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Abstract—The advent of a new breed of enhanced multimedia
services has put network operators into a position where they
must support innovative services while ensuring both end-to-end
Quality of Service requirements and profitability. Recently,
Network Function Virtualization (NFV) has been touted as a
cost-effective underlying technology in 5G networks to efficiently
provision novel services. These NFV-based services have been
increasingly associated with multi-domain networks. However,
several orchestration issues, linked to cross-domain interactions
and emphasized by the heterogeneity of underlying technologies
and administrative authorities, present an important challenge.
In this paper, we tackle the cross-domain interaction issue by
proposing an intelligent and profitable auction-based approach
to allow inter-domains resource allocation.

Keywords—5G, multi-domain, resource orchestration, resource
allocation, deep reinforcement learning, collusion, coopetition,
competition.

I. INTRODUCTION

Recent years have seen the emergence of services such
as tactile internet, multi-player gaming, etc. characterized by
their innovativeness and stringent quality of service (QoS)
requirements, such as ultra low latency [1, 2]. 5G networks
have been envisioned to provide flexible and cost-effective
service provisioning through several enabling technologies,
while ensuring profitability [3, 4]. One of the major goals of 5G
networks consist of providing ultra reliable end-to-end service
delivery through satisfaction of end-to-end QoS requirements
[5]. In this regard, Network Function Virtualization (NFV) has
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been advocated as an effective service provisioning model for
network operators to efficiently create, deploy and manage
services, thereby allowing efficient and flexible utilization
of their limited infrastructures while decreasing capital and
operational expenditures. Through NFV, a network service
(NS) is decomposed into a set of chained virtual network
functions (VNFs) running atop of a virtualized infrastructure
called Network Function Virtualization Infrastructure (NFVI).
In order to model and deploy a service, an efficient approach
is required to determine the composition/decomposition of
the service, and how to automate selection and control (e.g.
VNF creation, placement, migration, monitoring, etc.) of
underlying physical or virtual resources and services with
certain objectives (e.g. QoS requirements, costs, etc.). This
process is referred to as network service orchestration (NSO)
and provisioning [6, 7].

Recently, end-to-end service provisioning has been
increasingly associated with multi-domain networks where
the resources hosting VNFs are owned and controlled by
multiple independent network operators located in different
geographical locations [1, 8]. Nonetheless, guaranteeing an
end-to-end service delivery with stringent QoS requirements is
a challenging task due to several issues related to cross-domain
interactions, such as the heterogeneity of underlying 5G
technologies including fog and edge computing platforms,
various radio access technologies, and different transport and
core networks. In addition, as the network infrastructure can
be owned and managed by different administrative entities, it
also requires taking into account different business models and
orchestration approaches [7–9]. Indeed, a disruption in one
resource/domain can carry a detrimental effect to the overall
satisfaction of end-to-end QoS requirements. Yet, as of today,
no clear consensus on multi-domain service provisioning has
been achieved. Accordingly, several studies have noted the
lack of support of service provisioning by the ETSI MANO,
in the context of multi-domain networks architecture [7, 9].

Thus, new profitable cooperation and effective service
orchestration mechanisms are urgently needed to leverage the
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resources offered by operators to support end-users’ QoS
and ensure end-to-end service provisioning. Furthermore, as
end-user demands and networks themselves (e.g nodes, routes,
etc.) are characterized by high dynamism and heterogeneity,
future NSO mechanisms should autonomously adapt to various
network environments, topologies, and sizes. Finally, given
the market competition from third-party operators, e.g. virtual
operators and service providers, operators’ profitability has to
be taken into account in the resource orchestration process.

Albeit mostly in single domain networks, several approaches
have been explored in the literature in the realm of service
provisioning related problems, e.g. resource allocation, slicing,
scheduling, etc. However, a number of challenges remain
to be effectively tackled in the context of large scale 5G
multi-domain networks where emphasis is put on automated
network resource sharing, multi-tenancy and cooperative
resource provisioning.

In this paper, we focus on the multi-domain network
provisioning problem, by taking into consideration automated
resource sharing and cooperative resource provisioning.
For that, we propose an auction-based NFV orchestration
method, where inter-operator interactions and exchange of
network resources for service orchestration is translated
into buyer/seller transactions and market dynamics [10, 11].
Indeed, auctions as a resource allocation and orchestration
mechanism have the advantage of being economically
efficient through automatic discovery of service chain
market value and assignment of limited resources to
the bidders who value them the most. Furthermore, it
provides compelling opportunities to modern telco actors,
namely Infrastructure Providers/Mobile Network Operators
(InPs/MNOs) and Service Providers/Mobile Virtual Network
Operators (SPs/MVNOs). Briefly, InPs own physical/virtual
infrastructure and resources, that are leased to different SPs.
The SPs are operators who provide 5G services and yet do
not have the required physical infrastructure and resources to
meet the demands and requirements of their subscribers. Thus,
they rent resources from InPs and, if unused, can lease those
resources to other SPs. This business model allows SPs to
acquire resources to satisfy their end-users QoS requirements
and enables them to reduce new service deployment costs,
while InPs increase their profits by leasing their unused
network resources within a marketplace. Finally, given a
multi-InP marketplace, interested SPs can switch between InPs
when market dynamics are not favourable [10, 12–14].

In practice, self-management through an efficient
auction-based framework for large scale and dynamic networks
remains a challenging task both from the auctioneer’s and
bidders’ perspective respectively. This is due to the increasing
complexity, resulting from the exponential bid space growth,
e.g. increased/decreased competition, inflation, new market
entry, etc., as in-market resources and market dynamics
fluctuate over time [15, 16]. Coincidentally, the advent
in recent years of deep reinforcement learning (DRL)
algorithms has enabled solving decision-making problems,
previously considered intractable due to high-dimensional
state and action spaces. In short, DRL algorithms can be
exploited to produce fully autonomous agents (SPs) capable

of interacting with their environment (market conditions) to
learn optimal behaviours (bidding strategies and resource
requests), improving over time through trial and error.

The main contributions of this paper are summarized as
follows:

1) First, we emphasize the importance of multi-domain
interactions for end-to-end service provisioning,
through the Massive Multiplayer Online Gaming
(MMOG) use case.

2) Then, we model a market-driven multi-domain
interaction framework for resource allocation between
an InP and several candidate SPs. We formulate
the associated resource allocation problem, where the
InP and SPs aim at maximizing their profits by
selling/buying in-market resources. We define different
marketplace environments, where SPs can compete
and/or cooperate in the bidding process, and the InP
can decide whether to apply or not fairness among SPs.

3) Due to the complexity of the system with several
SPs, we propose a distributed multi-agent deep
reinforcement learning approach, where we equip
each SP with a learning agent able to perceive the
environment and takes strategic actions to win auctions,
hence satisfies its QoS requirements and increases its
profit. Moreover, agents of different SPs may exchange
information in cooperation scenarios to improve their
mutual profits.

4) Through experimental setups, we trained SPs’ agents
and evaluated the performances of InP and SPs in
different marketplace scenarios. It has been shown
that a fully competitive market (no cooperation) is
the most profitable for InP. In contrast, a cooperative
market is in average the most lucrative for SPs.
Moreover, double-deep-Q-learning agents outperform
other learning-based and learning-free agents in terms
of SPs’ profits. Finally, impact of some parameters are
emphasized.

