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Abstract

In SDN stateful data planes, switches can execute algorithms to process traffic based on local states.

This approach permits to offload decisions from the controller to the switches, thus reducing the latency

when reacting to network events. We consider distributed network applications that process traffic at

each switch based on local replicas of network-wide states. Replicating a state across multiple switches

poses many challenges, because the number of state replicas and their placement affects both the data

traffic distribution and the amount of synchronization traffic among the replicas.

In this paper, we formulate the optimal placement problem for replicated states, taking into account

the data traffic routing, to ensure that traffic flows are properly managed by network applications, and

the synchronization traffic between replicas, to ensure state coherence. Due to the high complexity

required to find the optimal solution, we also propose an approximated algorithm to scale to large

network instances. We numerically show that this algorithm, despite its simplicity, well approximates

the optimal solution. We also show the beneficial effects of state replication with respect to the single-

replica scenario, so far considered in the literature. Finally, we provide an asymptotic analysis to find

the optimal number of replicas.

Index Terms

Software Defined Networking (SDN), Stateful data planes, State replication.

I. INTRODUCTION

In recent years a major shift of paradigm has been observed in the field of SDN with the

introduction of stateful data planes, which address the performance limitations of a complete

centralization of the control plane in a canonical SDN architecture, as highlighted in [1], [2].

Indeed, stateful switches, as described for example in [3], [4], can be programmed to execute

user-defined code during packet processing, operating on local state variables stored in persistent

memories. Thus, stateful data planes provide an additional level of programmability with respect

to canonical SDN, whose data plane is instead stateless, according to the original paradigm.
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Indeed, stateful switches can take local decisions without relying on the intervention of an SDN

controller [5]. This fact has many beneficial effects. First, it greatly improves the reactivity of

network applications by reducing the communication and latency overhead due to the interaction

with the controller. Second, it reduces the computational burden of the controller to sustain the

correct network behavior [6]. Finally, the availability of state variables enables the definition of

new fine-grained networking applications [7], as decisions can now be taken on a per-packet

basis, contrary to the per-flow basis of canonical SDN.

The availability of local state variables (simply denoted as “states” in the remainder of the

paper) and the capability to run local programs (i.e., finite state machines) based on such states

open a new perspective, since distributed algorithms can be devised to run in the switches across

the network. This permits to extend the scalability of many network applications, thanks to the

distributed nature of the approach.

Differently from previous works, we focus on the specific scenario in which the network

application runs locally in stateful switches on the basis of some non-local states. Indeed, for

applications implementing network-wide policies, the value of a state may be “global” across

multiple switches, each switch holding a local replica of the state. Recent works, as [8], [9],

have shown the practical feasibility of this approach by leveraging available programmable data

planes, such as P4 [3] and Open Packet Processor (OPP) [4].

When a given state is replicated across multiple switches, two fundamental and coupled

questions must be addressed: i) How many replicas are needed? ii) In which switches should

replicas be placed? To find an optimal solution, several issues should be addressed. First, all

traffic flows must traverse at least one switch that holds a state affecting (or affected by) the flow.

However, routing a flow possibly not along its shortest path increases the data traffic load on the

network. Thus, from the point of view of the data traffic, it would be convenient to increase the

number of replicas until at least one replica is present along the shortest path of each flow. At

the same time, adopting replicas comes at the cost of keeping the replicas synchronized. This

requires the interaction between switches holding the replicas, thus introducing a synchronization

traffic, which increases with the number of replicas. This traffic affects the overall offered load

on the network. Thus, from this perspective, it would be convenient to reduce the number of

replicas as much as possible. In summary, the optimal selection of the number of replicas and

their location depends on the tradeoff between the load introduced in the network by data and

synchronization traffic.
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In this paper, we address all the above mentioned questions and provide the following con-

tributions:

• we propose the optimal state replication problem and formalize it as an ILP problem, that

minimizes the overall (i.e., data plus synchronization) traffic load;

• to cope with the limited scalability of the ILP solver, we propose an approximation al-

gorithm, denoted as PLACEMULTIREPLICAS (PMR), able to solve large instances of the

problem;

• we numerically evaluate the performance of PMR and show that it well approximates the

optimal solution, at least for small instances of the problem. Furthermore, we show that

adding few replicas in a network can largely improve the performance with respect to the

single-replica scenario;

• we analytically find the optimal number of replicas for unwrapped Manhattan network

topologies and characterize its asymptotic behavior; we show that the formula obtained for

large networks can be used also for small instances of the network.

The remainder of the paper is organized as follows. In Sec. II, we describe the state replication

problem. In Sec. III, we present the ILP formalization of the optimal state replication problem.

In Sec. IV, we propose the PMR algorithm. In Sec. V we show the numerical results for the state

placement problem. In Sec. VI, we present the asymptotic analysis of the optimal number of

replicas in a network. In Sec. VII we discuss the related works. Finally, we draw our conclusions

in Sec. VIII.

II. STATE REPLICATION IN STATEFUL SDN

Following the increasing need for highly dynamic network services and policies, the introduc-

tion of programmable data planes enables traffic processing policies to be offloaded directly into

the switches. New frameworks to embed user-defined network policies to the stateful switches

have been proposed [10], [11]. In this paper, we consider SNAP [10] as a reference framework,

even if our proposed approach is general and relevant to any programming abstractions for

stateful data planes.

SNAP introduces a one-big-switch (OBS) model as a network abstraction: the whole network

(switches and links) is seen as a single “big” switch with a given set of input and output ports,

corresponding to the end hosts, and an aggregate list of available resources for traffic processing.

Due to the way the OBS abstraction is defined, flow routing between hosts is described on



4

the basis of I/O port pairs. When defining a network application, the programmer is exposed

to the OBS abstraction, without any knowledge of the actual underlying composition of the

network. The network applications are decomposed by SNAP into an extension of forward

decision diagram (xFFD) that incorporates also stateful processing elements available at switches.

