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Abstract—This paper considers a multi-antenna multicast sys-
tem with programmable metasurface (PMS) based transmitter.
Taking into account of the finite-resolution phase shifts of PMSs,
a novel beam training approach is proposed, which achieves
comparable performance as the exhaustive beam searching
method but with much lower time overhead. Then, a closed-
form expression for the achievable multicast rate is presented,
which is valid for arbitrary system configurations. In addition, for
certain asymptotic scenario, simple approximated expressions for
the multicase rate are derived. Closed-form solutions are obtained
for the optimal power allocation scheme, and it is shown that
equal power allocation is optimal when the pilot power or the
number of reflecting elements is sufficiently large. However, it is
desirable to allocate more power to weaker users when there are
a large number of RF chains. The analytical findings indicate
that, with large pilot power, the multicast rate is determined by
the weakest user. Also, increasing the number of radio frequency
(RF) chains or reflecting elements can significantly improve the
multicast rate, and as the phase shift number becomes larger, the
multicast rate improves first and gradually converges to a limit.
Moreover, increasing the number of users would significantly
degrade the multicast rate, but this rate loss can be compensated
by implementing a large number of reflecting elements.

Index Terms—Programmable metasurface, multicast systems,
channel estimation.

I. INTRODUCTION

By the year 2022, there will be 28.5 billion networked
devices, and the overall mobile data traffic will reach up to
77 exabytes per month according to Cisco Visual Networking
Index forecast [2]. The tremendous growth in the number of
communication devices calls for green and energy-efficient
wireless solutions. To tackle this issue, the programmable
metasurface (PMS), also known as intelligent reflecting surface
(IRS), has recently been proposed as a promising solution
due to its potential of both low power consumption and low
deployment cost [3–5].

Specifically, a typical PMS is usually a uniform planar array
composed of a large number of low-cost, passive, reflecting
elements (e.g. printed dipoles), each of which can indepen-
dently reflects the incident wireless signal with adjustable
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phase shift (controlled by an attached smart controller). By
adaptively tuning the phase shift of the reflecting elements,
the propagation of the incident signal can be adjusted in
a desirable way, thereby realizing smart and programmable
wireless environment [6, 7].

Therefore, PMS-empowered wireless communications have
attracted considerable research interests from both academia
and industry. In general, the applications of PMSs can be
divided into two catagories. One typical application is to use
the PMS as a passive relay to assist in the communication
from the transmitter to the receiver [8–10]. Specifically, the
PMS is deployed between the transmitter and receiver. Each
PMS is connected with a controller which communicates
with the transmitter via a separate wireless control link for
coordination and exchanging channel state information (CSI)
and smartly adjusts the phase shifts of reflecting elements.
Such communication mode is especially useful when the direct
link between the transmitter and receiver is blocked [11–
13]. For example, assuming no line-of-sight communication
is present, the work [11] investigated a PMS-aided multiple
input single output (MISO) communication systems, showing
that the use of PMS increases the system throughput by at least
40%, without requiring any additional energy consumption.
Also, there are some works studying the utilization of PMSs
in the presence of direct links [8, 14]. However, using the PMS
as a passive relay has two main disadvantages in practical
systems.

• First, the PMS is far from the transmitter, making it diffi-
cult to obtain information (e.g.CSIs) from the transmitter,
due to its passive architecture. To tackle this problem, a
two-mode PMS model was proposed in [15, 16], where
the PMS is equipped with a controller that switches
between receiving mode for CSIs and reflecting mode for
data transmission. However, the realization of receiving
mode requires the deployment of receive radio frequency
(RF) chains, leading to more hardware cost.

• Secondly, as pointed out in [17], instead of deploying
the PMS between the transmitter and receiver, placing
the PMS right at the transmitter or receiver will cause
less power loss.

To overcome these drawbacks, another more practical ap-
plication of the PMS is to use the PMS as a component of



the transmitter.1 Specifically, the PMS is deployed right at
the transmitter, and each PMS cooperates with a RF chain.
The signal transmitted from the RF chain is reflected by the
PMS with little power loss, due to very short distance between
the RF chains and the PMS. Moreover, the PMS controller is
connected with the base station (BS), making it easier for the
PMS to access the CSI information, thereby facilitating the
joint design of phase shifts and digital beamformer. Further-
more, experimental results have demonstrated that the PMS-
based transmitter is feasible [19, 20]. For instance, a PMS-
based transmitter presented in [19] has realized single carrier
quadrature phase shift keying (QPSK) transmission over the
air, achieving a data rate of 2.048 Mbps, which is comparable
to that achieved by the conventional method but with much
lower hardware complexity. Later on, the work [20] realized
a PMS-based 8-phase shift-keying (8PSK) transmitter which
can achieve a higher data rate of 6.144 Mbps over the air.

However, very few works have investigated the theoretical
limits of communication systems with PMS-based transmitter
[19, 20]. Also, the existing experiments all focus on the
scenario with only a single RF chain. Motivated by these
observations, in this paper, we propose a PMS-based transmit-
ter including multiple RF chains for multicast communication
systems, taking into account of finite phase shifts, and present
a detailed analysis on the achievable system performance. To
the best of our knowledge, this is the first attempt to provide
theoretical analysis for communication systems with PMS-
based transmitter. The main contributions of this paper are
summarized as follows:

• A novel channel estimation scheme including phase shift
beam training and equivalent channel estimation has
been proposed. Simulation result shows that the proposed
phase shift beam training algorithm achieves good per-
formance but with much lower time overhead.

• A closed-form expression is derived for the achievable
rate of individual users, which enables efficient evaluation
of the multicase rate, as well as reveals the impact of key
system parameters on the user rate.

• For some asymptotic scenarios, such as large pilot power,
large number of RF chains, and large number of reflect-
ing elements, closed-form solutions are derived for the
optimal power control coefficients and the corresponding
multicast rate.

The remainder of the paper is organized as follows. In
Section II, we introduce the PMS-based multicast system,
while in Section III, we propose a channel estimation scheme
including phase shift beam training and equivalent channel
estimation. Then, the achievable rate is derived in Section
IV, based on which we investigate the optimal power control
coefficients and give a detailed analysis on the multicast rate
in Section V. Numerical results and discussions are provided
in Section VI, and finally Section VII concludes the paper.

