

dη = ln(y) + C, (76)

where C is any real constant. Let us define Ps (η;α) as

Ps (η;α) ≜ ηs − α

s− 1
ηs−1 +

α

s− 1
. (77)

Note that Eq. (77) is the denominator of the left-hand-side of Eq. (76). This polynomial is referred to as
the characteristic polynomial hereinafter, where the notation Ps (η;α) means that the characteristic
polynomial is in degree s with variable η for a given α ≥ 1.

The characteristic polynomial plays a critical role in our following lower bound analysis of α. In
particular, the existence of positive roots to equation Ps (η;α) = 0 is summarized in the following
Lemma 4.

Lemma 4. Given α ≥ 1 and s > 1, Ps (η;α) = 0 has at most two positive roots in variable η. In
particular, when α < αmin

s , Ps (η;α) = 0 has no positive root; when α > αmin
s , Ps (η;α) = 0 has two

positive roots; when α = αmin
s , Ps (η;α) = 0 has a double positive root.

Proof. We can prove that the characteristic polynomial is a unimodal function in η ∈ [0,+∞). Taking
derivative of Ps (η, α) w.r.t. η ∈ [0,+∞), we have

dPs (η;α)

dη
= sηs−1 − αηs−2 = ηs−2 (sη − α) . (78)

Therefore, Ps (η, α) is decreasing when η ∈ [0, α/s], and is increasing when η ∈ (α/s,+∞). Since
Ps(0;α) =

α
s−1 > 0, to have at least one positive root, we must have

Ps

(α
s
;α
)
=
(α
s

)s
− α

s− 1

(α
s

)s−1

+
α

s− 1
≤ 0, (79)

which thus leads to α ≥ ss/(s−1) = αmin
s . In particular, when α = αmin

s , we have a double positive root,
which is η = αmin

s /s = s1/(s−1).

Based on Lemma 4, for any α ≥ αmin
s , we denote the two positive roots of Ps (η;α) = 0 by R−

s (α) and
R+
s (α), where R

−
s (α) ≤ R+

s (α). In particular, when α = αmin
s , we have R−

s (α) = R+
s (α) and thus we have

a double positive root. We will see in subsequent sections that the positive roots of the characteristic
polynomial play a critical role throughout the proofs of Theorem 2 and Theorem 3.
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B.1.2 Preliminaries of IVP and BVPs

To prove the existence of monotonically-increasing solutions to Problem (15) and Problem (16a), let us
first focus on the following BVP:

BVP(φ;α, u)

{
φ′ = α · φs−1−ys−1

(s−1)φs−1 , 0 < y < u,

φ(0) = 0, φ(u) = 1.
(80)

For any α ≥ 1 and u ∈ (0, 1), we denote the solution of BVP(φ;α, u) (if it exists) by φbvp

(
y;α, u

)
. Note

that the only difference between BVP(φ;α, u) and Problem (16a) is the rescaling of the coordinates.
In the following, we may refer to these two BVPs interchangeably. We will call ϕ(y) as the (original)
pricing function while φ(y) the scaled-pricing function. Similarly, we will also call f ′(y) = cys−1

the (original) marginal cost and f ′φ(y) = (f ′(y)/c)1/(s−1) = y as the scaled-marginal cost. We will
see in the subsequent analyses that performing such an equivalent transformation helps us reveal rich
structural properties of the ODE in Eq. (73).

Directly working with BVPs is usually very challenging [22]. Worse yet is that our BVP(φ;α, u)
consists of a singular boundary condition, namely the right-hand-side of the ODE is undefined when
φ(0) = 0. A typical idea is to approach BVP(φ;α, u) via its associated IVP, and thus we define
IVP(φ;α, u) as follows:

IVP(φ;α, u)

{
φ′ = α · φs−1−ys−1

(s−1)φs−1 , 0 < y < u,

φ(u) = 1,
(81)

We denote the solution of IVP(φ;α, u) (if it exists) by φivp

(
y;α, u

)
. Intuitively, when we have

lim
y→0+

φivp(y;α, u) = 0,

then φivp (y;α, u) is also a solution to BVP(φ;α, u), i.e., φivp (y;α, u) = φbvp(y;α, u). Note that we check
the limit of φivp (y;α, u) when y approaches 0 since φivp (y;α, u) may be undefined at y = 0.

