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Abstract— The Fourth Industrial Revolution (Industrial 4.0)
is coming, and this revolution will fundamentally enhance the
way factories manufacture products. The conventional wired
lines connecting central controller to robots or actuators will be
replaced by wireless communication networks due to its low cost
of maintenance and high deployment flexibility. However, some
critical industrial applications require ultra-high reliability and
low latency communication (URLLC). In this paper, we advocate
the adoption of massive multiple-input multiple output (MIMO)
to support the wireless transmission for industrial applications
as it can provide deterministic communications similar as wired
lines thanks to its channel hardening effects. To reduce the
latency, the channel blocklength for packet transmission is finite,
which incurs transmission rate degradation and decoding error
probability. Thus, conventional resource allocation for massive
MIMO transmission based on Shannon capacity assuming the
infinite channel blocklength is no longer optimal. We first derive
the closed-form expression of lower bound (LB) of achievable
uplink data rate for massive MIMO system with imperfect
channel state information (CSI) for both maximum-ratio com-
bining (MRC) and zero-forcing (ZF) receivers. Then, we propose
novel low complexity algorithms to solve the achievable data
rate maximization problems by jointly optimizing the pilot and
payload transmission power for both MRC and ZF. Simulation
results confirm the rapid convergence speed and performance
advantage over the existing benchmark algorithms.

Index Terms— URLLC, Industrial 4.0, Industrial Internet-of-
Things (IIoT), massive MIMO.

I. INTRODUCTION

INDUSTRY 4.0 has been envisioned as the future para-
digm for the next generation of industrial systems, which

integrates advanced manufacturing functions with the indus-
trial internet-of-things (IIoT) to create a more intelligent
and automatic digital manufacturing system [1]. Traditionally,
industrial control systems mainly rely on wired connections
such as cables or optical fiber, since the current wireless
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networks cannot meet their stringent latency and reliability
requirements. However, there are some drawbacks to deploy-
ing wired lines. First, significant cost will be incurred by
the installation and maintenance. Second, wired lines are
vulnerable to wear and tear in motion control applications, and
suffer from aging. Finally, they cannot be deployed in some
harsh environments, such as those with high temperatures
and rotating part. Hence, to make Industry 4.0 a reality, it is
imperative to design wireless networks tailored for industrial
applications to replace the traditional wired lines. Typical
industrial applications require deterministic communications
with ultra reliability (1−10−9) and low latency (1 ms), such as
factory automation (FA) [2], power system protection (PSP),
and power electronics control (PEC) [3]. Significant research
efforts have been devoted to the design of wireless com-
munications in industrial applications. However, most of the
existing works mainly focused on the adaption of upper layers
of conventional wireless networks to achieve deterministic
communications, while keeping the physical layer untouched.
Some related standards are WirelessHART, wireless interface
for sensors and actuators (WISA), and Wireless Networks
for Industrial Automation/Process Automation (WIA-PA) [4].
Although keeping the wireless standards of physical layers
can allow faster design and better compatibility, it leads to a
fundamental bottleneck for the system performance. None of
the above standards can meet the stringent demand requested
by the most critical FA, PSP and PEC applications. As a result,
more efforts should be devoted to the design from the physical
layer perspective of view.

From the physical layer perspective, the dominate feature
of the industrial applications is that the packet transmis-
sion should be completed within short blocklength due to
low latency requirement [5]. Hence, the transmission is not
error-free with any finite/short blocklength channel codes.
In this case, Shannon capacity formula is not applicable since
it is based on the principles of the law of large numbers, and
we need to design the resource allocation by considering the
decoding error probability requirement. In [6], Peter et al. have
derived the approximation formula of the maximum achiev-
able data rate with finite blocklength transmission, which
characterises the complicated relationships among decoding
error probability, channel blocklength, and signal-to-noise
ratio (SNR). Unlike Shannon capacity formula, the data rate
expression under short packet transmission is neither convex
nor concave with respect to the SNR or blocklength [7].
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As a result, the optimal resource allocation under this formula
is difficult to obtain.

Recently, there are increasing research studying the trans-
mission design based on the short packet transmission capac-
ity formula [8]–[14]. In specific, the effective throughput
maximization was studied in [8] for a two-device downlink
non-orthogonal multiple access (NOMA) system. The overall
error probability is minimized in [9] for a simultaneous
wireless information and power transfer (SWIPT)-enabled
decode-and-forward (DF) relaying network. The decoding
error probability minimization was investigated in [10] for
a unmanned aerial vehicle (UAV)-enabled DF relay system.
We recently proposed a low complexity power and block-
length optimization algorithm for both orthogonal multiple
access (OMA) and NOMA in a two-hop relay system in [11].
However, all these contributions are limited to a simple sce-
nario with two devices, where one device acts as a relay and
the other as the destination node. In industrial applications,
the central controller needs to support a large number of
devices [4]. On one hand, Chen et al. in [12] investigated the
effective capacity maximization problem for wireless-powered
IoT network with multiple devices operating in a time division
multiple access (TDMA) mode. However, the time budget is
already tight, and the portion allocated to each device will
be marginal. Hence, TDMA strategy is not suitable for the
applications in industrial applications with extremely stringent
latency target. On the other hand, the authors in [13], [14] stud-
ied the resource allocation for multiple devices operating under
the orthogonal frequency division multiple access (OFDMA)
mode. Unfortunately, this requires huge amount of system
bandwidth, which is not feasible as some industrial applica-
tions operate over unlicensed spectrum [15].

By equipping a large number of antennas at the base
station (BS), massive multiple-input multiple-output (MIMO)
has been widely regarded as the key enabler for the creation of
the fifth generation (5G) wireless networks [16]. By exploiting
excessive number of spatial degrees of freedom, massive
MIMO is capable of supporting multiple devices simultane-
ously without additional time or frequency resources. In addi-
tion, due to the channel hardening effect, massive MIMO is
more immune to the fast fading and can provide deterministic
communications required by the industrial applications. Due
to these attractive advantages, massive MIMO is ideal for
supporting industrial applications with stringent quality of
services (QoS) requirements. However, most of the existing
literature adopted Shannon capacity as the performance metric
to optimize the resource allocation [17]–[19], which implicitly
assumes the infinite channel blocklength. Therefore, conven-
tional resource allocation solution based on Shannon capacity
is not optimal for industrial applications with short channel
blocklength. To the best of our knowledge, we are the first
to study the resource allocation for massive MIMO providing
ultra-reliability and low-latency communications (URLLC) for
any number of devices. Specifically, our contributions are
summarized as follows:

1) We derive the closed-form lower bounds (LBs) on
the achievable rates for a uplink massive MIMO
system by considering the imperfect channel state

information (CSI) with finite channel blocklength, and
assuming both maximum-ratio combining (MRC) and
zero-forcing (ZF) receivers. They can be regarded as the
conventional Shannon capacity minus a penalty term due
to short packet transmission. Simulation results confirm
the tightness of the LBs. Given fixed delay budget,
we formulate an optimization problem with the objective
to maximize the weighted sum rate by jointly optimizing
the pilot and payload transmission power subject to the
decoding error probability, the minimum data rates, and
the energy constraints for all URLLC devices.

2) For the case with MRC receiver, the formulated opti-
mization problem is non-convex due to the compli-
cated LB expression of data rate, and it is difficult to
find globally optimal solution. To deal with this issue,
we first approximate the penalty term in the LB of
data rate as a log-function, which can facilitate the
transformation from the original optimization problem to
a series of geometric programs (GPs). Each GP problem
can be efficiently solved with polynomial time. Besides,
we provide a novel method to check the feasibility of
the original problem, and provide both complexity and
convergence analysis.