The placement of the single-replica state affects the application and network performance. Indeed,

the xFFD and the traffic matrix between the OBS ports are fed into the SNAP ILP (Integer

Linear Programming) optimizer, which selects the switches where to place each state and the

corresponding processing logic of the decomposed application. The order in which the traffic

traverses the switches storing the states plays a fundamental role, as state dependencies must

be preserved to correctly execute the xFDD of the original application. To guarantee the correct

execution of a network application, all flows affected by or affecting a state must be routed across

the switch storing it. Thus, the routing does not generally follow the shortest path between the

input and output OBS port, and the SNAP solver jointly optimizes the placement of the states

and the routing to minimize the total data traffic load in the network.

The main limitation of SNAP emerges from the fact that it permits only one replica for each

state. This considerably restrains the flow routing, thus precluding a wide range of optimization

techniques such as load balancing and traffic engineering.

A. State replication

To cope with the above mentioned SNAP limitations, we consider a scenario in which states

are replicated on stateful switches. We address the optimal placement of the replicas of each state,

given the knowledge of the traffic demands and of the xFDD defining the network application.

As a toy example, consider a network-wide application that acts on a global counter (e.g.,

the total traffic entering/leaving the network), which is obviously affected by all flows in the

network. SNAP would place a single replica of the state associated with the global counter in a

single switch in the topology, likely into the switch in the most “central” position (i.e., with the

highest betweenness centrality) in the network topology, as shown in Fig. 1a. As a consequence,

all flows are forced to be routed through the single switch storing the state. Due to the “hot-

spot” routing, the set of feasible solutions for the capacitated routing problem is significantly

reduced. Instead, replicating the global state on multiple switches would lead to a better network

utilization, as shown in Fig. 1b, and to a much larger set of feasible routing solutions, with a
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Legend:      
         switch       
         switch with state 
         flow 

(a) Single-replica approach (b) Multi-replica approach

Fig. 1: Example of routing for single-replica (e.g., SNAP) and multi-replica state placement.

beneficial effect on the maximum amount traffic that can be sustained in the network and/or on

the experienced delays.

The choice of an appropriate synchronization mechanism is crucial for network performance

and for the implementation complexity of the replication scheme. Notably, the CAP theorem [12]

states that for a replication scheme, only two properties can be picked at the same time out of

Consistency, Availability and Partition tolerance. Considering that network failures may occur,

partition tolerance cannot be left out of the design of our replication algorithm, leaving us with

the following, well-known, reference models:

a) Strong consistency: A replication algorithm based on strong consistency privileges con-

sistency over availability. This translates into strong guarantees that the same value of a state

will be read across all replicas, at the cost of higher delays to access and update the states. The

delay penalty is caused by the adopted protocol (e.g., Paxos [13], Raft [14]) requiring intensive

interaction among the replicas whenever a read or write transaction is executed. Side effects of

the replication protocol are the high overhead in terms of synchronization traffic and its high

complexity, typically incompatible with the limited amount of hardware resources available at the

switches. Furthermore, the latency due to the communication between replicas requires buffering

packets at each switch while waiting for the outcome of the replication transaction. This further

makes the scheme too complex to be adopted in practice in high speed networks.

b) Eventual consistency: Replication schemes based on eventual consistency prioritize

replicas availability over their consistency. This translates into low latencies during the execution

of transactions at the cost of no guarantees on the consistency of the actual values of each replica.

Most of eventual consistency algorithms are based on gossip protocols [15]–[17] which incur

into small overhead in terms of synchronization traffic. At the same time, due to the simplicity

of the adopted communication protocols, these algorithms can be implemented in programmable
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switches.

Due to the implementation and performance issues highlighted for strong consistency schemes,

we assume a replication scheme based on eventual consistency, according to which each replica

generates a fixed amount of synchronization traffic towards all the other replicas. As shown

in [8], this scheme can be implemented in current state-of-art programmable data plane and, in

practice, maintains small errors among the values of the replicas.

III. OPTIMAL STATE REPLICATION PROBLEM

Given a network graph, the objective of the state replication problem is to identify the best

set of nodes (i.e., switches) where to place the replicas of each state and to compute the optimal

routing. Coherently with [10], the nodes are selected to minimize the overall traffic in the network

and to guarantee that all flows affecting (or affected by) a given state will traverse at least one

state replica. Differently from [10], the traffic in the network is composed not only of data traffic,

but also of the traffic introduced by the synchronization protocol required to keep consistent the

replicas of a given state.

We propose an integer linear program (ILP) formalization, as in the original SNAP model [10].

The relevant notation is reported in Tab. I. Our formalization takes the following input parameters:

• Network. Let G = (V,E) be the network graph with N nodes. Let ce be the capacity of

edge e ∈ E.

• Traffic flows. Let F be the set of all flows. The traffic demands are assumed to be known

in advance. In particular: let λf be the demand of traffic flow f ∈ F , being fs ∈ V and

fd 6= fs ∈ V respectively the source and the destination nodes of the flow.

• State variables. Let S be the set of all state variables. Let Sf ⊆ S be the ordered sequence

of state variables for flow f ∈ F , obtained from the xFFD of the corresponding application.

• Maximum number of replicas. Let Cs be a given upper bound on the number of replicas for

a state variable s, chosen by the network designer. Note that the optimal number of replicas

for state s, denoted by Ĉs, will be computed while satisfying the constraint Ĉs ≤ Cs.