Solving IVP(φ;α, u) is trivial since we only have one initial condition. In particular, substituting
the initial condition of φ(u) = 1 into Eq. (76) leads to∫ 1/u

0

−ηs−1

Ps (η, α)
dη = ln(u) + C, (82)

which thus indicates that φivp (y;α, u) is the root to the following equation in variable φ:∫ φ/y

1/u

ηs−1

Ps (η, α)
dη = ln

(
u

y

)
. (83)

Below we give some standard results regarding the existence, uniqueness and monotonicity of φivp (y;α, u).

B.1.3 Existence, Uniqueness and Monotonicity

Our pricing function design is related to the existence and uniqueness property of solutions to IVP(φ;α, u)
in the following lemma.

Lemma 5. For each (α, u) ∈ [1,+∞) × (0, 1), IVP(φ;α, u) has a unique solution φivp (y;α, u) that is
defined over y ∈ (0, u].

Lemma 5 follows one of the most important theorems in ODEs, namely the Picard–Lindelöf theorem
for the existence and uniqueness of solutions to IVPs. We refer the details to [22], [2], [1]. Basically the
Picard–Lindelöf theorem guarantees that there always exists a unique solution to IVP(φ;α, u), defined
on a small neighbourhood of the initial point φ(u) = 1, as long as the right-hand-side of the ODE in
IVP(φ;α, u) is Lipschitz continuous within that neighbourhood. Moreover, this unique solution extends
to the whole region of y ∈ (0, u]. Based on this existence and uniqueness property, we can prove the
following monotonicity properties in Lemma 6 and Lemma 7.

Lemma 6. Given α ≥ 1, φivp(y;α, u) is non-decreasing in y ∈ (0, u] and lower bounded by f ′φ(y) at each
point in (0, u].

30



Proof. Please refer to Appendix G.

Lemma 6 guarantees that for any α ≥ 1 and u ∈ (0, 1), the unique solution to IVP(φ;α, u) is a
feasible scaled-pricing function (i.e., posted prices are always larger than or equal to the marginal costs,
and thus no negative social welfare contribution will be introduced). Below we give Lemma 7, which
states that φivp(y;α, u) is also monotonic in (α, u) ∈ [1,+∞)× (0, 1].

Lemma 7. φivp(y;α, u) is continuous and non-increasing in (α, u) ∈ [1,+∞)× (0, 1].

Proof. The proof is given in Appendix H.

We also have the following Lemma 8, which shows that if φivp(y;α, u) approaches 0 when y → 0+,
then it must be the unique solution to BVP(φ;α, u).

Lemma 8. For any u ∈ (0, 1) and α ≥ 1, φivp(y;α, u) is the unique solution to BVP(φ;α, u) if and
only if lim

y→0+
φivp(y;α, u) = 0.

Proof. The necessity is obvious, and the sufficiency can be proved by contradiction. Since for a given
(α, u) ∈ [1,+∞)× (0, 1), there exists a unique solution to IVP(φ;α, u), and thus if lim

y→0+
φivp(y;α, u) = 0

and φivp(y;α, u) is not the unique solution for BVP(φ;α, u), then there must exist another solution for
IVP(φ;α, u), leading to a contradiction with Lemma 5.

Note that Lemma 8 does not directly states any condition to show the existence of solutions to
BVP(φ;α, u) in terms of α and u. In fact it is unclear at the moment whether there exists a feasible
design of (α, u) so that lim

y→0+
φivp(y;α, u) = 0. We answer this question in the next section.

B.2 Structural Properties

Based on the characteristic polynomial, below we give an important structural property of IVP(φ;α, u).

Proposition 3. For any u ∈ (0, 1) and α > αmin
s , φivp (y;α, u) has the following properties:

• If α = αs(u), φivp(y;α, u) is linear in y ∈ (0, u], given by

φivp (y;αs(u), u) =
y

u
. (84)

• If α > αs(u), φivp(y;α, u) is strictly convex in y ∈ (0, u].

• If α < αs(u), φivp (y;α, u) is strictly concave in y ∈ (0, u].

Recall that αs(u) =
s−1
u−us , which is defined in Eq. (18).

Proof. Please refer to Appendix I for the detailed proof. We emphasize that φ being linear does not
necessarily mean the original pricing function ϕ is linear since ϕ(y) = c (φivp(y;α, u))

s−1
. The same

argument also applies to the convexity and concavity of ϕ and φ.

Corollary 5. For any α > αmin
s , φivp(y;α, u) is given by

φivp(y;α, u) =

{
yR+

s (α) if u = 1
R+

s (α)
∈ [0, us],

yR−
s (α) if u = 1

R−
s (α)

∈ [us, 1].
(85)

In particular, when α = αmin
s , the two linear solutions reduce to one as follows: φivp(y;α, u) = y/us, that

is, R−
s (α

min
s ) = R+

s (α
min
s ) = 1/us.