3) For the case with ZF receiver, the LB of data rate is
more complicated and the algorithm proposed for MRC
cannot be directly applied since the numerator of the
signal-to-interference-plus-noise (SINR) is a posynomial
function. To handle this issue, we approximate the poly-
nomial functions with their best local monomial approx-
imations and then transform the optimization problem
into a series of GPs with low complexity. Convergence
analysis tailored for the ZF receiver is further provided.

4) Simulation results show that our proposed algorithms
converge rapidly, which verifies the low complexity of
the proposed algorithm. In addition, it is also shown
that the proposed algorithm outperforms the benchmark
schemes, especially the ones adopting Shannon capacity
as the optimization performance metric, which empha-
sizes the importance of using short packet transmission
theory.

The remainder of this paper is organized as follows.
In Section II, system model and problem formulation are pro-
vided. In Section III, we provide a low complexity algorithm
for joint design of pilot and payload power allocation for the
MRC case. The ZF case is studied in Section IV. Then,
simulation results and analysis are presented in Section V.
The final conclusion is drawn in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Factory System Model

Consider a uplink multi-device Massive MIMO communi-
cation in one factory as shown in Fig. 1, where the central
controller (CC) serves K devices (e.g., actuator, robot). The
devices need to send their emergency information of URLLC
requirements such as measured data or their current operation
states to the CC. Thus, the CC can process these data infor-
mation immediately and provide prompt response/feedback.
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Fig. 1. Factory scenario where a massive MIMO central controller serves
multiple devices.

For simplicity, we focus on the uplink transmission and the
solutions for downlink can be similarly derived. The set of
the devices is denoted as K = {1, 2, · · · , K}. The CC is
equipped with M antennas and each device is equipped with
single antenna due to their low signal processing capability,
where M � K . Let us denote hk ∈ C

M×1 as the channel
vector from the CC to the k-th device and can be decomposed
as hk =

√
αkh̄k, where αk denotes the large-scale channel

gain that includes the pathloss and shadowing, and h̄k denotes
the small-scale fading following the distribution of CN (0, I).
Let us denote H ∈ CM×K as the channel matrix from the
K devices to the CC, with H = [h1, h2, · · · , hK ].

The K devices need to transmit K packets to the controller.
Then, the M × 1 received signal vector at the CC is given by

y =
∑

k∈K hk

√
pd

ksk + n, (1)

where pd
k is the payload power of the kth device, sk is the

zero mean and unit variance Gaussian information message
from the kth device, and n ∼ CN (0, IM ) is the additive
noise during the data transmission, where the variance of each
element is normalized to unit.

B. Channel Estimation in Massive MIMO URLLC

Due to the channel hardening [20] brought by massive
MIMO, the system is more immune to the fast fading, which
can provide high reliable services for the devices. However,
to reap the benefits brought by massive MIMO, CSI should
be available at the CC. Furthermore, TDD mode is always
taken as an enabler for massive MIMO systems since downlink
instantaneous CSI is obtained by estimating uplink CSI based
on channel reciprocity [21]. In addition, for machine type
communications, the devices may not be able to perform
complicated signal processing tasks required in frequency
division duplexing (FDD) systems, such as channel estimation
calculation, quantization, etc. More time slots are needed for
CSI feedback. Hence, the TDD protocol is adopted in this
paper. All the devices should be allocated with orthogonal
pilot resources so that the CC is able to distinguish the
channels from different devices, thus, the number of symbols
for channel estimation should be no smaller than the number
of devices [20].

In a massive MIMO URLLC scenario, each block mainly
consists of two parts: 1) lp symbols for channel estima-
tion (the pilot sequence is of length lp); 2) ld symbols for

Fig. 2. Block diagram scheme in TDD URLLC Massive MIMO scheme.

the K devices’ data transmission, thus the total number of
symbols of the frame is denoted as L = lp + ld. As the
symbols used for data transmission are limited, we assume
that K devices sharing the same symbol duration and the
frame structure are illustrated in Fig. 2. Accordingly, the time
durations for channel estimation and data transmission in one
frame are given by tp = lp/B and td = ld/B, respectively,
where B is the bandwidth of the system.

In the training phase, all devices simultaneously and syn-
chronously transmit orthogonal pilot sequences q1, · · · , qlp ∈
Clp×1 to the CC, with qH

k qk = 1 and qH
i qj = 0, i �= j. Hence,

the minimum length of the pilot sequences to guarantee the
orthogonality is equal to lp = K . Based on the received signal,
the CC estimates the channel conditions of all devices, and the
received pilot signal at the CC is

Yp =
∑

k∈K

√
Kpp

khkqH
k + N, (2)

where pp
k is the pilot transmit power at the kth device, and

N ∈ CM×K is the additive Gaussian noise matrix received
during the training phase, whose elements are independently
generated and follow the distribution of CN (0, 1). To obtain
channel hk, the CC first multiplies Yp by 1√

Kpp
k

qk, which

yields

yp
k =

1√
Kpp

k

Ypqk = hk + np
k, (3)

where np
k = 1√

Kpp
k

Nqk. Since qk is a unit-norm vector,

it is easy to show that np
k is still Gaussian distribution

whose elements are independently and identically distributed
as CN (0, 1

Kpp
k
IM ). The MMSE estimate of channel hk is

given by

ĥk =
αkKpp

k

αkKpp
k + 1

yp
k, (4)

which follows the distribution of CN (0, σkI) with σk given
by

σk =
α2

kKpp
k

αkKpp
k + 1

. (5)

According to the property of MMSE estimation, channel
estimation error h̃k = hk − ĥk is independent of ĥk, and
follows the distribution of CN (0, δkIM ), where δk is given
by

δk =
αk

αkKpp
k + 1

. (6)
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C. Achievable Data Rate for Massive MIMO URRLC

By taking into account the number of symbols for pilot
transmission, to achieve the decoding error probability of εk

for the kth device, the instantaneous achievable data rate Rk

can be accurately approximated by [22]

Rk ≈ (1− β) log2(1 + γk)−
√

(1− β)Vk

L

Q−1(εk)
ln 2

, (7)

where β is equal to β = K/L, γk is the signal to interference
plus noise ratio (SINR) of the kth device, Q−1 is the inverse
function Q(x) = 1√

2π

∫∛
x

e−
t2
2 dt, and Vk is the channel

dispersion given by Vk = 1 − (1 + γk)−2. As seen from (7),
when the blocklength L approaches infinity, the data rate
Rk will approach (1− β) log2(1 + γk), which is the classic
Shannon capacity. The second term in (7) can be interpreted
as a penalty on the rate in order to guarantee the decoding
error probability εk.

In the following, we derive the expression of γk for two
different low complexity detection schemes: 1) maximum-ratio
combining (MRC); 2) zero-forcing (ZF).

Define the estimated channels as Ĥ = [ĥ1, ĥ2, · · · , ĥK ] and
channel estimation errors as H̃ = [h̃1, h̃2, · · · , h̃K ]. Let A be
an M×K linear detection matrix that is based on the estimated
channel Ĥ. By using the linear detection A, the received signal
can be processed as

yD = AHy. (8)

Two conventional low complexity linear detectors are
considered:

A =

⎧⎨⎩ Ĥ, for MRC

Ĥ
(
ĤHĤ

)−1

, for ZF.
(9)

Then, the processed signal after using the detector is given by

yD = AH
∑
i∈K

hi

√
pd

i si+AHn.