The rest of the paper is organized as follows. Section
II presents a motivating use case, highlighting multi-domain
interactions. The following Section III details the related
work. Section IV provides a system model of a market-driven
multi-domain interaction framework. Then, the associated
problem is formulated in Section V. Section VI describes the
investigated auctions scenarios, while section VII presents our
proposed solutions. In Section VIII, experimental results are
presented and discussed. Finally, Section IX closes the paper.

II. MASSIVE MULTIPLAYER ONLINE GAME USE CASE

A. Overview
Massive Multiplayer Online Gaming (MMOG) has

increasingly gained popularity to become one of the most
lucrative industries with millions of subscribers worldwide
with an estimated 55% of Internet users today to be also online
gamers [17]. MMOG is described as a gaming environment
where a large number of active concurrent players gather
around a shared virtual environment. It is also characterized by
its real time requirements to ensure an immersive game-play
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experience. Unfortunately, as the number of connected
subscribers increases, the resource load generated by a game
server may induce a degradation of game-play experience
making the game unplayable to players who eventually quit
[18]. Typically, to ensure the QoS requirements of its widely
distributed subscribers at all times, MMOG operators maintain
a rigid multi-server distributed infrastructure with -often-
over-provisioned computational and network capabilities.
Such design increases operational costs due to potential
resource under-utilization and/or capacity shortages caused
by sudden peaks in demands [19]. Alternatively, cloud based
MMOG has been increasingly advocated to solve some of
these issues [18]. Also, in order to serve several concurrent
players into a unique game session, a current practice is
to parallelize the game server code and distribute the load
across multiple resources, through techniques such as zoning,
in which the game world is geographically partitioned into
disjoint zones that can be assigned to different autonomous
computing resources [18].

Similar to [18], we consider an ecosystem consisting of
players connected through game providers to game operators
who ensure autonomous execution of MMOG sessions by
provisioning physical/virtual resources from the worldwide
distributed resource providers. Resource providers host the
game servers and may serve several independent game
operators simultaneously. In this ecosystem, as an incentive
to respect the QoS requirements, penalization is due for any
SLA (Service Level Agreement) violation.

Further consider the scenario of Fig. 1, where a game
operator is in charge of the zoning MMOG slice to which
end-users are connected. The game operator is tasked with
ensuring QoS requirements regardless of users’ demands
variation and locations. To this end, it can strategically deploy
a game server service as a VNF chain, with each VNF handling
a specific game-play task such as command emulation,
character management, game physics/logic responses, graphics
rendering, etc. It is worth noting that the VNF chain
composition may vary, depending on the capabilities of devices
(mobile, desktop, etc.) used to play the game. Indeed, some
end-users may not have, for instance, the required codecs to
output the gameplay, thus requiring transcoding. Also, other
end-users, with limited Internet bandwidth, wouldn’t obtain
full resolution graphics rendering. Hence, in order to provide
the service with regards to specific QoS requirements, the
game operator must strategically embed VNFs by leveraging
the virtual/physical resources offered by independent resource
operators.

B. Requirements

Achieving optimal placement of VNFs remains a
challenging issue in the MMOG scenario due to the
inherent goals associated. First, the game play service must
be delivered to the end-users with strict end-to-end QoS
requirements, notably end-to-end low latency, as it constitutes
the leading reason why end-users drop a game. Thus
end-to-end latency is vital from the profitability perspective
[18]. Second, the chosen service provisioning strategy must

be adaptable to both small and large scale scenarios, as the
number of players involved is large and time-varying. Third,
game operators are to be considered with limited budgets and
an emphasis is put on profit maximization, e.g reducing the
amount of penalties to pay for SLA violations.

In our scenario, a possible way to deploy a game server
service by the game operator, within a single domain, is
to leverage a single resource operator to host all required
VNFs. However, given the multi-dimensional nature of QoS
requirements and the time-varying users’ behaviours, it is
very hard to provision and ensure timely service delivery,
without over-provisioning resources [20]. Worse, as there
are intermediary networks between the end-users and the
resource operators hosting a game server service, ensuring the
QoS requirements within a single domain does not guarantee
satisfaction of end-to-end QoS requirements.

Alternatively, a game operator could deploy its game
server service by efficiently and seamlessly leveraging offered
resources by multiple resource operators. Hence, subscribers’
heterogeneous QoS requirements can be cooperatively
satisfied. Moreover, embedding VNFs closer to customers, as
in an edge/fog computing design, would achieve low latency
services and simplify delegated monitoring and maintenance
tasks [8]. Also, as each type of domains has its own strengths
and weaknesses in terms of network characteristics, e.g.
bandwidth, latency, and computing power, embedding VNFs
across multiple domains may enhance service performances
and cost efficiency. In sum, a game operator can chain VNFs
from different operators into a single functional service that
needs to operate over heterogeneous network infrastructures
owned by different providers. However, a fundamental step
to this is to provide a profitable and viable cooperation
mechanism to provision and manage VNFs (and services),
thereby enabling multi-domain VNF chaining. In the proposed
scenario, we assume resource operators to be available
through a market where they publish their resources. These
resources can be leveraged by game operators to compose
their VNF chains and services. Obviously, the proposed service
provisioning mechanism requires not only to be efficient in
large scale environments, but also to adapt to varying network
and market conditions, such as available resources, workload
variation, increased competition, price inflation, etc.

III. RELATED WORK

Network operators rely on paradigms such as
Software-Defined Networks (SDN) and NFV to efficiently
create, deploy and manage services to serve their subscribers.
By decoupling the physical and logical network layers, an
operator is able to model a service from end-to-end by
abstracting and automating the control of physical and virtual
resources. This orchestration process comes down to an
automatic selection and control of multiple resources, services
and controllers, in order to satisfy predefined objectives [7].

A. SDN-based Orchestration
Leveraging SDN technology to separate the control and data

plane has brought to light several challenges especially for
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Fig. 1. MMOG scenario.

multi-domain systems. A typically important issue consists
of determining the placement of SDN controllers in order to
achieve optimized control over physical/virtual resources. In
this matter, several papers have investigated SDN controller
placement in a single-domain network considering various
objectives, such as minimizing resource utilization, overall
operational costs or network delay [21–23]. For multi-domain
networks, [24] investigated SDN implementations over
converged wireless-optical networks and proposed abstractions
and virtualization techniques to integrate virtual wireless
and optical resources in a framework called CONTENT.
Authors in [25] proposed a scalable SDN architecture for
multi-domain and multi-vendor networks by implementing a
coordinator controller to enable cooperation among different
SDN administrative domains. In [26], the authors summarized
the challenges of SDN multi-domain orchestration and control
before proposing a hierarchical SDN framework that aims at
simplifying network control and orchestration.

B. NFV-based Orchestration

From the NFV perspective, numerous research studies ([6,
27] and references therein) investigated service provisioning
through optimizing the VNF chain instances placement over
virtual/physical resources of a network [6, 7, 28]. Whereas,
ETSI has concentrated its efforts in the standardization
of NFV management and orchestration. Indeed, ETSI set
the standard’s requirements, specifications and architectural
framework, called NFV-MANO (NFV Management and
Orchestration) [29]. Its role, mainly through the NFVO (NFV

Orchestrator) and the VNFM (VNF Manager), is to enable
VNF operations, e.g. orchestration, lifecycle management,
across computing resources within a single administrative
network domain.