Proof. Eq. (84) and (85) are basically equivalent to each other. In fact, if we substitute φivp (y;α, u) =
y/u back in the ODE, we have Ps(

1
u ;α) = 0, and thus the corollary follows.
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Figure 9: Illustration of φivp(y;α, u) in three cases when α = 1, α = αs(u) and α > αs(u). The scaled-
marginal cost f ′φ(y) = y. The grey region is for the cases when 1 ≤ α ≤ αs(u).

We illustrate the above properties of φivp (y;α, u) in Fig. 9. It is obvious that φivp (y;αs(u), u) = y/u
satisfies both the ODE and the two boundary conditions, namely φivp (0;αs(u), u) = 0 and φivp (u;αs(u), u) =
1. Therefore, φivp (y;αs(u), u) is the unique solution to BVP(φ;αs(u), u). Since our target is to get an as
small α as possible, it is interesting to know whether there exists any α ∈ [1, αs(u)) such that φivp (y;α, u)
is also the unique solution to BVP(φ;α, u) for some u ∈ (0, 1), namely the grey region in Fig. 9.

For notational convenience, let us define ∆(α, u) and ∆′(α, u) by:

∆(α, u) ≜ lim
ω→0+

φivp(y;α, u),∆
′(α, u) ≜ lim

y→0+
φ′
ivp(y;α, u). (86)

Therefore, ∆(α, u) captures the distance between φivp(y;α, u) and f
′
φ(y) when y → 0+, as shown in Fig.

9. Recall that the necessary condition for φivp (y;α, u) being the unique solution to BVP(φ;α, u) is to
have ∆(α, u) = 0. Below we give a proposition to show the necessary condition for ∆(α, u) = 0 in terms
of α and u.

Proposition 4. For any u ∈ (0, 1] and 1 ≤ α ≤ αs(u), we have

0 ≤ ∆(α, u) ≤ 1− α

αs(u)
. (87)

Meanwhile, if ∆(α, u) = 0, then Ps(∆
′(α, u);α) = 0.

Proof. The proof is given in Appendix J.

The above proposition shows that for any given u ∈ (0, 1) and 1 ≤ α ≤ αs(u), ∆(α, u) can be any
value within [0, 1 − α/αs(u)]. In particular, when ∆(α, u) = 0, we have Pγ(∆

′(α, u), α) = 0, namely
∆′(α, u) is one of the positive roots of the characteristic polynomial. Note that as a special case, when
u = 1

R+
s (α)

or 1
R-

s(α)
, the proposition clearly holds according to Corollary 5.

The above necessary condition for ∆(α, u) = 0 is very useful in our following lower bound analysis.
In fact, based on Proposition 4, we immediately have the following two corollaries.

Corollary 6. For all u ∈ (0, 1), BVP(φ;α, u) has no solution if α < αmin
s .

Corollary 7. For any ϵ > 0, there are no (αmin
s − ϵ)-competitive online algorithms.

Proof. The above two corollaries are equivalent to each other. Note that if ∆(α, u) = 0, then ∆′(α, u)
must be a positive root of the characteristic polynomial. However, according to Lemma 4, when α < αmin

s

the characteristic polynomial has no positive root. Therefore, for any u ∈ (0, 1), we have ∆(α, u) ̸= 0 if
α < αmin

s , which implies that BVP(φ;α, u) has no solution, and thus no online algorithm can achieve a
competitive ratio that is smaller than αmin

s with zero additive loss4.

4Note that Corollary 7 is not a new result and was first proved in [17]. However, here we provide a new proof, which is
much simpler and more intuitive.
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Figure 10: Illustration of the lower bound α1(u) (the blue real curve and the red real curve) with four
cases to prove Theorem 3. In the figure, the blue dashed curve denotes function αs(u) = s−1

u−us when
u ∈ [us, 1).

B.3 Lower Bound (Proof of Theorem 3)

This section presents the formal proof of Theorem 3. We show that for each given u ∈ (0, 1), the necessary
and sufficient condition for the existence of a unique solution to BVP(φ;α, u) is to have α ≥ α1(u),
where α1(u) is given in Eq. (17) and is revisited as follow:

α1(u) =

{
αs(u) if u ∈ (0, us) ,

αmin
s if u ∈ [us, 1) .