= AH
∑
i∈K

ĥi

√
pd

i si+AH
∑
i∈K

h̃i

√
pd

i si+AHn, (10)

where the last equality is obtained by using hk = ĥk + h̃k.
The detection signal for the kth device is given by

yD
k = aH

k ĥk

√
pd

ksk + aH
k

∑
i∈K\k

ĥi

√
pd

i si

+ aH
k

∑
i∈K h̃i

√
pd

i si + aH
k n, (11)

where ak is the kth column of matrix A. Since Ĥ and H̃ are
independent, ak is also independent of H̃. The CC will treat
the estimated channel as true channel, and the last three terms
of (11) are regarded as interference and noise. Then, the SINR
for the kth device γk is given by

γk =
pd

k

∣∣∣aH
k ĥk

∣∣∣2∑
i∈K\k

pd
i

∣∣∣aH
k ĥi

∣∣∣2 +
∑
i∈K

pd
i

∣∣∣aH
k h̃i

∣∣∣2 + �ak�2
. (12)

Fig. 3. Block diagram for transmission in TDD URLLC Massive MIMO
scheme.

Remark: Massive MIMO can offer the channel hardening
effect, where the channel variations between different channel
fading blocks can be averaged out and the achievable data
rate for these fading blocks mainly depend on the large-scale
fading, which changes very slowly. As a result, we first derive
the lower bound (LB) for the achievable data rate as a function
of large-scale channel fading parameters, and then optimize the
resource allocation based on the large-scale fading information
rather than the small-scale fading, which can significantly
reduce the computational delay that is beneficial for URLLC
applications. In other words, when the large-scale fading
parameters of all devices are given, we can use our developed
algorithm to find the optimal power allocation, which can be
used for consecutive channel fading blocks. The algorithms
are needed to be rerun only when the large-scale channel
fading parameters have changed, which vary much slowly
compared with the small-scale channel fading. To make it
more clear, a block diagram scheme is given in Fig. 3, where
the large-scale channel gains of any devices vary at t = tLs

0

and t = tLs
1 . In general, the channel coherence time is much

longer than the packet transmission time as we consider the
URLLC services, and the time difference for large-scale fading
(tLs

1 −tLs
0 ) is much larger than the channel coherence time. The

power allocation obtained at time t = tLs
0 can be employed for

the subsequent transmissions until t = tLs
1 , which significantly

reduce the computational time. Please note in our scheme,
the channel estimation should be performed at the beginning
of each channel coherence since the decoding requires the
channel state information as shown in (9), while the power
allocation needs to be updated once the large-scale fading
gains change.

Due to the channel hardening effect, in this paper we focus
on the ergodic achievable data rate that is defined as R̄k =
E {Rk}, where the expectation is taken over the randomness

of
{
ĥk, h̃k, ∀k

}
. Unfortunately, the exact average achievable

data rate R̄k with channel uncertainty is not available. In the
following, we aim to derive the closed-form expression of
the LB of the rate expression, which is more tractable to
analyse and optimize. To this end, we first define function f(x)
as

f(x) = ln
(

1 +
1
x

)
− a

√
2x + 1

(x + 1)2
≥ 0, x > 0 (13)

where a is a fixed positive value. In the following, we derive
the feasible region of function f(x). Since f(x) ≥ 0, from (13)
we have

a ≤ (x + 1) ln
(
1 + 1

x

)
√

2x + 1
Δ= g(x). (14)
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The first-order derivative of g(x) with respect to x is given by

g�(x) =
−2− 1

x + x ln
(
1 + 1

x

)
(2x + 1)

3
2

≤ −1− 1
x

(2x + 1)
3
2

< 0 (15)

where the first inequality follows by using the relation
ln
(
1 + 1

x

)
< 1

x . Hence, g(x) is a monotonically decreasing
function of x. In addition, lim

x→0
g(x) =∞ and lim

x→∛ g(x) = 0,
where the latter equation is obtained by using the L’Hospital’s
rule. Hence, from (14), we know that the feasible region of
f(x) is given by

Ω =
{

x| 0 < x ≤ g−1(a)
}

. (16)

Then, we have the following lemma.
Lemma 1: Function f(x) defined in (13) is decreasing and

convex for x ∈ Ω.
Proof: Please refer to Appendix B [23].

Based on Lemma 1, we are able to derive the LB of R̄k in
the following. The instantaneous data rate Rk in (7) can be
written as follows:

Rk =
1− β

ln 2
fk

(
1
γk

)
, (17)

where function fk(·) is in the same format as f(·) in (13),
where the parameter a is

ak = Q−1(εk)/
√

L (1− β). (18)

In addition, we need to guarantee that Rk ≥ 0, and thus
γk ≥ 1

/
g−1(ak). By using lemma 1 and Jensen’s inequality,

we obtain the following LB on the ergodic data rate:

R̄k ≥ R̂k
Δ=

1− β

ln 2
fk

(
E

{
1
γk

})
. (19)

In the following theorem, we derive the expression of R̂k for
each beamforming solution.

Theorem 1: The ergodic achievable rate for the kth device
for MRC in finite blocklenghth regime can be lower bounded
by:

R̂k
Δ=

1− β

ln 2
fk

(
1
γ̂k

)
(20)

where γ̂k is given by

γ̂k =
pd

k(M − 1)σk∑
i∈K\k pd

i σi +
∑

i∈K pd
i δi + 1

. (21)

Proof: Please refer to Appendix A.
For the ZF detection, the LB of the ergodic data rate is

given by the following theorem.
Theorem 2: The ergodic achievable rate for the kth device

for ZF in finite blocklength regime is lower bounded by:

R̂k
Δ=

1− β

ln 2
fk

(
1
γ̂k

)
(22)

where γ̂k is given by

γ̂k =
(M −K)σkpd

k∑
i∈K pd

i δi + 1
. (23)

Proof: Please refer to Appendix B.

In the proof of Theorem 1 and Theorem 2, we notice that
the above derived LB of the ergodic data rates are valid for
any number of antennas (M > K for the ZF). However,
the gap between the LB and the actual ergodic data rate is
reduced when the number of antennas is large, which is the
case for a massive MIMO system. These LBs are commonly
used in the literature concerning massive MIMO systems.
Hence, we use these lower bounds throughout this paper. In the
following, we aim to optimize the pilot power pp

k and payload
power pd

k to maximize the weighted sum rate. The optimization
is performed only when any large-scale fading parameter
changes. The simulation results in Section V also verify the
tightness of the derived LBs. Hence, the optimization solutions
are applicable for a large time scale, which is appealing for
URLLC applications.

D. Problem Formulation

In this paper, we jointly optimize the power allocation for
pilot and data transmission of each device for maximizing
the weighted sum rate of all devices. By using Theorem 1,
the weighted sum rate maximization problem can be
formulated as

max
{pp

k
},{pd

k
}

∑
k∈K wkR̂k (24a)

s.t. R̂k ≥ Rreq
k , ∀k, (24b)

Kpp
k + (L −K)pd

k ≤ Ek, ∀k, (24c)

where R̂k and γ̂k are given in (20) and (21) for MRC
and (22) and (23) for ZF, respectively, wk is the weight of
device k used to guarantee the fairness among the devices,
constraint (24b) denotes the minimum data rate requirement
for the k-th device, and constraint (24c) means the energy
constraint for each device.

Power control for weighted sum rate problem with inter-
ference is well known to be an NP-hard problem even
under perfect CSI [24]. It becomes more complicated for the
more general case with imperfect CSI and finite blocklength.
In this paper, we aim for designing efficient algorithms within
polynomial-time complexity to solve the weighted sum rate
problem with imperfect CSI.

