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Abstract— Envisioned 5G applications and services, such as
Tactile Internet, Industry 4.0 use-cases, remote control of drone
swarms, pose serious challenges to the underlying networks and
cloud platforms. On the one hand, evolved cloud infrastructures
provide the IT basis for future applications. On the other hand,
networking is in the middle of a momentous revolution and
important changes are mainly driven by Network Function
Virtualization (NFV) and Software Defined Networking (SDN).
A diverse set of cloud and network resources, controlled by
different technologies and owned by cooperating or competing
providers, should be coordinated and orchestrated in a novel way
in order to enable future applications and fulfill application level
requirements. In this paper, we propose a novel cross domain
orchestration system which provides wholesale XaaS (Anything
as a Service) services over multiple administrative and technology
domains. Our goal is threefold. First, we design a novel orchestra-
tion system exploiting a powerful information model and propose
a versatile embedding algorithm with advanced capabilities as a
key enabler. The main features of the architecture include i)
efficient and multi-purpose service embedding algorithms which
can be implemented based on graph models, ii) inherent multi-
domain support, iii) programmable aggregation of different
resources, iv) information hiding together with flexible delega-
tion of certain requirements enabling multi-operator use-cases,
and v) support for legacy technologies. Second, we present our
proof-of-concept prototype implementing the proposed system.
Third, we establish a dedicated test environment spanning across
multiple European sites encompassing sandbox environments
from both operators and the academia in order to evaluate
the operation of the system. Dedicated experiments confirm the
feasibility and good scalability of the whole framework.

Index Terms— NFV, SDN, resource orchestration, 5G.

I. INTRODUCTION

FUTURE network services and 5G applications, such as
Tactile Internet, remote surgery, coordination and control
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of drone swarms, or Industry 4.0 use-cases, pose serious
challenges to the underlying networks and clouds. On the one
hand, evolved cloud infrastructures and platforms, which are
evident results of last years’ research efforts, provide the IT
basis for future applications. On the other hand, networking
is in the middle of a momentous revolution and important
changes are mainly driven by Network Function Virtualization
(NFV) and Software Defined Networking (SDN). The success
of future 5G systems and applications highly depends on the
novel methods addressing the integration and joint virtual-
ization of cloud and network resources. Moreover, a diverse
set of resources, i) controlled by different technologies, ii)
owned and managed by cooperating or competing providers,
should be coordinated and orchestrated in a novel system. In
order to enable emerging network services in carrier scale
with strict QoS requirements, including end-to-end latency
bounds or controlled dependability/reliability, we need a novel
way to jointly control cloud and network resources instead of
traditional approaches following separate control. In addition,
the technological basis has to be elaborated which enables
future business models and cooperation among the stakehold-
ers of the ecosystem. Relevant research efforts have been
recently focused on these technical challenges by the industry
and the academia. The novel solutions and technical back-
ground enable a novel way of provisioning virtual services,
virtual resources, and in general, software products, over net-
worked systems. In the 5G ecosystem, operators have several
options for providing services starting from simpler NFVIaaS
(NFV Infrastructure as a Service) and NaaS (Network as a
Service) ending with fully fledged VNFaaS (Virtual Network
Function as a Service) or any types of SaaS (Software as a
Service).

In this paper, we propose a novel cross domain orchestra-
tion system which provides wholesale XaaS (Anything as a
Service) services over multiple administrative and technology
domains. The key enablers of the system are a novel embed-
ding engine supporting several constraints and multi-layer
operation, a resource control interface and an information
model together with the corresponding workflows, realizing
the joint virtualization and control of cloud and network
resources in a flexible and programmable way. The proposed
and implemented system supports automated operations over
multi-layer orchestration hierarchies created on demand and

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4640-388X
https://orcid.org/0000-0001-9927-0606
https://orcid.org/0000-0001-7075-309X
https://orcid.org/0000-0003-3880-1420
https://orcid.org/0000-0003-2971-3736
https://orcid.org/0000-0002-6565-7981
https://orcid.org/0000-0002-5806-6286
https://orcid.org/0000-0002-5298-4043
https://orcid.org/0000-0003-1045-9205


1402 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 7, JULY 2020

spanning across multiple, possibly administratively different,
infrastructure domains.

Our goal is threefold. First, we provide the design of
our novel orchestration system for 5G together with our
versatile embedding algorithm enabling recursive orchestration
hierarchies and advanced service requirements. The key “glue”
between the components of the architecture is a powerful
information model. The main features of the architecture
include i) efficient service embedding algorithms which can be
implemented based on the graph models, ii) inherent multi-
domain support, iii) programmable aggregation of different
resources, iv) information hiding together with flexible delega-
tion of certain requirements enabling multi-operator use-cases,
and v) support for legacy technologies. Second, we present
our proof-of-concept prototype implementing the proposed
system. Third, we establish a dedicated test environment span-
ning across multiple European sites encompassing sandbox
environments both from operators and the academia, and then
we evaluate the operation of the system. Control- and data
plane experiments confirm the feasibility and good scalability
of the whole framework.

The rest of the paper is organized as follows. Sec. II pro-
vides a summary on the related work. In Sec. II-B, an Industry
4.0 service is described in detail as an illustration of future
services and requirements. Sec. III is devoted to the details
of the system design including our information model and
the resource control API. Sec. IV focuses on the embedding
algorithm and its main features. In Sec. V, we present our
proof-of-concept prototype implementing the relevant parts of
our orchestration system. Sec. VI gives a detailed evaluation of
the control plane operation and in addition, presents real exper-
iments conducted across an European multi-domain sandbox
environment including data planes with different technologies.
And finally, Sec. VII draws the conclusions.

II. BACKGROUND AND RELATED WORK

A. Virtualized Services, Federated Operators

Throughout the paper we utilize the notions of NFVI-
aaS, VNFaaS and Slice as a Service (SlaaS). The SlaaS
provider offers supporting services, such as configuration and
management of the elements of the service, and it manages
the service in a holistic end-to-end manner, i.e., regardless
of whose VNFs are deployed where, the end-to-end chain
fulfills the requirements on the network and the service access
point(s). Thus, the provisioning of end-to-end services requires
the combination of services from all three aforementioned
categories.

Ordinary network slicing allows a network operator to
provide dedicated virtual networks with functionality specific
to the service or to the customer over a common network
infrastructure [28], [32]. Using resources such as processors
and storage, network slicing also permits the creation of
slices devoted to logical, self-contained, partitioned network
functions [34]. Federated network slicing is designed to enable
provisioning of network slices globally, making sure that
customers do not need individual agreements with different
operators for a global service experience [20]: early in 2017,
a proof of concept demonstration of federated network slicing

was shown at Mobile World Congress (MWC) by Ericsson,
Deutsche Telekom and SK Telecom. Other vendors and oper-
ators, e.g., Huawei and British Telecom, are also intensively
working on federated network slicing.

A network slice is inherently crafted for a specific single
service and a single customer/tenant. Making a step further
from the federated network slicing concept, the Slice as a
Service model we propose is a composite, service-agnostic,
wholesale offering of IaaS, VNFaaS and related enabling
services.

B. An Illustrative Example of Future Services

This section is devoted to present a potential future use-case
that illustrates emerging requirements, which should be ful-
filled by 5G applications and also showcasing the challenges
that orchestration systems and providers will face. Fig. 1
shows an envisioned Industry 4.0 robotics service (platform)
and the relation between the stakeholders involved in provi-
sioning and implementation of the service. Industry 4.0 is a
name for the current trend of automation and data exchange
in manufacturing technologies [5]. For the sake of clarity,
the control and management planes are shown separately from
the data and service planes in the figure. On the left hand side,
the structure of the orchestration-related components and the
requests from the customers are presented, while the right part
of the figure illustrates how the orchestration system maps the
service function chains (SFCs) to the underlying data plane
infrastructure.