(88)

We illustrate α1(u) in Fig. 10 to help our following analysis. Below we give the details of the proof.
We first prove the sufficiency of Theorem 3, that is, if α ≥ α1(u), then we can find a unique solution

for BVP(φ;α, u), namely Case-1 and Case-2 in Fig. 10.
Case-1: α ≥ αs(u) and u ∈ (0, 1). Based on Lemma 6, Lemma 7 and Proposition 3, the unique so-

lution to IVP(φ;α, u) is convex and stays within the following range

yR−
s (α) ≤ φivp (y;α, u) ≤

y

u
,∀y ∈ (0, u]. (89)

The upper limit holds because of the monotonicity w.r.t. α, i.e., φivp (y;α, u) ≤ φivp (y;αs(u), u) = y/u,
while for the lower bound, we can prove it by contradiction. Suppose φivp (y;α, u) is not lower bounded
by yR−

s (α), then these two functions must have at least one intersection points (other than the singular
point). Let us denote one of these intersection points by y = u0. Then it is easy to see that IVP(φ;α, u0)
has two solutions: one is linear and the other one is convex, which contradicts with the uniqueness
property of IVP(φ;α, u0). Therefore, the lower bound holds. Based on the squeeze theorem, when
y → 0+, we have ∆(α, u) = limy→0+ φivp (y;α, u) = 0, which means that φivp (y;α, u) is the unique
solution to BVP(φ;α, u).

Case-2: αmin
s ≤ α ≤ αs(u) and u ∈ [us, 1). We argue that for any y ∈ (0, u], the unique solution

φivp (y;α, u) is concave and stays within [y/u, yR−
s (α)], namely,

y

u
≤ φivp (y;α, u) ≤ yR−

s (α),∀y ∈ (0, u]. (90)

As illustrated by the concave curve
>
AD in Fig. 11(a), the lower bound is represented by the straight line

AD and the upper bound is represented by AC. The lower limit follows the monotonicity of φivp (y;α, u)
in α, i.e., φivp (y;α, u) ≥ φivp (y;αs(u), u) = y/u, and we can prove the upper limit by contradiction
in the same way as Case-1. Based on the lower bound and upper bound of φivp (y;α, u), we have
∆(α, u) = limy→0+ φivp (y;α, u) = 0, and thus φivp (y;α, u) is the unique solution to BVP(φ;α, u).
Moreover, in this case, we have

∆′(α, u) = lim
y→0+

φ′
ivp (y;α, u) = R−

s (α) =
1

u#
, (91)

where u# ∈ [us, u] is such that αs(u#) = α. This means that in Fig. 11(a), AC is a tangent line for
>
AD

at point y = 0. In particular, if α = αmin
s , then the upper bound of φivp (y;α, u) is y/us, as illustrated

by AB in Fig. 11(a). When α = αs(u), both the upper bound and lower bound become y/u, namely,
φivp (y;αs(u), u) = y/u, which follows Proposition 3.
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Figure 11: The scaled-pricing function in Case-2 and Case-3. In subfigure (a), the slopes of AB and AD
are 1

us
and 1

u , respectively, and AC represents function yR−
s (α) or

y
u#
, where u# is such that αs(u#) = α.

>
AD represents the scaled-pricing function φivp (y;α, u). In subfigure(b), the slope of AE is 1

u . The slope

of AF is R+
s (α), and DE is parallel to AF .

>
BE represents the scaled-pricing function φivp (y;α, u). CE

is a tangent line for
>
BE at y = u.

In summary, for any u ∈ (0, 1), when α ≥ α1(u), there exists a unique solution for BVP(φ;α, u), we
thus complete the proof of sufficiency. Below we prove the necessity of the theorem, namely, if α < α1(u),
then there is no solution for BVP(φ;α, u).

Case-3: αmin
s ≤ α < αs(u) and u ∈ (0, us). Based on Proposition 3, we know that φivp (y;α, u) is

strictly concave in y ∈ (0, u], and thus the monotonicity of φ′
ivp (y;α, u) implies that

∆′(α, u) = lim
y→0+

φ′
ivp (y;α, u) > φ′

ivp (u;α, u) = α · 1− us−1

(s− 1)
. (92)

Note that when α < αs(u), we can show that

Ps
(
φ′
ivp (u;α, u) , α

)
> 0, (93)

which thus indicates that

∆′(α, u) > φ′
ivp (u;α, u) > R+

s (α) ≥ R−
s (α). (94)

Therefore, it is impossible to have ∆(α, u) = 0, since otherwise based on Corollary 4, ∆′(α, u) must be
one of the positive roots of the characteristic polynomial, which contradicts with the inequality in Eq.
(94). Therefore, ∆(α, u) ̸= 0, and thus there exists no solution for BVP(φ;α, u).