1There are two main advantages of deploying PMS aided transmitter
compared to having an active large intelligent surface (LIS) [18]. First, the
PMS aided transmitter can be easily realized by combining traditional horn
antennas with PMSs. Besides, the PMS aided transmitter has the advantages
of low cost and low power consumption, due to the passive architecture of the
PMS. However, the limited number of RF chains in the PMS aided transmitter
makes it difficult to connect too many devices, while it has been shown in
[18] that a fair small LIS can connect quite a large number of devices.

Notation: Boldface lower case and upper case letters are
used for column vectors and matrices, respectively. The su-
perscripts ()

∗, ()
T , ()

H , and ()
−1 stand for the conjugate,

transpose, conjugate-transpose, and matrix inverse, respective-
ly. Also, the Euclidean norm and absolute value are denoted
by ∥·∥ and |·|, respectively. In addition, E {·} is the expectation
operator, and tr (·) represents the trace. And, j of ejθ denotes
the imaginary unit. Finally, z ∼ CN (0, δ2) denotes a circularly
symmetric complex Gaussian random variable (RV) z with
zero mean and variance δ2, and z ∼ N (0, δ2) denotes a real
valued Gaussian RV.

II. SYSTEM MODEL

We consider a single-cell multicast system as illustrated in
Fig.1, where the BS equipped with a PMS-based transmitter
communicates with a group of K single-antenna users.

The partially connected architecture is adopted, which is
realized by aligning the beam of each directional horn antenna
to the corresponding sub-PMS consisting of L = N

NRF
non-

overlapping reflecting elements, where NRF is the number of
RF chains (antennas) and N is the total number of reflecting
elements. 2 3

The i-th sub-PMS consists of L reflecting elements corre-
sponding to the i-th RF chain. Each element of the i-th sub-
PMS behaves like a keyhole. During the uplink transmission
period, the reflecting element combines all the received signals
and re-scatters the combined signal to the i-th RF chains, while
during the downlink period, the reflecting element combines
signal from the i-th RF chain and re-scatters the signal as if
from a point source.

Since the PMS is close to the BS, the channel between them
can be modeled by a line-of-sight (LOS) channel. Specifically,
the channel from the i-th antenna (RF chain) to the i-th
sub-PMS is given by gT

B2P,i = αB2Pa
T
i , where αB2P denotes

the path loss coefficient given by G Ae
4πd2

B2P
, where G is

the antenna gain, Ae is the effective area of each reflecting
element perpendicularly to the direction of propagation, and
dB2P is the distance from the BS to the PMS. aTi is the array
response vector of the i-th sub-PMS, whose elements have
unit amplitude.

Let c = β[ejθ1 , ..., ejθn , ..., ejθN ]
T denote the phase shift

beam, where θn ∈ [0, 2π) and γ ∈ [0, 1] are phase shift and
amplitude coefficient, respectively. The amplitude coefficient
is given by β = γαB2P with γ depicting the energy reflection

2Please note, the distance between the BS and the PMS is related to the
carrier wavelength. In general, a smaller carrier wavelength implies a shorter
distance.

3It is worth noting that the proposed PMS transmitter architecture is
different from the hybrid analog and digital beamforming transceiver structure.
First, the methods to realize the partially connected architecture are different.
In the proposed architecture, the partially connected architecture is realized
by aligning the beam of a directional horn antenna to the corresponding
sub-metasurface, while in the hybrid architecture, the partially connected
architecture is realized by connecting each RF chain to a subarray via phase
shifters. Secondly, in the proposed architecture, phase shifts are realized by
the passive metasurface, while in the hybrid architecture, the adjustment of
signal phases is realized by phase shifters which in general require complex
circuits. Moreover, in a more general full-connected case, at each reflecting
element, signals from different RF chains are first combined and then reflected
with the same phase shift, while at each antenna of the full-connected hybrid
architecture, the signals from different RF chains are first adjusted with
different phase shifts by different phase shifters and then combined together.



efficiency of the PMS, while the impact of the array response
vector ai is reflected in the phase shifts of c.

In practice, the reflecting elements are controlled by the dig-
ital to analog converters (DACs), hence have finite phase shifts
due to limited DAC resolution. Without loss of generality, we
use Q to denote the set of all possible values of θn, which
has a cardinality of Mph. Similarly, the set of all possible
phase shift beams are denoted by C, which has a cardinality
of M = Mph

N .
We assume block-fading channels, i.e., the channels remain

the same during each coherence interval and vary inde-
pendently between different coherence intervals. The entire
communication process can be separated into two phases
during each coherence interval, namely, channel estimation
and multicasting transmission, which we elaborate in the
ensuing sections.

Fig. 1. Model of the PMS-based transmitter aided multicast
system with NRF = 2, L = 16,K = 3.

III. CHANNEL ESTIMATION

The proposed channel estimation scheme consists of two
steps. In the first step, beam training is performed to acquire
the optimal phase shift beam. In the second step, the equivalent
channels are estimated.

A. Beam Training
Since the cardinality of phase shift beam set increases

exponentially with the number of reflecting elements, the com-
plexity of conventional exhaustive beam searching approach
quickly becomes prohibitive. Responding to this, we propose
a novel beam training algorithm.

Specifically, during the beam training phase, all K users
simultaneously transmit unmodulated frequency tones to the
BS. For user k, the transmitted signal is denoted by xk =√
pks, where pk is the power and s is the frequency tone of

unit power.
For any k, we assume that E{∥√pkgk∥2} = εr, with

εr being the average received power. Also, gk denotes the
channel between the PMS and the k-th user and is defined
as gk =

√
αkhk, where αk models the large-scale fading,

and hk models the small-scale fading with elements being
independent and identically distributed (i.i.d) CN (0, 1) RVs.
Furthermore, αk is assumed to be constant and known as a pri-
ori. After simplifying E{∥√pkgk∥2}, we have Nαkpk = εr.

The proposed beam training method works in a bisection
manner, namely, at each stage, nearly half of the available

beams will be eliminated. For instance, at the i-th stage, the
BS chooses a pair of beams c(i,j), j = 1, 2, which have the
weakest correlation from the current beam set Ci. As such, the
received signal after combining can be written as

r(i,j) =
K∑

k=1

C(i,j)gkxk + n(i,j), j = 1, 2, (1)

where C(i,j) ∈ CNRF×N is a block diagonal matrix defined by

C(i,j) = diag{cT(i,j),1, . . . , c
T
(i,j),n, . . . , c

T
(i,j),NRF

} (2)

with cT(i,j),n , [c1(i,j),n, ..., c
k
(i,j),n, ..., c

L
(i,j),n]

T ∈ CL×1 being
the phase shift vector of the n-th sub-PMS.