Multiple 5G operators with different roles, capabilities,
hardware/software resources and service portfolios are coop-
erating in creation, deployment and provisioning of the robot
service. This federation of providers makes 5G a global
platform and enables service provisioning over the aggregated
resource set of the whole federation.

By these means, the geographic footprint of an individual
operator is extended to a “global coverage”, which could be
an important incentive for operators to participate. In our
example, five different 5G operators/providers are involved,
namely the Factory Provider, Operators 1-3, and the XaaS
Provider.

Factory Provider is an NFVIaaS provider at the factory’s
premises with compute resources (small datacenter onsite),
network infrastructure (SDN and industry WiFi in the exam-
ple) and resource orchestration capabilities. Operators 1-3 are
5G operators with geographically distributed footprints (e.g.
from different countries), which are connected in the control
plane and in the data plane as well if they own physical
infrastructure. In our example, Op. 3 has direct connection
(both control- and data plane) to the Factory Provider, how-
ever, Op. 1 has only indirect connections via Op. 2 or via
Op. 2 and Op. 3. In the illustrated scenario, Op. 2 is a
transport provider offering only network connectivity service
(NaaS), while Op. 1 and Op. 3 are (enterprise) customer-facing
providers with VNFaaS solutions. They provide fully fledged
virtual services, consisting of own or 3rd party VNF software
packages, service specific configuration and operation tools
and service agnostic life-cycle management components, over
a virtual 5G infrastructure including own and leased resources.
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Fig. 1. An Industry 4.0 robot control service.

In order to construct the service, the 3rd party XaaS Provider is
invoked who is aware of the service specific logic, service level
requirements and decomposition rules. In addition, operators
without data plane infrastructure could also participate in the
orchestration workflow (not shown in the figure).

In our example, the XaaS Provider runs a dedicated VNF
Manager (VNFM) module providing two different Robot Con-
trol VNFs (RC1, RC2) with different purpose, characteristics
and requirements. On the one hand, RC1 can control a robotic
arm in the factory, which requires ultra high reliability and
strict latency bounds. This VNF is described by a dedicated
VNF Descriptor (VNFD for RC1) available at the XaaS
Provider. On the other hand, RC2 implements a resilient
PID (proportional-integral-derivative) controller for a robot
balancing vertically on two wheels (defined by VNFD for
RC2). Customers can request these individual services directly
from their own operators or they can construct compound
services, formulated as novel service descriptors, in order to
extend the basic features. For example, Customer 2 combines
the RC2 VNF, managed by the 3rd party XaaS Provider,
an unmanaged image processing VNF brought by the cus-
tomer, and a distributed router VNF managed by internal
VNFMs of the operators (not shown in the figure), while
Customer 1 and Customer 3 request the default RC1 and
RC2 services from their own operators, respectively.

A key and challenging task of the multi-domain and multi-
operator orchestration system is to deploy the requested
services on the available resources in an efficient way
while meeting the service level requirements. For example,
the envisioned robot service poses dependability and latency
related requirements. Specifically, the ultra high reliability of
RC1 should be provided by two VNFs running on physically

different servers and connected via disjoint paths (node/link
anti-affinity constraints), while the strict latency bounds should
be resolved by VNFs placed close enough to the device.
The realization of the resilient PID controller of RC2 needs
a PID close to the robot and a backup PID without strict
delay constraint. (We assume stateless PID VNFs that require
all state information to be exchanged in the robot control
messages.)

These types of constraints, including end-to-end latency
and bandwidth requirements, affinity and anti-affinity rules,
should be resolved in an automated way by the system, which
requires the cooperation of different orchestrator modules.
Moreover, in order to provision the service for Customer 2,
cooperating providers should be able to connect RC2 and the
image processing VNF via different technological domains
(e.g., SDN and legacy IP), while meeting e.g., the latency and
bandwidth constraints. In our example, the virtual distributed
router should be decomposed and implemented by different
domains accordingly, depending on the current placement of
other components. Furthermore, XaaS provider should be able
to share different VNFs among customers if policies enable
that. In Fig. 1, PID1 (the one closer to the robot) is shared
between Customers 2 and 3.

Today, it is challenging to create a service on-the-fly with
given requirements spanning across multiple administrative
domains. We argue that a situational orchestration hierarchy
has to be constructed on-demand based on a negotiation
process among 5G operators. As a result, an automated multi-
layer orchestration process can be executed involving the
cooperating operators. Resolving constraints, such as end-to-
end latency/bandwidth constraints, VNF/link affinity and anti-
affinity criteria, require novel workflows and inter-operation
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between orchestrator components. This paper proposes an
orchestration system supporting these novel features.

C. State-of-the-Art of Service and Resource Orchestration

There is plenty of orchestration solutions available in acad-
emia, and in the commercial offer. In this section, we cate-
gorize the vast body of work in this field along their field
of application: whether the solution provides orchestrating
features for cloud or for telco systems.

1) Cloud Computing and Micro Services: There are several
fully-fledged solutions for IT resource and VM management:
cloud platforms [1], [14], and cloud orchestrators [3] for
both private and public clouds. The current hype builds upon
light-weight hypervisors [4], [7], and cloud native orches-
tration solutions typically manage micro-services deployed
in containers [6]. On the networking side, SDN platforms
[11], [19] are available for controlling network resources and
programming the low-level behavior of the forwarding and
processing elements.

2) Telco Solutions for Network Function Virtualization:
Besides control and orchestration frameworks targeting solely
IT or solely network resources, a number of integrated archi-
tectures and experimental solutions address the joint control
of these resources [2], [12], [13], [15]–[18], [21]. Nowadays
many of the popular open source control and orchestration
frameworks projects are based on the ETSI NFV MANO [21]
specification and due to their modular architecture design,
the developers are able to replace each component to ensure
collaboration with third party software, which carries the bene-
fits of fast development and enrichment of their features. While
most of the solutions provide multi-VIM (Virtual Infrastructure
Manager) support, the inter-VIM orchestration feature is still
somewhat rudimentary in each of them.

Orchestrating over multiple domains is needed to deploy
geographically scattered network services, however, at this
time, these frameworks support only single operator mode,
that is, each VIM island belongs to the same operator. Nev-
ertheless, the service embedding problem is hard even if no
inter-operator relations exacerbate the situation. This so-called
Virtual Network Embedding problem has been addressed by
a plethora of research initiatives [24]–[27], [29].

The Open Network Automation Platform (ONAP) [10] aims
to offer policy-driven orchestration for different technology
domains. Primarily, ONAP’s orchestration engine lacks net-
work resource (and topology) awareness, meaning it cannot
take into account any requirements on the logical connections
between the service components, such as latency and path
reliability constraints. Furthermore, due to the lack of support
for hierarchical orchestration in ONAP, it does not enable the
federation of providers, i.e., it does not let service-focused 3rd
party providers enter the 5G ecosystem. Contrary to ONAP,
our solution can solve these challenges.

Our goal is to provide a multi-operator collaboration frame-
work supporting special constraints on reliability and latency,
which are resolved either directly, or delegated via an orches-
tration hierarchy. In ETSI, the Management and Orchestration
Framework has been extended to support multiple administra-

tive domains for NFVIaaS and NS across different adminis-
trative domains [23].