To this end, we first simplify the problem formulation
in (24). The first-order derivative of R̂k w.r.t. γ̂k is given by
R̂�

k = − (1−β)
γ̂2

k ln 2
f �

k

(
1
γ̂k

)
≥ 0. 1 Hence, constraint (24b) can be

transformed as

γ̂k ≥ 1
/

f−1
k

(
Rreq

k ln 2
1− β

)
, ∀k. (25)

To additionally simplify the problem formulation in (24),
we introduce auxiliary variables χk, ∀k, and then Problem (24)
can be equivalently transformed as follows

max
{χk},{pp

k},{pd
k}

∑
k∈K w̃k [ln(1 + χk)− akG(χk)] (26a)

s.t. γ̂k ≥ χk, ∀k, (26b)

(25), (24c), (26c)

1Since R̂k ≥ Rreq
k > 0, the feasible γ̂k must lie in the range of

Ω =
�

γ̂k | 0 < 1/γ̂k ≤ g−1(ak)
�

. Hence, Lemma 1 holds and we have

f ′
k

�
1

γ̂k

�
≥ 0.
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where w̃k = (1−β)wk

ln 2 and G(χk) =
√

1− 1
(1+χk)2

. The
equivalence between Problem (26) and Problem (24) can
be readily proved by using the contradiction method. Prob-
lem (26) and Problem (24) are equivalent in the sense that they
have the same power allocation solutions and the same objec-
tive function (OF) value. Hence, in the following, we focus
on solving Problem (26).

Due to different SINR expressions, in the following two
sections, we optimize the power allocation for MRC and ZF,
respectively.

III. WEIGHTED SUM DATA RATE FOR MRC

In this section, we aim to deal with the weighted sum rate
maximization problem for MRC.

A. Algorithm Design

The complicated function G(χk) in (26a) makes the opti-
mization problem difficult to solve. To resolve this issue,
we first study several properties of this function.

Lemma 2: G(x) is a concave function of x.
Proof: Please refer to Appendix C.

For the URLLC applications, the decoding error probability
εk for each device is much smaller than 0.5 so that ak is a
strictly positive value, and the OF of Problem (26) is to maxi-
mize the difference of two concave functions. However, due to
the non-convex constraints in Problem (26), this problem does
not belong to the class of difference of convex (DC) problem.
In addition, due to the additional term of akG(χk) in the OF of
Problem (26), this problem cannot be solved by dealing with
a sequence of geometric programs (GPs) as in [25], which
considered Shannon capacity formula under the infinite block-
length regime. The intuitive method to solve Problem (26) is
to approximate function G(χk) as its first-order Taylor series
expansion and solve the approximated problem until conver-
gence. However, the approximation is in linear form while the
first term in the OF is in log-function form. The successive GP
method in [25] is still not applicable. To deal with this issue,
we approximate function G(x) as a log-function as shown in
the following lemma.

Lemma 3: For any given x̃ ≥
√

17−3
4 , the following

inequality holds:

G(x)=

√
1− 1

(1+x)2
≤ ρln(x)+η

Δ= F (x), ∀x≥
√

17−3
4

,

(27)

where ρ and η are given by

ρ =
x̃√

x̃2 + 2x̃
− x̃
√

x̃2 + 2x̃

(1 + x̃)2
, (28)

and

η =

√
1− 1

(1 + x̃)2
− ρ ln(x̃). (29)

In addition, we have:

G(x̃) = F (x̃), G�(x̃) = F �(x̃), (30)

Fig. 4. Approximation error for different approximation functions at three
different points: a) x̃ = 0.5; b) x̃ = 3; c) x̃ = 6.

which means that the approximation F (x) is tight at
x = x̃.

Proof: Please refer to Appendix D.
According to (16), the optimization variable γ̂k should be no

smaller than 1
/
g−1(ak). Note that 1

/
g−1(ak) is a decreasing

function of the decoding error probability and blocklength,
while an increasing function with respect to the number of
device. Hence, for typical FA cases [26], where the typical
required error probability is lower than 10−8, the available
channel blocklength is smaller than 200, and the number of
devices that should be supported is larger than 5, 1

/
g−1(ak) is

larger than
√

17−3
4 , which implies that Lemma 3 is applicable

for our considered optimization problem in (26).
In Fig. 2, we compare the approximation accuracy of

function F (x) and the linear approximation function S(x)
defined as follows:

G(x) ≤ G(x̃) + G�(x̃) (x− x̃) Δ= S(x), (31)

where the inequality holds since G(x) is a concave function
proved in Lemma 2. It can be observed from Fig. 4 that
the approximation function F (x) is more accurate than the
linear function S(x) over the whole region of x at different
points of x̃. We can also find that the curve of the log-function
F (x) is always above the curve of the linear function S(x),
which verifies the correctness of the theoretical conclusion in
Lemma 3. The most important advantage of approximating
G(x) as the log-function F (x) is that we can transform the
original problem into a GP problems that enables us to find
the optimal solution.

In the following lemma, we also provide the LB of ln(1 +
χk), which enables us to develop low complexity algorithms.

Lemma 4: For any given x̃ ≥ 0, function ln(1+x) is lower
bounded by

ln(1 + x) ≥ ρ̂ ln x + η̂, ∀x ≥ 0, (32)

where ρ̂ and η̂ are given by

ρ̂ =
x̃

1 + x̃
, η̂ = ln(1 + x̃)− x̃

1 + x̃
ln x̃. (33)

In addition, the bound is tight at x = x̃.
Proof: The proof is similar to those in Lemma 3, and thus

omitted for simplicity.
Based on Lemma 3 and Lemma 4, we are now ready to

solve Problem (26). The main idea is to approximate the
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OF of Problem (26) as the approximated functions provided
in Lemma 3 and Lemma 4, and then solve the approximate
problem in an iterative manner. In the following, we provide
the details of the iterative algorithm.

First, we denote P(i) = {pp(i)
k , p

d(i)
k , ∀k} as the power allo-

cation in the i-th iteration, and the corresponding χk is given
by χ

(i)
k . Then, in the i + 1-th iteration, we can approximate

G(χk) around χ
(i)
k as function F (χk) = ρ

(i)
k lnχk+η

(i)
k , where

ρ
(i)
k and η

(i)
k are obtained from (28) and (29) respectively with

x̃ = χ
(i)
k . In addition, we can approximate ln(1 + χk) around

χ
(i)
k as ρ̂

(i)
k ln χk + η̂

(i)
k , where ρ̂

(i)
k and η̂

(i)
k can be obtained

from (33) with x̃ = χ
(i)
k . By substituting these approximations

into (26a) and recalling that ak is a positive value, we can
obtain the LB of the OF by using Lemma 3 and Lemma 4 as
follows∑

k∈K w̃k [ln(1 + χk)− akG(χk)]

≥
∑

K w̃k

[
ρ̂
(i)
k ln χk + η̂

(i)
k − akρ

(i)
k lnχk − akη

(i)
k

]
, (34)

where the equality holds only when χk = χ
(i)
k .

Next, we optimize the power allocation to maximize the LB
of the OF instead of maximizing (26a) directly. In specific,
the LB maximization problem to be solved in the i + 1-th
iteration is formulated as

max
{χk},{pp

k},{pd
k}

∑
k∈K ŵ

(i)
k ln χk (35)

s.t. (26b), (25), (24c), (36)

where ŵ
(i)
k = w̃k ρ̂

(i)
k − akw̃kρ

(i)
k and the constant term in the

OF is omitted.
Then, we can transform the above optimization problem into

a GP problem as follows:

max
{χk},{pp

k},{pd
k}

∏
k∈K χ

ŵ
(i)
k

k (37a)

s.t.
∑

i∈K\k
αiαkKχkpp

kpd
i+
∑

i∈K αiχkpd
i +

χkαkKpp
k+χk≤(M − 1)Kα2

kpp
kpd

k, ∀k, (37b)

χk ≥ 1
/

f−1
k

(
Rreq

k ln 2
1− β

)
, ∀k, (24c). (37c)

Although GP is not a convex optimization problem, it can be
equivalently transformed into a convex optimization problem
by applying a logarithmic change of variables. Therefore,
the globally optimal solution of Problem (37) can be obtained
by using the interior-point method [27]. Some software pack-
ages that can solve GP problem are MOSEK package and
CVX [28].