The next step is to compare the received power ∥r(i,1)∥
2

with ∥r(i,2)∥
2. Let j⋆ = arg

j=1,2
max ∥r(i,j)∥

2 and j−⋆ =

arg
j=1,2

min ∥r(i,j)∥
2. It is intuitive that the optimal beam is

more likely to have stronger correlation with c(i,j⋆). With
this key observation, the number of training beams can be
approximately halved by removing the beams which have
weaker correlation with c(i,j⋆) . Specifically, the beam c ∈ Ci
satisfying cH(i,j⋆)c ≤ cH(i,j−⋆)c will be removed, and the
remaining beams makes up a new beam set Ci+1. The process
then continues until the cardinality of Ci+1 becomes one.
The pseudo-code of the proposed beam training method is
summarized in Algorithm 1. 4

Remark 1. Since our proposed beam training method work-
s in a bisection manner, a much lower complexity of
O(log2(M

N
ph )) can be achieved, compared with the complexity

of exhaustive beam searching O(MN
ph ).

Proposition 1. When both Mph and εr are sufficiently large,
the ideal phase shift beam obtained by Algorithm 1 can be
approximated by

copt = [c1opt,1, ..., c
L
opt,1, ..., c

1
opt,NRF

, ..., cLopt,NRF
]
T
, (3)

where clopt,n = β
hl

sum,n

|hl
sum,n|

, hl
sum,n =

K∑
k=1

hl
k,n, where hl

k,n

denotes the small-fading coefficient between the k-th user and
the l-th reflecting element of the n-th sub-PMS.

Proof: For notational convenience, we drop the subscript
(i, j) in (1) and we have

r =
K∑

k=1

Cgkxk + n =
K∑

k=1

√
αkpkChks+ n (4)

(a)
=

√
εr
N

K∑
k=1

Chks+ n
(b)
≈
√

εr
N

K∑
k=1

Chks,

where (a) is according to Nαkpk = εr and (b) follows the
fact that εr

N is sufficiently large. Since the objective is to find
the optimal phase shift beam c maximizing ∥r∥, we have the

4It is worth highlighting that the proposed beam training method is
substantially different from the beam training method used in the traditional
hybrid architecture [21]. Specifically, in the proposed algorithm, the received
signal power at the BS and the correlation between different beams are
exploited to choose the best beam, while in the traditional hybrid architecture,
the largest received SNR at the user and the beam-refinement protocol are
utilized to choose the best beam. Moreover, the proposed algorithm does not
require feedback from the users, which is necessary for the hybrid architecture.



Algorithm 1 Beam training algorithm
Initialize: stage number i = 0, the training beam set of the
first stage C1 = C.
repeat

Set i = i+ 1.
Find (c(i,1), c(i,2)) = arg

(v1,v2),v1,v2∈Ci

minvH
1 v2.

The BS trains c(i,1) and c(i,2) respectively, and com-
pares the received signal power

∥∥r(i,j)∥∥2, j = 1, 2.
Let j⋆ = arg

j=1,2
max

∥∥r(i,j)∥∥2 and j−⋆ =

arg
j=1,2

min
∥∥r(i,j)∥∥2.

Update the training beam set Ci+1 ={
c | cH(i,j⋆)c < cH(i,j−⋆)c, c ∈ Ci

}
.

until |Ci| = 1
output:c(i,j⋆)

following equivalent optimization problem

max
{c∈C}

∥r∥2, (5)

Leveraging (2) and (4), we can express ∥r∥2 as

∥r∥2 =
εr
N

∥∥∥∥∥
K∑

k=1

Chk

∥∥∥∥∥
2

=
εr
N

NRF∑
n=1

∣∣∣∣∣cTn
K∑

k=1

hk,n

∣∣∣∣∣
2

, (6)

where hk,n denotes the channel vector between the k-th user
and the n-th sub-PMS.

Based on the above equation, the optimization problem (5)
can be rewritten as

max
{c∈C}

NRF∑
n=1

∣∣∣∣cTn K∑
k=1

hk,n

∣∣∣∣2. (7)

Since the number of phase shifts, i.e., Mph, is sufficiently
large, we relax the elements of c to be complex numbers
with continuous phases and fixed amplitudes, and obtain the
following optimization problem:

max
c

NRF∑
n=1

∣∣∣∣cTn K∑
k=1

hk,n

∣∣∣∣2, s.t.
∣∣cln∣∣ = β. (8)

Denote hl
sum,n =

K∑
k=1

hl
k,n. It is obvious that the phase of

cln should equal to that of hl
sum,n, which completes the proof.

B. Equivalent Channel Estimation
Denote h̄k , Chk ∈ CNRF×1 and define the equivalent

channel between the BS and the k-th user as ḡk =
√
αkh̄k ∈

CNRF×1. Note that C is the phase shift matrix corresponding
to the optimal phase shift beam obtained in the beam training
phase.

Then we estimate the equivalent channel through uplink
training, where all K users simultaneously transmit orthogonal
pilot sequences to the BS. Let τc be the length of the coherence
interval (in symbols), and τp be the uplink training duration
(in symbols) per coherence interval such that τp < τc. Denote
the pilot sequence used by the k-th user, k = 1, 2, ...,K,
by √

τpφk ∈ Cτp×1, where ∥φk∥
2

= 1. To ensure the

orthogonality of the pilot sequences, i.e. φH
i φj = 0, i ̸= j, it

is required that τp ≥ K. Furthermore, we assume τp = K.
Then, the NRF × τp received pilot matrix at the BS can be

expressed as

Yp =
√
τpρp

K∑
k=1

ḡkφ
H
k +Wp, (9)

where ρp is the normalized signal to noise ratio (SNR) of each
pilot symbol, Wp ∈ CN×τp is the additive white Gaussian
noise (AWGN) matrix, whose elements are i.i.d. CN (0, 1)
RVs.

