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Abstract

Online content platforms are concerned about the freshness of their content updates to their end cus-

tomers, and increasingly more platforms now invite and pay the crowd to sample real-time information

(e.g., traffic observations and sensor data) to help reduce their ages of information (AoI). How much

crowdsourced data to sample and buy over time is a critical question for a platform’s AoI management,

requiring a good balance between its AoI and the incurred sampling cost. This question becomes more

interesting by considering the stage after sampling, where multiple platforms coexist in sharing the

content delivery network of limited bandwidth, and one platform’s update may jam or preempt the

others’ under negative network externalities. When these selfish platforms know each other’s sampling

cost, we formulate their competition as a non-cooperative game and show they want to over-sample to

reduce their own AoIs, causing the price of anarchy (PoA) to be infinity. To remedy this huge efficiency

loss, we propose a trigger mechanism of non-monetary punishment in a repeated game to enforce the

platforms’ cooperation to approach the social optimum. We also study the more challenging scenario

of incomplete information that some new platform hides its private sampling cost information from the

other incumbent platforms in the Bayesian game. Perhaps surprisingly, we show that even the platform

with more information may get hurt. We successfully redesign the trigger-and-punishment mechanism to

negate the platform’s information advantage and ensure no cheating. Our extensive simulations show that

the mechanisms can remedy the huge efficiency loss due to platform competition, and the performance

improves as we have more incumbent platforms with known cost information.
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Age of information, Mobile crowdsourcing, Network externalities, Repeated games, Trigger mech-

anism of non-monetary punishment.

I. INTRODUCTION

Today many customers do not want to lose any breaking news or useful information in

smartphone even if in minute, and online platforms (such as social media outlets and navigation

applications) want to keep their content updates fresh to attract a good number of customers

for subscription and profit ([2], [3]). The platforms’ updated real-time information can be news,

traffic conditions, shopping promotions, restaurant discovery, and air quality conditions.

Age of information (AoI) is a promising metric to characterize a platform’s content update

delay from an application layer point of view, and AoI measures the duration from the moment

that the latest content was generated to the current reception time [4]. Numerous works were

done to analyze the AoI for a single link ([4]–[7]). ([8]–[10]) also analyzed the benefit of using

queues to store outdated packets and improved the average age by choosing sampling rate.

[11] extended the long-run AoI analysis to the case of multiple sources in a last-come-first-serve

(LCFS) M/M/1 queue with given preemption policy. ([12], [13]) optimized the online scheduling

policy to balance multiple sources without knowing future data arrival patterns.

The existing works on AoI focus on technological issues for controlling time-avarage age under

different policies and scenarios (e.g., [4]–[13]), and very few studies look at the economics of

AoI management at the platform or system level. We are only aware that [14] studied how a

single platform dynamically motivates sensors to sample fresh data on the source side, and [15]

analyzed the purchase behavior to buy a platform’s fresh data on the demand side. From the

system management perspective, there are two critical issues to address. First, on the supply

side, a platform needs to take care of the large sampling cost to support AoI. Increasingly more

platforms now invite and pay the crowd to sample and send back real-time information (e.g.,

traffic observations, sales information, and sensor data) at large sampling rates [16]. For example,

online platform CrowdSpark follows this crowdsourcing approach and maintains a large pool of

professional and citizen journalists who are paid to submit reports, news and videos. Another

example is Waze platform who asks and rewards millions of drivers to report location-based
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observations (e.g., of road visibility, congestion, and “black-ice” segments) when travelling in

different routes of the city ([17], [18]). We wonder how much crowdsourced data a platform

should buy, expecting a balance between its AoI performance and the incurred sampling cost.

The other economic issue is on the delivery side, where more than one selfish platform shares

the same content delivery network for managing their individual AoIs. The content delivery

network is of limited bandwidth and naturally involves competition among multiple platforms

([19], [20]). One platform’s content update can jam or preempt the others’ information updates,

reducing its own AoI at the cost of the others’. How to enforce their cooperation despite the selfish

nature of each is another key question, requiring new mechanism design under negative network

externalities. In the literature, there are some game-theoretic studies on duopoly competition

under externalities without mechanism design ([21], [22]). [23] further studied direct pricing

or subsidy-based mechanisms to seek duopoly cooperation, yet such direct payment may be

difficult to implement and realize in practice. For example, in our AoI management problem, it

is difficult to ask the platforms to pay additionally according to their sample updates on top of

their existing contracts with the Internet service provider (ISP). Regarding the literature of indirect

(non-monetary) cooperation mechanism design for wireless networking applications, there are

some repeated game studies that proposed trigger mechanisms of long-term punishment to hinder

any platform’s deviation from cooperation (e.g., [24], [28]). Yet these mechanisms are proposed

for complete information or require sufficiently large discount factor when each platform cares

enough for its future return. Differently, we design new trigger-and-punishment mechanisms here

to work for any discount factor and incomplete information scenario. We also note that there

are some pure economics studies on repeated games under incomplete information (e.g., [25]),

yet they focus on signalling and learning and are not directly suitable for our problem of AoI

management.

Our key novelty and main contributions are summarized as follows.

• Regulating AoI competition under network externalites: To our best knowledge, this is the

first paper studying the platform competition in AoI, and we take into account their sampling

costs on the information supply side and update competition on the information delivery

side. In Section II, we model multiple selfish platforms’ competition as non-cooperative
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games, depending on how well the platforms know about each other’s sampling cost.

• Huge efficiency loss due to platform competition: Under complete information, each platform

competes to increase its sampling rate without caring the others’ AoI increases, and we prove

the price of anarchy (PoA) is infinity. Under incomplete information where some platform

newly joining the information market can hide its sample cost realization from the other

incumbent platforms in the Bayesian game, we show surprisingly that the new platform

may get hurt from gaining more information and the PoA is also infinity.

• Trigger mechanism of non-monetary punishment for approaching the social optimum under

complete information: To remedy the huge efficiency loss under complete information, in

Section III we design a trigger mechanism of non-monetary punishment in the repeated game

to enforce the platforms to cooperate, where we adapt the platforms’ sampling cooperation

profile for fitting any discount factor. As the discount factor increases, the mechanism’s

achieved performance improves to approach the social optimum as the platforms are more

forward-looking to cooperate.

• Approximate trigger-and-punishment mechanism design under incomplete information: To

reduce the efficiency loss between the Bayesian competition equilibrium and the social op-

timum under incomplete information, in Section IV we propose an approximate mechanism

in the repeated game to enforce all the platforms’ cooperation. Note that our mechanism

under complete information does not work here, as the new platform now can take advantage

of hiding its cost information to strategically under- or over-sample without triggering

the punishment. We successfully redesign the trigger-and-punishment mechanism to negate

the platform’s information advantage and ensure no cheating. We show the mechanism’s

performance improves as we have more incumbent platforms with known cost information.

II. SYSTEM MODEL AND PRELIMINARY RESULTS

As shown in Figure 1, N online platforms (e.g., Crowdspark and Waze) first collect new

samples (e.g., reports of spotted news and traffic observations) from their crowdsourcing pools

at Poisson rates λ1, λ2, · · · , λN , respectively, and then share the ISP’s content delivery network of

limited bandwidth µ to update new content to their customers in the same area. Here λi denotes
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Fig. 1: Illustration of System Model. For example, here N = 2 platforms (Crowdspark and
Waze) respectively buy samples from their crowdsourcing pools at Poisson rates λ1 and λ2, and
then update to their end customers through the same delivery network of bandwidth µ.

the mean rate of sampling generation of new information for platform i ∈ {1, 2, · · · , N}. As in

many of the AoI literature (e.g., [11], [26], [27]), we assume in each platform’s crowdsourcing

pool, the sampling from each sensor source over time follows a Poisson process, and the total

sampling to platform i observations as superposition also follows Poisson process with mean

rate λi. Platform i can control mean rate λi by providing proper incentive compensation to

the crowdsourcing pool as in [14] and [16], and its average sampling cost is ciλi with unit

compensation cost ci.

After sampling, we consider the content transmission time through the delivery network

follows an exponential distribution with rate µ. Without much loss of generality, we assume

that the content delivery network applies a LCFS M/M/1 queue with preemption policy for

processing the N platforms’ updates as in [11], where the latest content arrival can preempt any

platform’s ongoing update in the network.1 According to [11], the time-average AoI at platform

i is given by

1Though more involved, our model and the following analysis can also be extended to other queueing models such as a
first-come-first-serve M/M/1 in [4]. There, the time-average AoI expression still shows the benefit of a platform to increase its
sampling rate at the cost of increasing the other platforms’ AoIs.
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∆i =

N∑
j=1

λj

λi
(

1
N∑
j=1

λj

+
1

µ
),

which decreases with its own sampling rate λi and network bandwidth µ, and increases with the

other platforms’ total sampling rate λ−i =
N∑
j=1

λj − λi under negative network externalities.

By further taking our modeled sampling cost into consideration, we define platform i’s total

cost function as

πi(λi, λ−i) = ∆i + ciλi, (1)

requiring platform i to balance the AoI and the sampling cost when deciding its λi. Unlike each

platform who only aims to minimize its own cost objective, the social planner wants to minimize

the social cost as defined below:

π(λ1, λ2, · · · , λN) =
N∑
i=1

πi(λi, λ−i).

In practice, a platform knows its own sampling cost yet may or may not know the other

platforms’ costs exactly. Next we present our preliminary results for the N platforms’ competition

equilibrium under complete and incomplete information.

A. Competition Equilibrium under Complete Information

We first consider the information scenario that each cost ci is known to all the N platforms.

We formulate the N platforms’ interaction in the non-cooperative one-shot game where platform

i decides its own λi to minimize its total cost πi(λi, λ−i) in (1) without considering the others’

AoIs. As outcome of this game, we denote (λ∗1, λ
∗
2, · · · , λ∗N) as the equilibrium sampling rates.

To tell the maximum efficiency loss due to their selfish competition, we use the concept of

price of anarchy (PoA) below:

PoA = max
c1,c2,··· ,cN ,µ

π(λ∗1, λ
∗
2, · · · , λ∗N)

π(λ∗∗1 , λ
∗∗
2 , · · · , λ∗∗N )

,

where (λ∗∗1 , λ
∗∗
2 , · · · , λ∗∗N ) denote the social optimizers when the N platforms cooperate to jointly

minimize the social cost. By checking the first-order conditions of convex costs π(λ1, · · · , λN)

and πi(λi, λ−i) with respect to λi for all i ∈ {1, · · · , N}, we have the following result.
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Proposition II.1. Under complete information, the social optimizers (λ∗∗1 , λ
∗∗
2 , · · · , λ∗∗N ) are the

unique solutions to

− 1

λ2i
(1 +

N∑
j=1

λj − λi

µ
) + ci +

1

µ

( N∑
j=1

1

λj
− 1

λi

)
= 0, i ∈ {1, · · · , N}. (2)

Differently, the competition equilibrium (λ∗1, λ
∗
2, · · · , λ∗N) are the unique solutions to

− 1

λ2i
(1 +

N∑
j=1

λj − λi

µ
) + ci = 0, i ∈ {1, · · · , N}. (3)

By comparing (2) and (3), we conclude that competition leads over-sampling (λ∗i ≥ λ∗∗i ) for

platform i ∈ {1, · · · , N} at the equilibrium.

The proof is given in Appendix A. We notice from the third-term on the left-hand-side of

(2) that at the social optimum platform i cares about its sampling’s negative externality effect

1
µ

( N∑
j=1

1
λj
− 1

λi

)
on the other N−1 platforms and will sample conservatively, while this is missing

in (3) due to platform i’s selfishness at the equilibrium. The following result further explains

their competition to over-sample at the equilibrium.

Corollary II.1.1. At the competition equilibrium, λ∗i increases with λ∗j , and decreases with ci,

cj and µ, respectively, where i, j ∈ {1, · · · , N} and j 6= i.