Let Hf be the set of all possible sequences of state replicas for a flow f . Consider a toy example

in which a flow f requires 3 state variables A, B, C, i.e., Sf = [A,B, C]. Each state has 2 replicas

(denoted as “1” and “2”). Now Hf = {[111], [112], [121], [122], [211], [212], [221], [222]}, and, as

example, the sequence h = [121] implies that f traverses replica 1 of state A, then replica 2 of
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state B, and finally replica 1 of state C. Let hs be the replica of state variable s in sequence

h ∈ Hf . For the above example with h = [121], hA = 1, hB = 2 and hC = 1.

The output of the solver is described as follows, and the relevant notation is reported in Tab. II:

• Placement of the replicas of each state. Let Pscn be a binary variable equal to 1 iff replica

c of state s is stored at node n. Note that the optimization problem might place multiple

replicas on the same node, but this would correspond to a single instance of the state.

Thus, the optimal number of distinct replicas Ĉs of state s across the whole network can

be computed as follows1:

Ĉs =
∑
n∈V

1{∑
c≤Cs

Pscn > 0
}

• Data traffic routing. Let Rfhe be a binary variable equal to 1 iff flow f traverses the sequence

of state replicas h on edge e. The set of such variables describes the complete routing of

all flows in the network, taking also into account the constraint for the required sequence

of traversed replicas. To avoid out-of-sequence problems, we do not permit flow splitting

between different sequences of replicas.

• Synchronization traffic routing. Let R̂snme be a binary variable equal to 1 iff there are

replicas of the state variable s on nodes n and m and the flow from node n to node m

traverses edge e. This set of variables describes the routing of the synchronization traffic

between different replicas of the same state. Let λ̂s be the traffic generated by each state

replica to update each other single replica of the same state.

Finally, Tab. III reports the list of auxiliary variables adopted in the ILP formalization.

In the optimal state replication problem, the total traffic in the whole network is minimized:

min
∑
e∈E

∑
f∈F

∑
h∈Hf

Rfheλf +
∑
e∈E

∑
s∈S

∑
n∈V

∑
m∈V
n 6=m

R̂snmeλ̂s (1)

The first term represents the total data traffic in the network. It is obtained by summing all the

traffic due to f on all the possible sequences of state replicas and on all of the edges. Instead,

the second term is the synchronization traffic between replicas of the same state, summed across

all states and edges in the graph. Notably, (1) is similar to the objective function used by the

SNAP framework in [10], but with the introduction of the second term that takes into account

the synchronization traffic, not included in SNAP.

1Let 1{A} be the indicator function of A, equal to 1 iff condition A is true.
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TABLE I: Input variables

Context Variable Description Range

Network definition

V set of all nodes {1, . . . , N}

N number of nodes (i.e., |V |) N

E set of all edges

ce capacity of edge e ∈ E > 0

Flow definition

F set of all the flows

λf traffic demand for flow f ∈ F > 0

fs source node for flow f ∈ F 1, . . . , N

fd destination node for flow f ∈ F 1, . . . , N

State definition

S set of all state variables

Cs max number of replicas for state s ≥ 1

Sf sequence of state variables for flow f ∈ F ⊆ S

λ̂s

synchronization traffic between
> 0

any pair of replicas for state s ∈ S

TABLE II: Output variables

Context Variable Description Range

Data traffic
Rfhe

1 iff flow f along sequence of replicas h
Binary

routing traverses edge e

Synchronization
R̂snme

1 iff synchronization traffic from node n to node m
Binary

traffic routing containing replicas of state variable s traverses edge e

Replica
Pscn

1 iff replica c of state s is stored
Binary

placement in node n

TABLE III: Auxiliary Variables

Variable Description Range

EI(n) set of edges entering node n ∈ V ⊆ E

EO(n) set of edges leaving node n ∈ V ⊆ E

E(n) set of all edges incident to node n ∈ V ⊆ E

Hf set of all sequences of replicas for flow f ∈ F -

hs replica id of state s for flow f ∈ F in sequence h ∈ Hf 1, . . . , Cs

Pfsce 1 iff flow f on edge e has passed replica c of state s Binary

Xfh 1 iff flow f is assigned h ∈ Hf Binary

Usn 1 iff at least one replica of state variable s is on node n Binary

Ysnme 1 iff R̂snme > 0 Binary
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As an alternative, the objective function could be modified to minimize the maximum con-

gestion on a link, obtained by summing data and synchronization traffic, as follows:

min max
e∈E

(∑
f∈F

∑
h∈Hf

Rfheλf +
∑
s∈S

∑
n∈V

∑
m∈V
n6=m

R̂snmeλ̂s

)
(2)

and could be easily integrated in the following formalization, using well-known ILP modeling

techniques.

A. Constraints in the optimization problem

We now discuss all the constraints considered in the ILP model. In some cases, we will get

products of binary variables, but the corresponding constraint can be easily linearized according

to well-known techniques.

1) Data routing constraints: Constraints (4)-(7) are similar to the constraints for the classic

multi-commodity flow problem. However, our modification consists of assigning a commodity

for each sequence h ∈ Hf of state variable replicas directly at the source of the flow f , to model

the sequence of states required by each flow.

We introduce an auxiliary variable, which is an indicator function Xfh equal to 1 if sequence

h ∈ Hf is assigned to flow f ∈ F .

Xfh =
∑

e∈EO(fs)

Rfhe −
∑

e∈EI(fs)

Rfhe (3)

Indeed, whenever a particular sequence h is adopted, similar to (4), the net outgoing data traffic

from source fs is 1. Notably, the second term considers the special case in which the flow is

re-entering (and leaving) fs in the path to reach the state and then the destination. We now force

only one sequence h to be assigned to flow f . ∀f ∈ F :∑
h∈Hf

Xfh = 1 (4)

A similar constraint is defined for flow f ’s destination fd, but now the net incoming flow should

be 1. ∀f ∈ F : ∑
h∈Hf

( ∑
e∈EI(fd)

Rfhe −
∑

e∈EO(fd)

Rfhe

)
= 1 (5)

The sum of all the data and synchronization traffic passing an edge must not exceed its capacity.