To estimate ḡk, we first multiply Yp by φk, which gives

yp,k = Ypφk =
√
τpρpḡk + np,k, (10)

where np,k = Wpφk. The BS then adopts the minimum
mean-square (MMSE) method to estimate the equivalent chan-
nel, as such, the equivalent channel ḡk can be decomposed as

ḡk = ˆ̄gk + ek, (11)

where ˆ̄gk is the estimation of ḡk, ek is the estimation error.
To obtain the distribution of the estimated equivalent chan-

nel, we first give an important proposition corresponding to
the distribution of the equivalent channel.

Proposition 2. With finite number of phase shifts, the elements
of h̄k = Chk can be modeled as i.i.d. random variables
CN

(
u, δ2

)
with

u =
Lβ

2

√
π

K

Mph

π
sin

(
π

Mph

)
, (12)

δ2 = Lβ2

{
1− π

4K

(
Mph

π
sin

(
π

Mph

))2
}
. (13)

Proof: See Appendix A.

Remark 2. From Proposition 2, we can see that the deployment
of the PMS can enhance the equivalent channel compared to
the case without the PMS. Specifically, the strength of the
channel without the PMS is αk, while the strength with the
PMS is given by αk(u

2 + δ2), indicating that an asymptotic
gain in the order of O

(
L2
)

can be achieved. This is because
the PMS not only achieves the phase shift beamforming gain
of order L but also captures an inherent aperture gain of order
L by collecting more signal power.

Based on Proposition 2 and the MMSE estimation property,
ek and ˆ̄gk are complex Gaussian distributed, and they are
independent of each other. Then, we have the following
proposition:

Proposition 3. The elements of ˆ̄gkand ek are Gaussian RVs
with the distributions CN

(
up,k, δ

2
p,k

)
and CN

(
0, δ2e,k

)
re-

spectively, where up,k =
√
αku, δ

2
p,k =

τpρpα
2
kδ

4

1+τpρpαkδ2
, δ2e,k =

αkδ
2

1+τpρpαkδ2
.

Proof: See Appendix B.

IV. ACHIEVABLE RATE ANALYSIS

During the multicasting phase, the BS utilizes the estimated
equivalent CSI to precode the signals. To keep the processing
simple, the BS adopts the transmit matched filter (MF) W =



ˆ̄G
∗
, then the received signal at all users is given by

y =
√
ρḠTW

√
Ps+ n, (14)

where Ḡ = [g1, ...gk, ...,gK ], ρ is the total average
transmit power (normalized by the noise power), P =
diag{ η1

E{∥w1∥2} , ...,
ηi

E{∥wi∥2} , ...,
ηK

E{∥wK∥2}} is the power
control matrix with the power control coefficient ηk, s =
[s, ..., s, ..., s]

T is the the data symbol vector satisfying
E{|s|2} = 1, and n ∼ CN (0, IK) denotes the noise.

Noticing that Ḡ = ˆ̄G + E, the above equation can be
rewritten as

y =
√
ρ ˆ̄G

T ˆ̄G
∗√

Ps+
√
ρET ˆ̄G

∗√
Ps+ n. (15)

Then, the received signal at the k-th user is given by

yk = ˆ̄g
T
k
ˆ̄G

∗√
Ps+ eTk

ˆ̄G
∗√

Ps+ nk (16)

(a)
=

√
ρ
(
ˆ̄g
T
k + eTk

) K∑
i=1

√
ηi

u2
p,i + δ2p,i

ˆ̄g
∗
i s+ nk,

where (a) follows the fact that E
{
∥wi∥2

}
= u2

p,i + δ2p,i.
Next, without loss of generality, let us focus on the achiev-

able rate of the k-th user. We consider the realistic case where
the k-th user does not have access to the instantaneous CSI
of the effective channel gain. Instead, the detection of desired
signal s is based on the statistical CSI. As such, we can rewrite
yk as

yk =
√
ρE

{(
ˆ̄g
T
k + eTk

) K∑
i=1

√
ηi

u2
p,i + δ2p,i

ˆ̄g
∗
i

}
s︸ ︷︷ ︸

desired signal

+ neff
k︸︷︷︸

effective noise

,

(17)

where

neff
k = nk︸︷︷︸

noise

+
√
ρ
(
ˆ̄g
T
k + eTk

) K∑
i=1

√
ηi

u2
p,i + δ2p,i

ˆ̄g
∗
i s (18)

−√
ρE

{(
ˆ̄g
T
k + eTk

) K∑
i=1

√
ηi

u2
p,i + δ2p,i

ˆ̄g
∗
i

}
s.

Capitalizing on the results in [22], the achievable rate of the
k-th user can be expressed as5

Rk = log2

(
1 +

|Ak|2

Bk + 1

)
, (19)

with

Ak , √
ρE

{(
ˆ̄g
T
k + eTk

) K∑
i=1

√
ηi

u2
p,i + δ2p,i

ˆ̄g
∗
i

}
, (20)

Bk , ρE


∣∣∣∣∣(ˆ̄gT

k + eTk

) K∑
i=1

√
ηi

u2
p,i + δ2p,i

ˆ̄g
∗
i

∣∣∣∣∣
2
− |Ak|2,

(21)

being the desired signal power and leakage power, respectively.

5It is worth noting that this expression is derived under the assumption of
the transmit MF and the realistic case where the users have no access to the
instantaneous CSI of the effective channel gain.

Then, we have the following important result:
Theorem 1. The achievable rate of the k-th user is given by
(22) on the top of the next page.

Proof: Refer to Appendix C.
Theorem 1 presents a closed-form expression for the achiev-

able rate which reveals the impact of key system parameters,
such as the number of phase shifts, reflecting elements, RF
chains and users, as well as the impact of imperfect channel
estimation on the achievable rate. For instance, Rk is an
increasing function with respect to NRF. Besides, it can be seen
that the desired signal power decreases with the equivalent
channel estimation error, indicating that we can improve the
channel estimation accuracy, for example by increasing the
pilot power.

After deriving the individual rate for any user k ∈
{1, 2, ...,K}, the multicast rate R can be obtained as

R = min
k=1,2,...,K

Rk. (23)

V. POWER CONTROL

To maximize the multicast rate, we formulate the following
power control problem:

max
{ηk}

min
k=1,...,K

Rk,

s. t.
K∑

k=1

ηk = 1

ηk ≥ 0, k = 1, ...,K.