Metro Ethernet Forum’s Third Network concept [8] envi-
sions agile and assured global connectivity services that will
be orchestrated end-to-end across all network domains, which
may be owned and orchestrated by different network opera-
tors. Large operators and solution providers (with Cisco and
Comarch on board) formed the ngena [9] alliance with the
common goal of realizing network services in shared partner
networks around the globe, however, technical details are
not disclosed to the public. Nevertheless, to the best of our
knowledge, currently there is no other orchestration system
that would feature end-to-end latency and reliability support
(later presented in Sec. V-A) across multiple administrative
domains.

III. SYSTEM DESIGN

In this section, we summarize our main design goals and
followed principles.

A. Design Principles

The main driving force of building a cross-domain orches-
tration system is the need for the novel end-user services
that geographically span over multiple operators’ turf, and
are provisioned by multiple actors ranging from infrastructure
providers to application providers.

Envisioned future applications can have special, even
extreme requirements as we described in Sec. II-B. For exam-
ple, critical machine-type communications use-cases require
low latency, high reliability and continuous availability for a
wide geographic reach.

The customer-facing provider contracted with the end-user
may not have its own compute and network infrastructure
anywhere the end-user might be interested to consume the
service. Therefore, the option of utilizing resources of partner
providers is essential, and for the envisioned 5G services,
the federated network slicing is a must, as it is shown by
the example given in Sec. II-B. In addition to buying and
selling virtualized resources, there is a growing interest in
“outsourcing” the development of software components as
Virtual Network Functions (VNFs). The cross-domain orches-
tration system should support service composition, building
on 3rd party application providers’ VNFs as components.
Furthermore, it should also support automated on-boarding of
3rd Party Product (3PP) VNFs in order to enrich the VNF
portfolio of given providers.

In this ecosystem, a customer-facing provider can buy
virtual resources and VNFs from other partners so it can offer
orchestrated services for their customers over the complete
footprint of the federation. As all participating providers are
separate business entities, they want sufficient control on
what to expose from their resources, topology and services
and to whom. In order to enable the federated orchestration
and coordination, corresponding APIs should be defined and
implemented. Besides the necessary technical alignment, com-
prehensive business agreements need to be made based on
exchanging resource and service catalogs, sharing high level
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Fig. 2. Services and our architecture proposal.

topology information for the expectable quality of service,
automated price negotiation, SLA creation and enforcement,
and finally charging plans. Users of this platform take inter-
changable provider and customer roles depending on who
offers the end-user service and who provides the necessary
building blocks for it.

The main concepts on various service options and relations
among them are depicted in Fig. 2a. Following ETSI’s ter-
minology [22], NFVIaaS corresponds to Infrastructure as a
Service, capable of hosting VNFs, while NaaS corresponds to
Networking as a Service. Any value-added network service
is provided as VNF. Central to our concept is the VNF as a
Service (VNFaaS) definition. VNFaaS is a managed service,
which comprises i) an infrastructure where the VNF can be
hosted; ii) the VNF software and iii) operations including
virtualization lifecycle management, necessary Element Man-
agement (EM) and Operations Support Systems / Business
Support Systems (OSS/BSS). We believe that any of the
VNFaaS components may be provided by different business
actors, in this case the customer-facing provider must collect
all the components and coordinate service provisioning. Note
that it is also possible that any of the VNFaaS components
are located at the custumer. In this context Slice as a Service
(SlaaS) is defined as interconnection of XaaS components
corresponding to NaaS and VNFaaS, respectively with their
service configurations and supportive services.

The proposed orchestration system heavily builds on the
concept of separating service orchestration and resource
orchestration, because cross-domain resource orchestration
interfaces are always required to provide cross-domain ser-
vices as opposed to service orchestration interfaces, which
may remain provider-internal. Our main goal is to provide
the technological building blocks of the envisioned resource
orchestration platform, which can have significant role in
future 5G systems.

B. Proposed Architecture: Key Components and Workflows

Our architecture proposal shown in Fig. 2b extends
ETSI’s NFV MANO (Management and Orchestration) frame-
work [21] with additional OSS/BBS functionality to enable

orchestration across multiple administrative domains. Our
architecture inherently supports the functional split between
the service related OSS functionality of the VNFaaS provider,
the VNFaaS customer and the owner of the VNF software,
i.e., the developer/vendor. We argue that a VNF software
package consists of three main parts: i) software components
implementing the service (VNF), ii) software components
implementing the configuration management interface of the
first element, referred to as EM, iii) and software component
operating the previous two ones, i.e., it creates/starts/stops
them as needed, referred to as VNFM or lifecycle man-
agement (LCM). The latter two component groups repre-
sent OSS/BSS functionality. By realizing this split different
VNFaaS ownership scenarios can be realized where the con-
trol and ownership of VNFs, EMs and VNFMs are shared
among participating stakeholders (software vendors, VNFaaS
providers, partner providers, customers) in any combination.
In Fig. 2b, Provider A is the customer-facing VNFaaS provider
consuming resources from Provider B’s domain and running
3rd party software components while provisioning the service
to her customer.

The additional features of the proposed architecture cover
the following areas: i) recursive orchestration API provided by
NFVOs to other NFVOs; ii) customer contexts in the NFVO
to expose different orchestration views to different customers
based on policies; iii) recursive VNF template substitutions
controlled by VNFMs that allow constructing VNFs based on
other, potentially 3PP VNFs. The related workflows are the
following.

The NFVO - NFVO API allows the subordinate NFVO to
expose its abstract resource topology and capabilities towards
customer NFVOs. The API may represent all or some of
the domains and capabilities accessible via the particular
provider. More exactly, based on the policies of the advertising
provider, the exposed topology consists of one or more abstract
nodes, virtual links and the list of VNF types available in the
subordinate domains.

Using different orchestration views and contexts makes
it possible to build a symmetric or peer-to-peer rela-
tionship between two providers with situational con-
sumer/provider roles. The exposed resource views at the
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Fig. 3. NSO-VNFM-RO interfaces, workflows.

NFVOs should be configurable to reflect the desired
aggregation level and information hiding policies of the
operators.

Several orchestration hierarchies can be created on demand
and exist in parallel.

When an orchestration request arrives, the NFVO checks
local policies to identify the allowed resource domains for
the request. This may be followed by VNF decomposition,
managed by VNFMs, when compound VNFs are replaced
by building block VNFs, which may refer to VNFs provided
by underlying providers. The embedding algorithms are key
components of the NFVO and enablers of several features
expected from the federated orchestration system. Once the
components are mapped to the abstract resource topology
visible at the given layer, a second round of VNF subgraph
substitutions is invoked for VNFs that require the mapping
decisions as input.

Therefore, we distinguish two VNFM types corresponding
to decomposition before and after the embedding. In the
former case, the set of service components is embedding-
agnostic, whereas in the latter case, the cardinality of functions
depends on the topological embedding. For example, a distrib-
uted router/switch function needs to be deployed for each join
and fork along the distribution network.