Intuitively, each platform worries that its update is preempted by the other platforms, and

will sample and update more frequently. Such competition causes huge efficiency loss, as shown

below.

Proposition II.2. Price of anarchy under complete information is PoA=∞, which is achieved

when the smallest sampling cost among all the platforms min{c1, · · · , cN} tends to be zero and

the largest sampling cost among all the platforms max{c1, · · · , cN} is non-trivial.

Proof. Suppose ci = min{c1, · · · , cN} and cj = max{c1, · · · , cN}, we need to prove PoA=∞

given ci → 0 and non-trivial cj > 0. As ci → 0, platform i does not care its sampling cost

and only aims to minimize its AoI. According to (3), λ∗i will go to infinity and this stimulates

platform j’s λ∗j =

√
1+(

N∑
k=1

λ∗k−λ
∗
j )/µ

cj
to reach infinity. However, at the social optimum, both

(λ∗∗1 , λ
∗∗
2 , · · · , λ∗∗N ) in (2) and the resultant social cost π(λ∗∗1 , λ

∗∗
2 , · · · , λ∗∗N ) are finite. Then we
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have

PoA = lim
ci→0

N∑
k=1

N∑
l=1

λ∗l

λ∗k

(
1

N∑
l=1

λ∗l

+ 1
µ

)
+

N∑
l=1

clλ
∗
l

π(λ∗∗1 , λ
∗∗
2 , · · · , λ∗∗N )

≥ lim
ci→0

cjλ
∗
j

π(λ∗∗1 , λ
∗∗
2 , · · · , λ∗∗N )

=∞.

This huge efficiency loss motivates us to design non-monetary cooperation mechanisms to

mitigate the competition among the platforms. Note that the social optimum can be easily realized

if the social planner (e.g., the ISP) can charge a monetary penalty 1
µ

( N∑
j=1

1
λ∗∗j
− 1

λ∗∗i

)
per sampling

rate λi from platform i, where i ∈ {1, · · · , N}. However, this additional charging based on

usage is intrusive and difficult to implement in practice, given the content platforms’ existing

flat contracts with the ISP. This motivates us to design non-monetary cooperation mechanisms

in the repeated game in Section III, which is more challenging.

B. Competition Equilibrium under Incomplete Information

Now we consider the incomplete information scenario that there is 1 newly joined platform

in the network (namely, platform 1) whose unit sampling cost is time-varying and its realization

is only known to itself, while the other N − 1 existing platforms know each other’s sampling

cost exactly and are uncertain about that of the new platform.2 Accordingly, we model the

public information that platform 1 has probability pH of having high sampling cost cH and

probability 1 − pH of having low sampling cost cL each time it samples, while sampling cost

ci of platform i ∈ {2, · · · , N} is constant over time. On one hand, platform 1 knows its c1

realization (cL or cH) and the other ci’s. On the other hand, platform i only knows all costs ci’s

and the probability distribution of c1, and it is also aware of platform 1’s information advantage.

In other words, the ratio 1/N tells the degree of incomplete information to the social planner

or public. We wonder if platform 1 benefits from this and if we have huge efficiency loss

result as in complete information. To let platform 1 fully uses its information advantage, we

consider a more challenging case where unit sampling costs of platforms follow the order of

pHcH + (1− pH)cL ≤ c2 ≤ · · · ≤ cN with smallest mean cost for platform 1.

2We can also extend our analysis to another incomplete scenario where more than one platform can hide its cost information
from the others, though the analysis involving many combinations of cost realizations becomes more complicated.
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Since platform 1 knows its own unit cost exactly, it will take this information advantage and

adaptively decide λ1(cH) when c1 = cH and λ1(cL) when c1 = cL. Unaware of c1 realizations,

platform i ∈ {2, · · · , N} behaves indifferently to decide λi constantly over time. We model such

platform competiton as a Bayesian game as follows.

Given c1 = cH , platform 1’s cost function is

π1

(
λ1 (cH) ,

N∑
i=2

λi

)
=

λ1 (cH) +
N∑
i=2

λi

λ1 (cH)

 1

λ1 (cH) +
N∑
i=2

λi

+
1

µ

+ cHλ1 (cH) , (4)

and otherwise,

π1

(
λ1 (cL) ,

N∑
i=2

λi

)
=

λ1 (cL) +
N∑
i=2

λi

λ1 (cL)

 1

λ1 (cL) +
N∑
i=2

λi

+
1

µ

+ cLλ1 (cL) . (5)

Under incomplete information, the cost function of platform i ∈ {2, · · · , N} is defined below

in average sense:

πi ((λ1 (cH) , λ1 (cL)) , λi, λ−i) = pH ·
(
λ1 (cH) + λi + λ−i

λi

(
1

λ1 (cH) + λi + λ−i
+

1

µ

))
+ (1− pH) ·

(
λ1 (cL) + λi + λ−i

λi

(
1

λ1 (cL) + λi + λ−i
+

1

µ

))
+ ciλi, (6)

where λ−i =
N∑
j=2

λj − λi. The average social cost function is

π ((λ1 (cH) , λ1 (cL)) , λ2, · · · , λN) =pHπ1

(
λ1 (cH) ,

N∑
i=2

λi

)
+ (1− pH) π1

(
λ1 (cL) ,

N∑
i=2

λi

)

+
N∑
i=2

πi ((λ1 (cH) , λ1 (cL)) , λi, λ−i) . (7)

Similar to the complete information scenario, we present the concept of PoA below in this

incomplete information scenario:

PoA = max
cL,cH ,c2,··· ,cN ,µ,pH

π ((λ∗1 (cH) , λ∗1 (cL)) , λ∗2, · · · , λ∗N)

π ((λ∗∗1 (cH) , λ∗∗1 (cL)) , λ∗∗2 , · · · , λ∗∗N )
,

where ((λ∗1 (cH) , λ∗1 (cL)) , λ∗2, · · · , λ∗N) summarize competition equilibrium and social optimizers

are summarized as ((λ∗∗1 (cH) , λ∗∗1 (cL)) , λ∗∗2 , · · · , λ∗∗N ). By checking the first-order conditions of

convex costs π1

(
λ1 (cH) ,

N∑
i=2

λi

)
in (4), π1

(
λ1 (cL) ,

N∑
i=2

λi

)
in (5), πi((λ1 (cH) , λ1 (cL)) , λi,
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λ−i) in (6) and π ((λ1 (cH) , λ1 (cL)) , λ2, · · · , λN) in (7) with respect to λ1(cH), λ1(cL) and λi,

i ∈ {2, · · · , N}, respectively, we have the following result.

Proposition II.3. Under incomplete information, ((λ∗∗1 (cH) , λ∗∗1 (cL)) , λ∗∗2 , · · · , λ∗∗N ) as the so-

cial optimizers are the unique solutions to

− 1

λ21 (cH)

1 +

N∑
i=2

λi

µ

+ cH +
1

µ

N∑
i=2

1

λi
= 0, (8)

− 1

λ21 (cL)

1 +

N∑
i=2

λi

µ

+ cL +
1

µ

N∑
i=2

1

λi
= 0, (9)

pH

− 1

λ2i

1 +

λ1 (cH) +
N∑
j=2

λj − λi

µ

+ ci +
1

λ1 (cH)µ



+ (1− pH)

− 1

λ2i

1 +

λ1 (cL) +
N∑
j=2

λj − λi

µ

+ ci +
1

λ1 (cL)µ

+
1

µ

( N∑
j=2

1

λj
− 1

λi

)
= 0, (10)

where i ∈ {2, · · · , N}. Differently, the competition equilibrium ((λ∗1 (cH) , λ∗1 (cL)) , λ∗2, · · · , λ∗N)

are the unique solutions to

− 1

λ21 (cH)

1 +

N∑
i=2

λi

µ

+ cH = 0, (11)

− 1

λ21 (cL)

1 +

N∑
i=2

λi

µ

+ cL = 0, (12)

− pH
λ2i

1 +

λ1 (cH) +
N∑
j=2

λj − λi

µ

− 1− pH
λ2i

1 +

λ1 (cL) +
N∑
j=2

λj − λi

µ

+ ci = 0, (13)

where i ∈ {2, · · · , N}. All the platforms will over-sample at equilibrium, i.e., λ∗1(cH) ≥ λ∗∗1 (cH),

λ∗1(cL) ≥ λ∗∗1 (cL) and λ∗i ≥ λ∗∗i . Additionally, we have λ∗1(cH)/λ∗1(cL) =
√
cL/cH .

The proof is given in Appendix B. Similar to the complete information scenario, all the

platforms unnecessarily over-sample at competition equilibrium. Such competition also causes

huge efficiency loss, as shown below by following a similar proof of Proposition II.2.
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Proposition II.4. Price of anarchy under incomplete information is PoA=∞, which is achieved

when the smaller cost cL of platform 1 tends to be zero while some ci with i ∈ {2, ..., N} is

non-trivial.

Proof. We want to show PoA= ∞ given cL → 0 and non-trivial some ci > 0 for platform

i ∈ {2, ..., N}. As cL → 0, platform 1 does not care its sampling cost when c1 = cL and only

aims to minimize its AoI, which is decreasing in λ1(cL) according to (5). Thus optimal λ∗1(cL)

will go to infinity.

As ci > 0 is non-trivial, λ∗1(cL) going to infinity stimulates platform i’s sampling rate λ∗i as

λ∗i =

√
1+(pHλ

∗
1(cH)+(1−pH)λ∗1(cL)+

N∑
j=2

λ∗j−λ∗i )/µ

ci
to reach infinity. However, at the social optimum,

both ((λ∗∗1 (cH) , λ∗∗1 (cL)) , λ∗∗2 , · · · , λ∗∗N ) in (8)-(10) and the resultant social cost π((λ∗∗1 (cH),

λ∗∗1 (cL)), λ∗∗2 , · · · , λ∗∗N ) are finite. Then we have

PoA = lim
cL→0

pH
λ∗1(cH)

(1 +
N∑
j=2

λ∗j/µ) + 1−pH
λ∗1(cL)

(1 +
N∑
j=2

λ∗j/µ) + (1− pH)cLλ
∗
1(cL) +

N∑
j=2

cjλ
∗
j

π((λ∗∗1 (cH), λ∗∗1 (cL)), λ∗∗2 , · · · , λ∗∗N )

+

N∑
j=2

1
λ∗j

(
1 +

(
pHλ

∗
1(cH) + (1− pH)λ∗1(cL) +

N∑
k=2

λ∗k − λ∗j
)
/µ
)

+ pHcHλ
∗
1(cH) +N/µ

π((λ∗∗1 (cH), λ∗∗1 (cL)), λ∗∗2 , · · · , λ∗∗N )

≥ ciλ
∗
i

π((λ∗∗1 (cH), λ∗∗1 (cL)), λ∗∗2 , · · · , λ∗∗N )
=∞.

If the social planner or ISP can charge 1
µ

N∑
i=2

1
λ∗∗i

per update from platform 1 and pH
λ∗∗1 (cH)µ

+

1−pH
λ∗∗1 (cL)µ

+ 1
µ

( N∑
j=2

1
λ∗∗j
− 1

λ∗∗i

)
from platform i ∈ {2, · · · , N}, then the social optimum can be

achieved. However, this additional charging based on usage is intrusive and difficult to implement

in practice, given the content platforms’ existing flat contracts with the ISP. This motivates us

to design non-monetary cooperation mechanisms in the repeated game in Section IV, which is

more challenging.

Finally, we check platform 1’s equilibrium cost objective and wonder if it takes advantage

from knowing more information of its own cost realization.

Proposition II.5. Under incomplete information, the one-shot cost of platform 1 when c1 = cH

is greater than that under complete information, and once pH is large, even its time-average cost
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pHπ1(λ
∗
1(cH), λ∗2, · · · , λ∗N) + (1 − pH)π1(λ

∗
1(cL), λ∗2, · · · , λ∗N) becomes greater than that under

complete information.