(24)

In the general setting, the above optimization problem is a
non-convex problem, hence is difficult to solve. Responding to
this, we consider some asymptotic regime, where closed-form
solutions can be derived.

A. Large pilot power

We first consider the scenario where the pilot power is
sufficiently large, and we have the following important result:
Theorem 2. As ρp → ∞, the optimal power control coef-
ficients are ηk = 1

K , k = 1, ...,K, and the corresponding
multicast rate is given by

R = (25)

log2

1+ KNRFL
3ũ4

0

KL2ũ2
0(1−ũ2

0)+(Lũ2
0+1−ũ2

0)
(

1
β2NRFρα

+1−ũ2
0

)
 ,

where α , min
k=1,...,K

αk, ũ0 , u0

β =
√

π
4K

Mph

π sin
(

π
Mph

)
.

Proof: Refer to Appendix D.
Theorem 2 shows that, with large pilot power, the multicast

rate is an increasing function with respect to L. This is because
the equivalent channel can be enhanced by increasing the num-
ber of reflecting elements. Also, as the amplitude reflection
coefficient increases, the achievable rate becomes larger, due
to the fact that larger amplitude reflection coefficient implies
less power loss when the transmit signal is reflected by the
PMS. In addition, the multicast rate is a decreasing function
with respect to K. This is reasonable because with fewer users,
highly directional beams can be obtained. Furthermore, the
multicast rate is constrained by the large-fading coefficient of
the weakest user, but this negative effect of the weakest user



Rk = log2

1 +

ρN2
RF

{
K∑
i=1

√
ηi

u2
p,i+δ2p,i

up,kup,i +
√

ηk

u2
p,k+δ2p,k

δ2p,k

}2

1 + αkρδ2NRF

(
K∑
i=1

√
ηiu2

p,i

u2
p,i+δ2p,i

)2

+ αkρ (u2 + δ2)NRF

K∑
i=1

ηiδ2p,i
u2
p,i+δ2p,i

 . (22)

can be compensated by increasing the number of reflecting
elements or RF chains.

B. A large number of RF chains
Theorem 3. When L is fixed while NRF → ∞, the optimal
power control coefficients are

ηk =
αk

(
u2
p,k + δ2p,k

)
ϕδ4p,k

, k = 1, ...,K, (26)

where ϕ =
K∑

k=1

αk(u2
p,k+δ2p,k)
δ4p,k

. And the corresponding multi-

cast rate is given by

R = (27)

log2

1+

NRF

{
u2

δ2

K∑
k=1

1+τpρpαkδ
2

τpρpαkδ2
+1

}2

u2

δ2

(
K∑

k=1

1+τpρpαkδ2

τpρpαkδ2

)2

+
(
u2

δ2 +1
) K∑
k=1

1+τpρpαkδ2

τpρpαkδ2

 .

Proof: Refer to Appendix E.
Theorem 3 implies that with a large number of RF chains,

the effect of noise vanishes, and the multicast rate is deter-
mined by the channel conditions of all users. Moreover, the
maximum signal to interference plus noise ratio (SINR) is
proportional to NRF, indicating that increasing the number
of RF chains can significantly improve the multicast rate.
Besides, increasing the pilot power can improve the multicast
rate, due to more accurate channel estimation.
Proposition 4. The power control coefficients ηk is a decreas-
ing function with respect to αk, indicating that more power
should be allocated to users with poor channel conditions.

Proof: Utilizing the results given by Proposition 3, the
optimal power control coefficient can be rewritten as ηk =
u2+δ̃2p,k
ϕδ̃4p,k

, where δ̃2p,k , τpρpαkδ
4

1+τpρpαkδ2
. Let η̃k , ϕη̃k. Due to

∂η̃k

∂δ̃p,k
< 0 and ∂δ̃p,k

∂αk
> 0, we have ∂η̃k

∂αk
= ∂η̃k

∂δ̃p,k

∂δ̃p,k
∂αk

< 0,

indicating that η̃k is a decreasing function with respect to αk.

To this end, noticing that ηk = 1/(1 + 1
η̃k

K∑
i ̸=k

η̃i) increases

with η̃k, we complete the proof.

C. A large number of reflecting elements
Theorem 4. When NRF is fixed while L → ∞, the optimal
power control coefficients are

ηk =
1

K
, k = 1, ...,K, (28)

and the multicast rate is given by

R = log2

1 +
πNRFL

(
Mph

π sin π
Mph

)2
{
4− π

K

(
Mph

π sin π
Mph

)2}
(K + 1)

 . (29)

Proof: Refer to Appendix F.
Theorem 4 shows that with a large L, the effect of noise

as well as the equivalent channel estimation error vanishes.
The reason is that a large number of reflecting elements
can significantly enhance the equivalent channel. Also, as the
number of reflecting elements increases, the amplitude reflec-
tion coefficient becomes irrelevant, indicating that increasing
the number of reflecting elements can compensate for the
power loss caused by PMS reflection. In addition, the SINR is
proportional to N = NRFL, which implies that the multicast
rate can be greatly improved by increasing the number of
reflecting elements.

1) The impact of phase shift number:

Proposition 5. With large L, the multicast rate is an increasing
function with respect to the phase shift number Mph. Further-
more, when the phase shift number is sufficiently large, the
multicast rate is given by

R = log2

{
1 +

πNRFLK

(4K − π) {K + 1}

}
. (30)

Proof: Starting from R given in Theorem 4, we can see
that Mph

π sin
(

π
Mph

)
and R are increasing functions with respect

to Mph and Mph

π sin
(

π
Mph

)
, respectively. Thus, R increases

with Mph. Noticing that lim
Mph→∞

Mph

π sin π
Mph

= 1, we can obtain

the desired result.
Proposition 5 is rather intuitive since highly accurate beam

can be obtained with high-resolution phase shifts. Moreover,
as the phase shift number becomes sufficiently large, the
multicast rate becomes independent of Mph and gradually
converges to a limit, indicating that the gain of using high-
resolution phase shift diminishes gradually.

2) The impact of user number:

Proposition 6. With a large number of reflecting elements,
the multicast rate is a decreasing function with respect to the
user number. Furthermore, with a large number of users, the
multicast rate is given by

R = log2

1 +
πNRFL

(
Mph

π sin π
Mph

)2
4K

 . (31)

Proof: Starting from Theorem 4, we can easily obtain the
desired result.