∀e ∈ E: ∑
f∈F

∑
h∈Hf

Rfheλf +
∑
s∈S

∑
n∈V

∑
n∗∈V
n6=n∗

R̂snn∗eλ̂s ≤ ce (6)
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Finally, the standard flow conservation condition must be satisfied at any node. ∀h ∈ Hf , ∀f ∈ F :∑
e∈EI(n)

Rfhe =
∑

e∈EO(n)

Rfhe ∀n ∈ V \ {fs, fd} (7)

2) Placement constraints: Each replica can only be placed at one switch. ∀s ∈ S, ∀c ≤ Cs:∑
n∈V

Pscn = 1 (8)

We now constrain the flows to be routed through the corresponding states, i.e., all flows

dependent on a state must traverse the node where the replica of such state is located (except

at source fs and destination fd). ∀n ∈ V \ {fs, fd},∀f ∈ F ,∀h ∈ Hf ,∀s ∈ Sf :∑
e∈EI(n)

Rfhe ≥ Pshsn +Xfh − 1 (9)

Indeed, if a particular sequence h is adopted for f , then (9) becomes
∑

e∈EI(n)
Rfhe ≥ Pshsn and

in the case the node contains a replica hs of the state s, then
∑

e∈EI(n)
Rfhe ≥ 1, which forces

at least one Rfhe variable to be one on the incoming edges to e. Otherwise, if the sequence h

is not adopted for f , then (9) becomes a useless bound.

We now define a variable that tracks the fact that a flow has already traversed a particular

state along its path. For a flow f traversing a replica hs of state s, we define Pfshse = 0

for all edges along the path before entering the node with replica hs of s, and Pfshse = 1

for all edges on the path after hs. It is initialized to zero for all unused replica sequences h.

∀f ∈ F ,∀s ∈ Sf ,∀h ∈ Hf ,∀e ∈ E:

Pfshse ≤ Rfhe (10)

To model the fact that Pfshse changes from 0 to 1 whenever the flow leaves a node where the

state is stored, we set: ∀f ∈ F ,∀s ∈ Sf ,∀h ∈ Hf ,∀e ∈ E,∀n ∈ V \ {fs, fd}:

PshsnXfh +
∑

e∈EI(n)

Pfshse =
∑

e∈EO(n)

Pfshse (11)

Indeed, only when PshsnXfh = 1 (i.e., node n has replica hs and f exploits h including it), the

net flow of Pfshse entering n is 0 and the corresponding one leaving n is 1.

We now impose that the data flow reaches the destination fd after having traversed all the

states required in h, i.e. Pfshse = 1 for one edge entering fd. ∀f ∈ F ,∀s ∈ Sf ,∀h ∈ Hf :

PshsfdXfh +
∑

e∈EI(fd)

Pfshse = Xfh (12)
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So far, the constraints (10)-(12) force the flows to pass through all the required state variables,

but not necessarily in sequence. We model here the correct sequence of traversed states, if the

flow f has to cross hs ∈ Hf of s, followed by replica hs′ ∈ Hf of s′. ∀f ∈ F ,∀s, s′ ∈ Sf ,∀h ∈

Hf ,∀n ∈ V

Pshsn +
∑

e∈EI(n)

Pfshse ≥ Ps′hs′n +Xfh − 1 (13)

Indeed, if either flow f has been assigned sequence h, i.e., Xfh = 1, or replica hs′ ∈ Hf exists at

node n, or replica hs ∈ Hf does not exist at node n, then (13) becomes
∑

e∈EI(n)
Pfshse ≥ 1. This

forces Pfshse to be 1 before entering node n, which means that the flow must have traversed hs

before entering the node containing hs′ . This ensures that the flow traverses the correct sequence

of states as dictated by h.

Constraint (14) ensures that if flow has traversed state variable replica hs on edge e, i.e.,

Pfs′hs′e = 1, then it must have already crossed state variable replica hs, which ensures Pfshse = 1.

∀f ∈ F ,∀s, s′ ∈ Sf ,∀h ∈ Hf , e ∈ E:

Pfshse ≥ Pfs′hs′e (14)

3) State synchronization: State synchronization implies the generation of synchronization

traffic between any pair of replicas of the same state. Thanks to the routing variable R̂snme, we

can model the traffic between any pair of nodes n and m containing replicas of the state variable

s and consider its contribution in the total traffic, as in (1) and (2), and in the constraint (6)

regarding the edge capacity.

In the optimization model, multiple replicas of the state variable can be hosted on the same

node n. Hence, to track that there is at least one replica at node n, we define the variable Usn

in (15). ∀c ∈ Cs, ∀s ∈ S, ∀n ∈ V :

Usn ≥ Pscn (15)

For the synchronization traffic from node n to node m, the routing variable R̂snme is treated as

a commodity from node n such that Usn = 1 to node m such that Usm = 1. We constrain the

routing to ensure the standard flow conservation equation at the intermediate node.

We define a new intermediate variable Ysnme, set to 1 iff R̂snme > 0. This is ensured using the

big-M method [18] as in (16) where M is sufficiently larger than R̂snme. ∀s ∈ S, ∀n ∈ V, ∀m 6=

n ∈ V, ∀e ∈ E

0 ≤ −R̂snme +MYsnme ≤M − 1 (16)
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To fix a large enough value for M , assume R̂snme = 1, ∀e ∈ EO(n), then Ysmne = 1 from (16).