The dynamic behavior of the system is determined by the
cooperation of components responsible for life-cycle manage-
ment (LCM) and resource orchestration (RO). LCM functions
shape the temporal aspects of a service while RO func-
tions deal with their spatial aspects via resource assignment.
On the one hand, Network Service Orchestration (NSO) is
a typical end-to-end scoped LCM function encompassed by
the NFVO. On the other hand, a VNFM is a component
scoped LCM function which may decompose the component
to a sub-service function chain. Fig. 3 shows the layering of
the NSO, RO and VNFM. The bottom-up information flow
corresponds to the topology of resources and capabilities,
where capabilities are NFVIaaS and VNFaaS. Observe that
the RO-RO and the RO-VNFM-RO interfaces are recurring,

Fig. 4. Information model: A simplified view.

corresponding to incremental refinement of the embedding and
to incremental decomposition of a service, respectively. In our
design and implementation, all the interfaces crossing the red
ovals in Fig. 3 (both solid and dashed) are the same. The NSO
terminates this recursive pattern and provides an interface with
the OSS/BSS systems.

C. Information Model

Central to the multi-provider hierarchical orchestration sys-
tem is the information model that abstracts both i) the bottom-
up network of compute resources and function capabilities,
and ii) the top-down view of control over the virtualized
infrastructure. This information model is used at the recurring
resource control interfaces. The role one plays is situational,
i.e., two peering providers will switch provider and consumer
roles depending on who the tenant is that creates the service
over the other’s infrastructure. Since the ETSI NFV MANO
architecture primarily focuses on single provider domain and
virtualization control, they have not planned with the robust-
ness necessary for inter-working among autonomous systems.
Therefore, while retaining full compliance with ETSI Network
Service offerings, we define our own information model,
which supports an open ecosystem with multiple business
actors.

In this heterogeneous setup, we strive to follow the success
of IP’s narrow waist concept, but this time for the management
plane. Following basic economic trading notions, we designed
an object-oriented information model (see Fig. 4) that makes
the case of balanced assets and liabilities. The topology of
resources and capabilities are the assets, while the topology
of committed allocations are the liabilities: a node represents
either an abstraction of node resources and capabilities or a
VNF allocated on a node. Node objects have ports representing
connection points; links connecting ports of different nodes
define abstract interconnection; links interconnecting ports of
the same node, i.e., internal links, capture the aggregation for a
topology, e.g., if a domain of 10 MPLS switches is aggregated
into a single node, then the external ports of the MPLS
domain will appear in the abstract node with internal links that
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characterize the edge-to-edge LSPs, like latency, bandwidth,
QoS class, etc. In order to allow forwarding control for nodes,
flowentries can be defined: we use port - match - action sets
following the SDN design principle, but we support various
technology specific mappings. Basic life-cycle management
operations are contained in the status field of each node, such
as create, start, stop, and pause.

The node object is named as Big Switch with Big Software
(BiS-BiS). The task of service embedding is analogous to
match the resource assignment from the northbound topology
of allocations to the southbound topology of resources and
capabilities. Multi-tenancy is supported by offering multiple
northbound views over a shared southbound view: since the
northbound view is not limited to a single BiS-BiS, an arbi-
trary topology of resources and capabilities can be defined
according to standing business contracts, e.g., a control over
East and West deployments, to be offered to the consumer.
The flowrules may include i) matching on input port, abstract
tags or any other technology specific header fields, ii) actions,
such as output to port, push/pop abstract tags or any other
technology specific packet manipulation. BiS-BiS nodes can
be connected to each other representing direct or logical
connectivity between the corresponding ports. Service Access
Points (SAPs) represent external connections where customers
can be attached to the system. Constraints associated with
both the Node and Flowentry objects allow for pairwise
(anti-)affinity “groups” or upper bounds on segment delay.

Comparing our information model with ETSI’s, a service
function chain mapped to a Single BiS-BiS view has its
analogue with ETSI’s VNF Forwarding Graph representation.
Our model, however, i) allows for the abstraction of an
arbitrary topology of resources and capabilities, ii) introduces
typed VNFs, which correspond to VNFaaS, iii) allows mul-
tiple capability instances of the typed VNF, hence connecting
VNFaaS flavors to virtualization profiles, like latency of max
rate through a VNF with given {cpu, mem, storage} profile;
iv) inherently supports basic LCM actions, so LCM functions
can be transparently inserted in any orchestration “layer”; v)
allows full recursion, i.e., the northbound and southbound
representations are the same for resource orchestrator and
LCM components.

IV. KEY ENABLER: OUR EMBEDDING ALGORITHM

The most challenging part of the system is how to map
the service components to resources. Our proposed online
embedding algorithm operates in the NFVOs, which are con-
nected in a multi-layer hierarchy, and supports several types
of constraints, such as end-to-end QoS characteristics, cost
limits and reliability requirements. The multi-layer distributed
operation poses additional challenges to the algorithm and the
framework. For example, certain constraints (e.g., anti-affinity)
can be delegated via the orchestration hierarchy, but if the
underlying NFVOs cannot fulfill those, a rollback mechanism
should restore the previous consistent state of the overall
system. In addition, the top level NFVO should be able to
try other embedding options by the means of a multi-level
backtracking mechanism. This section is devoted to this core

TABLE I

NOTATIONS USED IN EMBEDDING ALGORITHM DESCRIPTION

component of our platform: we align the classical Virtual Net-
work Embedding (VNE) problem to our environment, present
the orchestration logic focusing on the advanced embedding
features and the peculiarities of the multi-domain nature of
the infrastructure, finally we analyze the efficiency of our
algorithm.

A. Mathematical Problem Statement

The information model presented in Sec. III-C enables to
describe the infrastructure in an abstract way spanning over
the various technologically and/or administratively different
domains. Each 5G operator represents their infrastructure with
a set of BiS-BiS nodes. Both the inter- and intra-provider trans-
port characteristics between the abstract BiS-BiS nodes are
described by the link objects of the information model. This
abstraction provides a graph-based representation of topology
and capabilities (resource graph) R = (VR, ER), and of
service deployment requests (service graph) S = (VS , ES) for
our mathematical problem definition. Our problem formulation
is a variant of VNE, which is a well studied research problem
[24], [27].

We present an online version of the VNE problem, where
only a single service graph is considered by (1)-(7).1 The
notations are summarized in Tab. I. The mapping structures
μ, λ describe a mapping solution, where each service graph
node VS is mapped to a (possibly abstract) node in the
resource graph VR. The link mappings must be valid, i.e., their
hosting paths must start and end at the hosts of their ends

1We omitted introducing node and link (anti-)affinity requirements and VNF
hosting cost limits to our VNE problem definition to keep it simple.
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as described by (1). The node mapping must respect the
functional requirements of the VNFs i ∈ VS as required by
(2). Constraint (3) ensures that node capacity requirements
mapped to a resource node u ∈ VR do not exceed the total
capacity of the node for each resource type RS,R. Link-wise
delay requirements must be respected by the link mapping
function λ for each VNF connection (i, j) ∈ ES as stated by
(4). Constraint (5) defines the set of all VNF connections using
a substrate network connection as M(u, v). This set is used to
summarize all the bandwidth capacity requirements bES(i, j),
which must be upper bounded by the resource link’s bandwidth
capacity bER(u, v).