The proof is given in Appendix C. Under complete information, when c1 = cH platform 1

does not want to sample much to save its sampling cost, and platform i ∈ {2, · · · , N} knowing

c1 = cH expects weak limited negative network externalities from platform 1 and also samples

conservatively. However, under incomplete information, platform i can no longer observe c1 = cH

or c1 = cL instances, and its over-sampling when c1 = cH forces platform 1 to over-sample,

intensifying the competition and hurting all. Once pH is large, this happens more often and even

platform 1 loses on average sense.

III. TRIGGER-AND-PUNISHMENT MECHANISM UNDER COMPLETE INFORMATION

To remedy the huge inefficiency with PoA=∞ proved in Proposition II.2, we want to stimulate

cooperation between the N platforms. Without direct pricing or penalty, this is difficult to enforce

in one-shot, and thus we propose to use an infinitely repeated game to shift the N platforms’

myopic decision-making to be more forward-looking in the long run. In this repeated game, all

the platforms will simultaneously play the non-cooperative one-shot game in Section II.A for

infinitely many rounds with discount factor δ ∈ (0, 1). Note that δ tells how much a platform

evaluates its one-shot cost in next round as compared to the current cost. Yet this repeated

game alone is not enough to ensure cooperation, as each platform will still behave the same

as (λ∗1, λ
∗
2, · · · , λ∗N) in (3) in each round. We next propose a trigger mechanism of indirect

punishment as credible threat to prevent their myopic over-sampling in the first place. Note that

a platform’s AoI decreases with its update and increases with the other platforms’ updates under

negative network externalities.

Definition III.1. Our non-forgiving trigger mechanism of indirect punishment under complete

information works in the following:

• In each round, each platform follows cooperation profile
(
λ̃1(δ), λ̃2(δ),· · · , λ̃N(δ)

)
to sample
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if none was ever detected to deviate from this profile in the past.3

• Once a deviation was found in the past, the N platforms will keep playing the equilibrium

profile (λ∗1, λ
∗
2, · · · , λ∗N) in (3) forever as punishment.

We expect the social planner (e.g., the ISP) to implement the cooperation mechanisms and

recommend the cooperation or punishment profile to platforms based on their operations over-

time. Our mechanism as described above has another advantage: to trigger the punishment, we

do not need to identify which platform deviates. One can imagine that as long as a platform

cares enough for future costs under a large discount factor δ, it is unlikely to deviate to trigger

severe punishment. It should be noted that in the extreme case of δ → 0, each platform only

cares for immediate cost and
(
λ̃1(δ), λ̃2(δ),· · · , λ̃N(δ)

)
degenerate to (λ∗1, λ

∗
2, · · · , λ∗N) in the

one-shot game. We next design the cooperation profile
(
λ̃1(δ), λ̃2(δ),· · · , λ̃N(δ)

)
according to

any value of non-trivial δ.

A. Cooperation Profile Design for Large δ Regime

In this subsection, we first suppose the social optimum is attainable via our repeated game

with
(
λ̃1(δ), λ̃2(δ),· · · , λ̃N(δ)

)
= (λ∗∗1 , λ

∗∗
2 , · · · , λ∗∗N ) in (2), then any platform’s deviation will

bring itself in a larger long-term cost. We can use this no-deviation condition to reverse-engineer

the feasible regime of δ for enabling such (λ∗∗1 , λ
∗∗
2 , · · · , λ∗∗N ) in the first place.

If platform i ∈ {1, · · · , N} chooses to deviate to any λi, it is optimal to deviate in the

first round to save the immediate cost πi(λi, λ∗∗−i) in (1) without any time discount. Its optimal

deviation or best response to λ∗∗−i is λi =
√

1+λ∗∗−i/µ

ci
according to (3). Its (discounted) long-term

cost objective over all time stages is

Π̂i = πi

(√
1 + λ∗∗−i/µ

ci
, λ∗∗−i

)
+ δπi(λ

∗
i , λ
∗
−i) + δ2πi(λ

∗
i , λ
∗
−i) + · · · ,

= πi

(√
1 + λ∗∗−i/µ

ci
, λ∗∗−i

)
+

δ

1− δ
πi(λ

∗
i , λ
∗
−i), (14)

3Here, each time slot in the repeated game is long enough for each platform’s AoI statistic to converge to its average value.
Then platform i can easily identify the other platforms’ total sampling rate λ−i from its own average AoI experience ∆i(λi, λ−i)
in (1) and rate λi. Note that each platform only has intention to over-sample. As long as one platform really over-samples, λ−i
increases and all the other platforms can infer deviation to trigger the punishment.



14

where punishment is triggered since time stage 2 and λ∗−i =
N∑
j=1

λ∗j − λ∗i . Otherwise, it will

always cooperate and obtain the following cost without any deviation,

Πi = πi(λ
∗∗
i , λ

∗∗
−i) + δπi(λ

∗∗
i , λ

∗∗
−i) + δ2πi(λ

∗∗
i , λ

∗∗
−i) + · · · = 1

1− δ
πi(λ

∗∗
i , λ

∗∗
−i). (15)

To ensure that platform i never deviates in the repeated game, we require Π̂i ≥ Πi, or simply

δ ≥ δthi :=

πi(λ
∗∗
i , λ

∗∗
−i)− πi

(√
1+λ∗∗−i/µ

ci
, λ∗∗−i

)
πi(λ∗i , λ

∗
−i)− πi

(√
1+λ∗∗−i/µ

ci
, λ∗∗−i

) =

(√
1+λ∗∗−i/µ

ci+
1
µ

( N∑
j=1

1
λ∗∗
j
− 1
λ∗∗
i

) −√1+λ∗∗−i/µ

ci

)2

2λ∗∗i

(
λ∗i −

√
1+λ∗∗−i/µ

ci

) . (16)

Without loss of generality, we assume c1 ≤ c2 ≤ · · · ≤ cN and can show that platform 1 is more

likely to deviate with δth1 ≥ δth2 ≥ · · · ≥ δthN . The following summarizes the trigger mechanism

with perfect cooperation profile for δ ≥ max(δth1 , δ
th
2 , · · · , δthN ) = δth1 .

Proposition III.2 (Large δ Regime). Under complete information, if δ ≥ δth1 with δthi=1 in

(16), all the platforms will follow the perfect cooperation profile (λ̃1(δ), λ̃2(δ), · · · , λ̃N(δ)) =

(λ∗∗1 , λ
∗∗
2 , · · · , λ∗∗N ) in (2) all the time, without triggering the punishment profile (λ∗1, λ

∗
2, · · · , λ∗N)

in (3).

The threshold δthi tells platform i’s unwillingness to cooperate and we prefer small threshold

for this platform to follow λ∗∗i ideally.

B. Cooperation Profile Design for Medium δ Regime

If δthj+1 ≤ δ < δthj , where j ∈ {1, · · · , N−1}, platform k ∈ {j+1, · · · , N} will still follow the

social optimizer λ∗∗k yet platform i ∈ {1, · · · , j} with smaller costs will deviate, requiring us to

design new λ̃i(δ) as a function of δ to replace λ∗∗i for such platforms. By ensuring the long-term

cost Πi(λ̃i(δ), λ−i(δ)) in (15) without deviation just equal to (14) with the best deviation, where

λ−i(δ) =
j∑

k=1

λ̃k(δ)− λ̃i(δ) +
N∑

k=j+1

λ∗∗k , we optimally determine the λ̃i(δ) by jointly solving the

following equations

δ =

πi(λ̃i(δ), λ−i(δ))− πi
(√

1+λ−i(δ)/µ
ci

, λ−i(δ)

)
πi(λ∗i ,

N∑
j=1

λ∗j − λ∗i )− πi
(√

1+λ−i(δ)/µ
ci

, λ−i(δ)

) , i ∈ {1, · · · , j}. (17)
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When solving (17), there are two candidates for λ̃i(δ) and we choose to take the smaller root

with smaller social cost. Then we have the following result.

Proposition III.3 (Medium δ Regime). In the repeated game under complete information, if

δthj+1 ≤ δ < δthj , where j ∈ {1, · · · , N − 1}, all the platforms will always follow the cooperation

profile below without deviating to trigger punishment (λ∗1, λ
∗
2, · · · , λ∗N) in (3):

• For platform k ∈ {j + 1, · · · , N} with larger unit sampling costs: λ̃k(δ) = λ∗∗k .

• For platform i ∈ {1, · · · , j}: (λ̃1(δ), · · · , λ̃j(δ)) are unique solutions to

δλ∗i + (1− δ)

√
1 + λ−i(δ)

µ

ci
−

√√√√(
δλ∗i + (1− δ)

√
1 + λ−i(δ)

µ

ci

)2

−
1 + λ−i(δ)

µ

ci
− λ̃i(δ) = 0.

Here, λ∗∗i < λ̃i(δ) < λ∗i and λ̃i(δ) decreases with δ.

The proof is given in Appendix D. As we prefer the platforms not to over-sample, a larger δ

in the medium regime helps.

C. Cooperation Profile Design for Small δ Regime

If δ is smaller than the smallest threshold δthN , no platform will follow the social optimizers,

and we need to design totally new
(
λ̃1(δ), λ̃2(δ), · · · , λ̃N(δ)

)
as functions of δ jointly. Similar

to (17), we now have

δ =

πi(λ̃i(δ), λ̃−i(δ))− πi
(√

1+λ̃−i(δ)/µ
ci

, λ̃−i(δ)

)
πi(λ∗i , λ

∗
−i)− πi

(√
1+λ̃−i(δ)/µ

ci
, λ̃−i(δ)

) , i ∈ {1, · · · , N}, (18)

where λ̃−i(δ) =
N∑
j=1

λ̃j(δ) − λ̃i(δ) and λ∗−i =
N∑
j=1

λ∗j − λ∗i . After solving (18) and taking the

smaller roots for all λ̃i(δ)’s to avoid large social cost, we have the following result.

Proposition III.4 (Small δ Regime). In the repeated game under complete information, if

δ < δthN with i = N in (16), all the platforms will always follow the cooperation profile(
λ̃1(δ), λ̃2(δ), · · · , λ̃N(δ)

)
below as unique solutions to

λ̃i(δ)− δλ∗i − (1− δ)

√
1 + λ̃−i(δ)

µ

ci
+

√√√√(
δλ∗i + (1− δ)

√
1 + λ̃−i(δ)

µ

ci

)2

−
1 + λ̃−i(δ)

µ

ci
= 0, (19)
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Fig. 2: Cooperation profile (λ̃1(δ), λ̃2(δ)) of the trigger mechanism versus the discount factor
δ, as compared to social optimizers (λ∗∗1 , λ

∗∗
2 ). Here N = 2, δth2 = 0.3 and δth1 = 0.7 under

parameters c1 = 1, c2 = 1.5 and µ = 1.

where λ̃−i(δ) =
N∑
j=1

λ̃j(δ)−λ̃i(δ). Here we have λ∗∗i < λ̃i(δ) ≤ λ∗i for all i ∈ {1, · · · , N}. As δ →

0, the proposed
(
λ̃1(δ), λ̃2(δ), · · · , λ̃N(δ)

)
approach (λ∗1, λ

∗
2, · · · , λ∗N) in (3), and the repeated

game degenerates to one-shot game. As δ increases, cooperation profile
(
λ̃1(δ), λ̃2(δ), · · · , λ̃N(δ)

)
decrease and the competition mitigates.

The proof is given in Appendix E. Figure 2 shows an illustrative example of N = 2 platforms.