In this case, for the condition M ≥ R̂snme to be true, M must be equal to or greater than the

maximum degree of G:

M ≥ ∆G (17)

with ∆G = maxn∈V |EO(n)|.
We require the egress synchronization flow from a state replica containing node to use only one

outgoing edge. This can be done by exploiting Ysnme as in (18). ∀s ∈ S, ∀n ∈ V, ∀m 6= n ∈ V :∑
e∈EO(n)

Ysnme ≤ 1 (18)

The following constraints (19)-(22) model the multi-commodity flow problem for the synchro-

nization traffic. Specifically, constraints (19) and (20) are for the originating synchronization flow

from the source node n and the sink flow in the destination node m containing the state replicas

respectively. ∀s ∈ S, ∀n ∈ V, ∀m 6= n ∈ V :∑
e∈EO(n)

Ysnme ≥ Usn (19)

∑
e∈EI(m)

Ysnme ≥ Usm (20)

Instead, constraints (21)-(22) are for the flow conservation at intermediate nodes. ∀s ∈ S, ∀n ∈

V, ∀m 6= n ∈ V : ∑
e∈EO(n)

Ysnme ≤
∑

e∈EI(n)

Ysnme + Usn ≤ 1 (21)

∑
e∈EI(n)

Ysnme ≤
∑

e∈EO(n)

Ysnme + Usm ≤ 1 (22)

B. Computational complexity

The complexity to solve an ILP model is O(22kv+2
kc) [19], where kv is the number of

variables and kc is the number of constraints. As a worst case, assume that all flows f ∈ F

require to traverse all state variables s ∈ S, where each s ∈ S has C replicas. In this case,

it can be shown that kv = O(max(N2C |S|, |S|N4)) and kc = O(max(N |S|C |S|, |S|N4)). In

a simple scenario when only one state variable required by all the flows, kv = O(N4) and

kc = O(N4). Thus, the final complexity is lower bounded by O(22N
4+2
N4). Clearly, the presented

ILP formalization does not scale for large instances of the problem. This advocates the design of

approximation algorithms to solve the optimal replication problem in real scenarios, as addressed

in the following section.
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IV. APPROXIMATION ALGORITHM FOR SINGLE STATE REPLICATION

We address specifically the problem of state replication for a single state variable. To address

the limited scalability of the ILP solver, we propose PLACEMULTIREPLICAS (PMR) algorithm

which is computationally scalable and will be shown in Sec. V to approximate well the optimal

solution obtained by the ILP solver for small problem instances.

The pseudocode of PMR is given in Algorithm 1. It takes as input the network graph G, the

state variable s and the maximum number of replicas Cs of s and the set of flows F requiring s.

As output, the algorithm returns: the routing variables of the data flows Rfhe and of the state

synchronization flows R̂smne and the replicas placement variables Pscn. The algorithm works

through 3 phases:

• Phase 1. The network graph G is partitioned into Cs clusters, in order to minimize the

maximum distance among the elements within a cluster. This allows to distribute the replicas

across the whole network in a balanced way, exploiting the spatial diversity offered by each

cluster.

• Phase 2. In each cluster, a replica is placed in the “most central” node, i.e., the one with

the highest betweenness centrality, in order to minimize the data traffic for each flow.

• Phase 3. The position of each replica is perturbed at random using a local search to improve

the solution with respect to one obtained in the previous two phases.

Algorithm 1 comprises all the mentioned phases. After having initialized the routing and the

replica placement variables (lines 2-4), Phase 1 is executed in line 5 by calling COMPUTEPAR-

TITIONS. This method solves the k-means clustering problem [20] with k = Cs using Lloyd’s

algorithm [21] in which the node with the highest betweenness centrality is chosen as center of

the partition.

As part of Phase 2 (lines 6-9), within each subgraph Gc the node n′ with the highest

betweenness centrality is assigned a state variable replica through NODEWITHHIGHESTBC.

As a reminder, betweenness centrality of a node v is proportional to the number of shortest

paths crossing it.

Lines 11 to 18 refer to a local search procedure with I iterations. Within each iteration,

ROUTEFLOWS is used to route flows through the location of the replicas identified in Phase 2,

following two sub-paths: one from the flow source node to the closest replica and one from this

replica to the destination node. The procedure works on the set of flows F and the location of state
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variables Pscn and returns the routing variables for data flows R′fce and for state synchronization

R̂′smne, and the corresponding total traffic T ′ in the network. Lines 23 to 39 route the data flows

from their source fs to the destination fd while traversing the replica cb which has the minimum

path length among all other replicas. For each flow, in lines 25 and 26, the replica cb and the

path Pbest traversing it are initialized. Then for each replica (in lines 27-34), first, the shortest

path fs → nc → fd is computed. nc is the vertex for which Pscn = 1. If the path length P .length

is less than the previous minimum minDist in line 29, then the current path P is stored as the

best path Pbest and the current replica c as the best replica cb. In lines 35-38, for each edge in

Pbest, the routing as well as the traffic value is updated. Lines 40 to 48 generate flows from

each state replica c to all the other state replicas g for state synchronization using the shortest

path. This includes the synchronization flows R̂scge being updated in line 44 for each edge in

the path Pcg before updating the total traffic in line 45. If T ′ is less than the previous minimum,

then the minimum traffic value and all the decision variables are updated (lines 14-15). In Phase

3 (line 17), a local search procedure perturbs the existing state replica locations. This proceeds

by randomly selecting one node where a replica is located and moving it to one of its neighbor

nodes. This new solution is then compared with the current one (line 13) after having evaluated

the corresponding routing and total traffic.