We illustrate Case-3 in Fig. 11(b). In this case, the solution to IVP(φ;α, u) always satisfies

y

u
≤ φivp (y;α, u) ≤ φ′

ivp(u;α, u) · y + 1− α

αs(u)
, (95)

where the lower limit follows the monotonicity property w.r.t. α and the upper limit follows Proposition 4.
We illustrate the lower and upper limits by AE and CE in Fig. 11(b), respectively. Since φ′

ivp(u;α, u) >

R+
s (α), CE must be upper bounded by DE as well, where DE is parallel to AF , i.e., the slopes of DE

and AF are R+
s (α). In summary, in this case, we have

0 < ∆(α, u) < 1− α

αs(u)
, (96)

where the upper bound is equal to the length of AC in Fig. 11(b).
Case-4: α < αmin

s and u ∈ (0, 1). In this case, based on Corollary 6 we can directly conclude that
∆(α, u) > 0, and thus there exists no solution for BVP(φ;α, u).

Summarizing the analysis of the above four cases, for any u ∈ (0, 1), α ≥ α1(u) is the necessary
and sufficient condition for the unique existence of solutions to BVP(φ;α, u). We thus complete the
proof of Theorem 3.

Theorem 2 is a special case of Theorem 3 and can be proved similarly. Hence, we skip the details.
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C Proof of Theorem 4

The proof of this theorem is based on the analytical solution to the ODE in Eq. (16b). Here we briefly
sketch the proof. The general solution to Problem (16b) is as follows:

ϕ(y;α, u) = eαy ·
(∫ y

0

αe−αηf ′(η)dη +D

)
= eαy ·

(
D − c

αs−1
· Γ(s, αy)

)
, (97)

where D is a constant and Γ(s, αy) is the incomplete Gamma function defined as follows:

Γ(s, αy) ≜
∫ αy

0

ηs−1e−ηdη. (98)

Substituting the first boundary condition into Eq. (97) leads to the following solution

ϕ(y;α, u) = eαy ·
(

c

eαu
+

c

αs−1
· Γ(s, αu)− c

αs−1
· Γ(s, αy)

)
. (99)

It is easy to prove that ϕ(y;α, u) is always a strictly-increasing function in y ∈ [u, 1]. Similar to
Lemma 7, we can prove that ϕ(y;α, u) is increasing in α ∈ (0,+∞) and decreasing in u ∈ (0, 1). The
second boundary condition of ϕ(1;α, u) ≥ p indicates that

ϕ(1;α, u) = eα ·
(

c

eαu
+

c

αs−1
· Γ(s, αu)− c

αs−1
· Γ(s, α)

)
≥ p. (100)

Based on the monotonicity of ϕ(1;α, u) in y and α, for each given u ∈ (0, 1), solving the inequality
in Eq. (100) leads to α ≥ α2(u), where α2(u) is the unique root that satisfies∫ α2(u)

uα2(u)

ηs−1e−ηdη =
(α2(u))

s−1

exp (uα2(u))
− p (α2(u))

s−1

c exp (α2(u))
. (101)

Based on the monotonicity of ϕ(y;α, u) in u ∈ (0, 1), α2(u) is strictly-increasing in u ∈ (0, 1). We thus
complete the proof of Theorem 4.

D Proof of Proposition 2

The proof of this proposition is trivial by following Theorem 3 and Theorem 4. In particular, if we

substitute u = us =
(
1
s

) 1
s−1 and α = α2(us) = αmin

s = s
s

s−1 into Eq. (99), we have

ϕ(1;αmin
s , us) = eα

min
s ·

(
c

eα
min
s us

+
c

(αmin
s )s−1

· Γ(s, αmin
s us)−

c

(αmin
s )s−1

· Γ(s, α)
)
. (102)

Simplifying the right-hand-side of Eq. (102) leads to the expression of Cs in Eq. (22).
Based on the monotonicity of α2(u) in u ∈ [us, 1) and Eq. (101), the two cases of HUC1 and HUC2

in Proposition 2 directly follow.