Besides VNF placement and resources orchestration,
the management of lifecycle operations, such as creation,
monitoring, release, and dependencies, and the interactions
with other components, e.g. marketplaces to acquire new
resources and OSS/BSS (Operation Support System/Business
Support Systems), are also important to satisfy end-to-end
QoS and realize profitability. Hence, within the NFV-MANO
framework and in the context of multi-domain NFV systems,
the number and locations of NFVO and VNFM functional
blocks are critical to the system’s overall scalability and
performances. For instance, given that in order to properly
satisfy end-to-end latency requirements, latencies between
VNFs, Element Managers (EMs), Virtualized Infrastructure
Managers (VIMs), NFVOs and cooperating VNFMs, must all
be taken into account. Apart from [28, 30], very few have
investigated the MANO functional blocks placement problem.

1) NFV Single-Domain vs. Multi-Domain Orchestration:
In order to provision and orchestrate network services with
end-to-end QoS requirements, a service operator may consider
the use of physical/virtual resources and/or services of
other operators. The orchestration process being noticeably
different between a single-domain and multi-domain networks.
Indeed, a domain orchestrator has only control over resources
within the operator’s administrative boundaries [7]. Its role
covers managing network services’ lifecycle (by interacting
with other components to control VNFs) and associated
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service provisioning resources (e.g. computing, storage,
communication, etc.). Typically, a single-domain orchestrator
oversees and controls all resources and services within its
domain, by leveraging the ETSI NFV-MANO framework.
In contrast, orchestration in multi-domain networks is
more difficult, given the incomplete knowledge and control
of resources offered by independent providers. From a
service composition perspective, multi-domain specification
of an end-to-end QoS requirement differs from that in a
single-domain network since in the latter a single-domain QoS
requirement is provided. Meanwhile, due to the heterogeneity
of multi-domain infrastructures and administrative control,
partial QoS requirements may be needed for each domain,
thus constituting a significantly different set of constraints in
comparison to a single domain network orchestration problem
[28, 31].

As of today, no standards exist for multi-domain
orchestration [7]. A number of multi-domain orchestration
frameworks have been advocated in the literature, including
T-NOVA [32], SONATA [33] and ONAP [34]. Meanwhile,
others proposed and investigated NFV orchestration
architectures and use-cases inspired from the single-domain
ETSI NFV framework. For instance, Rosa et al. [8] proposed
MD2-NFV where three use case scenarios are studied
to highlight the benefits of distributed NFV. In [35, 36],
distributed MANO orchestration is discussed and three
models are identified: hierarchical, flat (or peer-to-peer) and
hybrid. Most works have adopted hierarchical orchestration
in their proposals. ETSI report [37] proposes a two-layer
hierarchical architecture addressing end-to-end network
services provisioning across two administrative domains, and
the adaptation of the NFV-MANO framework to generalized
multi-domain networks. In [38], an extension of the ETSI
NFV MANO framework to enable joint orchestration
of VNFs and edge computing applications is discussed.
Finally, [39] proposes a scheme named DARA to distribute
network resources through a double auction approach. Their
design considers three actors: an NFV broker, customers
and SPs. The centralized broker collects SPs’ resources to
supply customers, while maximizing SPs’ profits. Unlike
previous works, [39] is the first in the literature to propose a
multi-domain orchestration scheme.

In this work, we focus on the issue of NFV-based
orchestration for multi-domain networks. We thus propose
an auction-based method in which inter-operator interactions
and exchange of network resources for service orchestration
are encompassed into buyer/seller transactions and market
dynamics. Namely, we turn SPs into buyers and InPs
into sellers. We further investigate different realistic market
conditions to ensure profitability of all actors within the
networks. To alleviate the scalability burden of such an
auction framework, we leverage the benefits of multi-agent
DRL in a heterogeneous and dynamic environment. Hence,
SPs and InPs are able to engage into an autonomous
negotiation/cooperation mechanism, where profitability and
partial QoS requirements’ satisfaction are taken into account.
Besides [39], this work is among the pioneers in proposing and
investigating auction-based NFV multi-domain orchestration

Fig. 2. Bidding process.

from the algorithmic aspect, rather than the architectural
aspect. Moreover, to the best of our knowledge, this is the
first work to leverage distributed/collaborative intelligence
within SPs to achieve autonomous bidding/resource allocation
behaviours within resources’ marketplace.

IV. SYSTEM MODEL

For illustrative and simplicity purposes, we hereby describe
a 5G mobile network scenario, where two main stakeholders
co-exist: (1) an InP as the owner/controller of network
resources, including base stations, radio spectrum licences,
etc. The latter can be virtualized and leased to (2) SPs, who
leverage these resources to offer various innovative and tailored
services to attract more users - and profit - to the network
[40]. Since resources can be abstracted and sliced into virtual
resources, several SPs can then co-exist under the same InP,
hence contributing in the InP’s expenditure savings. At the
same time, by leveraging the logical isolation between these
resources, an SP is free to use its allocated resources from the
InP to accommodate the heterogeneous provided services to its
own subscribers, with respect to QoS and SLA requirements,
priority, etc.

To do so, we consider that the InP publishes its available
resources to a free marketplace as shown in Fig 2. Then, the
SPs compete for accessing these limited resources through a
combinatorial auction process, allowing them to define their
bids as combinations of discrete sets of resources, required
to satisfy their subscribers needs. Naturally, both the InP and
SPs aim at maximizing their own profits. For simplicity, we
assume that the InP has no subscribers, and hence does not
take part in the bidding process. We assume also that each SP
is independently operated, self-interested, and bids using an
initially fixed budget. When an SP’s budget is exhausted, it
leaves the market, and therefore cannot participate in the next
bidding rounds. In this context, SPs submit their requests for
services with QoS requirements and a bidding offer to the InP.
The latter evaluates all requests and bids, then selects the SPs
to serve for a given time period. We also incentivize SPs to
bid truthfully by assuming a penalty fee to pay each time an
SP’s bid is rejected, given that it fails to serve its subscribers.

In order to provide end-to-end service orchestration with
stringent QoS requirements, an SP decomposes the service
into VNF chains to deploy within network resources managed
by InPs. Typically, in a single domain network setting
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with a centralized NFVO [29], QoS requirements are
generally specified on a higher granularity level. However,
in multi-domain networks with distributed and independently
managed orchestrators, specifying a global QoS requirement
for a given service is inefficient due to to the heterogeneity of
underlying networks in terms of available capacity, and to the
ubiquitous locations of end-users. Consequently, being inspired
from [41], we consider a method in which a global QoS
requirement (Q) is partitioned into partial QoS requirements,
i.e. QInPi

= P(Q), with P(·) denoting the partition function.
The partial QoS depends on the serving InP’s capacity, e.g.
available network resources, connectivity, etc. Once the partial
QoS requirements are set, the SP must ensure access to the
limited resources by competing against other SPs in auctions.
To this end, it must be able to derive an optimal bidding
strategy regardless of market conditions.

For simplicity, we assume a single InP. Note that our model
can be easily extended to multiple InPs, with SPs being able
to switch between serving InPs as market conditions become
detrimental for them over time, for instance due to sustained
inability to satisfy end-users’ requests, i.e. loss of profits.

V. PROBLEM FORMULATION

Consider a cellular network consisting of one base station
(BS) owned and managed by an InP i. The InP plays the
role of an auctioneer who serves several SPs within S =
{1, 2, . . . , |S|}, where |.| is the cardinality operator. Each SP
s, playing the role of a bidder, is assumed to be in charge of
Ns = {1, 2, . . . , |Ns|} subscribers.