It shows how cooperation profile (λ̃1(δ), λ̃2(δ)) under our trigger mechanism of non-monetary

punishment changes with discount factor δ in all the three δ regimes. In small δ regime (δ < 0.3),

both (λ̃1(δ), λ̃2(δ)) decrease with δ until δth2 = 0.3 with λ̃2(δ) = λ∗∗2 . In medium δ regime

(0.3 ≤ δ < 0.7), only λ̃1(δ) decreases with δ until δth1 = 0.7. Finally, in large δ regime (δ ≥ 0.7),

the profile always equals (λ∗∗1 , λ
∗∗
2 ). The results are consistent with Propositions III.2-III.4.

Under our optimized trigger mechanism of non-monetary punishment, one may wonder how

the efficiency loss due to platform competition changes with discount factor δ in all the three

δ regimes. Given the symmetric cost setting (c1 = c2 = · · · = cN ), δth1 = · · · = δthN and there

are only small and large δ regimes. In this case, we manage to analytically derive the following

result.

Corollary III.4.1. Given c1 = c2 = · · · = cN under complete information, the ratio between the

social costs under the trigger mechanism of non-monetary punishment and the social optimum
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Fig. 3: Ratio between the social costs under our trigger-and-punishment mechanism and the
social optimum under complete information. We fix N = 2, c1 = 1, c2 = 1.5 and change
bandwidth µ and δ.

decreases with δ until δ = δth1 = · · · = δthN and keeps constant 1 since then.

Proof. As platforms perform the same in each round of the repeated game under our mechanism

and the social optimum, it is enough to examine the social cost ratio in one shot. Recall that under

the social optimum, λ∗∗1 = λ∗∗2 = · · · = λ∗∗N = 1√
c1

according to (3) and c1 = c2 = · · · = cN , the

corresponding social cost is

π∗∗ =
N∑
i=1

(
1

λ∗∗i

(
1 +

N∑
j=1

λ∗∗j /µ

)
+ ciλ

∗∗
i

)
= 2N

√
c1 + 2N/µ,

which is independent of δ. Under our optimal trigger mechanism, λ̃1(δ) = λ̃2(δ) = · · · = λ̃N(δ)

decreases with δ until δ = δth1 = · · · = δthN and keeps constant since then, and the corresponding

social cost is

πr =
N∑
i=1

(
1

λ̃i(δ)

(
1 +

N∑
j=1

λ̃j(δ)/µ

)
+ ciλ̃i(δ)

)
= Nc1λ̃1(δ) +N/λ̃1(δ) + 2N/µ.

In the large δ regime, πr = π∗∗ and we only need to examine the regime of small δ < δth1 ,

where λ̃1(δ) > λ∗∗1 = 1√
c1

always holds according to (19). By taking the first derivative of πr

over λ̃1(δ), we have

dπr

dλ̃1(δ)
= Nc1 −

N

λ̃21(δ)
> 0,
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due to λ̃1(δ) >
1√
c1

. Therefore, πr increases with λ̃1(δ). According to Proposition III.4, λ̃1(δ)

decreases with δ for δ < δth1 , thus πr decreases with δ for δ < δth1 . Since π∗∗ is a constant with

δ, we have the ratio πr/π∗∗ decreases with δ < δth1 and keeps 1 after δ ≥ δth1 .

Figure 3 further examines the asymmetric cost c1 < c2 for the two-platform case. We can

see that the the ratio between social costs under the trigger mechanism and the social optimum

still decreases with δ, which is consistent with Corollary III.4.1. As bandwidth µ increases, we

expect smaller social cost ratio or smaller efficiency loss, as the two platforms’ competition over

bandwidth mitigates given more resource.

IV. APPROXIMATE TRIGGER-AND-PUNISHMENT UNDER INCOMPLETE INFORMATION

To remedy the huge inefficiency with PoA= ∞ in Proposition II.4, we want to stimulate

cooperation among the N platforms to approach the social optimum under incomplete informa-

tion. As introduced in Section II.B, platform 1’s sampling cost realization in each instance is

unknown to platform i ∈ {2, · · · , N}. Similar to the complete information in Section III, we

propose to use an infinitely repeated game, where all the platforms will simultaneously play

the Bayesian game for infinitely many rounds with discount factor δ ∈ (0, 1). Without any

trigger mechanism of non-monetary punishment, each platform will still behave the same as

((λ∗1 (cH) , λ∗1 (cL)) , λ∗2, · · · , λ∗N) in (11)-(13) in each round. However, we cannot employ our

non-forgiving trigger mechanism under complete information in Definition III.1, by using the

social optimal cooperation profile
((
λ̃1 (cL, δ) , λ̃1 (cH , δ)

)
, λ̃2(δ), · · · , λ̃N(δ)

)
. The reason is

that under incomplete information, the other platforms cannot tell in each round whether platform

1’s cost c1 is cH or cL and platform 1 can choose λ̃1(cL) when c1 = cH without triggering any

punishment. Even if δ is large enough to allow (λ̃1(cL, δ), λ̃1(cH , δ))=(λ∗∗1 (cL), λ∗∗1 (cH)), the

following lemma shows that platform 1 may not comply.

Lemma IV.1. Given the perfect cooperation profile (λ∗∗1 (cL), λ∗∗1 (cH)) for platform 1 under

sufficiently large δ, platform 1 can still deviate from λ∗∗1 (cH) to λ∗∗1 (cL) when c1 = cH .

The proof is given in Appendix F. Once choosing between λ∗∗1 (cL) and λ∗∗1 (cH) in each round

of the repeated game, platform 1 will not trigger any punishment. When c1 = cH , platform i ∈

{2, · · · , N} under-samples with λ∗∗i by considering platform 1’s average cost under incomplete
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information, and platform 1 can take the information advantage to sample at high rate λ∗∗1 (cL)

by using low AoI to justify its high sample cost.

To negate information advantage of platform 1 under incomplete information, we next propose

to blindly use platform 1’s (deterministic) average cost to design its cooperation profile. That

is, we recommend an approximate term λ̃1(δ) to platform 1 all the time, without alternating

between precise terms λ̃1(cL, δ) and λ̃1(cH , δ) over time to give platform 1 freedom to cheat.

Definition IV.2. Our approximate trigger mechanism of indirect punishment under incomplete

information is as follows:

• In each round, all the platforms follow
(
λ̃1(δ), λ̃2(δ), · · · , λ̃N(δ)

)
to sample as approximate

cooperation profile if none was ever detected to deviate from this profile in the past.

• Once a deviation was found in the past, all the platforms will keep playing the equilibrium

profile ((λ∗1 (cH) , λ∗1 (cL)) , λ∗2, · · · , λ∗N) in (11)-(13) forever as punishment.

One can imagine that even if δ is sufficiently large, this approximate cooperation profile is

still different from social optimizers ((λ∗∗1 (cH) , λ∗∗1 (cL)) , λ∗∗2 , · · · , λ∗∗N ) in (8)-(10) and there is

inevitably some efficiency loss to avoid platform 1’s cheating by using information advantage.

We next design the best cooperation profile
(
λ̃1(δ), λ̃2(δ), · · · , λ̃N(δ)

)
according to any value

of non-trivial δ and minimize the involved inefficiency.

A. Approximate Cooperation Profile Design for Large δ Regime

Under incomplete information, platform 1 will behave indifferently no matter c1 = cH or

c1 = cL in the repeated game. Then we can revise the social optimum in (8)-(10) by treating

platform 1’s cost constant as ĉ1 := pHcH + (1− pH)cL deterministically. Then we approximate
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the social optimum as unique solutions to:

λ̂1 =

√√√√√√√
1 +

N∑
i=2

λ̂i/µ

pHcH + (1− pH) cL + 1
µ

N∑
i=2

1

λ̂i

, (20)

λ̂i =

√√√√√√√√
1 +

(
N∑
j=1

λ̂j − λ̂i
)
/µ

ci + 1
µ

(
N∑
j=1

1

λ̂j
− 1

λ̂i

) , i ∈ {2, · · · , N}. (21)

By comparing (20)-(21) with (8)-(10), we have the following result.

Lemma IV.3. Using approximation to smooth out sampling variation of platform 1, all the

platforms will under-sample as compared to the social optimum. That is,

λ̂1 ≤ pHλ
∗∗
1 (cH) + (1− pH)λ∗∗1 (cL), λ̂i ≤ λ∗∗i , i ∈ {2, · · · , N}.

Given (λ̂1, λ̂2, · · · , λ̂N) in (20)-(21) are attainable now and any platform’s deviation from them

will clearly bring itself in a larger long-term cost. We can analyze the no-deviation condition to

reverse-engineer the feasible regime of large δ for enabling (λ̂1, λ̂2, · · · , λ̂N) in the first place.

When c1 = cL, if platform 1 chooses to deviate in the first round to save the immediate cost

π1

(
λ1,

N∑
i=2

λ̂i

)
in (1) without any time discount, its optimal deviation or best response to

N∑
i=2

λ̂i

is λ1 =

√
1+

N∑
i=2

λ̂i/µ

cL
according to (3). Its (discounted) long-term cost objective over all time

stages is

Π̂1 (cL) = π1


√√√√√1 +

N∑
i=2

λ̂i/µ

cL
,

N∑
i=2

λ̂i

+
δ

1− δ
π1 ((λ∗1 (cL) , λ∗1 (cH)) , λ∗2, · · · , λ∗N) .

Otherwise, it will obtain the following cost without any deviation,

Π1 (cL) = π1

(
λ̂1, λ̂2, · · · , λ̂N |c1 = cL

)
+

δ

1− δ
π1

(
λ̂1, λ̂2, · · · , λ̂N

)
.

To ensure that platform 1 never deviates when c1 = cL in the repeated game, we require Π̂1(cL) ≥

Π1(cL), or simply δ ≥ δ̂th1 (cL) with
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δ̂th1 (cL) :=

cLλ̂1 − 2

√(
1 +

N∑
i=2

λ̂i/µ

)
cL +

(
1 +

N∑
i=2

λ̂i/µ

)
/λ̂1

(cL − ĉ1) λ̂1 + 2

√
1 +

N∑
i=2

λ∗i /µ (pH
√
cH + (1− pH)

√
cL)− 2

√(
1 +

N∑
i=2

λ̂i/µ

)
cL

. (22)

Similarly, we require the following to ensure no deviation when c1 = cH :

δ ≥ δ̂th1 (cH) :=

cH λ̂1 − 2

√(
1 +

N∑
i=2

λ̂i/µ

)
cH +

(
1 +

N∑
i=2

λ̂i/µ

)
/λ̂1

(cH − ĉ1) λ̂1 + 2

√
1 +

N∑
i=2

λ∗i /µ (pH
√
cH + (1− pH)

√
cL)− 2

√(
1 +

N∑
i=2

λ̂i/µ

)
cH

. (23)

Given platform 1 always chooses λ̂1, we also require the following for platform i ∈ {2, · · · , N}

to follow λ̂i:

δ ≥ δ̂thi :=

√√√√ ci+
1
µ

(
N∑
j=1

1

λ̂j
− 1

λ̂i

)
ci

+
√

ci

ci+
1
µ

(
N∑
j=1

1

λ̂j
− 1

λ̂i

) − 2

2

√√√√√√1+

(
pHλ

∗
1(cH)+(1−pH)λ∗1(cL)+

N∑
j=2

λ∗j−λ∗i

)
/µ

1+

(
N∑
j=1

1

λ̂j
− 1

λ̂i

)
/µ

− 2

. (24)

Recall that pHcH + (1 − pH)cL ≤ c2 ≤ · · · ≤ cN , we have δ̂thN ≤ · · · ≤ δ̂th2 ≤ max{δ̂th1 (cH),

δ̂th1 (cL)} := δ̂th1 . Yet note that min{δ̂th1 (cH), δ̂th1 (cL)} may or may not be larger than δ̂th2 .

Proposition IV.4 (Large δ Regime). Under incomplete information, if δ ≥ δ̂th1 = max{δ̂th1 (cH),

δ̂th1 (cL)}, all the N platforms will follow the approximate cooperation profile (λ̃1(δ), λ̃2(δ), · · · ,

λ̃N(δ)) = (λ̂1, λ̂2, · · · , λ̂N) in (20)-(21) all the time, without triggering punishment ((λ∗1 (cH),

λ∗1 (cL)), λ∗2, · · · , λ∗N) in (11)-(13).