E Proof of Lemma 1 and Lemma 2

Proof of Lemma 1. Based on the calculation of ucdt in Proposition 2, when y = 1 and u = ucdt, we have
ϕivp(1;ucdt) = p. Therefore, ϕivp(y;ucdt) is a feasible solution to Problem (16b). For any u ∈ (0, ucdt],
based on the monotonicity of α1(u) and α2(u), we have α1(u) ≥ α2(u). Theorem 4 shows that when
α = α1(u) ≥ α2(u), Problem (16b) has a unique solution. We can prove that this unique solution must
be the same as the solution to Problem (24), since otherwise there would be two different solutions for
the IVP in Eq. (24), leading to contradictions. On the other hand, the monotonicity of ϕivp(y;u) in u
implies that

ϕivp(y;u) ≥ ϕivp(y;ucdt),∀u ∈ [us, ucdt],

which indicates that ϕivp(1;u) ≥ ϕivp(1;ucdt) = p. The lemma thus follows.
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Proof of Lemma 2. Based on ϕivp(ρs;us) = p, the value of ρs satisfies

c

eα
min
s us

− p

eα
min
s ρs

=
c

(αmin
s )s−1

·
∫ αmin

s ρs

αmin
s us

ηs−1e−ηdη, (103)

which indicates that ∫ αmin
s ρs

αmin
s us

ηs−1e−ηdη =
(αmin
s )s−1

eα
min
s us

− p(αmin
s )s−1

ceα
min
s ρs

. (104)

Therefore, we have ∫ αmin
s ρs

αmin
s us

ηs−1e−ηdη =
ss

exp(αmin
s us)

− pss

c exp(αmin
s ρs)

. (105)

Since αmin
s us = s, Eq. (26) in Lemma 2 follows.

F Proof of Theorem 5

The optimal pricing functions in the three cases are obtained by solving the corresponding BVPs. Below
we briefly sketch the proof.

LUC: Based on Theorem 2, given v = f ′−1(p), and α = αmin
s , Problem (15) has a feasible solution

ϕ(y) = c (φluc(y))
s−1

, where φluc(y) is the unique root to the following equation in variable φluc:∫ φluc
y

1
v

ηs−1

Ps (η;αmin
s )

dη = ln

(
v

y

)
, y ∈ (0, v]. (106)

In this case, ϕ(v) = p. Since we just need ϕ(v) ≥ p, based on Proposition 3, ϕw(y) = sf ′(y) is also a
feasible solution to Problem (15). When ϕw(y) = p, the resource utilization level y is y = f ′−1(p/s) ≜ w.
Therefore, based on the monotonicity property of ϕ(y), for any m ∈ [w, v], we can find an optimal pricing
function ϕm that is given by Eq. (27).

HUC1: Based on Theorem 3, for any u ∈ [us, ucdt] and α = α1(u) = αmin
s , Problem (16a) has a unique

solution ϕ(y) = c (φhuc(y))
s−1

, where φhuc(y) is the unique root to the following equation in variable
φhuc: ∫ φhuc

y

1
u

ηs−1

Ps (η;αmin
s )

dη = ln

(
u

y

)
, y ∈ (0, u]. (107)

The optimal pricing function in Eq. (30) thus follows. In particular, when u = us, Proposition 3 implies
that the analytical solution to Eq. (107) is given by φhuc =

y
us
. In this case, the optimal pricing function

can be given by Eq. (32).
HUC2: Based on Proposition 3 and Eq. (25), the unique solution to Problem (16b) directly follows

when we have u = ucdt ∈ (0, us) and α = α1(ucdt) = αs(ucdt) =
s−1

ucdt−us
cdt
,

G Proof of Proposition 6

Below we revisit IVP(φ;α, u) for a better reference.

IVP(φ;α, u)

{
φ′ = αφ

s−1−ys−1

(s−1)φs−1 , 0 < y < u,

φ(u) = 1,
(108)

According to Lemma 5, the above IVP has a unique solution which is denoted by φivp(y;α, u).
We first prove that φivp(y;α, u) ≥ f ′φ(y) = y holds for all y ∈ (0, u]. Note that when y = u ∈

(0, 1), we have φivp(u;α, u) > f ′φ(u) and φ′
ivp(u;α, u) > 0. Therefore, if φivp(y;α, u) ≥ f ′φ(y) does not

hold for all y ∈ (0, u], then there must exists at least one point within (0, u), say y0 ∈ (0, u), such
that φivp(y;α, u) > f ′φ(y) for all y ∈ (y0, u], φivp(y0;α, u) = f ′φ(y0), and φivp(y;α, u) < f ′φ(y) for all
y ∈ (y0 − ϵ, y0), where ϵ is a small positive value. However, when φivp(y;α, u) < f ′φ(y), φ