15

Algorithm 1 PlaceMultiReplicas (PMR)
1: procedure [{Rfhe}, {R̂smne}, {Pscn}] = PLACEMULTIREPLICAS(G, s, Cs, F )

2: Rfhe = 0, ∀f ∈ F , h ∈ Hf , ∀e ∈ E . Init routing

3: R̂smne = 0, ∀c, g 6= c ≤ Cs, ∀e ∈ E . Init state sync

4: Pscn = 0, ∀c ≤ Cs, ∀n ∈ V . Init state s location

5: {Gc} ← COMPUTEPARTITIONS(G,Cs,) . Phase 1: Graph partitions {Gc}
6: for c ≤ Cs do . Phase 2: Replica placement

7: n′ ← NODEWITHHIGHESTBC(Gc) . Find best candidate in partition Gc

8: Pscn′ = 1 . Store the state replica location

9: end for

10: Tmin =∞ . Init minimum traffic

11: for I iteration do . Phase 3: Local search

12: [T ′, {R′fhe}, {R̂
′
smne}]← ROUTEFLOWS(F , {Pscn}) . Route flows through the replicas

13: if T ′ < Tmin then . Check if the traffic is smaller

14: Tmin = T ′ . Store current best solution

15: Rfhe = R′fhe R̂smne = R̂′smne, P ′scn = Pscn, ∀f ∈ F , ∀h ∈ Hf , ∀c, g 6= c ≤ Cs, ∀e ∈ E, ∀n ∈ V
16: end if

17: {P ′scn} ← PERTURBREPLICALOCATION({Pscn}) . Change existing location of state replicas

18: end for

19: return [{Rfhe}, {R̂smne}, {Pscn}]
20: end procedure

21: procedure [TCURRENT, R′fce, R̂
′
smne] = ROUTEFLOWS(F , Pscn)

22: Tcurrent = 0 . Init total traffic

23: for f ∈ F do . For each flow

24: minDist =∞ . Init minimum distance

25: cb ← null . Init best replica for current flow

26: Pbest ← null . Path with minimum length for fs → nc → fd

27: for c ∈ Cs do . For all state replicas

28: P = SHORTESTPATH(fs, nc) ∪ SHORTESTPATH(nc, fd)

29: if P.length < minDist then

30: minDist = P.length . Update minimum distance

31: Pbest ← P . Store path with minimum length

32: cb ← c . Store best replica for this flow

33: end if

34: end for

35: for e ∈ Pbest do . For each edge in the minimum length path

36: R′fcbe
= R′fcbe

+ λf . Store the routing

37: Tcurrent = Tcurrent + λf . Store the traffic value

38: end for

39: end for

40: for c ∈ Cs do . For each cth replica of state variable s

41: for g 6= c ∈ Cs do . For each gth replica of state variable s

42: Pcg ← SHORTESTPATH(nc, ng) . Shortest path from nc → ng

43: for e ∈ Pcg do . For each edge in the path nc → ng

44: R̂smne = R̂smne + α . Store the state sync flow

45: Tcurrent = Tcurrent + α . Update total traffic

46: end for

47: end for

48: end for

49: return [Tcurrent, R′fce, R̂
′
smne]

50: end procedure
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V. PERFORMANCE COMPARISON

We evaluate the performance of PMR presented in Sec. IV. The local search in PMR runs with

I = 1000 iterations. In the case of small instances of the problem, we run an ILP solver, coded

using IBM CPLEX optimizer [22], implementing the optimization model in Sec. III. Notably,

whenever the number of replicas is set to 1, λ̂s = 0 and the solver obtains a solution equivalent

to the one achieved by SNAP. We compute the approximation ratio, i.e., the ratio between the

total traffic obtained by PMR and the optimal traffic obtained by the ILP solver. We consider

two standard topologies for the network graph:

• Unwrapped Manhattan is a
√
N ×

√
N grid.

• Watts-Strogatz [23] adds a few long-range links to regular graph topologies to reduce the

distances between pairs of nodes and emulate a small-world model. It is generated by taking

a ring of N nodes, where each node is connected to k nearest neighbors. In each node,

the edge connected to its nearest clockwise neighbor is disconnected with probability p and

connected to another node chosen uniformly at random over the entire ring. Thus, the final

topology maintains the original average degree k while being connected. In the following,

we will use p = 0.1 and k = 8.

We utilize random traffic matrices with the number of flows equal to the number of nodes

in the graph (|F| = N ) and with unity demands (λf = 1). The source-destination pairs for

the flows were generated according to two models. In the case of uniform traffic, all the source

nodes were associated to a random permutation of nodes as destination; thus each node is source

and destination of exactly one flow. In the case of clustered uniform traffic, we partitioned the

nodes of the graph in half and generated a random permutation between the nodes of the same

partition; thus all the flow are local within the same partition. All the results were obtained

with 1000 different runs to get very small 95% confidence intervals (in all cases within 4.2%

accuracy).

A. Synchronization traffic and optimal number of replicas

In Fig. 2 we evaluate the effect of varying the number of replicas for state s and of the

synchronization rate λ̂s, through the optimal ILP solver. We consider a 4× 4 Manhattan graph

and set Cs = 7. As expected, when increasing the traffic required to synchronize the replicas (λ̂s),

the optimal number of replicas reduces, since the higher costs of synchronization compensates
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Fig. 2: Optimal traffic and number of replicas in a 4 × 4 Manhattan graph for uniform traffic,

using the ILP solver.

the beneficial effect of multiple replicas on the data traffic. Instead the synchronization traffic is

almost constant, since, for smaller number of replicas, their relative distances grows, to “cover”

a larger area of the network. As a term of comparison, we report the total traffic for one single

replica allowed in the network, equivalent to the solution obtained by SNAP.

Fig. 3 extends Fig. 2 for larger values of λ̂s. Due to the higher cost for synchronization, for

λ̂s ≥ 6.1, the optimal number of replicas becomes one, i.e., it is not anymore convenient to

replicate states due to the high synchronization cost and the final solution is equivalent to the

one achieved by SNAP.