When all the platforms have the same average costs, i.e., pHcH +(1−pH)cL = c2 = · · · = cN ,

we can analytically prove the following proposition.

Proposition IV.5. Given symmetric costs pHcH + (1− pH)cL = c2 = · · · = cN among the plat-

forms, the approximation ratio achieved by our trigger mechanism with profile (λ̂1, λ̂2, · · · , λ̂N)

in (20)-(21) is N
N−1 as compared to the social optimum with ((λ∗∗1 (cH) , λ∗∗1 (cL)) , λ∗∗2 , · · · , λ∗∗N )

in (8)-(10). The mechanism’s performance improves as we have more incumbent platforms with

known cost information.
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The proof is given in Appendix G. Given only platform 1 with hidden cost, relatively we face

less information uncertainty as total platform number N increases.

B. Approximate Cooperation Profile Design for Medium δ Regime

If δ̂thj ≤ δ < δ̂thj−1, where j ∈ {2, · · · , N}, only platform k ∈ {j, · · · , N} will still follow

perfect approximate profile λ̂k in (20). Yet platform 1 will deviate when c1 = cL given δ <

max{δ̂th1 (cH), δ̂th1 (cL)}, and platform i ∈ {2, · · · , j − 1} will also deviate from λ̂i, requiring us

to design new λ̃1(δ) and λ̃i(δ). Similar to (22), (23) and (24), we need to ensure the platform

1’s long-term cost does not change after the best immediate deviation no matter whether c1 = cL

or c1 = cH , and ensure platform i’s long-term cost does not change after the best immediate

deviation. The we have the following.

Proposition IV.6 (Medium δ Regime). In the repeated game under incomplete information,

if δ̂thj ≤ δ < δ̂thj−1 for some j ∈ {2, · · · , N}, all the N platforms will always follow the

cooperation profile below without deviating to trigger ((λ∗1 (cH) , λ∗1 (cL)) , λ∗2, · · · , λ∗N) in (11)-

(13) as punishment:

• For platform k ∈ {j, · · · , N} with greater costs: λ̃k(δ) = λ̂k in (20)-(21).

• For platform 1 and platform i ∈ {2, · · · , j−1}, their cooperation profile
(
λ̃1(δ), · · · , λ̃j−1(δ)

)
to follow are the unique solutions to:

λ̃1(δ) = max

{ML −

√√√√M2
L − (δĉ1 + (1− δ)cL)

(
1 +

(
j−1∑
k=2

λ̃k(δ) +
N∑

k=j

λ̂k

)
/µ

)
δĉ1 + (1− δ)cL

,

MH −

√√√√M2
H − (δĉ1 + (1− δ)cH)

(
1 +

(
j−1∑
k=2

λ̃k(δ) +
N∑

k=j

λ̂k

)
/µ

)
δĉ1 + (1− δ)cH

}
,

λ̃i(δ)−

Mi −

√√√√M2
i − ci

(
1 +

(
j−1∑
k=1

λ̃k(δ)− λ̃i(δ) +
N∑

k=j

λ̂k

)
/µ

)
ci

= 0,
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where

ML = δ

√√√√1 +

N∑
i=2

λ∗i /µ (pH
√
cH + (1− pH)

√
cL) + (1− δ)

√√√√√
1 +

j−1∑
k=2

λ̃k(δ) +

N∑
k=j

λ̂k

 /µ

 cL,

MH = δ

√√√√1 +

N∑
i=2

λ∗i /µ (pH
√
cH + (1− pH)

√
cL) + (1− δ)

√√√√√
1 +

j−1∑
k=2

λ̃k(δ) +

N∑
k=j

λ̂k

 /µ

 cH ,

Mi =
√
ci(δ

√√√√1 + (pHλ∗1 (cH) + (1− pH)λ∗1 (cL) +

N∑
k=2

λ∗k − λ∗i )/µ

+ (1− δ)

√√√√√1 +

j−1∑
k=1

λ̃k(δ)− λ̃i(δ) +

N∑
k=j

λ̂k

 /µ).

The proof is given in Appendix H.

C. Approximate Cooperation Profile Design for Small δ Regime

If δ is smaller than the smallest threshold δ̂thN among the platforms, no platform will follow

cooperation profile (λ̂1, λ̂2, · · · , λ̂N) in (20)-(21), and we need to redesign new
(
λ̃1(δ), λ̃2(δ), · · · ,

λ̃N(δ)
)

jointly as functions of δ. Similarly, we need to design the cooperation profile such that

the platforms’ long-term discounted costs do not change after the best immediate deviation.

Proposition IV.7 (Small δ Regime). In the repeated game under incomplete information, if

δ < δ̂thN with i = N in (24), the N platforms will always follow the cooperation profile(
λ̃1(δ), λ̃2(δ), · · · , λ̃N(δ)

)
as unique solutions to

λ̃1(δ) = max

{M ′L −
√
M ′2L − (δĉ1 + (1− δ)cL)

(
1 +

N∑
i=2

λ̃i(δ)/µ

)
δĉ1 + (1− δ)cL

,

M ′H −

√
M ′2H − (δĉ1 + (1− δ)cH)

(
1 +

N∑
i=2

λ̃i(δ)/µ

)
δĉ1 + (1− δ)cH

}
,

λ̃i(δ)−

M ′i −

√√√√M ′2i − ci

(
1 +

( N∑
j=1

λ̃j(δ)− λ̃i(δ)
)
/µ

)
ci

= 0,
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Fig. 4: Cooperation profile (λ̃1(δ), λ̃2(δ)) of the trigger mechanism versus discount factor δ, as
compared to approximate social optimizers (λ̂1, λ̂2) in (20)-(21). Here we have N = 2, δ̂th2 = 0.3
and δ̂th1 (cL) = 0.7 under parameters cH = 100, cL = 10, pH = 0.1, ĉ1 = 19, c2 = 20 and µ = 0.1
with ĉ1 < c2.

where

M ′L = δ

√√√√1 +

N∑
i=2

λ∗i /µ (pH
√
cH + (1− pH)

√
cL) + (1− δ)

√√√√(1 +

N∑
i=2

λ̃i(δ)/µ

)
cL,

M ′H = δ

√√√√1 +

N∑
i=2

λ∗i /µ (pH
√
cH + (1− pH)

√
cL) + (1− δ)

√√√√(1 +

N∑
i=2

λ̃i(δ)/µ

)
cH ,

M ′i =
√
ci

δ
√√√√1 + (pHλ∗1 (cH) + (1− pH)λ∗1 (cL) +

N∑
j=2

λ∗j − λ∗i )/µ+ (1− δ)

√√√√1 +
( N∑
j=1

λ̃j(δ)− λ̃i(δ)
)
/µ

 .

The proof is given in Appendix I. Figure 4 shows an illustrative example of N = 2 platforms,

where the approximate cooperation profile
(
λ̃1(δ), λ̃2(δ)

)
in Propositions IV.4, IV.6, IV.7 under

our trigger mechanism of non-monetary punishment changes with discount factor δ in all the

three δ regimes. Here the mean cost ĉ1 of platform 1 is less than that of platform 2 with

δ̂th1 (cL) = max{δ̂th1 (cL), δ̂th1 (cH)} and δ̂th2 < δ̂th1 (cL). In small δ regime, both (λ̃1(δ), λ̃2(δ))

decrease with δ until δ̂th2 = 0.3 with λ̃2(δ) = λ̂2 ideally. In medium δ regime, only λ̃1(δ)

decreases with δ till δ̂th1 (cL) = 0.7. Finally, in large δ regime, the profile eventually equals

(λ̂1, λ̂2). As ĉ1 = 19 is slightly smaller than c2 = 20 here, the final profile λ̂1 is close to λ̂2.

Figure 5 considers an arbitrary number N of platforms and empirically shows the social cost

ratio between the approximate trigger mechanism (in large δ regime) and the social optimum

in (8)-(10), πr/π∗∗, by comparing to the social cost ratio between competition equilibrium in
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(a) Social cost ratio between equilibrium and optimum
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(b) Social cost ratio between approximate mechanism and
optimum

Fig. 5: Empirical performance comparison between competition equilibrium, social optimum in
Section II.B, and our approximate mechanism here. Here, we set cH = 1.5, cL = 0.5, pH = 0.5
for platform 1, and symmetric costs c2 = · · · = c6 = pHcH + (1 − pH)cL for the other N − 1
platforms, and µ = 1.

(11)-(13) and the social optimum, π∗/π∗∗ without any mechanism design. As N increases,

platforms compete more intensively to over-sample, thus the ratio π∗/π∗∗ increases with greater

efficiency loss. However, our approximate mechanism only has mild efficiency loss. Given

only platform 1 with hidden information, relatively we face less information uncertainty as the

total platform number N increases, and the approximate cooperation profile better approaches

the social optimizers. Hence, ratio πr/π∗∗ decreases. This empricial result is consistent with

Proposition IV.5 in the worst case. Similar to Figure 3 in Section III, with asymmetric unit

sampling costs, our simulations show that social cost ratio between approximate mechanism and

optimum under incomplete information also decreases with δ in small and medium δ regimes,

and keeps constant in large δ regime.

V. CONCLUSION

In this paper we study the competition among online content platforms in AoI and bandwidth

sharing, and they concern the freshness of their own updates on real-time information instead

of the others’. When all the platforms know each other’s sampling cost, we show that all the

platforms over-sample and cause huge efficiency loss. To remedy the loss, we propose a trigger

mechanism of non-monetary punishment in the repeated game to approach the social optimum.
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We also study the more challenging case where some newly joined platform can hide its cost

information from the other incumbent platforms in the Bayesian game. Perhaps surprisingly, we

show that this platform may get hurt by knowing more information. Accordingly, we redesign

the trigger-and-punishment mechanism to approach the social optimum by ensuring no cheating

from the platform with more information. Extensive simulations show that the mechanism’s

performance improves as we have more incumbent platforms with known cost information.

APPENDIX A

PROOF OF PROPOSITION II.1

A. Proof of Social Optimizers and the Uniqueness

To show (2) are solutions as social optimizers, note that π(λ1, · · · , λN) is concave with each

λi due to ∂2π(λ1,··· ,λN )

∂λ2i
≤ 0, where i ∈ {1, · · · , N}. By using the first-order condition, we have

(2) as the solutions.

Then we want to prove (2) has unique solutions with induction method. When N = 2, (2)

can be rewritten as

λ1(λ2) =

√√√√ 1 + λ2
µ

1
λ2µ

+ c1
, (25)

λ2(λ1) =

√√√√ 1 + λ1
µ

1
λ1µ

+ c2
. (26)

To show λ1(λ2) in (25) is concave and strictly increasing in λ2, we take the first and second

derivatives of λ1(λ2) as

λ′1(λ2) =
1

2µ

√√√√ 1
λ2µ

+ c1

1 + λ2
µ

·
c1 + 2

λ2µ
+ 1

λ22

( 1
λ2µ

+ c1)2
,

λ′′1(λ2) = −
5c1+1
λ22

+ 2c1+2
λ2µ

+ c1 + 1
λ42

+ 4c1µ
λ32

4µ2( 1
λ2µ

+ c1)
5
2 (1 + λ2

µ
)
3
2

.