From Proposition 6, it can be seen that with massive users,
the SINR is inversely proportional to the user number, which
implies that increasing the number of users can severely
degrade the multicast rate. To compensate this rate loss, it
is desired to employ a large number of reflecting elements.

3) Increasing NRF V.S. Increasing L : Although a higher
rate can be achieved by increasing either NRF or L , it is better
to increase the number of reflecting elements rather than the
number of RF chains, because the power consumption and



hardware cost of PMS are much lower than that of RF chains.
In addition, with massive reflecting elements, the negative
effects of noise, estimation error as well as the amplitude
reflection coefficient can be effectively compensated, while
with a large number of RF chains, only the effects of noise
can be mitigated.

VI. NUMERICAL RESULTS

In this section, we provide numerical results to illustrate the
performance of the PMS-based multicast system, as well as
to verify the performance of the proposed channel estimation
scheme. The considered system is assumed to operate at the
frequency of fc = 4.25 GHz with the bandwidth of 180 kHz,6

and the coherence time is
√

9
16πf2

m
with the maximum Doppler

shift given by fm = 1 Hz. The noise spectral power density
is −169 dBm/Hz. The channel from the transmitter to the
user is modeled as Rayleigh fading. The large-scale fading
coefficient is given by α = L−λ

d , where λ = 3 is the path
loss exponent, and Ld is the transmission distance. The gain
of each horn antenna is 20 dBi. The PMS deployed 1m away
from the BS consists of NRF sub-metasurface, each of which
consists of L reflecting elements with the size of 12 × 12
mm2. The impact of the PMS is reflected in the phase shift
beam c. Unless specified, the optimal phase shift beam given
in Algorithm 1 is adopted. In addition, we assume K users
are uniformly distributed in a disk with the radius R = 200m.
For each analytical result, 1000 random realizations of large-
scale fading profiles are generated. For numerical results, they
are obtained by averaging over 1000 independent small-scale
fading parameters for each realization of large-scale channels.

Fig. 2 illustrates the performance of the proposed beam
training scheme, where the normalized equivalent channel
strength (NECS) (normalized by the ideal equivalent channel

strength ) is defined as
E{∥CH∥2}
E{∥CoptH∥2} , with Copt being the ideal

phase shift matrix given by Proposition 1. For comparison,
the performance of the exhaustive scheme and the random
selection scheme is also presented. As expected, the proposed
beam training scheme significantly outperforms the random
selection scheme over the entire SNR regime. Moreover, the
performance of the proposed beam training scheme is close
to that of the exhaustive scheme, regardless of the available
number of phase shifts.

Fig. 3 shows the multicast rate with different number of RF
chains, where the analytical results are generated according to
Theorem 1. As can be readily observed, the numerical results
match exactly with the analytical results, thereby validating
the correctness of the analytical expressions. Moreover, the
multicast rate saturates in the high SNR regime due to im-
perfect channel estimation. In addition, we can see that the
multicast rate improves as the number of RF chains increases.
The reason is that a large number of RF chains leads to higher
diversity gains.

Fig. 4 presents the multicast rate with different numbers of
reflecting elements (per sub-PMS) and reflection coefficients,
where the “Approximate Results” curve is generated according
to Theorem 2. As expected, the approximations well match the

6In practice, the metasurface can only handle a limited bandwidth, because
the same phase shifts must be applied in the entire band. How to design the
metasurface operating in a wider frequency band remains to be studied.
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Fig. 2. The performance of the proposed beam training
scheme with L = 4, NRF = 1,K = 4, β = 0.01.
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Fig. 3. Multicast rate of PMS-based multicast systems with
L = 8,K = 8,M = 2, β = 0.01, ρp = −20dBm.

numerical results, especially with a larger L. Moreover, we can
see that increasing L can significantly improve the multicast
rate performance, because of the enhanced equivalent channel.
Also, the multicast rate improves as the reflection coefficient
β becomes larger due to a less power loss caused by PMS
reflection.

Fig. 5 shows the impact of the number of RF chains on
the multicast rate with different pilot power, where the curve
associated with “Approximate Results” is plotted according
to Theorem 3. As the number of RF chains becomes larger,
the gap between the “Approximate Results” curve and the
“Numerical Results” curve becomes smaller, which verifies
our analytical results in Theorem 3. Moreover, we can see
that as the number of RF chains becomes larger, the multicast
rate keeps increasing without a ceiling, indicating that a large
number of RF chains would significantly improve the multicast
rate. Also, the multicast rate increases with the pilot power,
due to more accurate channel estimation.

Fig. 6 illustrates the impact of the number of reflecting
elements (per sub-PMS) on the multicast rate, where we gen-
erate the “Approximate Results” curve according to Theorem
4. As can be readily observed, the “Approximate Results”
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curve matches the “Numerical Results” curve well, thereby
validating the correctness of Theorem 4. Moreover, we can
see that as L becomes larger, the multicast rate keeps growing
without a ceiling, which implies that increasing the number
of reflecting elements (per sub-PMS) can always improve the
multicast rate. Also, it can be observed that with the increase
of phase shift number, the multicast rate becomes larger, due
to more accurate beam training.

Fig. 7 illustrates the impact of phase shift number on the
multicast rate, where the “Limit” curve is plotted according
to Proposition 5. As the phase shift number becomes larger,
the multicast rate gradually approaches the limit given by
Proposition 5, which verifies our analytical results. Moreover,
a higher multicast rate limit can be achieved by increasing the
number of reflecting elements. This is because with massive
phase shifts, the multicast rate is mainly dominated by the
number of reflecting elements. Besides, it can be seen that the
multicast rate achieved by only few phase shifts is comparable
to that with massive phase shifts. For instance, when L = 100,
the multicast rate with 4 phase shifts is about 94% of that with
20 phase shifts.
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Fig. 8 depicts the impact of user number on the multicast
rate, where the curve associated with “Approximate Results”
is generated by Proposition 6. As can be readily observed, the
approximation is very tight, thereby verifying our analytical
expressions. Moreover, the multicast rate is a decreasing
function with respect to the number of users, which indicates
that increasing the number of users would always degrade the
multicast rate. The reason is that a large number of users would
lead to poorly directional beams. In addition, we can see that
increasing the number of reflecting elements can compensate
the rate loss caused by the increase of user number. For
example, when the user number grows from 20 to 40, the
muticast rate with L = 100 drops from 3 bits/s/Hz to 2
bits/s/Hz. However, by increasing L to 200, the muticast rate
can remain unchanged at 3 bits/s/Hz.