We assume that the available radio spectrum resource
is of a total bandwidth W , and is divided into C =
{1, 2, . . . , |C|} orthogonal subcarriers. The SPs compete to get
these subcarriers. Also, let atc,s ∈ {0, 1} be the binary variable
indicating whether subcarrier c ∈ C has been allocated at
the end of time t to SP s, following the bids evaluation by
the InP, or not. We assume that for each subcarrier c, an
undisclosed minimum operational price λt

c,min is estimated
and accounted by the InP. Moreover, each SP s has a current
bidding budget Bt

s, that fluctuates with the bidding rounds
where SP s participates.

Time is considered slotted, where a set of observations time
periods are defined as T = {1, 2, . . . |T |} with t ∈ T . The
end of each time period coincides with the end of the auction
and the decision-making process for resources allocation by
the InP. Let yt,cs,i ∈ {0, 1} be the binary variable indicating if
a bid submitted by an SP s is accepted by the InP i at time t
or not.

At the beginning of each time period t, SP s sends its request
zts = {ut

s, b
t
s}, where, for simplicity, ut

s is the QoS requirement
(e.g. minimum data rate), demanding cts subcarriers to satisfy
its |N̄ t

s | subscribers in time t, and bts is the bid that it is willing
to pay to access the required resources.

We assume that bts is limited by a maximum bid bts,max.
Moreover, we define the penalty that SP s has to pay when it
fails to satisfy its subscribers’ demands as:

δts = |N̄ t
s | · δ ∀t ∈ T , s ∈ S, (1)

TABLE I. NOTATIONS

C Set of subcarriers
S Set of SPs
T Discrete time system
Ns Set of subscribers for SP s

at
c,s 1 if subcarrier c is allocated to SP s at time t; 0 otherwise

bts Bid sent by SP s at time t

bts,max Maximum bid by SP s at time t

Bt
s Budget of SP s at time t

N̄ t
s Set of subscribers of SP s to be served at time t

Rt
i Revenue obtained by InP i at time t

RTotal
i Total revenue garnered by InP i

Rt
s Revenue gained by SP s at time t

RTotal
s Total revenue gained by SP s at time t

ut
s Minimum data rate for request sent by SP s at t

yt,c
s,i 1 if bid submitted by SP s at time t is accepted by InP i; 0 otherwise

zt
s Request sent by SP s at time t

λt
c,min Minimum reserve price for subcarrier c at time t

δts Penalty fee of SP s at time t

where δ represents a unitary fee.
From the InP’s perspective, resource allocation through

an economic driven optimization model yields two types of
benefits :

1) InP resource-centric: better resources utilization,
availability and performances (e.g. data rates).

2) SP-centric: Increased profits, reduced costs and fairness.
Let Rt

i be the revenue obtained by InP i at time t, given by:

Rt
i =

∑
s∈S

yt,cs,i · b
t
s ∀t ∈ T , (2)

and RTotal
i =

∑
t∈T Rt

i is the total revenue garnered by the
InP. The latter is deemed to make a profit at time t when
Rt

i ≥
∑

c∈C λ
t
c,min, otherwise it loses money. Hence, the profit

maximization problem of the InP can be formulated as follows:

max
at
c,s

RTotal
i (3a)

s.t.
∑
s∈S

cts · y
t,c
s,i ≤ |C| ∀t ∈ T , (3b)∑

s∈S
cts · y

t,c
s,i ≥ Ω(ut

s) ∀ t ∈ T , s ∈ S (3c)∑
c∈C

∑
s∈S

atc,s ≤ 1 ∀t ∈ T , (3d)

where Ω(.) denotes a function used by the InP to compute
the minimum required subcarriers to satisfy a given data rate.
Constraints (3b), (3c) and (3d) ensure that the InP does not
over-allocate its resources, or allocate the same resource to
different SPs, while allocating enough resources to satisfy SPs’
QoS requirements. In order to maintain its level of profitability,
the InP must also take the necessary steps to ensure that the
value of its resources does not depreciate over time.

From a SP’s perspective, the objective is to maximize its
profit while satisfying its subscribers’ demands. Depending on
the market conditions and number of subscribers to serve, a
variety of bidding behaviours may be suitable, where the SP
evaluates the risks associated to under-market bids. We denote
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by RTotal
s =

∑
t∈T Rt

s the total revenue obtained by SP s,
where Rt

s is the revenue obtained at time t, written as:

Rt
s = (yt,cs,i · (b

t
s,max − bts))− δts, ∀t ∈ T , bts ≤ bts,max, (4)

The profit problem of SP s is formulated as:

max
bts

RTotal
s (5a)

s.t. bts ≤ bts,max ≤ Bt
s ∀t ∈ T , (5b)

Bt
s > 0 ∀s ∈ S, t ∈ T . (5c)

All the defined variables are summarized in Table I.
A fundamental aspect to note is that auctions differ

not only by the associated rules but also by the auction
environment. Hence, auctions can be studied in a wide range of
environments, with varying numbers of sellers/buyers, number
of resources within the marketplace, exchanged information,
etc. [42]. In our work, we define several scenarios under
different auction settings and market conditions. Moreover,
since the InP and SP formulated problems generalize the
combinatorial allocation/auction problem, in particular the
NP-complete winner determination problem [42], heuristic
algorithms are needed to find optimal or near-optimal solutions
in polynomial times.

In the next sections, we detail the scenarios to investigate.
Then, we expose the developed solutions for the InP and SP
formulated problems.

VI. AUCTION SCENARIOS

We present in this section, the auctions scenarios to be
considered and evaluated. In particular, we consider two
situations: bidding war and bidding collusion. In the former,
bidders attempt to outbid each other in their pursuit of network
resources. In the short term, this would represent the optimal
situation for the InP as it generally leads SPs to bid over
the real-value price, thus substantially increasing its profit.
Adversely, this may be the worst situation for poor SPs, as
it can push them out of bidding rounds and give more power
to wealthy SPs to control the market. It has been shown in [43,
44] that oligopolistic/oligopsonic coordination, i.e. bidding
collusion, is more likely to occur in this situation, aiming
at maximizing the collusion-players profits at the expense of
other players’ and auctioneers’ welfare. Bidding collusion in
telecommunication networks is a realistic assumption, and has
been well-documented in the following works [43, 45]. The
problem is further amplified by technology-aided price fixing
algorithms, for which collusion is much harder to detect.

A. Scenario 1
We first investigate an auction environment where the

allocation policy of the InP is known to all bidders, that is the
bidders with the highest bids are always selected, for each time
period. In this scenario, we assume that SPs may realistically
have different initial budget powers, and may pursue resources
in a conservative or an aggressive way, depending on their
initial budgets and growth in number of subscribers. Moreover,
as a result of the InP policy, there is a risk of starvation,

hence pushing poor SPs to leave the market while allowing
wealthy SPs to expand their control on resources’ prices. As a
consequence, an oligopsony may be created and the profits of
the InP may be threatened [46]. To avoid this situation, the InP
introduces a fairness model where every SP must be served at
least once within a fixed number of bidding rounds, denoted
τth. Precisely, the InP keeps track of the number of consecutive
wins and losses for each SP, then establishes SPs’ priority
ranks. Finally, we assume that the InP analyzes the interest
sparked over time by its resources within the market, i.e
appreciation or depreciation, and adjusts its minimum asking
price λt

c,min accordingly in order to maximize its revenues or
rejuvenate interest for its resources.