Since λ′′1(λ2) < 0, λ′1(λ2 = 0)→∞ and λ′1(λ2 →∞) = 0, we know λ′1(λ2) > 0 and λ1(λ2) is

concave and strictly increasing in λ2. Similarly we can show that λ2(λ1) in (26) is concave and
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strictly increasing in λ1. By substituting λ1(λ2) in (25) into λ2(λ1) in (26), we simplify (25)

and (26) as the following equation:

λ2 −

√√√√ 1 + λ1(λ2)
µ

1
λ1(λ2)µ

+ c2
= 0. (27)

Since
√

1+
λ1(λ2)
µ

1
λ1(λ2)µ

+c2
in (27) is concave and strictly increasing in λ1(λ2) and λ1(λ2) in (27) is

concave and strictly increasing in λ2, we obtain that
√

1+
λ1(λ2)
µ

1
λ1(λ2)µ

+c2
is concave and strictly increasing

in λ2. To show (27) has only one positive solution, denote g(λ2) = λ2 −
√

1+
λ1(λ2)
µ

1
λ1(λ2)µ

+c2
, where

we know g(λ2) is convex in λ2 because of concavity of
√

1+
λ1(λ2)
µ

1
λ1(λ2)µ

+c2
. Therefore we know g′(λ2)

increases with λ2. Since

g′(λ2 = 0) = 1− λ′2(0) < 0,

g′(λ2 →∞) = 1− λ′2(∞) > 0,

there exists unique a > 0 satisfying g′(a) = 0, then g(λ2) decreases in (0, a] and increases in

(a,∞). Since g(0) = 0 and g(∞)→∞, there exists unique λ∗∗2 > 0 satisfying g(λ∗∗2 ) = 0, thus

(27) has unique positive solution. We plot g(λ2) in Figure 6. Similarly (25) has unique positive

solution λ∗∗1 . The social optimizers in (2) are unique.

Suppose that when N = M − 1, (2) has unique solutions. With induction method, we need

to prove when N = M , (2) has unique solutions. Similar to (25)-(26), we can rewrite λi as a

function of λj and the λi is concave and strictly increasing in each λj , where i ∈ {1, · · · ,M} and

j 6= i. If we introduce λM as in (25)-(26) into other λi as in (25)-(26), where i ∈ {1, · · · ,M−1},

we have λi is still concave and strictly increasing in λj , where j ∈ {1, · · · ,M − 1} and j 6= i.

Since we know when N = M − 1, (2) has unique solutions. Then after introducing λM as in

(25)-(26) into other λi as in (25)-(26), the new M − 1 equations also have unique solutions.

Then we prove that when N = M , (2) has unique solutions.

B. Proof of Competition Equilibrium and the Uniqueness

To show (3) are solutions as equilibrium, note that each πi(λi, λ−i) is concave with each λi

due to ∂2πi(λi,λ−i)
∂λ2i

≤ 0, where i ∈ {1, · · · , N}. By using the first-order condition, we have (3)
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Fig. 6: g(λ2) versus λ2 in Appendix A.A.

as the solutions.

Then we want to prove (2) has unique solutions with induction method. When N = 2, (3)

can be rewritten as

λ1(λ2) =

√
1 + λ2/µ

c1
, (28)

λ2(λ1) =

√
1 + λ1/µ

c2
, (29)

which are equivalent to the following equation:√
1 + λ1/µ

c2
− µ(c1λ

2
1 − 1) = 0. (30)

Denote f(λ1) =
√

1+λ1/µ
c2
− µ(c1λ

2
1 − 1). To show f(λ1) only has one positive root, we check

the first-order and second-order derivatives of f(λ1) as

f ′(λ1) =
1

2
√
c2µ

√
1

1 + λ1/µ
− 2c1µλ1,

f ′′(λ1) = − 1

4
√
c2µ2

√
1

(1 + λ1/µ)
3
2

− 2c1µ.

Since f ′′(λ1) < 0, f ′(λ1) decreases with λ1. Additionally, since f ′(0) > 0 and f ′(∞) < 0, then

f ′(λ1) has exactly one positive root, denoted as f ′(b) = 0. Then f(λ1) is increasing in (0, b] and
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Fig. 7: f(λ1) versus λ1 in Appendix A.B.

decreasing in (b,∞). Also since

f(0) > 0,

f(∞) < 0,

then f(λ1) has unique positive root λ∗1 satisfying (30). We plot f(λ1) in Figure 7. Therefore λ∗2

is unique according to (29) and (3) has unique solutions.

Suppose that when N = M − 1, (3) has unique solutions. With induction method, we need

to prove when N = M , (3) has unique solutions. Similar to (28)-(29), we can rewrite λi as a

function of λj and the λi is concave and strictly increasing in each λj , where i ∈ {1, · · · ,M} and

j 6= i. If we introduce λM as in (28)-(29) into other λi as in (28)-(29), where i ∈ {1, · · · ,M−1},

we have λi is still concave and strictly increasing in λj , where j ∈ {1, · · · ,M − 1} and j 6= i.

Since we know when N = M − 1, (2) has unique solutions. Then after introducing λM as in

(28)-(29) into other λi as in (28)-(29), the new M − 1 equations also have unique solutions.

Then we prove that when N = M , (3) has unique solutions.

Since λ1(λ2) in (25) has an additional item 1
λ2µ

in the denominator than λ1(λ2) in (28), and

λ2(λ1) in (26) has an additional item 1
λ1µ

in the denominator than λ2(λ1) in (29), thus solutions

to (25) and (26), (λ∗∗1 , λ
∗∗
2 ), are smaller than solutions to (28) and (29), (λ∗1, λ

∗
2). Then we have

λ∗i ≥ λ∗∗i , i = 1, 2. For general N ≥ 2, each λi as in (25) has an additional item 1
µ

( N∑
j=1

1
λj
− 1

λi

)
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in the denominator than λi as in (28), thus solutions to (25) and (26) are smaller than solutions

to (28) and (29) when N ≥ 2, we have λ∗i ≥ λ∗∗i , i ∈ {1, · · · , N}.

APPENDIX B

PROOF OF PROPOSITION II.3

A. Proof of Social Optimizers and the Uniqueness

To show (8)-(10) are solutions as social optimizers, note that π((λ1(cH), λ1(cL)), · · · , λN) is

concave with each λi due to ∂2π((λ1(cH),λ1(cL)),··· ,λN )

∂λ2i
≤ 0, where i ∈ {1, · · · , N}. By using the

first-order condition, we have (8)-(10) as the solutions. Note that (8)-(10) have the same structure

as (2), we can prove uniqueness of (8)-(10) by following proof of (2) in Appendix A.A. We

thus skip details here.

B. Proof of Competition Equilibrium and the Uniqueness

To show (11)-(13) are solutions as equilibrium, note that each πi(λi, λ−i) is concave with

each λi due to ∂2πi(λi,λ−i)
∂λ2i

≤ 0, where i ∈ {1, · · · , N}. By using the first-order condition, we

have (11)-(13) as the solutions. Note that (11)-(13) have the same structure as (3), we can prove

uniqueness of (11)-(13) by following proof of (3) in Appendix A.B. We thus skip details here.

APPENDIX C

PROOF OF PROPOSITION II.5

If all the platforms have complete information of platform 1’s sampling cost, they will play a

one-shot game as in (1), we present ((λ̄1(cH), λ̄1(cL)), (λ̄2(cH), λ̄2(cL)), · · · , (λ̄N(cH), λ̄N(cL))),

the Nash equilibrium, as unqiue solutions to

λ̄1(cH) =

√√√√√1 +
N∑
j=2

λ̄j(cH)/µ

cH
, λ̄i(cH) =

√√√√√1 +
( N∑
j=1

λ̄j(cH)− λ̄i(cH)
)
/µ

ci
, i ∈ {2, · · · , N}, (31)

λ̄1(cL) =

√√√√√1 +
N∑
j=2

λ̄j(cL)/µ

cL
, λ̄i(cL) =

√√√√√1 +
( N∑
j=1

λ̄j(cL)− λ̄i(cL)
)
/µ

ci
, i ∈ {2, · · · , N}. (32)

In the following, we first prove platform 1 obtains larger one-shot cost under incomplete

information than that under complete information when c1 = cH , then prove platform 1 can

obtain larger one-shot average cost under incomplete information.
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Platform 1’s one-shot cost when c1 = cH under incomplete information is π1(λ∗1(cH),
N∑
j=2

λ∗j),

where λ∗1(cH) and λ∗j are given in (11)-(13), and its one-shot cost when c1 = cH under complete

information is π1(λ̄1(cH),
N∑
j=2

λ̄j(cH)) using (31). To prove platform 1 obtains larger one-shot

cost under incomplete information when c1 = cH , it’s equivalent to prove π1(λ∗1(cH),
N∑
j=2

λ∗j) ≥

π1(λ̄1(cH),
N∑
j=2

λ̄j(cH)). We want to prove the equivalent statement via introducing an interme-

diate term:

π1(λ
∗
1(cH),

N∑
j=2

λ∗j) ≥ π1(λ
∗
1(cH),

N∑
j=2

λ̄j(cH)) ≥ π1(λ̄1(cH),
N∑
j=2

λ̄j(cH)). (33)

To prove (33), we first prove π1(λ∗1(cH),
N∑
j=2

λ∗j) ≥ π1(λ
∗
1(cH),

N∑
j=2

λ̄j(cH)). By comparing (11)-

(13) and (31), we have
N∑
j=2

λ∗j ≥
N∑
j=2

λ̄j(cH). Since π1(λ1,
N∑
j=2

λj) in (1) increases with
N∑
j=2

λj , we

have π1(λ∗1(cH),
N∑
j=2

λ∗j) ≥ π1(λ
∗
1(cH),

N∑
j=2

λ̄j(cH)).

We then prove π1(λ
∗
1(cH),

N∑
j=2

λ̄j(cH)) ≥ π1(λ̄1(cH),
N∑
j=2

λ̄j(cH)) in (33). According to (31),

the best response λ1 = λ̄1(cH) is the unique solution to minimize platform 1’s one-shot cost

π1(λ1,
N∑
j=2

λ̄j(cH)), thus π1(λ∗1(cH),
N∑
j=2

λ̄j(cH)) ≥ π1(λ̄1(cH),
N∑
j=2

λ̄j(cH)).

Similar to (33), we can prove

π1(λ
∗
1(cL),

N∑
j=2

λ∗j) ≤ π1(λ̄1(cL),
N∑
j=2

λ∗j) ≤ π1(λ̄1(cL),
N∑
j=2

λ̄j(cL)). (34)

Finally, we are ready to prove that platform 1 can obtain larger one-shot average cost under

incomplete information than that under complete information. This time-average cost of platform

1 under complete information is

πC1 = pHπ1(λ̄1(cH),
N∑
j=2

λ̄j(cH)) + (1− pH)π1(λ̄1(cL),
N∑
j=2

λ̄j(cL)).

Its average cost under information advantage changes to

πI1 = pHπ1(λ
∗
1(cH),

N∑
j=2

λ∗j) + (1− pH)π1(λ
∗
1(cL),

N∑
j=2

λ∗j),

where λ∗1(cH), λ∗1(cL) and λ∗j are given in (11)-(13). If platform 1 obtains larger cost under

incomplete information, or πC1 ≤ πI1 , which can be simplified as
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pH ≥
π1(λ̄1(cL),

N∑
j=2

λ̄j(cL))− π1(λ∗1(cL),
N∑
j=2

λ∗j )

π1(λ̄1(cL),
N∑
j=2

λ̄j(cL))− π1(λ∗1(cL),
N∑
j=2

λ∗j ) + π1(λ∗1(cH),
N∑
j=2

λ∗j )− π1(λ̄1(cH),
N∑
j=2

λ̄j(cH))

,

in which the right-hand side is positive and less than 1 because of (33) and (34).

APPENDIX D

PROOF OF PROPOSITION III.3

To show the equation in Proposition III.3 are the solutions to the cooperation profile, we solve

and rewrite (17) as

λ̃2i (δ)/ci − 2

√√√√
δλ∗i + (1− δ)

√
1 + λ−i(δ)

µ

ci
λ̃i(δ) + 1 +

λ−i(δ)

µ
= 0,

where λ−i(δ) =
j∑

k=1

λ̃k(δ) − λ̃i(δ) +
N∑

k=j+1

λ∗∗k . We then choose to take the smaller root with

smaller social cost, which is consistent with equation in Proposition III.3.