∀(i, j) ∈ ES : μ(i) = λ(i, j).f irst and

μ(j) = λ(i, j).last (1)

∀i ∈ VS : fVS (i) ∈ fVR

(
μ(i)

)
(2)

∀u ∈ VR, ∀r ∈ RS,R :∑
{i|μ(i)=u, i∈VS}

cVS (i, r) ≤ cVR(u, r) (3)

∀(i, j) ∈ ES :
∑

(u,v)∈λ(i,j)

dER(u, v) ≤ dES (i, j) (4)

∀(u, v)∈ER, M(u, v) :={(i, j)|(u, v)∈λ(i, j)

and (i, j) ∈ VS} :
∑

(i,j)∈M(u,v)

bES(i, j) ≤ bER(u, v) (5)

∀(p, Dp) ∈ CES :
∑

(i,j)∈p

∑
(u,v)∈λ(i,j)

dER(u, v) ≤ Dp (6)

minμ,λ

∑
ej ,j∈ΨS

CALCOBJECTIVEVALUE
(
λ(ej , j),

μ(ej , j), ej , j
)

(7)

In addition to link-wise delays, we extend the VNE problem
with path delay requirements CES , which contain maximal
allowed latency on multiple consecutive VNF connections of
ES . These type of path delay constraints are highly motivated
by real world applications, as presented earlier in Sec. II-B.
The optimization goal of our online variation of VNE will be
detailed during the embedding algorithm description, for now
we just give a general objective function which minimizes
the sum of the objective value of each VNF j ∈ VS and the
adjacent service graph connection ej ∈ ES .

Most of the practically interesting variants of the VNE
problem are known to be NP-hard and strongly inapproximable
[31]. Our formulation introduces more constraints, such as
the path delay requirement, so the same observations about
complexity apply to our VNE formulation.

B. Basic Operation of the Embedding Algorithm

The embedding algorithm computes the mapping to the
underlying abstract resources exposed by partner providers.
The service and resource graph models enable efficient
and versatile embedding algorithms to be implemented. Our
orchestration engine runs a heuristic-guided greedy backtrack-
ing search on the resource graph structure. An overview on the
formal description of this approach is shown in Alg. 1. Refer
to Tab. I for a summary of the notations.

Algorithm 1 Overview of the Embedding Algorithm Returns
a Set of Complete Mapping Structures of Service Graph S to
Resource Graph R

1: procedure MAP(S, R) → μ, λ
2: ΨS ← ORDERLEGSFORMAPPING(VS , ES)
3: while ∃ej , j ∈ ΨS where �μ(ej , j) or �λ(ej , j) do
4: while MAPONENF(ej , j) not successful do
5: ej′ , j

′ ← GETBACKTRACKOPTION(ej , j)
6: UNDOGREEDYMAPPING(ej′ , j

′)
7: ej , j ← ej′ , j

′

8: end while
9: end while

10: return μ, λ
11: end procedure

Algorithm 2 Details of the Objective Value Calculation for
Greedily Choosing the Locally Most Preferred Resource Node
and Hosting Path for a Leg. Returns a Real Value, Which Is
Used to Sort the Hosting Options of a Leg

• Ωx, ρx are the value and weights of the bandwidth,
resource, latency, cost components, denoted by x ∈
{bw, res, lat, cost} respectively.

• ωr are the weights of node resource component r.
• ξ1, ξ2 are the weights of the latency components.

1: procedure CALCOBJECTIVEVALUE(ej , j, pu�v, v)
2: Ωbw ← GETAVERAGEPATHBWUTIL(pu�v)
3: Ωres ←

∑
r∈RS,R

ωrGETNODERESUTIL(v, r)
4: Ωlat ← ξ1DISTANCEFROMLASTHOST(pu�v) +

ξ2DIRECTTOWARDSENDOFPATHLATENCY(ej , j, v, μ)
5: Ωcost ← GETCOSTOFLEGHOST(pu�v, v, ej, j)
6: return

∑
x∈{bw,res,lat,cost} ρxΩx

7: end procedure

An elementary mapping step is the greedy allocation of a
VNF and an adjacent service graph link, called leg (ej , j),
onto a hosting (virtual) substrate node and path. An embed-
ding order among these elementary steps is calculated by
the function ORDERLEGSFORMAPPING(VS , ES). In case a
greedy step is not able to find a suitable host, while respecting
all service graph requirements, the most recent greedy step
is undone by freeing the temporarily reserved resources. The
orchestration engine yields an embedding solution, when all
elements of the service graph have been successfully mapped
respecting each aspect of the requirements or refuses the
request altogether. Alg. 1 returns the embedded solution μ
and λ, which give the hosting node of a VNF and the hosting
path of a service graph link respectively. More details on
the ORDERLEGSFORMAPPING(VS , ES) and the greedy back-
tracking, without considering advanced features and multi-
domain support, is presented in our earlier publication, which
also compares the algorithm’s performance to that of Integer
Programming methods [30].

In each greedy step, the hosting substrate path and
node pair with the lowest objective function value is cho-
sen for mapping, and the next couple of best ones (con-
trolled by the branching factor) are stored for possible later
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exploration. The details of how the embedding possibilities are
sorted is shown in Alg. 2. Besides the resource availability
and greedy search directing objective function components,
GETCOSTOFLEGHOST(pu�v, v, ej, j) calculates the cost of
using a hosting resource graph path pu�v ∈ P(ER) and host
v ∈ VR for (ej, j).

The search space size of the greedy backtracking can be
tuned by the backtracking parameters (i) defining how many
hosting alternatives of an elementary step shall be stored
(branching factor), and (ii) how many consecutive greedy
steps can be undone in the search tree (backtracking depth).
The weighted sum of the objective’s four components enables
us to tune the algorithm to multiple application scenarios. A
given setting for the weights of latency subcomponents ξi,
resource type subcomponents ωr and objective components
ρx provide a fully specified optimization goal for the math-
ematical problem statement in (7). These parameters enable
our multi-domain orchestrator to be versatile: (i) optimizing
for bandwidth utilization on infrastructure connections, (ii)
distributing node resource utilization among operators, (iii)
providing high service acceptance for delay critical applica-
tions, (iv) minimizing administrative costs of routing and VNF
hosting, or (v) arbitrary superposition of multiple operating
policies from the various involved entities.

Our proposed orchestration engine can be applied on each
abstraction layer of the recursive infrastructure. Due to the
hidden information of an underlying operator resources (e.g.
if a single aggregated BiS-BiS view is shown from a domain),
it is possible that a selected embedding solution on the abstract
view of an upper layer proves to be infeasible on a lower
abstraction layer. In this case, the orchestrators of different lay-
ers communicate this failure to the appropriate domains, which
undo the failed (partial) service instantiation. Our algorithm
supports this scenario efficiently: if a lower abstraction layer
failure notification arrives, the greedy backtracking search
continues from the latest solution, eliminating the need to
calculate the whole orchestration process from scratch.

C. Advanced Embedding Features: End-to-End Delays, Node
and Link (Anti-)Affinities

We consider path delay support and affinity type require-
ments as advanced orchestration features, because they are
generally not included in VNE problem definitions. Moreover,
to the best of our knowledge no other VNE algorithm con-
siders anti-affinity requirements on service graph paths. We
include these features in our proposed multi-domain orches-
tration engine.