Based on the above discussion, the iterative algorithm to
solve Problem (26) is given in Algorithm 1.

B. Algorithm Analysis

1) Initialization of Algorithm 1: As shown in Step 1 of
Algorithm 1, one has to find a feasible initial power allocation
in order to make the algorithm work. Note that randomly
selecting a set of power allocation solutions that satisfy the
per-device energy constraints may not satisfy their mini-
mum SINR requirements. Hence, one has to carefully choose

Algorithm 1 Iterative Algorithm for Solving Problem (26) for
MRC
1: Initialize iteration number i = 1, error tolerance ξ.

Initialize a feasible power allocation {pp
k
(0)

, pd
k

(0)
, ∀k},

calculate {χ(0)
k , ρ

(0)
1 , ρ

(0)
2 , ŵ

(0)
k , ∀k}, and calculate the OF

of Problem (26), denoted as Obj(0).
2: With given {χ(i−1)

k , ρ
(i−1)
1 , ρ

(i−1)
2 , ŵ

(i−1)
k , ∀k}, solve Prob-

lem (37) by using the CVX package to obtain
{pp(i)

k , p
d(i)
k , χ

(i)
k , ∀k}.

3: Update {ρ(i)
k , ρ

(i)
k , ŵ

(i)
k , ∀k};

4: Calculate the new OF Obj(i).
If
∣∣Obj(i) −Obj(i−1)

∣∣/Obj(i) < ξ, terminate. Otherwise,
set i← i + 1, go to step 2.

the initial power allocation. In the following, we provide
one alternative method to find the initial power allocation
solutions.

Inspired by the user selection problem formulation
in [29], [30], we construct the following alternative optimiza-
tion problem by introducing an auxiliary variable ϕ:

max
ϕ,{pp

k},{pd
k}

ϕ (38a)

s.t. γ̂k ≥ ϕ

/
f−1

k

(
Rreq

k ln 2
1− β

)
, ∀k, (24c). (38b)

Obviously, Problem (38) is always feasible since at least
{ϕ = 0, pp

k = 0, pd
k = 0, ∀k} is a feasible solution. It can be

readily verified that the original Problem (24) is feasible if the
optimal ϕ ≥ 1, and the output power allocation can be adopted
as the initial input for Algorithm 1. In this paper, we assume
that Problem (24) is always feasible and the optimal ϕ in
Problem (38) is always no smaller than one. Problem (38) can
also be transformed into a GP problem, where the globally
optimal solution can be obtained. The details are omitted here
due to the limited space.

2) Convergence Analysis: In this part, we analyze the
convergence of Algorithm 1. In the following, we show that
Obj(i) ≤ Obj(i+1).

Since {χ(i+1)
k , ∀k} is the optimal solution of Problem (35)

in the i + 1-th iteration, we have∑
k∈K

w̃k

[
ρ̂
(i)
k ln

(
χ

(i+1)
k

)
+η̂

(i)
k −akρ

(i)
k ln(χ(i+1)

k )−akη
(i)
k

]
≥
∑
k∈K

w̃k

[
ρ̂
(i)
k ln

(
χ

(i)
k

)
+η̂

(i)
k −akρ

(i)
k ln(χ(i)

k )−akη
(i)
k

]
= Obj(i). (39)

By using inequality (34) with χk = χ
(i+1)
k , we have∑

k∈K
w̃k

[
ln(1+χ

(i+1)
k )−akG(χ(i+1)

k )
]

≥
∑
k∈K

w̃k

[
ρ̂
(i)
k ln(χ(i+1)

k )+η̂
(i)
k −akρ

(i)
k ln(χ(i+1)

k )−akη
(i)
k

]
.

(40)
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By combining (39) and (40), we have

Obj(i+1)

≥
∑
k∈K

w̃k

[̂
ρ
(i)
k ln

(
χ

(i+1)
k

)
+η̂

(i)
k −akρ

(i)
k ln

(
χ

(i+1)
k

)
−akη

(i)
k

]
≥ Obj(i). (41)

In addition, since each device has its own energy constraint,
the OF value of Problem (24) has upper bound. As a result,
Algorithm 1 is guaranteed to converge.

3) Solution Analysis: Since the original problem (24) is
non-convex, the globally optimal solution cannot be obtained
in general. However, by using the similar proof as in
Appendix B in [30], we can prove that Algorithm 1
can converge to the Karush-Kuhn-Tucker (KKT) point of
Problem (24). The converged solution only depends on the
initial input of Algorithm 1. Simulation results show that the
algorithm almost converges to the same solution with different
initial input solutions.

4) Complexity Analysis: The main complexity mainly lies
in solving a GP problem in each iteration. In [31], the authors
claimed that the GP problem can be efficiently solved by
using the standard interior point methods with a worst-case
polynomial-time complexity. The upper bound of the total
number of Newton steps in the interior point method does
not depend on the number of variables, or the number of
constraints. The derived upper bound shows that the barrier
method converges linearly. By carefully choosing the parame-
ters, the bound on the number of Newton steps can grow as√

m instead of m, where m is the number of constraints [32].
In addition, simulation results show that Algorithm 1 con-
verges rapidly, which means that Algorithm 1 can converge to
a local optimal solution with a polynomial time complexity.

IV. WEIGHTED SUM DATA RATE FOR ZF

In this section, we aim to deal with weighted sum rate
maximization problem for ZF. Due to different expressions of
the SINR of MRC and ZF, some derivations in MRC cannot be
directly applied in the ZF case. In the following, we develop
an efficient algorithm to solve Problem (26) for the ZF case.

A. Algorithm Design

By substituting (5) and (6) into (23), the SINR in the
ZF case can be reformulated as

γ̂k =
(M −K)α2

kKpp
kpd

k

∏
i∈K

(1 + αiKpp
i )

(1 + αkKpp
k)Υ

, ∀k, (42)

where Υ =
∑
i∈K

pd
i αi

∏
j �=i

(
1 + αjKpp

j

)
+
∏

i∈K
(1 + αiKpp

i ).

Unfortunately, since the numerator of γ̂k in (42) is a posyn-
omial function, the SINR constraint in (26b) cannot be trans-
formed into the format as that in (37b), in which the right
hand side is a monomial function. Hence, the problem cannot
be directly transformed into a GP problem. To solve this issue,
we introduce Theorem 3 as follows.

Theorem 3: For any given vector x̆ = {x̆1, · · · , x̆K}
with x̆i ≥ 0, ∀n, function W (x) =

∏
i∈K (1 + xi) is lower

bounded by

W (x) =
∏

i∈K (1 + xi) ≥ λ
∏

i∈K xτi

i
Δ= Y (x) (43)

where λ and τi, ∀i are given by

λ =
∏

i∈K (1 + x̆i)∏
i∈K x̆τi

i

, τi =
x̆i

1 + x̆i
, ∀i, (44)

and x is given by x = {x1, · · · , xK}.
In addition, we have:

W (x̆) = Y (x̆),∇W (x̆) = ∇Y (x̆). (45)

where ∇W (x) and ∇Y (x) denote the gradient of function
W (·) and Y (·) w.r.t. x, respectively.

Proof: Please refer to Appendix E.
Based on Theorem 3, we replace the polynomial functions

in the numerator of γ̂k in (42) with their best local mono-
mial approximations by employing Theorem 3.2 In specific,
we denote P(n) = {pp(n)

k , p
d(n)
k , ∀k} as the power allocation in

the n-th iteration, and the corresponding χk is given by χ
(n)
k .