Notice that the only different between the equation in Proposition III.3. and (19) is that in

latter, λ̃k(δ) = λ∗∗k are constant for k ∈ {j + 1, · · · , N}, while in (19), such λ̃k(δ)s are still

variable to determine. Then we can prove unique solution of the equation in Proposition III.3.

by proving that of (19), which is given in Appendix E.

We rewrite the equation in Proposition III.3 as

λ̃i(δ) = δλ∗i + (1− δ)

√
1 + λ−i(δ)

µ

ci
−

√√√√(
δλ∗i + (1− δ)

√
1 + λ−i(δ)

µ

ci

)2

−
1 + λ−i(δ)

µ

ci
. (35)

λ̃i(δ) in (35) decreases with δ due to ∂λ̃i(δ)
∂δ

< 0, where i ∈ {1, · · · , j}. When δ = 0, λ̃i(δ) = λ∗i

in (35). When δ = δthi , λ̃i(δ) = λ∗∗i in (35). Thus we prove that λ∗∗i < λ̃i(δ) < λ∗i and λ̃i(δ)

decreases with δ.

APPENDIX E

PROOF FOR PROPOSITION III.4

To show (19) are the solutions to the cooperation profile, we solve and rewrite (18) as

λ̃2i (δ)/ci − 2

√√√√
δλ∗i + (1− δ)

√
1 + λ−i(δ)

µ

ci
λ̃i(δ) + 1 +

λ−i(δ)

µ
= 0,
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where λ−i(δ) =
N∑
k=1

λ̃k(δ)− λ̃i(δ). We then choose to take the smaller root with smaller social

cost, which is consistent with (19).

We want to show (19) have unique solutions with induction method. When N = 2, we rewrite

(18) as

λ̃21(δ)− 2

(
δλ∗1 + (1− δ)

√
1 + λ̃2(δ)/µ

c1

)
λ̃1(δ) +

1 + λ̃2(δ)/µ

c1
= 0, (36)

λ̃22(δ)− 2

(
δλ∗2 + (1− δ)

√
1 + λ̃1(δ)/µ

c2

)
λ̃2(δ) +

1 + λ̃1(δ)/µ

c2
= 0. (37)

Denote

f(λ̃1(δ)) =λ̃21(δ)− 2

(
δλ∗1 + (1− δ)

√
1 + λ̃2(δ)/µ

c1

)
λ̃1(δ) +

1 + λ̃2(δ)/µ

c1
.

In the range of λ∗∗2 < λ̃2(δ) < λ∗2, symmetric axis of f(λ̃1(δ)) satisfies

λ∗∗1 < δλ∗1 + (1− δ)

√
1 + λ̃2(δ)/µ

c1
< λ∗1.

To show f(λ∗∗1 ) > 0, we simplify it as

δ < δ1 =

(
λ∗∗1 −

√
1+λ̃2(δ)/µ

c1

)2

2λ∗∗1

(
λ∗1 −

√
1+λ̃2(δ)/µ

c1

) .
Since δ1 increases with λ̃2(δ) ∈ (λ∗∗2 , λ

∗
2) and when λ̃2(δ) = λ∗∗2 , δ1 = δth1, then δ1 > δth1 always

holds in tits range. Then δ < δ1 always holds because δ < δth1, which means f(λ∗∗1 ) > 0 holds.

Then the smaller positive root of (36) must be in the range of λ∗∗1 < λ̃1(δ) < λ∗1. Similarly, we

can show that the smaller positive root of (37) is also in the range of λ∗∗2 < λ̃2(δ) < λ∗2.

Notice that although (36) and (37) may have multiple roots, we only select the root that has
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smallest social cost, which are the solutions to

λ̃1(δ)(λ̃2(δ)) = δλ∗1 + (1− δ)

√
1 + λ̃2(δ)

µ

c1
−

√√√√(
δλ∗1 + (1− δ)

√
1 + λ̃2(δ)

µ

c1

)2

−
1 + λ̃2(δ)

µ

c1
,

(38)

λ̃2(δ)(λ̃1(δ)) = δλ∗2 + (1− δ)

√
1 + λ̃1(δ)

µ

c2
−

√√√√(
δλ∗2 + (1− δ)

√
1 + λ̃1(δ)

µ

c2

)2

−
1 + λ̃1(δ)

µ

c2
.

(39)

We’ve shown the existence of (38) and (39) in previous paragraph. To show (38)-(39) have

unique solutions in the range of λ∗∗1 < λ̃1(δ) < λ∗1, λ
∗∗
2 < λ̃2(δ) < λ∗2, denote

g(λ̃1(δ)) = λ̃2(δ)(λ̃1(δ))− λ̃2(δ)1(λ̃1(δ)),

where λ̃2(δ)1(λ̃1(δ)) is the inverse function to λ̃1(δ)(λ̃2(δ)) in (38) with variable λ̃1(δ). By taking

first and second derivatives of λ̃1(δ)(λ̃2(δ)) in (38) and of λ̃2(δ)(λ̃1(δ)) in (39), we can find that

λ̃1(δ)(λ̃2(δ)) is convex and strictly increasing in λ̃2(δ), and λ̃2(δ)(λ̃1(δ)) is convex and strictly

increasing in λ̃1(δ). Thus g(λ̃1(δ)) is convex in λ̃1(δ). Additionally, we have

g(λ∗∗1 ) > 0,

g(λ∗1) = 0,

g′(λ∗1) > 0.

Thus there exists unique λ̃01(δ) in λ∗∗1 < λ̃1(δ) < λ∗1 satisfying g(λ̃01(δ)) = 0. We plot g(λ̃1(δ))

in Figure 8. Then there exist unique solutions to (38) and (39) in the feasible range of λ∗∗1 <

λ̃1(δ) < λ∗1 and λ∗∗2 < λ̃1(δ) < λ∗2.

Suppose that when N = M − 1, (19) has unique solutions. With induction method, we

need to prove when N = M , (19) has unique solutions. Similar to (38)-(39), we can rewrite

λ̃i(δ) as a function of λ̃j(δ) and the λ̃i(δ) is convex and strictly increasing in each λ̃j(δ), where

i ∈ {1, · · · ,M} and j 6= i. If we introduce λ̃M(δ) as in (38)-(39) into other λ̃i(δ) as in (38)-(39),

where i ∈ {1, · · · ,M − 1}, we have λ̃i(δ) is still convex and strictly increasing in λ̃j(δ), where

j ∈ {1, · · · ,M − 1} and j 6= i. Since we know when N = M − 1, (19) has unique solutions.

Then after introducing λM as in (38)-(39) into other λi as in (38)-(39), the new M−1 equations



35

0

Fig. 8: g(λ̃1(δ)) versus λ̃1(δ) in Appendix E.

also have unique solutions. Then we prove that when N = M , (19) has unique solutions.

When δ → 0, (19) just becomes (2), then solution to (19) are λ̃i(δ) = λ∗i , where i ∈

{1, · · · , N}.

λ̃i(δ) in (19) decreases with δ due to ∂λ̃i(δ)
∂δ

< 0, where i ∈ {1, · · · ,M}. Thus solutions to

(19) decrease with δ.

APPENDIX F

PROOF OF LEMMA IV.1

Given c1 = cH , at the social optimum platform 1’s sampling rate is λ1 = λ∗∗1 (cH) with

corresponding cost:

π1(cH , λ
∗∗
1 (cH)) =

1

λ∗∗1 (cH)

(
1 +

( N∑
i=2

λ∗∗i
)
/µ

)
+ cHλ

∗∗
1 (cH) + 1/µ.

If it cheats to play λ∗∗1 (cL), its cost will be π1(cH , λ∗∗1 (cL)). If π1(cH , λ∗∗1 (cH)) ≤ π1(cH , λ
∗∗
1 (cL)),

platform 1 won’t deviate to λ1 = λ∗∗1 (cL), which is equivalent to√√√√cH +
1

µ

N∑
i=2

1

λ∗∗i

√√√√cL +
1

µ

N∑
i=2

1

λ∗∗i
≤ cH ,

which holds only if 1
µ

N∑
i=2

1
λ∗∗i

is small and is not generally true. Then platform 1 may deviate

from λ∗∗1 (cH) to λ∗∗1 (cL) when c1 = cH .
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APPENDIX G

PROOF OF PROPOSITION IV.5

Before we prove the proposition, let’s first prove an useful lemma.

Lemma G.1. Given real numbers x, y, a, b > 0 and x ≥ y, b ≥ a, x+a
y+b
≤ x

y
.

Proof. Since x, y, a, b are all positive, x+a
y+b
≤ x

y
is equivalent to bx ≥ ay. Then we continue to

prove bx ≥ ay is true, which holds due to given condition x ≥ y > 0, b ≥ a > 0.

When pHcH+(1−pH)cL = c2 = · · · = cN , according to (20)-(21), the approximate cooperation

profile in larger δ regime are

λ̂1 = λ̂2 = · · · = λ̂N =
1√

pHcH + (1− pH)cL
.

As the platforms repeat their sampling choices in the social optimum and the mechanism, we only

need to compare their one-shot social costs. The social cost in one-shot under this approximate

cooperation profile is

πr = 2N
√
pHcH + (1− pH)cL +N2/µ.

Since c2 = · · · = cN , according to (8)-(10), we have λ∗∗2 = · · · = λ∗∗N . Then the minimum social

cost in one-shot can be simplified as

π∗∗ =pH

(
1

λ∗∗1 (cH)
+ cHλ

∗∗
1 (cH)

)
+ (1− pH)

(
1

λ∗∗1 (cL)
+ cLλ

∗∗
1 (cL)

)
+N/µ

+ (N − 1)

(
1

λ∗∗2
+ c2λ

∗∗
2

)
+ (N − 2)(N − 1)/µ

+ (N − 1)pH

(
λ∗∗2

λ∗∗1 (cH)
+
λ∗∗1 (cH)

λ∗∗2

)
+ (N − 1)(1− pH)

(
λ∗∗2

λ∗∗1 (cL)
+
λ∗∗1 (cL)

λ∗∗2

)
.

Then the ratio of social costs under the approximate cooperation profile and social optimizers is

r = max
0≤pH≤1,µ,cH>cL>0

πr

π∗∗
. (40)

Since both πr and π∗∗ contain a common term (N + (N − 2)(N − 1))/µ, from Lemma C.1 we

know if we eliminate this term from both πr and π∗∗, the ratio would just become larger. Thus,

we can rewrite (40) as

r ≤ max
0≤pH≤1,µ,cH>cL>0

2N
√
pHcH + (1− pH)cL + 2N−2

µ

m1 +m2

, (41)
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where all the N − 1 platforms behave the same, and

m1 = pH

(
1

λ∗∗1 (cH)
+ cHλ

∗∗
1 (cH)

)
+ (1− pH)

(
1

λ∗∗1 (cL)
+ cLλ

∗∗
1 (cL)

)
+ (N − 1)

(
1

λ∗∗2
+ c2λ

∗∗
2

)
,

m2 = (N − 1)pH

(
λ∗∗2

λ∗∗1 (cH)
+
λ∗∗1 (cH)

λ∗∗2

)
+ (N − 1)(1− pH)

(
λ∗∗2

λ∗∗1 (cL)
+
λ∗∗1 (cL)

λ∗∗2

)
.

Given pH = 0 or pH = 1, πr = π∗∗ always holds. If 0 < pH < 1, we notice that in m2,
λ∗∗2

λ∗∗1 (cH)
+

λ∗∗1 (cH)

λ∗∗2
≥ 2 and λ∗∗2

λ∗∗1 (cL)
+

λ∗∗1 (cL)

λ∗∗2
≥ 2, where the equalities hold at λ∗∗2 = λ∗∗1 (cH) = λ∗∗1 (cL).