Apart from basic service graph requirement of node and
link capacities, VNF type constraints and link-wise delay
requirements, our orchestration system supports maximum
end-to-end allowed delay requirements on service graph paths,
as stated by Constraint (6). The greedy orchestration steps
can be controlled by the value of the latency preference Ωlat

component and its weight ρlat, as shown in Alg. 2. If such end-
to-end requirement is given for orchestration, a delay budget is
allocated for all affected BiS-BiS nodes, whose orchestrators
over lower level resource abstractions receive this delay budget

Algorithm 3 Details of the MAPONENF(ej , j) Function’s
Node Affinity and Anti-Affinity and Link Anti-Affinity Crite-
ria Compilation. Returns Whether a Resource Path and Node
of a Leg Complies to All Affinity-Like Criteria

1: procedure COMPLYNODECRITERIA(j, v,A+
n ,A−

n )
2: for all (A, �) ∈ {(A+

n , �=), (A−
n , =)} do

3: for all k ∈ A(j) do
4: if ∃μ(k) and μ(k) � v then
5: return False
6: end if
7: end for
8: end for
9: return True

10: end procedure
11:

12: procedure COMPLYLINKCRITERIA(ej , j, pu�v, v,A−
l )

13: for all e ∈ A−
l (ej , j) do

14: if ∃λ(e) then
15: if λ(e) ∩ pu�v �= ∅ then
16: return False
17: end if
18:

19: if N (pu�v) ∩ N (λ(e)) �= ∅ then
20: return False
21: end if
22: end if
23: end for
24: return True
25: end procedure

as input end-to-end requirements. This approach provides the
multi-domain, multi-operator support of guaranteed end-to-end
path delays over a unified abstract interface. An example for
the application of this feature is from Fig. 1, where Op. 1 needs
to allocate a delay budget for the Factory Provider’s orchestra-
tor to ensure she can meet the strict delay requirement needed
between the robot at the factory site and the control logic at
Op. 1’s edge data center.

Node affinity requirement, denoted by A+
n , is a binary

relation between VNFs of the service graph, which requests
the affected VNFs to be placed on the same hosting nodes.
This requirement always needs to be forwarded to the lower
orchestration layers until the physical layer is reached. The
capability of an infrastructure node for receiving VNF affinity
requirements is described by the Capabilities field of an
abstract node (see Fig. 4). In contrary, the binary relation
of node anti-affinity requirement, denoted by A−

n , specifies
the affected NFs to be placed on different abstract and phys-
ical nodes. The first procedure of Alg. 3 shows the details
of the node affinity and anti-affinity criteria compliance at
each greedy orchestration step. In our orchestration system,
the node anti-affinity criteria are preferred to be resolved
in the orchestration hierarchy as high as possible. In case
it is not possible due to other requirements ruling out the
desired mapping possibilities, the resolution of node anti-
affinity criteria can be delegated to abstract BiS-BiS nodes.
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The lower abstraction level orchestrators get the delegated anti-
affinity criteria as input, and follow the same approach. If any
node anti-affinity criteria cannot be resolved on the selected
search space throughout the whole orchestration hierarchy,
a failure is propagated to upper orchestrators.

We have extended the anti-affinity requirement for service
graph paths as well: logical links of the resource graph can
be grouped as link anti-affinity groups (LAAFFG). Binary
relations among LAAFFGs define that all included VNFs and
links of a LAAFFG must be mapped to resources indepen-
dent of the hosting elements of the opposing LAAFFG (see
PIDA, PIDB and their connections in Fig. 1). The link
anti-affinity structure is denoted by A−

l , and it identifies a
set of service graph edges, which need to be in anti-affinity
relation with a given leg ej , j ∈ ΨS . The second procedure
of Alg. 3 shows the details of how the link anti-affinity,
i.e., the hosting resource graph node and link independence
requirement, is enforced for one greedy orchestration step. In
line 18, N (λ(e)) stores the momentarily used infrastructure
nodes by a service graph link’s e ∈ ES path. An empty
intersection of N (λ(e)) and the nodes of the current path
ensures that the same nodes from R are not used for two links
in anti-affinity relation. The anti-affinity relations must always
be forwarded to the lower orchestrators, because the resource
independence must be respected even through the hierarchical
layers, as demonstrated by Enterprise Customer 2’s request
in Fig. 1.

D. Complexity Analysis

In our previous work [33], we analyzed the complexity of
our basic algrithm, now we focus on the extended version,
supporting affinity and anti-affinity constraints as well.

Theorem 1: The computational complexity of our basic
embedding algorithm is

O
(

max
{|VR|2|ER|, b log b

} bk+1

b− 1

⌈ |VS |
k

⌉)
.

Theorem 1 shows the polinomial runtime in the input sizes
R = (VR, ER), S = (VS , ES) of the basic version of the
orchestration logic. The b fix parameter is the branching factor
of the greedy backtrack search, which restricts how many
possible hosts for a leg (ej , j) can be stored, while k fix
parameter is the backtracking limit. This makes our embedding
solution fixed parameter tractable for backtrack parameters b
and k. Since the algorithm has been extended by the support
for node and link (anti-)affinity requirements, we revise this
analysis accordingly.

Theorem 2: The computational complexity of complying the
node and link (anti-)affinity criteria is

O
(
|ER|2 + |ER||VR|+ |VS |

)
.

Proof: The innermost for cycle of the first procedure of
Alg. 3 runs at most |A| iterations, which needs to be executed
for both the affinity and anti-affinity node criteria. Therefore
its runtime can be upper bounded by a constant factor of the
two structures’ summed size, which can be upper bounded
by the VNF count: O(|A+

n | + |A−
n |) = O(|VS | + |VS |) =

O(|VS |). The second procedure runs at most |A−
l | iterations

Fig. 5. Software architecture of our orchestrator.

(upper bounded by the link count of R), which means always
evaluating the existential quantifier (∃) as true, assuming the
worst case runtime. Evaluating the intersections of the anti-
affinity constraints for both the current hosting node and path
structures can be upper bounded by the node and link counts
of the infrastructure respectively: O(|A−

l |(|VR| + |ER|)) =
O(|ER|(|VR| + |ER|)) = O(|ER|2 + |ER||VR| + |VS |). This
yields the overall runtime complexity of Alg. 3. �

Theorem 3: The overall complexity of our embedding algo-
rithm respecting node and link (anti-)affinity requirements is

O
(

max
{|VR|2|ER|+|ER|2+|VS|, b log b

} bk+1

b− 1

⌈ |VS |
k

⌉)
.

Proof: As argued in our paper [33], due to the back-
tracking search approach MAPONENF(ej , j) is used at most
bk+1

b−1

⌈
|VS|

k

⌉
times. The two procedures of Alg. 3 are both

evaluated for each MAPONENF(ej , j) execution, so its com-
plexity is added to the first argument of the max{} function
in Theorem 1. Adding the statement of Theorem 2 to our
basic algorithm’s complexity, having |ER||VR| dominated by
|VR|2|ER|, leads to the overall complexity of our feature-rich
multi-domain embedding algorithm. �

This statement shows that the runtime is polinomial in the
input size with low exponents. Supporting the node and link
(anti-)affinity requirements introduces acceptable overhead.

V. IMPLEMENTATION

In this section we present our proof-of-concept prototype
implementing the relevant parts of the proposed orchestration
system, which is released as open-source. The main functional
blocks are shown in Fig. 5.

A. Resource Orchestrator

Our Resource Orchestrator (RO) encompasses and coor-
dinates multiple components, as it is shown in Fig. 5. In
general, it is responsible for exposing different virtual resource
views upwards and for satisfying service deployment requests.
The requests are expressed on the high-level virtual views
(Resource Slices) and mapped onto the full domain view,



SONKOLY et al.: 5G APPLICATIONS FROM VISION TO REALITY: MULTI-OPERATOR ORCHESTRATION 1411

Fig. 6. Finite state machine in the robot control VNFM.

which encompasses the underlying resources and topologies.
In Fig. 5 hexagon (green) boxes correspond to resource views
while filled rectangles (red and also orange ones) indicate
orchestration or control related elements. During the orches-
tration workflow, RO engine invokes the Embedding algorithm
module, which performs the mapping of the service requests to
the available resources, according to the configured algorithm
and policies. The result describing the full deployment is then
sent to the Technology Adaptation component. RO also pro-
vides a domain-agnostic resource abstraction and virtualization
for different resources, technologies or administrative domains.
By these means, RO acts as a multi-domain, multi-vendor and
technology-independent controller entity. Before and after the
embedding step, the interaction with LCM modules is also
coordinated by RO.