B. Comparison of PMR with ILP

Figs. 4-5 show the approximation ratio for different number of nodes N , of replicas Cs and

different values of λ̂s, under uniform traffic. The two graphs refer to Manhattan and Watts-

Strogatz graphs, respectively. The approximation ratio in all cases is always ≤ 1.15, thus PMR

approximates well the ILP solution. For larger graphs, we could not provide the results as the

ILP solver is not computationally feasible.
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Fig. 4: Approximation ratio of PMR in a Manhattan graph under uniform traffic.

C. Number of replicas in large topologies

For large topologies, we run just the PMR algorithm. Figs. 6-7 show the total traffic, normalized

by the number of flows, for Manhattan and Watts-Strogatz graphs, under clustered uniform traffic.

We set λ̂s = 0.5. For comparison, we also report the result of the traffic obtained by routing

each flow from its source to its destination along the shortest path, obliviously of the placement

of the state replicas; this provides a lower bound on the total traffic in the network obtained for

the optimal solution of the ILP problem (which cannot be computed in this case).

As expected, the highest amount of traffic is given by the single-replica case, because of the
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Fig. 6: Performance of PMR in Manhattan graph under clustered uniform traffic.

longer path to reach the state location targeted by all the flows. Now adding one replica provides

a beneficial effect, since the spatial diversity of 2 replicas can be exploited to route the flows and

minimize the total traffic. The gain is generally around 30% for Manhattan graph and grows up

to 20% in Watts-Strogatz graph. If increasing again the number of replicas from 2 to 3, then the

gain is very limited (around 5%), since the higher spatial diversity is compensated by a higher

synchronization traffic. Thus, in general we can expect that allowing few replicas has a strong

beneficial effects on the overall traffic with respect to the single-replica scenario.
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VI. ASYMPTOTIC ANALYSIS FOR NUMBER OF REPLICAS

We now present an asymptotic analysis, i.e., for very large network graphs, to estimate the

optimal number of replicas. We will consider specifically an unwrapped Manhattan topology

since amenable to analytical modeling. Furthermore, for simplicity we assume a single state.

A. Methodology

We consider a unit square as shown in Fig. 8, representing the boundary of an unwrapped

Manhattan topology containing N nodes, with N → ∞. Thus, any position within the unit

square is associated to a network node, and any line within the unit square represents a routing

path across a sequence of nodes in the original topology.

We now assume that the number of replicas C is a perfect square, i.e.
√
C ∈ N. The unit

square is divided into individual C squares, each of them of size 1/
√
C × 1/

√
C and with a

center point P ctr
c , where c ∈ {1, . . . , C} is an index identifying the square, as shown in Fig. 8.

Here, P ctr
c denotes the location of the c-th state replica in the network. We now evaluate the

optimal number of replicas that minimizes the total traffic in the topology.

The total traffic is composed of the data traffic and the synchronization traffic, coherently

with the cost function in (1). Consider now a given flow f ∈ F . We assume that the traffic

demand λf is routed in a straight line between two points in the square, since its approximates

well the step-wise stair-like routing in the original Manhattan topology, for N →∞. The total

traffic generated by the flow is λfh where h is the corresponding distance of the routing path
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1

1

Fig. 8: Unwrapped Manhattan topology (left) and its unit square representation with 4 replicas

(C = 4) (right).

in terms of hops in the Manhattan topology. The following bound can be easily shown, relating

the distance d between two points in the unit square and the corresponding routing distance in

terms of hops:

d
√
N ≤ h ≤ d

√
2
√
N (23)

Now recall that a flow from a source node Psrc to a destination node Pdst must traverse at

least one replica P ctr
c , as shown in Fig. 8, in order to affect (or being affected by) the state

replica.

We start by evaluating the overall data traffic. We assume uniform traffic between any pair

of nodes in the original topology, with a total number of flows equal to |F| = N and all flows

with rate λf , coherently with Sec. V. Based on (23), we can define the average routing distance

as:

ĥ = d̂
√
Nβ (24)

where β is a constant value less than
√

2. Thus, the overall data traffic generated in the network

can be computed as the total generated data traffic λfN times the average distance ĥ:

Tdata = λf d̂dataN
√
Nβ (25)

where d̂data is the average total distance between two randomly generated points in the unit

graph passing through the closest replica.

To evaluate d̂data, we utilize a Monte Carlo method. We generate pairs of points with uniform

random coordinates in the unit square, which are Psrc and Pdst for source and destination nodes

respectively, as in Fig. 8. Assume now the following case holds: the distance between Psrc
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and its closest replica P ctr
c is smaller than between Pdst and its closest replica. Now the total

distance between Psrc and Pdst is computed by summing two terms: the distance from Psrc

to the closest replica P ctr
c , and the one from such replica P ctr

c to Pdst. If the considered case

does not hold, the result is identical for symmetry. Fig. 9 shows the average total distance d̂data

obtained by randomly generating 107 pairs of nodes. When the number of replicas is large, d̂data

asymptotically approaches 0.5412 coherently with well-known theoretical results [24].

We now evaluate the overall synchronization traffic between the replicas, by knowing the pre-

defined positions of the replicas in the unit square. The average distance between any two replicas

d̂sync asymptotically approaches 0.5221 as shown in Fig. 9. Thanks to (23), the synchronization

traffic between the C replicas can be computed as follows:

Tsync = λ̂sd̂syncC(C − 1)
√
Nβ (26)

where the last term considers the pair-wise synchronization between replicas. Note that Tsync is

independent from the data traffic.

Combining (25) and (26), we can finally claim:

Property 1: The total traffic for an unwrapped Manhattan topology of size N is given by:

TTOT =
√
Nβ(λfNd̂data + λ̂sd̂syncC(C − 1)) (27)

where β <
√

2, and both d̂data and d̂sync depend on C as shown in Fig. 9.