B. Scenario 2
Pushing further the first scenario, we analyze the behaviour

dynamics of SPs within the marketplace in this second
scenario. We assume here that the InP does not apply a
fairness mechanism, but rather attempts to detect and punish
instances of collusive cooperation among wealthy bidders.
In order to allow poor SPs remain competitive, the InP
permits competitive cooperation (or coopetition) among them.
Coopetition is the strategy in which bidders, with partial
congruent goals, cooperate and compete simultaneously by
sharing partial information [47, 48]. In our paper, we call
by poor, every SP with an initial budget under a predefined
threshold.

VII. PROPOSED SOLUTIONS

In this section, we present the proposed strategies to adopt
by the InP and SPs aiming at maximizing their profits.

A. From the InP’s Perspective
Determining the winners in combinatorial auctions

is computationally complex due to the problem’s
NP-completeness. A synopsis of the problem and main
approaches to solve it are presented in [42]. For our work, we
leverage an algorithm adapted from CABOB (Combinatorial
Auction Branch On Bids) [49], that is an optimal tree
search algorithm based on a mix of linear programming and
branch-and-bound techniques (interested readers are referred
to [49] for further details). This approach is detailed in
Algorithm 1. Its main idea consists of maintaining a bid
graph G where a branch and bound Depth First Search (DFS)
method is applied to find the most profitable bids for the InP,
i.e. to be selected for service.

Graph nodes represent the SPs’ bids that can still be
appended to the search path, given that bids do not concern
already allocated network resources. Moreover, two nodes
are bound by an edge when the corresponding SPs’ bids
compete for the same resources. In the algorithm, f∗ denotes
the best solution found and is regularly updated as better
bids are found during the search. Revenue from winning
bids on the search path is denoted by g. As nodes (selected
bids) are removed from G down a search path, their edges
are also removed. Similarly, as nodes are reinserted into G
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Algorithm 1: CABOB*(G, g, λt
c,min)

λmin = λt
c,min;

F : {G1, G2, ..., G|F|} ← DFS(G) ;
Compute upper bound Uf for f in F ;
if
∑|F|

i=1 Uf ≤ λmin then
return 0;

end
Compute lower bound Lf for f in F ;
if g +

∑|F|
i=1 Lf > f∗ then

f∗ ← g +
∑|F|

i=1 Lf ;
λmin ← λmin + g +

∑|F|
i=1 Lf − f∗;

end
if |F| > 1 then
F∗ ← 0; U ′ ←

∑|F|
i=1 Uf ; L′ ←

∑|F|
i=1 Lf ;

for k in F do
If F∗ + U ′ ≤ λmin then return 0;
g′f ← F∗ + (L′ − Lf ); f∗

old ← f∗;
f∗
k ← CABOB∗(Gk, g + g′k, λmin − g′k);
λmin ← λmin + (f∗ − f∗

old); F∗ ← F∗ + f∗
k ;

U ′ ← U ′ − Uf ; L′ ← L′ − Lf ;
end
return F∗;

else
Θs ← {c : at

c,s = 1} ; Θs′ ← {c : at
c,s′ = 1};

Select next bid set b∗s = {bts ∪Θs} to branch on;
G← G− b∗s ;

for s′ ∈ S do
If s′ ̸= s and Θs ∩Θs′ ̸= ∅ then G← G− b∗s′ ;

end
f∗
old ← f∗; fin ← CABOB∗(G, g + bts, λmin − bts);
λmin ← λmin + (f∗ − f∗

old);
for s′ ∈ S do

If s′ ̸= s and Θs ∩Θs′ ̸= ∅ then G← G ∪ b∗s′ ;
end
f∗
old ← f∗;
fout ← CABOB(G, g, λmin);
λmin ← λmin + (f∗ − f∗

old) ; G← G− b∗s ;
return max(fin, fout);

end

when backtracking, edges are also reinserted. To prune across
independent components of G, λmin is used to denote the
minimum revenue that the InP expects from a given SP’s bid
[49]. Furthermore, it evaluates whether a search should be
pruned based on the unallocated items, estimated by the upper
and lower revenue bounds.

1) Scenario 1: For this scenario, we first upgrade CABOB
with a fairness mechanism. To do so, the InP artificially inflates
losing SPs’ bids at the end of each time period t, using
a weight parameter ∆t

s. The latter is increased after each
bid loss. Its value is reinitialized to the smallest value once
the SP wins a bid within τth. We also consider a function
to gauge the interest sparked by the InP’s resources over
time. To this end, we note the expected difference between
the InP’s desired minimum resource price λt

c,min and SPs’
bids, a variant of the metric known in the literature as the
bid-ask spread. Obviously, the InP’s objective is to minimize
the bid-ask spread by encouraging competition in the market.

It could be argued that the InP can also reduce temporarily
its minimum price (ask) to induce market rally, at the expense
of a short profit loss, but subsequent gains would be obtained
at a later time. For this, the InP needs to keep historical data
from bidding rounds.

2) Scenario 2: In this scenario, it is critical for the InP to
accurately distinguish occurrences of coopetition and collusion
given their similarity in the cooperation process. Indeed, actors
in a coopetition strategy work to ensure their stability and
viability within the market, whereas actors in a collusion
strategy impede market’s competition in order to increase their
profits at the expense of the auctioneer’s and other actors’
welfare [50]. Here, the InP leverages a simple reputation-based
approach, where a score ϑs =

∑
t∈T ϑt

s is associated to each
SP, based on the latter’s behaviour over time and its impact on
the InP’s and SPs’ profits, such that:

ϑt
s = ρts +

∑
s′∈S\{s}

ms,s′ (6)

where ρts is the utility score of SP s in time t, calculated
regarding its own profit and the market value of the resources,
and ms,s′ is the similarity factor between SPs s and s′. ρts is
given by:

ρts = qt
′/T ′

· |bts − λc,min
t |a (7)

where |.|a is the absolute value, q denotes an exponential
growth parameter with T ′, an observation period, and t′ is an
incremental factor, increased when the bid bts, with a limited
utility to SP s, persists from a previous observation period,
and resets to 0 otherwise. Whereas, ms,s′ can be written as:

ms,s′ =
√
(bts − bts′) + (ut

s − ut
s′), ∀(s, s

′) ∈ S2. (8)

Hence, the InP maintains a similarity matrix of all SPs as
follows:

M =


m1,1 · · · m1,|S|
m2,1 · · · a2,|S|

...
. . .

...
m|S|,1 · · · m|S|,|S|

 . (9)

The above information helps the InP evaluate whether an SP’s
behaviour is more geared towards its own profit or aims at
inhibiting competitors. When the InP is confident about a
collusive cooperation between two or more SPs, it attempts
to break this partnership by granting access to its resources to
only one of the colluding SPs for a given time period. Similarly
to Scenario 1, ill-behaved (collusive) SPs are temporarily
penalized by artificially deflating their bids’ values.