Slicer is an integrated part of the RO and its role is fourfold:
i) it introduces multi-tenancy by configurable northbound
views, programmable resource aggregation and information
hiding; ii) it enforces operational policies with regards to
slice to resource mapping, e.g., if a consumer is limited to a
pool of domain resources, then these attributes are set before
calling the embedding function; iii) it enforces operational
policies with respect to consumer-to-consumer sharing of
service instances; iv) it loops in LCM functions (specific
VNFMs): forwards requests and combines responses into the
end-to-end service function chain before passing it to the
embedding logic. The LCM support in the slicer is recursive: a
service component decomposed/substituted by the LCM logic
may contain service components provided by further LCM
logic registered with the slicer.

B. Lifecycle Manager

We implemented two LCM/VNFM modules showcasing
the two different types of VNFMs (activated before/after the
embedding). The first one handles the reliable robot control
(RC2) service presented in Sec. II-B. If the Slicer detects
RC2 compound VNF in the request, it forwards that to
the registered LCM module. In our current implementation,
VNF sharing is supported and preferred. More specifically,
the VNFM tries to reuse already deployed components (PID
controllers in the use-case) and starts a trial and error opera-
tion phase following the finite state machine shown in Fig. 6.
In this phase, VNFM and RO are cooperating in order to
find a feasible resource assignment. VNFM is iterating among
the possible embedding states and initiates RO for trying to

Fig. 7. Realization of the robot control service.

realize the resource orchestration for the current state. After
each trial and error cycle, RO gives back a success/fail report
to the VNFM regarding the current state. As a first option,
VNFM tries to reuse two available PID VNFs, more exactly,
a closer one meeting the strict latency requirement and a
backup/remote one. If it fails, VNFM tries to share only one
of the VNFs and requests a new instance from the other one.
When sharing is not feasible, new instances are deployed.

Our second VNFM controls the deployment of a distributed
router (dR) VNF (also shown in the example of Sec. II-B).
It is activated after the embedding process and based on the
mapping decisions, the result is updated accordingly. Specif-
ically, multiple dR elements are added if more underlying
domains are involved, or dR is replaced to technology specific
configurations depending on the capabilities of the given
domains. For example, in an SDN capable domain abstract
flowrules are added, whereas for a legacy IP/MPLS domain
BGP VPN configuration is provided. The stitching points
between different technology domains are also considered by
the implemented VNFM.

C. Domain Orchestrators: OpenStack, Docker, SDN

In order to evaluate our concept in realistic scenarios,
the adaption to today’s VIMs is crucial. On the one hand,
we have developed a dedicated library (Virtualizer) fostering
the adaptation of different technologies. The library makes
it possible to add a northbound interface to available VIMs,
which is compliant with our resource control interface. On
the other hand, we have implemented domain orchestrators to
widely used VIMs.

As OpenStack is the most widely used open-source cloud
“operating system”, its integration in our framework is
inevitable. Our domain orchestrator provided for OpenStack is
referred to as OpenStack Domain Orchestrator (ODO). ODO
exposes a northbound interface, which is used to interact with
upper layer NFVOs following the information model presented
in Sec. III-C. A dedicated resource orchestrator module is the
core component, which parses the given configuration files,
maintains the current topology and the database of supported
VNFs and manages OpenStack through its REST APIs. ODO
supports two operation modes. The first one is an SDN
compatible mode, which can handle requests containing VNFs
connected by SDN flowrules. Here, all VNFs (VMs) contain
a wrapper function with an included Open vSwitch (OVS)
which allows to handle control plane massages coming from
the orchestrator. Furthermore, the wrapper is responsible for
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Fig. 8. Our sandbox environment and the evaluated robot control services (RC2, see Sec.II-B).

creating VXLAN tunnel endpoints and virtual interfaces in the
deployed instances. The other operation type of ODO supports
only “legacy IP” network connections. Using this configu-
ration option, the VNFs are deployed as simple VMs with
no extra wrapper functions and distinct neutron networks are
created for VNF interfaces. Each neutron network is connected
to at least one router to provide the connection between the
deployed VNFs. We also support the interconnection between
SDN and legacy IP domains. Our solution assumes BGP-based
IP VPN networks between domains realized by the BagPipe
driver. BGP VPNs are deployed and managed by domain
operators, in particular to manage Route Target identifiers
that control the traffic isolation between different VPNs.
Additionally, in the SDN domain, we need a special proxy
VM, responsible for traffic encapsulation and decapsulation
between the two technological domains.

An example realization is presented on Fig. 7, where the
solid lines show the flows of data. In an SDN compatible
OpenStack domain a special VM appears, called “central
VM”, whose main goal is to provide data plane connection
between the components of each domain. Similarly to ODO,
Docker Domain Orchestrator (DDO) was implemented to sup-
port Docker-based domains managing light-weight containers
instead of VMs. A DDO provides an upper layer above the
Docker and handles VNF deployment through the Docker API.
The data plane connections are realized by VXLAN tunnels,for
which endpoints are configured in the Docker’s OVS.

Finally, we implemented an SDN Orchestrator (SDNO),
which is capable of managing traffic forwarding rules in
OpenFlow networks. This solution is used in two different
ways: i) managing transport domains; ii) deploying VNFs
as OpenFlow flowrules. In the former case, the domain only
transmits the data plane traffic through its network, and SDNO
manages the necessary flowrules in an OVS. In the latter
case, SDNO deploys those VNFs, which can be realized
with OpenFlow flowrules, e.g., traffic splitter/duplicator or a
data plane IP router. Although, our SDNO is not a fully-
fledged OpenFlow controller, it supports both software-, and
hardware-based OpenFlow devices. We use technology spe-
cific adaptation to implement end-to-end connectivity over
domains with different network service capabilities. Such

technology adaptations are implemented in a network service
specific orchestration component. For example, for IP VPN
across IP/MPLS and SDN networks, the IP specific component
manages IP/MPLS BGP VPN parameters, configures static
routes over the SDN domain and stitches the two domains
together by injecting routing information of the SDN domain
into BGP at the stitching point.

VI. EVALUATION

In this section we demonstrate that the orchestration sys-
tem, with all its elements presented in the previous section,
scales well and does not raise significant performance issues.
We underpin this statement with experiment results that we
obtained on a large distributed testbed with a high number of
deployed services. The results show that the time the control
plane actions take is orders of magnitude lower than what is
inevitably spent with firing up data plane components.

In order to validate the automated end-to-end orchestration
of envisioned multi-provider 5G services in real-life situa-
tions, we built a sandbox that includes several administrative
domains, called sandbox islands, across Europe. These islands
are hosted by our collaborating partners including academia,
operators and vendors. Each island runs an instance of the
proposed prototype with all the components (LCM, RO, Slicer)
locally, as well as infrastructure domains with domain orches-
trators, e.g., Network (SDN), Docker or OpenStack domains,
with their corresponding domain orchestrator.

We organize the islands in a situational hierarchy as it is
shown in Fig. 8a in an anonymized way. A set of Tier 1
providers (B, E and S) are connected to a backbone network
with BGP VPN support which is under the control of provider
S. Other providers, i.e., D, F and K, are connected to the
federation via Tier 1 operators in data plane, while the control
plane hierarchy is created independently. We assume that oper-
ator B is the customer-facing provider sitting at the top of the
hierarchy. Resource control interfaces between multi-domain
orchestrators (MDOs) are indicated by red arrows, while the
control relation between MDO and DOs are shown by orange
ones. In the data plane, green lines correspond to SDN overlay,
whereas purple lines identify legacy IP connections. In the
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Fig. 9. Test scenarios and topologies used in control plane experiments.