Then we can tell that m2 is minimized at λ∗∗2 = λ∗∗1 (cH) = λ∗∗1 (cL) with m2 = (2N − 2)/µ.

By using Lemma C.1 again, we eliminate (2N − 2)/µ in the numerator of (41) and m2 in the

denominator and rewrite (41) as

r ≤ max
0<pH<1,µ,cH>cL>0

2N
√
pHcH + (1− pH)cL

m1

. (42)

Now we focus on m1. Inside, 1
λ∗∗1 (cH)

+ cHλ
∗∗
1 (cH) is minimized at λ∗∗1 (cH) = 1√

cH
, 1
λ∗∗1 (cL)

+

cLλ
∗∗
1 (cL) is minimized at λ∗∗1 (cL) = 1√

cL
and 1

λ∗∗2
+ c2λ

∗∗
2 is minimized at λ∗∗2 = 1√

c2
. Thus, m1

is minimized at λ∗∗1 (cH) = 1√
cH

, λ∗∗1 (cL) = 1√
cL

and λ∗∗2 = 1√
c2

= 1√
pHcH+(1−pH)cL

, which only

happen altogether at µ → ∞. Thus, the right-hand side of (42) is maximized at µ → ∞. We

thus simply (42) as

r ≤ max
0<pH<1,cH>cL>0

N
√
pHcH/cL + (1− pH)

pH
√
cH/cL + (1− pH) + (N − 1)

√
pHcH/cL + (1− pH)

. (43)

If we replace cH , cL by x =
√
cH/cL, (43) is simplified to

r ≤ max
0<pH<1,x>1

N
√
pHx2 + (1− pH)

pHx+ (1− pH) + (N − 1)
√
pHx2 + (1− pH)

:= f(x). (44)

We notice that f(x) increases with x > 1 because

f ′(x) =
N(1− pH)pH(x− 1)(

pHx+ (1− pH) + (N − 1)
√
pHx2 + (1− pH)

)2√
pHx2 + 1− pH

> 0.

Thus, the right-hand side of (44) is maximized at x→∞ and we can finally rewrite (44) as

r ≤ lim
x→∞

max
0<pH<1

N
√
pHx2 + (1− pH)

pHx+ (1− pH) + (N − 1)
√
pHx2 + (1− pH)

= max
0<pH<1

N
√
pH

pH + (N − 1)
√
pH

= max
0<pH<1

N
√
pH +N − 1

<
N

N − 1
.
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APPENDIX H

PROOF OF PROPOSITION IV.6

To show the equations in Proposition IV.6 are the solutions, we need to solve the following

equations for platform 1

δ = max
{
δ̂th1

(
λ̃1(δ), λ̃2(δ), · · · , λ̃N(δ)|c1 = cL

)
, δ̂th1

(
λ̃1(δ), λ̃2(δ), · · · , λ̃N(δ)|c1 = cH

)}
.

(45)

and for platform i ∈ {2, · · · , N}:

δ =

πi

(
λ̃i(δ), λ̃−i(δ)

)
− πi

(
λ̃−i(δ),

√
1+λ̃−i(δ)/µ

ci

)
πi
(
λ∗i , λ

∗
−i
)
− πi

(
λ̃−i(δ),

√
1+λ̃−i(δ)/µ

ci

) . (46)

where λ̃−i(δ) =
N∑
j 6=i

λ̃j(δ) and λ∗−i =
N∑

m 6=i,1
λ∗m+pHλ

∗
1 (cH)+(1− pH)λ∗1 (cL). By jointly solving

(45) and (46) and taking the smaller roots to avoid large social cost, we have the following

cooperation
(
λ̃1(δ), λ̃2(δ), · · · , λ̃N(δ)

)
for all the N platforms as in Proposition IV.6.

Notice that the only different between the equations in Proposition IV.6 and Proposition IV.7

is that in the equations in Proposition IV.6, λ̃k(δ) = λ̂k are constant for k ∈ {j, · · · , N}, while

in the equations in Proposition IV.7, such λ̃k(δ)s are still variable to determine. Then we can

prove unique solution of the equations in Proposition IV.6 by proving that of the equations in

Proposition IV.7, which is given in Appendix I.

APPENDIX I

PROOF OF PROPOSITION IV.7

Platform 1 should not deviate with λ̃1(δ) whether c1 = cH or c1 = cL and platform i =

2, 3, · · · , N should not deviate with λ̃i(δ), which are equivalent to

δ ≥ δ̂th1 (λ̃1(δ),
N∑
j=2

λ̃j(δ)|c1 = cL), δ ≥ δ̂th1 (λ̃1(δ),
N∑
j=2

λ̃j|c1 = cH), δ ≥ δ̂thi (
N∑
j 6=i

λ̃j(δ)). (47)

Solutions to (47) are
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λ̃1(δ) ∈
[M ′L −

√
M2′

L − (δĉ1 + (1− δ)cL)(1 +
N∑
j=2

λ̃j(δ)/µ)

δĉ1 + (1− δ)cL
,

M ′L +

√
M

′2
L − (δĉ1 + (1− δ)cL)(1 +

N∑
j=2

λ̃j(δ)/µ)

δĉ1 + (1− δ)cL

]
,

(48)

λ̃1(δ) ∈
[M ′H −

√
M

′2
H − (δĉ1 + (1− δ)cH)(1 +

N∑
j=2

λ̃j(δ)/µ)

δĉ1 + (1− δ)cH
,

M ′H +

√
M

′2
H − (δĉ1 + (1− δ)cH)(1 +

N∑
j=2

λ̃j(δ)/µ)

δĉ1 + (1− δ)cH

]
,

λ̃i(δ) ∈
[Mi −

√
M2

i − ci(1 +
N∑
j 6=i

λ̃j(δ)/µ)

ci
,
Mi +

√
M2

i − ci(1 + λ̃1(δ)/µ)

ci

]
, (49)

where

M ′k = δ

√√√√1 +

N∑
j=2

λ∗j/µ(pH
√
cH + (1− pH)

√
ck) + (1− δ)

√√√√(1 +

N∑
j 6=i

λ̃j(δ))ck, k ∈ {H,L},

Mi =
√
ci

(
δ

√√√√1 + (pHλ∗1(cH) + (1− pH)λ∗1(cL) +

N∑
j 6=i,1

λ∗j )/µ+ (1− δ)

√√√√1 +

N∑
j 6=i

λ̃j(δ)/µ

)
, i = 2, 3, · · · , N.

Interaction of (48) and (49) is the feasible region for desired λ̃1(δ), which is

λ̃1(δ) ∈
[

max

{M ′L −√M ′2
L − (δĉ1 + (1− δ)cL)(1 + λ̃2(δ)/µ)

δĉ1 + (1− δ)cL
,
M ′H −

√
M

′2
H − (δĉ1 + (1− δ)cH)(1 + λ̃2(δ)/µ)

δĉ1 + (1− δ)cH

}
,

min

{M ′L +
√
M

′2
L − (δĉ1 + (1− δ)cL)(1 + λ̃2(δ)/µ)

δĉ1 + (1− δ)cL
,
M ′H +

√
M

′2
H − (δĉ1 + (1− δ)cH)(1 + λ̃2(δ)/µ)

δĉ1 + (1− δ)cH

}]
.

(50)

To avoid large social cost, we then take the smallest feasible solutions in (50) as

λ̃1(δ)(λ̃2(δ)) =

M ′k −

√
M

′2
k − (δĉ1 + (1− δ)cj)(1 +

N∑
j=2

λ̃j(δ)/µ)

δĉ1 + (1− δ)cj
, (51)

λ̃i(δ)(λ̃1(δ)) =

Mi −
√
M2

i − ci(1 +
N∑

j 6=i,1

λ̃j(δ)/µ)

ci
, i = 2, 3, · · · , N, (52)
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where

M ′k = δ

√√√√1 +

N∑
j=2

λ∗j/µ(pH
√
cH + (1− pH)

√
ck) + (1− δ)

√√√√(1 +

N∑
j 6=i

λ̃j(δ))ck, k ∈ {H,L},

which is the same as the equations in Proposition IV.7. We want to use induction method to

show (51)-(52) have unique solutions. When N = 2, (51)-(52) are equivalent to

λ̃1(δ) = max

{M ′
L −

√
M
′2
L − (δĉ1 + (1− δ)cL)(1 + λ̃2(δ)/µ)

δĉ1 + (1− δ)cL
,

M ′
H −

√
M
′2
H − (δĉ1 + (1− δ)cH)(1 + λ̃2(δ)/µ)

δĉ1 + (1− δ)cH

}
, (53)

λ̃2(δ) =
M2 −

√
M2

2 − c2(1 + λ̃1(δ)/µ)

c2
. (54)

We rewrite (53)-(54) as

λ̃1(δ)(λ̃2(δ)) =
M ′

j −
√
M
′2
j − (δĉ1 + (1− δ)cj)(1 + λ̃2(δ)/µ)

δĉ1 + (1− δ)cj
, (55)

λ̃2(δ)(λ̃1(δ)) =
M2 −

√
M2

2 − c2(1 + λ̃1(δ)/µ)

c2
, (56)

where

M ′
j = δ

√
1 + λ∗2/µ(pH

√
cH + (1− pH)

√
cL) + (1− δ)

√
(1 + λ̃2(δ))cj.

To show (55)-(56) have unique solutions in the range of λ̂1 < λ̃1(δ) < λ∗1(cj), λ̂2 < λ̃2(δ) < λ∗2,

denote

g(λ̃1(δ)) = λ̃2(δ)(λ̃1(δ))− λ̃2(δ)1(λ̃1(δ)),

where λ̃2(δ)1(λ̃1(δ)) is the inverse function to λ̃1(δ)(λ̃2(δ)) in (55) with variable λ̃1(δ). By taking

first-order and second-order derivatives of λ̃1(δ)(λ̃2(δ)) in (55) and of λ̃2(δ)(λ̃1(δ)) in (56), we

can find that λ̃1(δ)(λ̃2(δ)) is convex and strictly increasing in λ̃2(δ), and λ̃2(δ)(λ̃1(δ)) is convex
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Fig. 9: g(λ̃1(δ)) versus λ̃1(δ) in Appendix I.

and strictly increasing in λ̃1(δ). Thus g(λ̃1(δ)) is convex in λ̃1(δ). Additionally, we have

g(λ̂1) > 0,

g(λ∗1(cj)) < 0,

g′(λ∗1(cj)) > 0.

Thus there exists unique λ̃01(δ) in λ̂1 < λ̃1(δ) < λ∗1(cj) satisfying g(λ̃01(δ)) = 0. We plot

g(λ̃1(δ)) in Figure 9. Then there exist unique solutions to (53) and (54) in the feasible range of

λ̂1 < λ̃1(δ) < λ∗1(cj) and λ̂2 < λ̃2(δ) < λ∗2.

Suppose that when N = M − 1, the equations in Proposition IV.7 have unique solutions.

With induction method, we need to prove when N = M , the equations in Proposition IV.7 have

unique solutions. Similar to (55)-(56), we can rewrite λ̃i(δ) as a function of λ̃j(δ) and the λ̃i(δ)

is convex and strictly increasing in each λ̃j(δ), where i ∈ {1, · · · ,M} and j 6= i. If we introduce

λ̃M(δ) as in (55)-(56) into other λ̃i(δ) as in (55)-(56), where i ∈ {1, · · · ,M −1}, we have λ̃i(δ)

is still convex and strictly increasing in λ̃j(δ), where j ∈ {1, · · · ,M − 1} and j 6= i. Since we

know when N = M − 1, the equations in Proposition IV.7 have unique solutions. Then after

introducing λM as in (55)-(56) into other λi as in (55)-(56), the new M − 1 equations also have

unique solutions. Then we prove that when N = M , the equations in Proposition IV.7 have

unique solutions.
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