′
ivp(y;α, u)

is negative according to the ODE, and thus φivp(y;α, u) is decreasing in (y0 − ϵ, y0). This means that
φivp(y;α, u) > φivp(y0;α, u) = f ′φ(y0) > f ′φ(y) for all y ∈ (y0−ϵ, y0), leading to a contradiction. Therefore,
φivp(y;α, u) ≥ f ′φ(y) = y always holds for all y ∈ (0, u], and the monotonicity directly follows.
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H Proof of Proposition 7

The continuity direct follows since φivp(y;α, u) is well defined for all (α, u) ∈ [1,+∞)× (0, 1].
We first prove the monotonicity in u ∈ (0, 1) by contradiction. Suppose we have u1 ∈ (0, 1) and

u2 ∈ (0, 1), and assume w.l.o.g. that u1 > u2, we can prove that φivp(y;α, u1) < φivp(y;α, u2) holds for
all y ∈ (0, u2). The idea is that these two functions cannot have any intersection point, since otherwise
the IVP with the same ODE as IVP(φ;α, u) but with the initial condition defined at the intersection
point will have at least two solutions, namely φivp(y;α, u1) and φivp(y;α, u2), which is impossible due to
the uniqueness property. Note that it is also impossible for φivp(y;α, u1) > φivp(y;α, u2) since if this is
the case, then φivp(y;α, u1) is not monotonic in y ∈ (0, u1). Therefore, when u1 > u2, we always have
φivp(y;α, u1) < φivp(y;α, u2).

We now prove the monotonicity in α ∈ [1,+∞). Suppose we have α1 and α2, and assume w.l.o.g.
that α1 > α2. We need to prove that φivp(y;α1, u) < φivp(y;α2, u) for all y ∈ (0, u]. Based on the ODE
in Eq. (108), when α1 > α2, the derivative of φ at y = u satisfies

φ′
ivp(u;α1, u) > φ′

ivp(u;α2, u). (109)

Therefore, there must exist a small interval on the left-hand-side of u, say [u− σ, u], where σ is a small
positive value, such that φivp(y, α1, u) < φivp(y, α2, u) for all y ∈ [u − σ, u]. This can be easily proved
based on the definition of derivative, which is omitted for brevity.

Now suppose φivp(y;α1, u) < φivp(y;α2, u) does not hold for all y ∈ (0, u], then there must exist
an intersection point, say u0, such that φ(y;α1, u) < φ(y;α2, u) when y ∈ (u0, u], and φ(y;α1, u) ≥
φ(y;α2, u) when y ∈ (u0 − ϵ, u0], where ϵ is a very small positive value. Now let us consider two new
IVPs with the same initial condition defined at point y = u0, and denote the unique solutions to these
two new IVPs by φnew(y;α1, u0) and φnew(y;α2, u0), according to the uniqueness property, we must have

φnew(y;α1, u0) = φivp(y;α1, u),∀y ∈ (0, u0), (110)

φnew(y;α1, u0) = φivp(y;α1, u),∀y ∈ (0, u0). (111)

Since φivp(y;α1, u) ≥ φivp(y;α2, u) when y ∈ (u0−ϵ, u0], which means that we cannot find a small interval
on the left-hand-side of u0, say [u0 − σ̂, u0], such that φnew(y;α1, u0) < φnew(y;α2, u0). However, this
contradicts with the fact that

φ′
new(u0;α1, u0) > φ′

new(u0;α2, u0). (112)

Therefore, we have φivp(y;α1, u) < φivp(y;α2, u) for all y ∈ (0, u].

I Proof of Proposition 3

Let us revisit the ODE of IVP(φ;α, u) as follows:

φ′ = α · φ
s−1 − ys−1

(s− 1)φs−1
, (113)

which can be written as follows:

φs−1 − ys−1 =
s− 1

α
φs−1φ′,

Let us take derivative w.r.t. y in both sides, and after some simple manipulation, we have the following
equation:

φ′′ =
−(s− 1) (φ′)2 + αφ′ − α

(
y
φ

)s−2

φ

1) If α = αs(u), we prove that the following equality

−(s− 1) (φ′)
2
+ αφ′ − α

(
y

φ

)s−2

= 0 (114)
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holds for all y ∈ (0, u], which means φ′′ = 0 and thus leads to the linearity of φ. We prove it by finding
such a linear solution. Let us assume φ = Ay +B and substitute it into Eq. (114), we have

−(s− 1)A2 +Aαs(u)− αs(u) ·
(
1

A

(
1− B

φ

))s−2

= 0. (115)

To make the above equation hold for all y ∈ (0, u], we let B = 0 and A be the solution to the following
equation