B. From the SPs’ Perspective : A Distributed Multi-agent Deep
Reinforcement Learning Approach

From the SPs standpoint, the bidding problem can be
modeled as a multi-agent system, where each agent’s
knowledge and strategic actions are specific to them and
dependent on their budget constraints or their perception of
the auction environment. We use a multi-agent reinforcement
learning approach that can be considered as an extension of
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Markov Decision Process (MDP), called Markov Game. In
this game, |S| SPs bid for the InP’s resources, to satisfy their
subscribers’ needs. A Markov game is defined by a set of
states X describing the possible status of all bidding agents, a
set of actions {A1,A2, . . . ,A|S|} with As the action space
of SP s. At each time period t, each SP s uses a policy
π : Xs 7−→ As to determine an action as, where Xs is the
state space of SP s. After the execution of as, SP s transfers
to the next state according to the state transition function
X × A1 × . . . × A|S| 7−→ ϕ(X ) where ϕ(X ) indicates the
set of probability distributions over the state space. Each SP s
obtains a reward based on a function of the state, and all the
SPs’ actions as Rt

s : X ×A1 × . . .×A|S| 7−→ R. Each SP s
maximizes its own total expected revenue RTotal

s such that:

RTotal
s =

∑
t∈T

γt ·Rt
s, (10)

where γt ∈ [0, 1] denotes a discount factor meta-parameter
that underlines the perceived importance of future rewards.
Specifically, a factor of 0 will make the agent short-sighted by
only considering current rewards, while a factor approaching
1 will make it strive for a long-term high reward. Hereafter,
we identify the states, actions and rewards in our auction
environment:
• State Our state design aims at letting any SP optimize its

bidding decisions based on its perception of the auction
environment. We design the agent state to consist of the
QoS requirements ut

s of its submitted request(s), its bid
bts, whether the bid of SP s was accepted or not by the
InP yt,cs,i , θ

t
s,s′ ∈ {0, 1} indicating whether the agent s

decides to cooperate with another agent s′ or not, the
incurred penalty δts and the current losing streak lts.
Hence, the state for SP s is composed as:

Xs = {ut
s, b

t
s, y

t,c
s,i , θ

t
s,s′ , δ

t
s, l

t
s}. (11)

• Action Every SP s has to take a bidding decision at
time t in order to ensure its bid is/remains selected by
the InP, for the sake of its subscribers’ satisfaction and
its own profit. Depending on the environment’s state, it
must decide whether to adjust or not its next bid, while
keeping in mind budget constraints. In a cooperative
scenario, it must determine how to bid with another
agent. An agent’s action as can be given by:

as(Xs) = {bt−1
s + µt

s} ∪ {θts,s′}, (12)

where µt
s ∈ Z : µt

s ∈ [−bt−1
s , (Bt

s − bt−1
s )]. It must

be noted that, even though constrained, our action space
remains very large. For computation efficiency purposes,
we discretize the action space by defining for each agent
a set of legal bids, denoting a range of bidding behaviour
from prudent to aggressive. More specifically, each agent
is free to bid a portion or the totality of its maximum bid
bts,max. Bid-action space discretization is implemented
through equal-width binning [51] with a predetermined
number of bins.

• Reward The agent’s reward is formulated as:

Rt
s = (yt,cs,i · (b

t
s,max − bts))− δts. (13)

In this formulation, an agent gains significant profit
if it manages to win in the auction by bidding as
low as possible. It is worth noting that it is possible
for coopeting agents to win in the auction and still
incur penalties if a portion of their subscribers are left
unserved. In contrast, when an agent takes too much risk
by submitting below market bids and as a result loses
in the auction, it will be penalized.

A key aspect for the SP, with regards to computational
efficiency, consists of its training time. Several works
[52–59] emphasize the increased scale of parallelism
available for neural network training, made possible by
hardware advancements. Hence, assuming optimized data
parallel systems that spend negligible time synchronizing
between processors and leveraging practical training “tricks”
(e.g., regularization, over-specification, adequate activation
functions, batch size increase, etc.), training time can be
reduced and measured in the number of training steps [52, 57].
For instance, [52] showed the correlation between reduced
training time and increasing batch size without degradation
of the solution quality.

C. Bidding analysis
The objective of the auction framework presented above

is two-fold : (1) assign resources to bidding who value
them the most while (2) ensuring as well profitable
revenues for the InP, particularly in cases where SPs have
heterogeneous budgets and in the presence of collusion.
While truthfulness is the dominant strategy in Vickrey
auctions [60], a noted shortcoming consist of its inability to
guarantee auctioneer revenues [61]. Our framework counters
by allowing the InP to artificially introduce competition
in both scenarios, respectively applying a fairness and a
collusion detection/punishment mechanism in addition to
enabling coopetition for poor agents. Consider bts,max as the
true value of resources (which are indivisible) for an SP s.
The payoff received is given in eq.(13). Allow max

s′ ̸=s
bts′ as the

highest bidder s′ among competing SPs other than SP s. Recall
the InP allocation policy, which consists of always selecting
the highest bids. Furthermore, an SP s cannot bid above its
budget. These are the following outcomes following a bid by
SP s for a time period t:

max
s′ ̸=s

bts′ < bts,max (14)

max
s′ ̸=s

bts′ < bts | bts < bts,max (15)

max
s′ ̸=s

bts′ > bts,max (16)

max
s′ ̸=s

bts′ > bts | bts < bts,max (17)

bts < max
s′ ̸=s

bts′ > bts,max (18)

In eq. (14) and (15), SP s wins both with a truthful bid, and
underbids with a positive payoff for an underbid compared to
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a zero penalty paid for truthful bidding. In eq. (16) and (17),
the SP loses the bid and incurs a penalty being paid regardless
of the employed bidding strategy. The only winning strategy
in eq. (18) is truthful bidding with zero payoff while other
bidding strategies induce a penalty. Hence, it can be seen that
truthful bidding is the dominant strategy in every case except
in eq. (15) as underbidding is the dominant strategy.

In our framework, the weak dominance of truthful bidding
is designed as an incentive to prolong market competitiveness.
It allows for poor SP s to remain within the market given
it can adequately adapt its bidding strategy. For richer SPs,
underbidding is a risky strategy as it gives poor SPs an
opportunity to win the auction. Furthermore, in the scenario
where a fairness mechanism is applied, an underbidding SP
would probably lose in favour of a poor SP with an artificially
inflated bid. Collusive SPs attempt to bid truthfully in the short
term, hoping to drive poor SPs out of the auction, and aiming to
underbid in the long term. We counteract this set of strategies
by detecting collusive SPs at first. Once this is done, we create
a cost asymmetry between the colluders by granting access to
resources to only one SP, which constitutes an effective barrier
to collusion [62].

VIII. EXPERIMENTAL EVALUATION

For our evaluations, we leveraged the Open AI Gym toolkit
to implement a custom auction simulation environment, where
SPs bid to gain access to resources to satisfy their subscribers’
demands. As mentioned in Section VII-A, the InP runs a
modified version of CABOB, and activates in certain scenarios
a fairness mechanism favouring underserved SPs within the
market. We leave the case of multiple InPs and its analysis
for future work. We consider 8 independent bidding agents
(i.e. SPs) who apply specific bidding policies, learned after
1000 episodes of training. Auction environment parameters are
summarized in Table II.

Given our action space, we evaluate and compare the
following bidding algorithms in similar simulation settings:

• Incremental: An agent using this algorithm applies a
simple conservative bidding strategy. When it wins in a
bidding round, it linearly decreases its bid. In contrast,
when the agent suffers an auction loss, it exponentially
increases its bid in the following round. Incremental
is designed to mimic the behaviour of two algorithms.
Similarly to AWESOME [63], it assumes rival agents
behavior at different stages of the game and tries to
maintain hypotheses about an agent’s behaviour. Like
GIGA-WoLF [64], it also uses an adaptive step that
makes it more or less aggressive in changing its bidding
strategy.

• Random: In this benchmark strategy, an agent randomly
selects an action within the legal action set.