Then, in the n + 1-th iteration, we approximate the term∏
i∈K (1 + αiKpp

i ) in the numerator of (42) by its best local
monomial approximations, which is given by function Y (x)
in Theorem 3 with xi = αiKpp

i :∏
i∈K (1 + αiKpp

i ) ≥ λ(n)
∏

i∈K (αiKpp
i )

τ
(n)
i , (46)

where λ(n) and τ
(n)
i , ∀i are given in (44) with x̃i =

αiKp
p(n)
i , ∀i. Then, we focus on the following constraint

instead of the original SINR constraint in (26b):

χk (1 + αkKpp
k)
∑

i∈K pd
i αi

∏
j �=i

(1 + αjKpp
j )

+ χk (1 + αkKpp
k)
∑

i∈K pd
i αi

∏
i∈K (1 + αiKpp

i )

≤ (M −K)α2
kKpp

kpd
kλ(n)

∏
i∈K (αiKpp

i )
τi

(n)

. (47)

Note that the left hand side (LHS) of (47) is a posynomial
function, and the right hand side (RHS) becomes a monomial
function. In addition, the LHS is no larger than RHS. Hence,
constraint (47) satisfies the conditions for a problem to be a
GP problem [27].

Then, by using the same method as in the MRC case to
deal with the OF, in the n + 1-th iteration, we aim to solve
the following GP problem:

max
{χk},{pp

k
},{pd

k
}

∏
k∈K χ

ŵ
(n)
k

k (48a)

s.t. (24c), (47) (48b)

γ̂k ≥ 1
/

f−1
k

(
Rreq

k ln 2
1− β

)
, ∀k, (48c)

where the parameters ŵ
(n)
k ’s are the same as those in the

MRC case. This problem can be efficiently solved by using
CVX [28].

2The best local monomial approximations means that the approximation
function should satisfy three conditions as specified in Section IV-A of [33].
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Based on the above discussion, the iterative algorithm
to solve Problem (26) for the case of ZF is provided in
Algorithm 2.

Algorithm 2 Iterative Algorithm for Solving Problem (26)
for ZF
1: Initialize iteration number n = 1, error tolerance ξ. Initial-

ize a feasible power allocation {pp(0)
k , p

d(0)
k , ∀k}, calculate

{χ(0)
k , ρ

(0)
1 , ρ

(0)
2 , ŵ

(0)
k , λ(0), τ

(0)
k , ∀k}, and calculate the OF

of Problem (26), denoted as Obj(0).
2: Given {χ(n−1)

k , ρ
(n−1)
1 , ρ

(n−1)
2 , ŵ

(n−1)
k , λ(n−1), τ

(n−1)
k , ∀k},

solve Problem (48) by using the CVX package to obtain
{pp(n)

k , p
d(n)
k , χ

(n)
k , ∀k}.

3: Update {ρ(n)
1 , ρ

(n)
2 , ŵ

(n)
k , λ(n), τ

(n)
k , ∀k};

4: Calculate new OF Obj(n). If
∣∣Obj(n)−Obj(n−1)

∣∣/Obj(n) <
ξ, terminate. Otherwise, set n← n + 1, go to step 2.

B. Algorithm Analysis

Algorithm 2 can be analyzed similar to Algorithm 1 except
the convergence analysis since the problems to be solved in
each iteration of Algorithm 2 do not have the same set of
constraints.

In the following, we prove that the solution obtained in the
n-th iteration is also feasible for the problem to be solved in
the n + 1-th iteration. We only need to check constraint (47)
since the other two constraints are the same in each iteration.

Let us denote {χ(n)
k , p

p(n)
k , p

d(n)
k , ∀k} as the optimal solu-

tion in the n-th iteration. Then, it is also a feasible solution,
and we have

χ
(n)
k

(
1+αkKp

p(n)
k

)⎛⎝∑
i∈K

p
d(n)
i αi

∏
j �=i

(1+αjKp
p(n)
j )

⎞⎠
+ χ

(n)
k

(
1+αkKp

p(n)
k

)∏
i∈K

(
1+αiKp

p(n)
i

)
≤ (M−K)α2

kKp
p(n)
k p

d(n)
k λ(n−1)

∏
i∈K

(
αiKp

p(n)
i

)τ
(n−1)
i

.(49)

By using (46), we have∏
i∈K

(1 + αiKp
p(n)
i ) ≥ λ(n−1)

∏
i∈K

(
αiKp

p(n)
i

)τ
(n−1)
i

. (50)

In addition, by using (45) in Theorem 3 and (50), we have

λ(n)
∏
i∈K

(
αiKp

p(n)
i

)τ
(n)
i

=
∏
i∈K

(1 + αiKp
p(n)
i ) ≥ λ(n−1)

∏
i∈K

(
αiKp

p(n)
i

)τ
(n−1)
i

. (51)

Finally, by combining (47) and (51), we have

χ
(n)
k

(
1 + αkKp

p(n)
k

)∑
i∈K

p
d(n)
i αi

∏
j �=i

(1 + αjKp
p(n)
j )

+ χ
(n)
k

(
1 + αkKp

p(n)
k

)∏
i∈K

(1 + αiKp
p(n)
i )

≤ (M −K)α2
kKp

p(n)
k p

d(n)
k λ(n)

∏
i∈K

(
αiKp

p(n)
i

)τ
(n)
i

.

(52)

Fig. 5. Tightness of the derived data rate LB for the MRC case.

Hence, {χ(n)
k , p

p(n)
k , p

d(n)
k , ∀k} is also a feasible solution in

the n + 1-th iteration. Then, by using the similar proof as
in the case of MRC, we can also prove that Algorithm 2 is
guaranteed to converge. By using a similar method, we also
prove that this algorithm will converge to a feasible solution
of Problem (26).

V. SIMULATION RESULTS

In this section, we provide simulation results to demonstrate
the effectiveness of our proposed algorithms for industrial
automation systems. The channel path loss is modeled as
PL = 35.3+37.6log10d (dB) [34], and the small-scale fading
is modeled as Rayleigh fading with zero mean and unit vari-
ance. Unless otherwise specified, the simulation parameters
are set as follows: number of transmit antennas of M = 100,
number of devices of K = 10, channel bandwidth of B =
0.2 MHz, noise power spectral density of -174 dBm/Hz,
decoding error probability of εk = 10−9, ∀k, number of
transmit antennas of M = 100, and maximum transmission
duration of 0.5 ms. The maximum blocklength is calculated
as L = BT = 100. The other parameters are specified in each
figure. The energy constraint for each device is assumed to be
equal, i.e., Ek = E, ∀k, and each device has the same data
rate targets, Rreq

k = Rreq, ∀k. The weights for each device are
uniformly generated within [0, 1].

A. Tightness of the Date Rate LB

In Fig. 5 and Fig. 6, we investigates the tightness of
the LB derived for the cases of MRC and ZF, respectively.
The simulation results are obtained through the Monte-Carlo
simulation by averaging over 5000 random channel genera-
tions. It is observed that the data rate LB is tight for both
cases of MRC and ZF for any number of transmit antennas.
Interestingly, the curves for the ZF case are almost overlapped
with each other. This verifies that the data rate LBs derived in
Theorem 1 and Theorem 2 are suitable for optimization instead
of directly optimizing the complicated expectation expression.

B. Convergence Behaviour of the Proposed Algorithms

Fig. 7 and Fig. 8 investigate the impact of the energy
limit at each device on the performance of the proposed
Algorithm 1 for the MRC case and Algorithm 2 for the
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Fig. 6. Tightness of the derived data rate LB for the ZF case.

Fig. 7. Convergence behaviour of the proposed algorithm for the MRC case.

Fig. 8. Convergence behaviour of the proposed algorithm for the ZF case.

ZF case, respectively. From these two figures, we can observe
that both algorithms converge rapidly for various energy limits
and only 2 or 3 iterations are sufficient for the algorithms
to converge. This demonstrates the low complexity of the
proposed algorithms.