Fig. 9 compares the proposed PMS transmitter with a
traditional multi-antenna transmitter. We can see that in the
low-SNR regime, our proposed PMS transmitter is worse than
the traditional multi-antenna transmitter due to the power loss
caused by PMS reflection as well as signal propagation from
the BS to the PMS. As the SNR increases, our proposed
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PMS transmitter becomes superior to the traditional multi-
antenna transmitter. Moreover, the rate gap becomes larger as
the number of reflecting elements increases, due to both the
increased beam gain and aperture gain of the PMS.
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VII. CONCLUSION

This paper has investigated the performance of the PMS-
based multicast system, taking into account of the limited
resolution of phase shifts. A novel beam training algorithm has
been proposed, which achieves comparable performance as the
exhaustive search scheme and has much lower time overhead.
Then, an exact closed-form expression for the individual user
rate has been derived. Moreover, several concise asymptoti-
cal approximations for the multicast rate are presented. The
analytical findings suggests that deploying a large number
of RF chains or reflecting elements can greatly improve the
multicast rate. Besides, as the phase shift number increases,
the multicast rate gradually saturates, and the multicast rate
is a decreasing function with respect to the number of users.

Furthermore, with a large number of RF chains, it is better to
allocate more power to users with poor channel conditions. But
with large pilot power or massive reflecting elements, equal
power allocation is desirable.

APPENDIX A
PROOF OF PROPOSITION 2

Without loss of generality, we focus on the n-th element

of h̄k: h̄k,n = cTnhk,n =
L∑

l=1

clnh
l
k,n. Since we assume a

large number of reflecting elements and limited number of
RF chains, L = N

NRF
is large. According to the central-

limit theorem, h̄k,n approximately follows normal distribution
CN

(
Lu0, Lδ

2
0

)
, where u0 and δ20 are the mean and variance

of clnh
l
k,n, respectively. In the following, we try to derive u0

and δ20 .
(1) Compute u0

Denote the phase error resulted from the finite phase shift
number Mph by ∆θ, and we have

u0 = E
{
clnh

l
k,n

} (a)
= E

{
ej∆θ

}
E
{
clopt,nh

l
k,n

}
, (32)

where (a) is obtained according to cln = ej∆θclopt,n.
We start with the computation of E

{
ej∆θ

}
:

E{ej∆θ} (a)
=

∫ π
Mph

− π
Mph

ej∆θMph

2π
d∆θ =

Mph

π
sin(

π

Mph
), (33)

where (a) follows the fact that ∆θ ∈ (− π
Mph

, π
Mph

) is uniformly
distributed.

Then using the result given by Proposition 1, we can
express E{clopt,nh

l
k,n} as E{clopt,nh

l
k,n} = βE{ hl∗

sum,n

|hl
sum,n|

hl
k,n}.

Recall that hl
sum,n =

K∑
k=1

hl
k,n, and the following equation

holds:
K∑

k=1

E{clopt,nh
l
k,n} = βE{|hl

sum,n|}. By noticing that∣∣hl
sum,n

∣∣ follows Rayleigh distribution and the variance of

hl
sum,n is K, we have

K∑
k=1

E{clopt,nh
l
k,n} = β

√
πK
2 . Since

E{clopt,nh
l
k1,n

} = E{clopt,nh
l
k2,n

} holds for any (k1, k2), we
have

E
{
clopt,nh

l
k,n

}
=

β

2

√
π

K
. (34)

Substituting (33) and (34) into (32), we obtain

u0 =
β

2

√
π

K

Mph

π
sin

(
π

Mph

)
. (35)

(2) Compute δ20
Recall

∣∣clopt,n

∣∣ = β, and we have

E
{∣∣clopt,nh

l
k,n

∣∣2} = β2E
{∣∣hl

k,n

∣∣2} = β2, (36)

based on which, we obtain

δ20 = E
{∣∣clopt,nh

l
k,n

∣∣2}−u2
0 (37)

= β2

{
1− π

4K

{
Mph

π
sin

(
π

Mph

)}2
}
.



To this end, by noticing that u = Lu0 and δ2 = Lδ20 , we
complete our proof.

APPENDIX B
PROOF OF PROPOSITION 3

According to the property of MMSE, we have

ˆ̄gk = E {ḡp,k} (38)

+cov (yp,k, ḡk) {cov (yp,k,yp,k)}−1 {yp,k−E {yp,k}} ,

where

E {ḡp,k} =
√
αku1NRF×1, E {yp,k} =

√
τpρpαku1NRF×1,

and 1NRF×1 denotes an NRF × 1 vector whose elements are 1.
We first compute the covariance matrix of yp,k and ḡk,

cov (yp,k, ḡk). Using (10) and (32), we have

cov (yp,k, ḡk) = E
{
{ḡp,k − E {ḡp,k}} {yp,k − E {yp,k}}H

}
= E

{√
αkδḡk

(√
τpρpαkδḡk + np,k

)H}
= αk

√
τpρpδ

2INRF . (39)

Then, we calculate cov (yp,k,yp,k) :

cov (yp,k,yp,k) = E
{
(yp,k − E {yp,k}) (yp,k − E {yp,k})H

}
=
(
1 + τpρpαkδ

2
)
INRF . (40)

Substituting (39) and (40) into (38), we obtain ˆ̄gk =
√
αku1NRF +

αkδ
2√τpρp

τpρpαkδ2+1

{
yp,k −√

αkτpρpu1NRF

}
, based on

which, the covariance matrix of ˆ̄gk is given by

cov
(
ˆ̄gp,k, ˆ̄gp,k

)
=E

{(
ˆ̄gp,k−E

{
ˆ̄gp,k

}) (
ˆ̄gp,k−E

{
ˆ̄gp,k

})H}
=

τpρpα
2
kδ

4

1 + τpρpαkδ2
INRF . (41)