• DQN (Deep Q-learning): DQN is a variant of the well
known Q-learning technique using a deep neural network
for stable learning [65]. It uses the experience replay
technique, where random samples of previously stored
experiences are taken into account for future learning
and action selection.

TABLE II. SIM. PARAMETERS

Auction settings
Number of bidding rounds 10
Number of SPs S 8
Number of InPs 1
Fairness threshold τth 3
Number of action space discretization bins 10

InP settings
Number of subcarriers 10

SP settings
Number of subcarriers required to satisfy QoS 4
Penalty after bid rejection 25
Number of subscribers 3
Number of bidding behaviours 6

Hyperparameters
Learning rate 0.001
Memory size S 10000
Batch size 128
Probability ϵ 1 - 0.01
Probability ϵ decay 1 - 0.01
Number of episodes 4000
Discount factor γ 0.95

TABLE III. BUDGET DISTRIBUTION

Number of agents Budget range
Full competition

Competing agents 8 300 - 1000
Colluding agents 0 -
Coopeting agents 0 -

Collusion
Competing agents 6 300 - 1000
Colluding agents 2 1000
Coopeting agents 0 -

Collusion and coopetition
Competing agents 2 500 - 1000
Competing agents 2 300 - 500
Colluding agents 2 1000
Coopeting agents 2 300

• DDQN (Double DQN): DDQN aims at reducing the
overestimation of Q values, encountered in DQN [66].
Hence, it allows faster training and a more stable
learning. It leverages two policies, one for value
evaluation and another for future action decisions.

The baseline approaches presented above aim to highlight
specific insights on the behaviour of deep learning-driven
agents in dynamic market interactions. We omit multi-agent
learning algorithms such as Fictitious Play [67], Bully [68],
AWESOME [63], Meta [69], Minimax-Q [70], Nash-Q [71],
Correlated-Q [72], GiGA-WoLf [64], RVσ(t) [73], and GSA
[74], given they have all been shown to be less performing and
stable than Q-learning [75]. Evolutionary-based algorithms are
also omitted due to their drawbacks and for fairness purposes.
Indeed, evolutionary algorithms cannot guarantee optimality.
In addition, the associated solution’s quality depends highly
on the initialization setting, and it deteriorates as the problem
size increases.

Based on the scenarios of section VI, three types of auction
environments are assumed: 1) Full competition, 2) collusion
with fairness and 3) collusion and coopetition. In the first,
we investigate the market dynamics in which agents are
seeking access to the InP’s resources without any form of
cooperation. In the second, some agents may coordinate their
bids to increase their mutual profits. Specifically, we consider
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Fig. 3. Average InP profits in different auction environments.

Fig. 4. Average number of excluded SPs per episode.

2 colluding and 6 competing agents within the marketplace.
In the last case, we assume 2 colluding, 2 coopeting and
4 competing agents within the marketplace. Moreover, we
qualify the agents with a starting budget within the range 800
to 1000 as rich agents, within 500 to 800 as middle budget
agents, while agents with budgets below 300 are called poor
agents. The environment parameters are summarized in Table
III.

A. From the InP perspective
First, we investigate the InP’s average profits under different

auction environments as shown in Fig. 3. According to
simulations, the most profitable auction environment is full
competition. In this case, DRL-aided SPs rely only on
themselves to win in the auction market. We observe a general
tendency where SPs typically react by bidding aggressively
after an auction loss, thus leading to a profit increase for
the InP. Similarly, when an agent achieves sustained auction
wins, it seems to regularly lower its bids, in an attempt to
increase its own profits. Such behaviour is highlighted, for
instance in Fig. 7 where a DDQN-driven SP is able to adapt
its bidding behaviour quickly after consecutive auction losses.
With similar profitability, the collusion and coopetition auction
setting can arguably be viewed as a form of full competition.
Indeed, the InP counter-attacks collusion by empowering poor
agents to jointly bid to access the resources and avoid quitting
the market. As a consequence, colluding agents are forced to
over-bid and enrich the InP. However, colluding remains able
to profit rich agents at the expense of poor ones. In an attempt
to remedy to this situation, we proposed a fairness mechanism,
where the InP allow SPs to access its network resources within
a certain threshold (τth = 3). This setting is shown to be the
least profitable, since enforced fairness comes at the expense
of its profits.

In Fig. 4, we compare the average number of SPs forced
out of market. The highest number of exclusions is in the

Fig. 5. Average total profits per episode under each algorithm.

Fig. 6. Average total SP profits under different auction settings.

collusive environment. Indeed, since collusive agents have high
budgets, they are able to consistently bid over market value,
leading into sustained auction losses to poor agents. Both full
competition and the collusion with fairness settings have the
best ability to keep poor SPs in the market. Whereas, collusion
and coopetition environment presents a non-negligible number
of exclusions. This can be due to the amount of time it takes
coopeting agents to adjust their bids and beat colluding agents.
To be noted that coopetition is alleviated when agents’ budgets
become above 700 (middle budget agent) due to accumulated
profits.

B. From the SPs perspective
In Fig. 5, DDQN, DQN, incremental and random algorithms

are compared, in terms of average profits gained by an SP. Both
incremental and random algorithms present the worst profits.
Whereas, DQN and DDQN achieve very high performances.
Indeed, these DRL-based approaches enable SPs to smartly
adjust their bidding strategies according to market conditions.
Indeed, as it can be seen in Fig. 7, the DDQN agent is able
to recover after a series of auction losses. In the remaining
simulations, only DDQN agents will be considered, for their
fast convergence and better performances, compared to the
other approaches.

In Fig. 6, we illustrate the SPs’ profits as a function of
auction environments, and for different SPs’ profiles. We
assume that rich agents are initiated with a budget of 1000,
middle agents with a budget of 500 and finally poor agents with
a budget of 300. Meanwhile, the same number of subscribers
and QoS requirements are given to them. Results show that
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Fig. 7. Average SP profits under full competition auction environment.

the full competition environment is the most beneficial to both
middle and poor agents. Interestingly, this setting showcases
that middle agents and rich agents are able to compete with
comparable profit margins despite their budget differences,
thus indicating a potential for greater profits if agents are able
to adapt more precisely their bidding behaviour. This can be
seen in Fig.7 where each agent is able to secure wins and most
importantly offsets auction losses with profits margins mostly
above 0 during the auction process. Moreover, poor agents’
strategy seems to require short aggressive bidding bursts in
order to win, with a downside of limited bidding power
afterwards. Finally, it is shown that the fairness mechanism,
while improves middle agents’ performance, has a very small
impact on the rich agents’ profits. Indeed, SPs’ intelligence
allows them to detect the fairness mechanism and bypass it,
by smartly adjusting their bids. Consequently, colluding agents
still get most profits.

The impact of the penalty’s value is investigated, by
illustrating agents’ bidding behaviours in Fig.8 where the
vertical axis denotes the level of bid aggressiveness adopted
by an agent. Here, we compare two agents operating under
a different penalty coefficients. As such, we observe a trend
where the agent with a lower penalty coefficient seems to
adopt a risky bidding behaviour by bidding less aggressively
perhaps to conserve its limited budget achieving occasionally
high value benefits. In contrast, the agent with a higher penalty
coefficient seems more focused on offsetting auction losses.