As − αs(u)

s− 1
As−1 +

αs(u)

s− 1
= Ps

(
A;αs(u)

)
= 0. (116)

Substituting αs(u) =
s−1
u−us into the above equation leads to

As − As−1

u− us
+

1

u− us
= 0. (117)

Note that A = 1
u is always a solution to the above equation for all u ∈ (0, 1). Therefore, we have

φivp(y;αs(u), u) =
y

u
. (118)

2) If α > αs(u), we prove that the following inequality

−(s− 1) (φ′)
2
+ αφ′ − α

(
y

φ

)s−2

> 0 (119)

holds for all y ∈ (0, u], and thus φ′′ > 0, leading to the convexity of φ in Proposition 3.
In fact, according to the original ODE, we have

φ′ =
α

s− 1
− α

s− 1

(
y

φ

)s−1

. (120)

Substituting the above equation to the left-hand-side of (119), we have

− (s− 1) (φ′)
2
+ αφ′ − α

(
y

φ

)s−2

= − (s− 1)

(
α

s− 1
− α

s− 1

(
y

φ

)s−1
)2

+

(
α

s− 1
− α

s− 1

(
y

φ

)s−1
)

− α

(
y

φ

)s−2

=
α2

s− 1

(
y

φ

)s−1

− α2

s− 1

(
y

φ

)2s−2

− α

(
y

φ

)s−2

= α

(
y

φ

)s−2(
α

s− 1
· y
φ
− α

s− 1

(
y

φ

)s
− 1

)
= α

(
y

φ

)s−2

· −1(
φ
y

)s · Ps
(
φ

y
;α

)

= − α

(
y

φ

)−2

· Ps
(
φ

y
;α

)
,

where Ps

(
φ
y ;α

)
is the characteristic polynomial with variable φ/y.

When α > αs(u), according to the monotonicity of φ in α, we have φ < y/u, and thus φ/y < 1/u.
Therefore, when u ∈ (0, us), we have 1/u = R+

s (αs(u)) and thus

Ps

(
φ

y
;α

)
< Ps

(
φ

y
;αs(u)

)
< Ps

(
R+
s (αs(u));αs(u)

)
= 0. (121)

When u ∈ [us, 1), we have

Ps

(
φ

y
;α

)
< Ps

(
φ

y
;αs(u)

)
< Ps

(
R−
s (αs(u));αs(u)

)
= 0. (122)
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Therefore, we have

−α
(
y

φ

)−2

· Ps
(
φ

y
;α

)
> 0, (123)

which indicates that φ′′ > 0, namely, φ is strictly convex.
3) If α > αs(u), we can use the same approach to prove

−(s− 1) (φ′)
2
+ αφ′ − α

(
y

φ

)s−2

< 0,

which leads to the concavity of φ. We thus complete the proof.

J Proof of Proposition 4

The first part of this proposition directly follows Proposition 3. Specifically, based on the concavity of
φivp(y;α, u), when 1 ≤ α ≤ αs(u), we have

φivp(y;α, u) ≤ φ′
ivp(u;α, u)(y − u) + φivp(u;α, u)

=
α(1− us−1)

(s− 1)
y + 1− α(1− us−1)

(s− 1)
u

=
α(1− us−1)

(s− 1)
y + 1− α

αs(u)
,

which means that ∆(α, u) ≤ 1− α/αs(u). In particular, when α = αs(u), we have ∆(α, u) = 0.
For the second part, note that when u = 1

R+
γ(α)

, 1
R-

γ(α)
, the above corollary holds naturally based on

Corollary 5. However, Corollary 4 extends the limit to general u ∈ (0, 1] as long as ∆(α, u) = 0. We
sketch the proof as follows. If ∆(α, u) = 0, then we have

lim
y→0+

φivp (y;α, u)

y
= lim
y→0+

φ′
ivp (y;α, u) = ∆′(α, u) (124)

Based on the ODE of IVP(φ;α, u) in Eq. (74), we have

lim
y→0+

φ′
ivp (y;α, u) =

α

s− 1

(
1− lim

y→0+

(
y

φivp (y;α, u)

)s−1
)

(125)

Therefore, according to the power rule of limits, we have

∆′(α, u) =
α

s− 1

(
1−

(
1

∆′(u, α)

)s−1
)

(126)

It is obvious that if ∆′(α, u) is not finite and positive, the above equation cannot hold. For finite
∆′(α, u), after a simple manipulation, the above equation indicates that Ps(∆

′(α, u);α) = 0, and thus
the proposition follows.
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