C. Performance Comparison

In this subsection, we compare the proposed algorithms with
the following algorithms:

• Upper bound: In this method, Shannon capacity is
adopted for optimization in Problem (26). In other words,

Fig. 9. Average weighted sum rate vs. maximum energy limit 10log10E
for various schemes for the case of MRC.

Fig. 10. Average weighted sum rate vs. maximum energy limit 10log10E
for various schemes for the case of ZF.

the penalty term akG(χk) is set to zero in both the OF
and rate constraint (24b), i.e., akG(χk) = 0, ∀k. This
method provides the upper bound of the average weighted
sum rate performance in the IIoT networks.

• Conventional alg.: As in [14], the solution obtained from
the upper bound is applied in (20) and (22) for the cases
of MRC and ZF respectively by considering the penalty
term akG(χk). That means that the upper bound is used
for obtaining solutions, but the achievable data rate under
finite blocklength is used for performance evaluation in
this algorithm.

• Fixed pilot power alg.: In this scheme, we only optimize
the payload power pd

k while fixing the pilot power as pp
k =

E/L. This algorithm is provided to show the benefits of
jointly optimizing the pilot power and payload power.

The following results are obtained by averaging over
100 Monte-Carlo simulations where in each snapshot the
devices are randomly generated in the cell. For each snapshot,
if the device’s achievable data rate cannot achieve its rate
targets, we set the corresponding data rate to zero. The pro-
posed algorithm is denoted as ‘Proposed alg.’ in the following
figures.

In Fig. 9 and Fig. 10, we show the average weighted
sum rate versus the energy limit at each device, E. The rate
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Fig. 11. Average weighted sum rate vs. the number of devices for various
schemes for the case of MRC.

targets for MRC and ZF are set as Rreq = 1 bit/s/Hz and
Rreq = 4 bit/s/Hz, respectively. As seen from these figures,
the system performance increases with the available energy
at each device since the SINR at each device is increased.
Note that the weighted sum rate achieved by some algorithms
may approach zero, which means the power allocation solution
is infeasible. As expected, the upper bound has the best
performance since the penalty terms are not considered. Fur-
thermore, the ‘conventional alg.’ based on Shannon capacity
formula has higher probability to violate the data rate require-
ment, especially for small E. Therefore, Shannon capacity
cannot be employed for the transmission design of URLLC
for industrial applications, in particular when the energy limit
is small as the QoS target cannot be guaranteed. However,
for the large value of E, the SINR value for each device is
very high and then the penalty term akG(χk) can be ignored
when comparing with the first term of ln(1 + χk). Hence,
the ‘conventional alg.’ will achieve similar performance as
that of the proposed algorithm. As shown in Fig. 9 and
Fig. 10, by jointly optimizing the payload power and pilot
power, the proposed algorithm is superior over the ‘Fixed
pilot power alg.’, which only optimizes the payload power.
The performance gain is obvious when the energy limit is
low, especially for the case of ZF. This means the need of
jointly optimizing pilot and payload power at low energy limit.
This can be explained as follows. When the energy limit is
low, the system performance is limited by channel estimation
procedure. Through the joint power allocation, some power
can be borrowed from that for data transmission to enhance the
channel estimation accuracy, and thus increases the weighted
sum rate. However, in the high energy E, the accuracy of
channel estimation is already enough, and additional joint
power control brings marginal performance gain. Another
interesting observation is that the performance gain of the
proposed algorithm over ‘Fixed pilot power alg.’ is much
smaller for the MRC case than the ZF case. This may be
due to the fact that the CSI is more important when using it
for removing multiple device interference in the ZF case.

Fig. 11 and Fig. 12 show the average weighted sum rate
versus the number of devices for various schemes. The rate

Fig. 12. Average weighted sum rate vs. the number of devices for various
schemes for the case of ZF.

Fig. 13. Average weighted sum rate vs. blocklength for various schemes for
the case of MRC.

targets for MRC and ZF are set as Rreq = 1 bit/s/Hz and
Rreq = 2 bit/s/Hz, respectively. The energy limit for MRC and
ZF are set as E = 2 and E = 1, respectively. It is observed
from Fig. 11 and Fig. 12 that the average weighted sum rate
achieved by all the algorithms except the ‘Conventional alg.’
increases with the number of devices since these schemes
fully exploit the multi-device diversity. For the MRC case,
the performance of the ‘Conventional alg.’ decreases with the
number of devices. The main reason is that the design is
based on Shannon capacity formula, which does not take into
consideration the effect of short blocklength on the achievable
data rate. As a result, the probability that the achieved data rate
violates the rate requirement will increase with the number of
devices. It is interesting to observe that ‘Fixed pilot power
alg.’ has similar performance as the proposed algorithm for
the case of MF. However, for the case of ZF, the proposed
algorithm significantly outperforms ‘Fixed pilot power alg.’,
and the performance gain is increasing with the number of
devices. This again reveals the importance of joint power
optimization in the case of ZF. For the ZF case, the weighted
sum rate achieved by ‘Conventional alg.’ first increases with
the number of devices and then decreases with it.

Finally, we study the effect of blocklength on the weighted
sum rate performance in Fig. 13 and Fig. 14 for the cases of
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Fig. 14. Average weighted sum rate vs. blocklength for various schemes for
the case of ZF.

MRC and ZF, respectively. The rate targets for MRC and ZF
are set as Rreq = 2 bit/s/Hz and Rreq = 4 bit/s/Hz, respec-
tively. As expected, the system performance increases with the
channel blocklength since more time/frequency resource can
be exploited for transmission. Some interesting observations
can be found in these figures. First, when the blocklength
is small, there is a significant performance gap between the
proposed algorithm and the upper bound. However, this gap
starts to reduce with the increase of the blocklength. This
demonstrates that the blocklength has significant impact for
IIoT devices with URLLC requirements. In addition, the pro-
posed algorithm outperforms the ‘Fixed pilot power alg.’
algorithm for both cases of MRC and ZF. This may be due
to the fact that higher rate target is imposed in this example
than that in Fig. 11.

VI. CONCLUSIONS

In this paper, we studied the resource allocation for uplink
massive MIMO systems to support critical IIoT operating
under finite channel blocklength, where multiple robots and/or
actuators transmit URLLC signals to the central controller
simultaneously. We first derived the closed-form data rate
LB with imperfect CSI for both MRC and ZF receivers
under the short packet transmission. We then formulate the
weighted sum rate maximization to jointly optimize the
pilot and payload power allocation while considering their
energy, minimum data rate and decoding error probability
requirements. This optimization problem is non-convex, and
we proposed novel low complexity iterative algorithms to
solve it. Simulation results demonstrate that the algorithm
converges rapidly, and outperforms the existing benchmark
algorithms, especially the algorithm based on conventional
Shannon capacity. This reveals the importance of adopting the
achievable data expression for finite channel blocklength.

APPENDIX A
PROOF OF THEOREM 1

We first consider the MRC beamforming. The proof fol-
lows the similar steps as those in Appendix A of [35] for

perfect CSI. Denote γk as the instantaneous SINR value when
using MRC. By substituting ak = ĥk into (12), we have

γk =
pd

k

∥∥∥ĥk

∥∥∥4∑
i∈K\k pd

i

∣∣∣ĥH
k ĥi

∣∣∣2 +
∑

i∈K pd
i

∣∣∣ĥH
k h̃i

∣∣∣2 +
∥∥∥ĥk

∥∥∥2 .