A critical benefit of the proposed approach is the potential
for self management (including self negotiation and self
organization) as highlighted in [76] when SPs are allowed
automatically switch between InPs whenever necessary for
orchestration or profitability reasons. Hence, it can be argued
that DRL-based agents could self manage VNFs by switching
serving InP once the market become detrimental to them (i.e
profit loss, presence of collusion, etc.). Sometimes however,
there are obstacles toward InP switching. For instance in
mobile networks where the number of InPs to switch is limited
by cellular coverage. Further, from the simulations above, poor
agents in auction settings where collusion is present are the

Fig. 8. Impact of penalty function on agent behaviour.

most likely to regularly switch InP in order to ensure their
end-users QoS requirements are met. This entails however that
the agent must re-train as they are put in a new environment,
which may hinder their performance.

IX. DISCUSSION

A. Context
It has become common belief that AI will become a

focal point, not only for network management, but also for
next generation applications that are expected to generate
and consume exponential quantities of data, and requiring
run-time processing before and after transmission, and in some
cases, on their way to the end-user [77]. This comes as next
generation networks are increasingly being described to be
independent and decentralized systems on which decisions
are taken at different granular levels [77, 78], and based on
numerous requirements. Recently, the ITU-T Focus Group
Technologies for Network 2030 [79, 80] have pushed forward
the idea of “Manynets”, on which they state: [...] Quite likely
there will not be just one, but many public Internets. New
technologies further widen the constraints for transmitting
packets through the utilization of infrastructure-based wireless,
wireless mesh, satellite, fixed line technologies (such as fibre
optics), all of which must be accompanied by the fundamental
packet transfer solution, while adhering to the underlying
ownership relations when traversing those different networks.
As a consequence, the end-to-end realization of services across
those many internet environments need strong consideration
for Network2030 and is an increasing departure from the
structures of networks as we see today.

An example of such requirements, notably for AI-driven
applications, is multi-flow synchronization. The latter ensures
that generated data from different sources arrive at the
destination within a specific interval of time or even at a
particular point of time [77]. For example, paradigms such as
federated learning [81], where models are trained on network
resources located on edge using local sample patterns and
sent to centralized entity to build a shared global model, are
leveraged to speed up and improve the distributed learning
process [78], strengthen security and guarantee privacy.

Several observations motivate the use of auction-based
solutions proposed in this work. Firstly, as network resources
are distributed on independent domains, it is obvious that
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a large-scale autonomous cooperation/negotiation mechanism
must be in place to ensure access to adequate network
resources. Second, with NFV as an enabling technology,
the cooperation mechanism must also be able to embed
dynamic service requirements in order to achieve multi-domain
orchestration. In this regard, we argue that auction and
market dynamics are a flexible signal mechanism to identify
adequate resource locations, allowing for instance network
characteristics (penalty to compensate for low bandwidth, high
latency, etc.) to be easily embedded within a bid, aiming to
jointly solve the profitability and performance conundrum.

However, given that bidding agents will most likely be
powered through AI-enabled algorithms, it is essential to
investigate the impact of such agents within the market, and
effective methods to counter them. In fact, the Organisation
for Economic Co-operation and Development (OECD) reports
that there is a particular concern for AI-enabled algorithms to
become a facilitating factor for collusion and may enable new
forms of co-ordination that were not observed or even possible
before. This is referred to as “algorithmic collusion” [82].

B. Architectural implications for Future Networks

Despite strong auction performance dominance for
DRL-based agents compared to other agents after training,
two main concerns still need to be addressed. The first
concern is to investigate into where the training process
will take place. In this regard, the ITU-T Focus Group on
Machine Learning for Future Networks has advocated for a
sandbox domain, which is an internal operator where machine
learning (ML) models can be trained, verified and their effects
on the network studied [83]. The second concern relates to
the amount of communication between coopeting/colluding
agents that may induce further congestion in future networks.

C. Multiple InPs

While we considered scenarios with a single InP, we
hypothesize that considering multiple InPs scenarios may
induce several changes to both InPs and SPs strategies. For
instance, shifting the level of aggressiveness an SP would
display to obtain networking resources given that alternative
choices also exist. Naturally, this influences whether and
when (in particular, poor) SPs exit the market, as bidding
conditions may change favourably or unfavourably. A direct
consequence would be that InPs become in a weaker position,
especially with the presence of colluding SPs who would
in the long run endanger InPs’ profits margin. It puts also
an increased pressure on the InPs as they must adopt more
generous fairness mechanisms to retain self-interested SPs,
while severely penalizing colluding SPs. Consequently, this
would come at the expense of slightly reduced profits, but
still better than a full collusive market. On the other hand,
market switching in the context of resource allocation may
not be all benefits for SPs. In addition to restarting the process
of market price discovery, the possible markets/InPs a given
SP can negotiate with may be constrained by its end-user

requirements and the incurred penalty’s value, assuming it fails
to serve its users.

X. CONCLUSION

As one of the major goals of upcoming 5G networks,
the need for end-to-end service provisioning has rendered
urgent new profitable cooperation and service orchestration
mechanisms particularly for multi-domain networks. We thus
proposed a market driven in which SPs and InP interact
to exchange and orchestrate resources while keeping in
mind stringent QoS requirements. Through realistic market
scenarios, we analyzed the behaviour of DRL-based agents.
Our simulations results have shown DDQN and DQN -
driven agents to perform generally well in dynamic network
environments, although profitability has been shown to be
constrained by budget limitations. From the InP perspective,
a competitive auction environment has been shown to be the
most profitable. However, in cases where collusion between
SPs is present, tradeoffs must be made between ensuring
market fairness and harming its profits.
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A. T. Suresh, and D. Bacon, “Federated learning: Strategies
for improving communication efficiency,” arXiv preprint

https://www.itu.int/en/ITU-T/focusgroups/net2030/Documents/White_Paper.pdf
https://www.itu.int/en/ITU-T/focusgroups/net2030/Documents/White_Paper.pdf
http://www.cnsm-conf.org/2019/files/slides-Richard.pdf
http://www.cnsm-conf.org/2019/files/slides-Richard.pdf


17

arXiv:1610.05492, 2016.
[82] OECD. (2017) Algorithms and Collusion:

Competition Policy in the Digital Age.
[Online]. Available: www.oecd.org/competition/
algorithms-collusion-competition-policy-in-the-digital-age.htm

[83] FG-ML5G. (Jan. 2019) Unified architecture for
machine learning in 5G and future networks.
[Online]. Available: https://www.itu.int/en/ITU-T/focusgroups/
ml5g/Documents/ML5G-delievrables.pdf

www.oecd.org/competition/algorithms-collusion-competition-policy-in-the-digital-age.htm
www.oecd.org/competition/algorithms-collusion-competition-policy-in-the-digital-age.htm
https://www.itu.int/en/ITU-T/focusgroups/ml5g/Documents/ML5G-delievrables.pdf
https://www.itu.int/en/ITU-T/focusgroups/ml5g/Documents/ML5G-delievrables.pdf

	Introduction
	Massive Multiplayer Online Game use case
	Overview
	Requirements

	Related Work
	SDN-based Orchestration
	NFV-based Orchestration
	NFV Single-Domain vs. Multi-Domain Orchestration


	System Model
	Problem formulation
	Auction scenarios
	Scenario 1
	Scenario 2

	Proposed solutions
	From the InP's Perspective
	Scenario 1
	Scenario 2

	From the SPs' Perspective : A Distributed Multi-agent Deep Reinforcement Learning Approach
	Bidding analysis

	Experimental evaluation
	From the InP perspective
	From the SPs perspective

	Discussion
	Context
	Architectural implications for Future Networks
	Multiple InPs

	Conclusion