23

10
0

10
1

10
2

10
3

10
4

10
5

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

O
p

ti
m

al
 n

u
m

b
er

 o
f 

re
p

li
ca

s

Number of nodes

λ
^

s/λf = 0.01

λ
^

s/λf = 0.21

λ
^

s/λf = 0.41

λ
^

s/λf = 0.61

λ
^

s/λf = 0.81
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B. Optimal number of replicas and its approximation

We now evaluate numerically (27) and, through a dichotomic search, we find the optimal

number of replicas that minimizes TTOT . Fig. 10 shows the optimal number of replicas for

different values of N and λ̂s/λf . Note that for higher values of N , more replicas are required

to cover the network. For higher values of λ̂s/λf , the number of replicas decreases because of

the higher cost in terms of synchronization traffic.

The curves in Fig. 10 can be fit by a function in the following form:

log10Copt = x+ y log10N + z log10

(
λ̂s
λf

)
(28)

with x, y, z the fitting parameters. Using standard least-square fitting procedure, we numerically

evaluated the best fitting parameters and obtained the following claim:

Property 2: The optimal number of replicas Copt in an unwrapped Manhattan topology of size

N can be approximated as follows

C̄opt =

⌈
0.47N0.40

(
λf

λ̂s

)0.40
⌉

(29)

which implies that C̄opt grows as θ(N2/5).

Fig. 11 shows the optimal number of replicas C̄opt obtained according to (29). As expected, if λ̂s

is small, then the number of replicas is large and for small networks correspond almost to one

replica per node. For large values of synchronization traffic (λ̂s = λf ), the number of replicas is
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Fig. 11: Optimal number of replicas C̄opt according to Property 2.

kept at the minimum, and 8 replicas are enough for networks with N = 1024 switches. We now

evaluate the error introduced by Property 2. We evaluated (i) Copt by solving the optimization

problem described in Sec. III, (ii) C̄opt by computing (29), and (iii) the optimal number of replicas

CPMC obtained by running PMR. We considered the same uniform traffic pattern described in

Sec. V for the unwrapped Manhattan topology. All the results were obtained with 1000 different

runs.

Fig. 12 shows the maximum error between C̄opt and Copt for N that varies between 9 and

36. In all cases, the maximum error is bounded by one, i.e., C̄opt overestimates by at most

one the optimal number of replicas. This result shows that the formula in (29) is also a good

approximation for small Manhattan networks.

Due to scalability restraints we could not run the optimal solver to evaluate the error for larger

networks. For this reason we had to refer to the optimal number of replicas obtained by PMR.

Fig. 13 shows the error between C̄opt and CPMC for N varying between 9 and 121. Also in

this case, the maximum error is bounded by one. Thus, the expression in (29) appears to be a

reliable approximation even for larger unwrapped Manhattan topologies.

VII. RELATED WORKS

The works in [8], [9] propose the programming abstractions to define network applications

based on global states, as assumed in this work. Furthermore, they show the practical feasibility
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of replicating the states by describing and testing an implementation based on programmable

data planes, such as P4 [3] and Open Packet Processor (OPP) [4]. Both [8], [9] assume to know

the number of replicas and their placement within the network, i.e., they need an optimization

engine which solves the multi-replica placement problem addressed here. On the other end, our

work needs a practical implementation scheme to support the state replication as described by
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the two cited papers. Thus, this work and [8], [9] are complementary.

Regarding the optimization problem addressed in this paper, the Virtual Network Embedding

(VNE) problem finds the optimal placement of chains of VNFs under various optimization

metrics. VNE can be closely mapped to the problem mentioned in this paper, if we consider

network functions to be states and chains to be dependency graphs as computed by SNAP. Several

ILP formulations and heuristics for VNE were proposed (an extensive survey is available in [25]),

some of which are similar to the one proposed here. However, to the best of our knowledge,

none of them consider the possibility of having replicated virtual functions, the peculiar feature

of this work.

SNAP [10] solves the problem of the optimal placement of the states across network switches,

taking into account the dependency between states and the traffic flows. However, by design,

SNAP enables only one replica of each state within the network. This limits SNAP applicability,

and may impair network performance, as discussed in Sec. II-A. To overcome this issues, we

extend SNAP by enabling multiple replicas of the same state.

Several other network programming abstractions were proposed [26]–[28]. However, most of

them keep the states at the controller, with few existing works exploiting stateful data planes

to store states. NetKAT [11] focuses on stateful data planes and provides a native support for

replicated states, but, by design, the replicas are placed at the network edge (i.e., entry and exit

switches) for all flows. Thus, the placement is not optimized with respect to the traffic matrix.

However, our methodology could be directly applied to NetKAT. Furthermore, the synchroniza-

tion traffic is carried in piggybacking over the data traffic. Thus, both the synchronization and

the data traffic must traverse all state replicas. Instead, our proposal decouples data traffic and

synchronization traffic, thus leading to more flexibility for the routing strategy.

Swing State [29] introduces a mechanism for state migrations entirely in the data plane but,

similarly to SNAP, assumes only a single replica of a state which can be migrated across the

network, on demand.

VIII. CONCLUSIONS

We consider stateful data planes, with state replication in multiple switches. We define an ILP

formalization of the problem that identifies the optimal placement for the state replicas and the

optimal routing for the data and synchronization traffic. To cope with the limited scalability of

the ILP solver, we propose the PMR algorithm and we show that it well approximates the optimal
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solution. We also numerically show the beneficial effect of state replication in the reduction of

the overall traffic load in the network. Finally, we provide an asymptotic analysis to compute the

optimal number of state replicas in unwrapped Manhattan topology and show its applicability

also to small graphs. Our results advocate the adoption of replicated states when the network

application is distributed and the states are “global” across multiple switches. Notably, our work

is complementary to the works showing the feasibility of implementing replicated states in state-

of-art programmable data planes.
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