(53)

Then, E

{
1
γk

}
can be expressed as

E

{
1
γk

}
=E

⎧⎪⎨⎪⎩
∑

i∈K\k pd
i |uk,i|2+

∑
i∈K pd

i |vk,i|2+1

pd
k

∥∥∥ĥk

∥∥∥2
⎫⎪⎬⎪⎭ (54)

where uk,i = ĥH
k ĥi

�ĥk� and vk,i = ĥH
k h̃i

�ĥk� . Conditioned on ĥk, uk,i

and vk,i are Gaussian random variables with zero mean and
variance equal to σi and δi, respectively. In addition, uk,i and
vk,i are independent of ĥk. Then, we have

E

{
1
γk

}
=

⎛⎝∑
i∈K\k

pd
i σi+

∑
i∈K

pd
i δi+1

⎞⎠E

⎧⎪⎨⎪⎩ 1

pd
k

∥∥∥ĥk

∥∥∥2
⎫⎪⎬⎪⎭ . (55)

By using the identity [36]

E
{
tr
(
W−1

)}
=

m

n−m
(56)

where W ∼ Wm (n, In) is an m×m central complex Wishart
matrix with n (n−m) degrees of freedom. Then, we have

E

⎧⎪⎨⎪⎩ 1

pd
k

∥∥∥ĥk

∥∥∥2
⎫⎪⎬⎪⎭ =

1
pd

k(M − 1)σk
, for M ≥ 2. (57)

By substituting (57) into (55), we can obtain γ̂k in (21).

APPENDIX B
PROOF OF THEOREM 2

By using ZF, we have AHĤ = IK . Thus, akĥi is equal
to one if k = i; otherwise, it is equal to zero. Then,
the instantaneous SINR for ZF can be rewritten as

γk =
pd

k∑
i∈K pd

i

∣∣∣aH
k h̃i

∣∣∣2 + �ak�2
. (58)

Define Λ = diag
{√

σ1, · · · ,√σK

}
and

�

H =[
ĥ1√
σ1

, · · · , ĥK√
σK

]
. Then, we can express Ĥ as Ĥ =

�

HΛ. The

columns of
�

H are independent of each other, and each column
follows the distribution of CN (0, I). Then, E

{
1
γk

}
can be

expressed as

E

{
1
γk

}
=

(∑
i∈K

pd
i δi+1

)
E

{[(
ĤHĤ

)−1
]

k,k

}
pd

k

(59)

=

(∑
i∈K

pd
i δi+1

)
E

⎧⎨⎩
[(

Λ
�

H
H �

HΛ
)−1
]

k,k

⎫⎬⎭
pd

k

(60)
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=

(∑
i∈K

pd
i δi + 1

)
E

⎧⎨⎩
[(

�

H
H �

H
)−1
]

k,k

⎫⎬⎭
σkpd

k

(61)

=

(∑
i∈K

pd
i δi + 1

)
E

{
tr

[(
�

H
H �

H
)−1
]}

Kσkpd
k

(62)

=

(∑
i∈K

pd
i δi + 1

)
(M −K)σkpd

k

(63)

where (63) is obtained by using (56).

APPENDIX C
PROOF OF LEMMA 2

For notational simplicity, we define function T (x) Δ= 1 −
1

(1+x)2
. The second derivative of T (x) w.r.t. x is given by

T ��(x) =
−6

(x + 1)4
≤ 0. (64)

Next, we prove that G(x) is a concave function of x. Since
T (x) is a concave function w.r.t. x, we have

θT (x̂) + (1 − θ)T (x̃) ≤ T (θx̂ + (1 − θ)x̃), (65)

for 0 ≤ θ ≤ 1, where x̂ and x̃ are two different non-negative
values. On the other hand,

√
x is a concave function w.r.t. x.

Then, for 0 ≤ θ ≤ 1 we have

θ
√

T (x̂) + (1− θ)
√

T (x̃) ≤
√

θT (x̂) + (1 − θ)T (x̃). (66)

By combining (66) with (65), we have

θ
√

T (x̂) + (1 − θ)
√

T (x̃) ≤
√

T (θx̂ + (1− θ)x̃), (67)

which is equivalent to θG(x̂)+(1−θ)G(x̃) ≤ G(θx̂+(1−θ)x̃).
Hence, G(x) is a concave function w.r.t. x, which completes
the proof.

APPENDIX D
PROOF OF LEMMA 3

The equalities in (30) can be readily proved by substituting
the expressions of ρ and η in (28) and (29) into (27). Next,
we focus on the proof of Inequality (27).

Define function H(x) Δ= F (x)−G(x), and thus H(x̃) = 0.
Then, with some simple manipulations, the first-order deriva-
tive of function H(x) w.r.t. x can be calculated as

H �(x) =
x̃
√

x2 + 2x(x + 1)2 − x
√

x̃2 + 2x̃(x̃ + 1)2√
x̃2 + 2x̃(x̃ + 1)2x

√
x2 + 2x(x + 1)2

. (68)

Since both x and x̃ are positive values, the sign of H �(x)
only depends on the numerator of H �(x). Then, denote the
numerator of H �(x) as J(x).

The function J(x) can be rewritten as

J(x) = xx̃

(√
1 +

2
x

(x + 1)2 −
√

1 +
2
x̃

(x̃ + 1)2
)

. (69)

Next, we show that J(x) ≤ 0 when
√

17−3
4 ≤ x ≤ x̃, and

J(x) > 0 when x > x̃. In specific, let us define

U(x) Δ=

√
1 +

2
x

(x + 1)2. (70)

The first-order derivative of U(x) w.r.t. x is given by

U �(x) =
x + 1

x1.5
√

x + 2

(
2x2 + 3x− 1

)
. (71)

It can be readily proved that U �(x) ≤ 0 when 0 < x ≤
√

17−3
4 ,

and U �(x) > 0 when x >
√

17−3
4 .

As a result, when
√

17−3
4 ≤ x ≤ x̃, we have U(x) < U(x̃),

and thus J(x) < 0. From (68), we know that H �(x) < 0,
which means H(x) is a monotonically decreasing function
of x. Hence, H(x) ≥ H(0) = 0 holds for

√
17−3
4 ≤ x ≤ x̃,

which equivalently means F (x) ≥ G(x). On the other hand,
when x > x̃, we have U(x) > U(x̃), and thus J(x) > 0,
which means H �(x) > 0 and H(x) is a monotonically
increasing function of x. Hence, H(x) > H(0) = 0 holds
for x ≥ x̃, and thus F (x) > G(x).

Based on the above analysis, when x ≥
√

17−3
4 , F (x) is

always no smaller than G(x), which completes the proof.

APPENDIX E
PROOF OF THEOREM 3

The first equation in (45) can be readily verified. Then,
we focus on the second equality in (45). The partial derivative
of W (x̆) and Y (x̆) w.r.t. xi are given by

∂W (x)
∂xi

=
∏
j �=i

(1 + xj),

∂Y (x)
∂xi

= λτix
−1
i

∏
j∈K

x
τj

j , i = 1, · · · , K. (72)

By substituting x = x̆, λ and τi, ∀i into into the above two
functions, we can show that

∂W (x)
∂xi

∣∣∣∣
x=x̆

=
∂Y (x)
∂xi

∣∣∣∣
x=x̆

, i = 1, · · · , K. (73)

Hence, the second equality in (45) is proved.
Now, we begin to prove (43). Before proceeding, we first

introduce the following lemma.
Lemma 5: For any given x̆ ≥ 0, we have the following

inequality:

1 + x

xτ
≥ 1 + x̆

x̆τ
, (74)

where τ is given by τ = x̆
1+x̆ , and equality holds only when

x = x̆.
Proof: The proof is similar to those in Lemma 3, and thus

omitted for simplicity.
By applying inequality (74) for each xi, i = 1, · · · , K ,

we have

1 + xi

xτi

i

≥ 1 + x̆i

xτi

i

, i = 1, · · · , K. (75)
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Then, by multiplying the above K inequalities, we have∏
i∈K

1 + xi

xτi

i

≥
∏

i∈K
1 + xi

xτi

i

(76)

which completes the proof.
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