Fig. 10. Control plane experiments on scalability with emulated data plane and orchestration hierarchies.

TABLE II

SANDBOX EXPERIMENTS

figure, we show only data plane latency characteristics among
participating resource domains.

A. Sandbox Experiments

In our sandbox environment, we conducted several exper-
iments with different versions of the Robot Control service
envisioned in Sec. II-B (RC2). Two examples are shown in
Fig. 8: Fig. 8b corresponds to a service with SDN overlay
between the components, while the service shown in Fig. 8c
requests a distributed router to establish the connectivity
among the constituent VNFs (managed and unmanaged ones).

The runtime of different operation phases for two selected
illustrative experiments are presented in Tab. II. In these exper-
iments, we deployed services shown in Fig. 8b and Fig. 8c,
respectively. The latter one requires all relevant features and
involves all prototype elements, thus show poorer perfor-

mance. The results confirmed that the overall deployment time
is mainly affected by the performance characteristics of the
VIMs (starting VMs and containers).

B. Control Plane Experiments

For large scale test scenarios we have implemented random
service graph generators which create arbitrarily sized inputs
based on the given parameters. The number of constituent
NFs of generated requests is at most 10 and they are divided
approximately equally among the underlying domains.

Fig. 9a shows the general structure of our multi-layered
control plane test scenarios. Data plane resources are managed
by a given number of Resource Orchestrator instances (8 in
the figure) organized into an arbitrary control plane hierarchy
(3-layered binary tree in the figure). Fig. 10a presents the
scalability characteristics of the control plane operations in
terms of the size of the service requests. In this experiment,
we constructed a flat orchestration hierarchy consisting of a
multi-domain orchestrator and 8 different domain orchestrators
under that. Service requests including increasing number of
VNFs from 10 to 1000 were sent in respective batches. The
plots indicate the runtime of different phases of the con-
trol plane process, such as mapping (embedding algorithm),
deployment related functions, processing tasks (manipulating
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Fig. 11. Control plane experiments on emulated Edge/Cloud infrastructure.

the data models) and the overall time. Even in case of the
largest request, the overall operation time was below 80 sec
and the results show promising scalability properties.

Fig. 10b depicts overall runtimes for a control plane imple-
menting a multi-layer hierarchy of multi-domain orchestrators
on top of increasing number of domain orchestrators. The three
curves correspond to a hierarchy of 1, 2 and 3 distinct layers,
respectively. Increasing the number of orchestration layers
introduces a bigger overhead of overall orchestration runtime,
but after a certain number of domains, improving performance
can be observed as the complex request is decomposed and
processed in parallel by the involved orchestrators.

We also evaluated Edge/Cloud scenarios and the results of
a selected topology shown by Fig. 9b are presented. Here,
the core full-mesh network connects 4 cloud servers which
provides the majority of the available computational resources
and the distant edge nodes that are capable of running a limited
number of NFs. All the participating components are managed
by one orchestrator instance to form a single flat CP hierarchy.
Fig. 11a illustrates the impact of the number of simultane-
ously controlled domains tested by different size of 5G-aware
services. Here, two types of service requests were evaluated:
one with end-to-end delay requirements comparable to the
diameter of the topology and another one containing anti-
affinity constraints between dedicated NF pairs. The overall
runtimes of these services are comparable to each other and
show that services with anti-affinity relations require slightly
more time for the orchestrator to deploy. Finally, Fig. 11b
shows the performance in terms of the complexity of service
requests. The presented results confirm the polynomial scaling
properties of the orchestration system.

C. Experiments on the Effects of Infrastructure Abstraction

We performed experiments to evaluate the effect of network
abstraction on the cost of the service placement. In total
8 domains are simulated with the topology shown in Fig. 12a,
which are connected by data plane links in a circular fashion,
i.e., each domain’s Inter-domain SAP1 is connected to the
neighbor’s Inter-domain SAP2. Each domain is managed by
an RO, and multi-domain orchestration is performed by a top
level RO, managing all 8 domains. The embedding algorithm

Fig. 12. Experiment on the evaluation of resource abstraction: infrastructure
of an operator on the left, total deployment cost results on the right.

of each RO is configured to minimize cost, i.e., for the
objective component Ωcost = 1, while other components have
0 weights in Alg. 2.

The ROs orchestrating the individual infrastructure domains
represent infrastructure providers, who can decide the level of
infrastructure abstraction to be shown to the multi-domain RO,
i.e., the customer-facing provider in this case. In our experi-
ments, each domain RO can show their network topology with
all details (see Fig. 12a), or they can aggregate everything into
a single BiS-BiS node. No partial information sharing, e.g.,
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disclosing arbitrary fraction of the infrastructure information,
is allowed. The multi-domain RO collects the information
shared by the domain ROs, and makes placement decisions,
which need to be further orchestrated by ROs that share
only the aggregated single BiS-BiS information, to map the
received service components to the hidden resource elements.
These ROs have to set their prices for the BiS-BiS nodes they
present, which tells the multi-domain RO how much it needs
to pay for hosting a single VNF. A domain owner might set
the price based on many different factors, such as business
strategy, techno-economic analysis, game theoretical strategy,
etc. For the sake of simplicity, in our experiments each domain
uses the average cost of their node resources as the BiS-BiS
node’s price. Capacities and VNF-type capabilities are simply
aggregated by summation and union, respectively.

A service request is received by the top level RO, containing
6 VNFs (2x type A, 2x type B, 1x vFW and 1x vSW) with
unit capacity requirement, and connecting the domain SAPs
of two distinct domains by 8 service graph edges (flows). The
experiments examine a corner case: with cost and capacity
values shown in Fig. 12a, the BiS-BiS view of any domain
hides the capacity bottleneck on its Server2 of capacity 1.
Fig 12b shows the total cost of service deployment as more
and more ROs decide to show only the aggregated BiS-BiS
information instead of all details of their infrastructure. The
experiment for each case is repeated 10 times, while the single
BiS-BiS domains are randomly selected. The median of the
total deployment cost monotonously increases, resulting in
a 40% difference between from having a sole single BiS-
BiS to reaching 6 among the 8 underlying domains. In the
extreme case of having overwhelming majority (7 out of 8)
of the operators disclosing aggregate views, the deployment
cost doubles. Based on our simulations, we conclude that
bottlenecks are worth advertising to higher level orchestrators
in order to avoid costly deployments.

VII. CONCLUSION

This paper summarizes our steps that we made in the
direction of realizing the long-awaited 5G vision. We used
a top-down approach: started from the requirements of future
online applications, we derived the most important principles,
which then guided our careful design of a multi-provider
cross-domain service creation platform. We produced a novel
resource model yielding many benefits, the most important one
being the recursiveness that we can exploit in the provider-
customer hierarchy. We planned the architecture of the system
with a revisited separation of functionalities that are respon-
sible for static resource allocations and the dynamic manage-
ment of services’ life-cycles. The proposed notion of resource
slicing complements state-of-the-art network slicing designs
by creating wholesale offerings at the providers. In order
to prove that our system design is valid, we implemented
all the main components of the platform, conducted experi-
ments and showed the benefits of our approach. Specifically,
the embedding algorithm that is the core intelligence of our
proposed framework, proved to be scalable, hence ready for
the orchestration of large-scale future services over 5G.
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