By noticing that cov (ḡp,k, ḡp,k) = cov
(
ˆ̄gp,k, ˆ̄gp,k

)
+

cov (ek, ek), we have

cov (ek, ek) =
αkδ

2

1 + τpρpαkδ2
INRF . (42)

APPENDIX C
PROOF OF THEOREM 1

In the following, we will calculate Ak and Bk respectively.
1) Calculate Ak

Ak =
√
ρE

{(
ˆ̄g
T
k + eTk

) K∑
i=1

√
ηi

u2
p,i + δ2p,i

ˆ̄g
∗
i

}
(43)

(a)
=

√
ρE

{
ˆ̄g
T
k

K∑
i=1

√
ηi

u2
p,i + δ2p,i

ˆ̄g
∗
i

}

=
√
ρNRF

{
K∑
i=1

√
ηi

u2
p,i+δ2p,i

up,kup,i+

√
ηk

u2
p,k+δ2p,k

δ2p,k

}
.

where (a) follows the fact E
{
eTk
}
= 0.

2) Calculate Bk

We first compute

E


∣∣∣∣∣(̂̄gT

k +eTk

) K∑
i=1

√
ηi

u2
p,i+δ2p,i

ˆ̄g
∗
i

∣∣∣∣∣
2
 = B

(1)
k +B

(2)
k , (44)

where

B
(1)
k = E


∣∣∣∣∣ˆ̄gT

k

K∑
i=1

√
ηi

u2
p,i + δ2p,i

ˆ̄g
∗
i

∣∣∣∣∣
2
 , (45)

B
(2)
k = E


∣∣∣∣∣eTk

K∑
i=1

√
ηi

u2
p,i + δ2p,i

ˆ̄g
∗
i

∣∣∣∣∣
2
 . (46)

We start with the calculation of the first term :

B
(1)
k = (47)
K∑

m=1

K∑
n=1

√
ηmηn(

u2
p,m+δ2p,m

) (
u2
p,n+δ2p,n

)E{ˆ̄gT
k
ˆ̄g
∗
m
ˆ̄g
T
n
ˆ̄g
∗
k

}
.

Let us focus on the evaluation of E
{
ˆ̄g
T
k
ˆ̄g
∗
m
ˆ̄g
T
n
ˆ̄g
∗
k

}
.

a) for m ̸= n ̸= k, we have

E
{
ˆ̄g
T
k
ˆ̄g
∗
m
ˆ̄g
T
n
ˆ̄g
∗
k

}
= tr

(
E
{
ˆ̄g
∗
m

}
E
{
ˆ̄g
T
n

}
E
{
ˆ̄g
∗
k
ˆ̄g
T
k

})
(48)

= N2
RFup,mup,nu

2
p,k +NRFup,mup,nδ

2
p,k.

b) for m ̸= n = k, we have

E
{
ˆ̄g
T
k
ˆ̄g
∗
m
ˆ̄g
T
n
ˆ̄g
∗
k

}
= tr

(
E
{
ˆ̄g
∗
m

}
E
{
ˆ̄g
T
k
ˆ̄g
∗
k
ˆ̄g
T
k

})
. (49)

Decomposing ˆ̄gk into up,k = up,k1
T
NRF

and ˆ̄gv,k ∼
CN (0, δ2p,kINRF), we have

E
{
ˆ̄g
T
k
ˆ̄g
∗
m
ˆ̄g
T
n
ˆ̄g
∗
k

}
(50)

= tr
(
u∗
p,mE

{
uT
p,kup,ku

T
p,k+ˆ̄g

T
v,k ˆ̄g

∗
v,ku

T
p,k+

T
p,k

ˆ̄g
∗
v,k ˆ̄g

T
v,k

})
= N2

RFup,mu3
p,k +N2

RFup,mup,kδ
2
p,k +NRFup,mup,kδ

2
p,k.

c) for n ̸= m = k, we have

E
{
ˆ̄g
T
k
ˆ̄g
∗
m
ˆ̄g
T
n
ˆ̄g
∗
k

}
= E

{
ˆ̄g
T
n
ˆ̄g
∗
k
ˆ̄g
T
k
ˆ̄g
∗
k

}
(51)

= tr
(
E
{
ˆ̄g
T
n

}
E
{
ˆ̄g
∗
k
ˆ̄g
T
k
ˆ̄g
∗
k

})
= tr

(
E
{
uT
p,kup,ku

T
p,k+ˆ̄g

T
v,k ˆ̄g

∗
v,ku

T
p,k+uT

p,k
ˆ̄g
∗
v,k ˆ̄g

T
v,k

}
u∗
p,n

)H
= N2

RFup,nu
3
p,k +N2

RFup,nup,kδ
2
p,k +NRFup,nup,kδ

2
p,k.

d) for m = n ̸= k, we have

E
{
ˆ̄g
T
k
ˆ̄g
∗
m
ˆ̄g
T
n
ˆ̄g
∗
k

}
= tr

(
E
{
ˆ̄g
∗
m
ˆ̄g
T
m

}
E
{
ˆ̄g
∗
k
ˆ̄g
T
k

})
(52)

= tr
({

u∗
p,muT

p,m + δ2p,mINRF

}{
u∗
p,ku

T
p,k + δ2p,kINRF

})
=u2

p,mu2
p,kN

2
RF+u2

p,mδ2p,kNRF+δ2p,mu2
p,kNRF+δ2p,mδ2p,kNRF.

e) for m = n = k, we have

E
{
ˆ̄g
T
k
ˆ̄g
∗
m
ˆ̄g
T
n
ˆ̄g
∗
k

}
= E

{
ˆ̄g
T
k
ˆ̄g
∗
k
ˆ̄g
T
k
ˆ̄g
∗
k

}
(53)

= E
{∣∣∣uT

p,ku
∗
p,k + ˆ̄g

T
v,ku

∗
p,k + uT

p,k
ˆ̄g
∗
v,k + ˆ̄g

T
v,k ˆ̄g

∗
v,k

∣∣∣2}
= E

{∣∣uT
p,ku

∗
p,k

∣∣2 + ∣∣∣ˆ̄gT
v,ku

∗
p,k

∣∣∣2 + ∣∣∣uT
p,k

ˆ̄g
∗
v,k

∣∣∣2}
+ E

{∣∣∣ˆ̄gT
v,k ˆ̄g

∗
v,k

∣∣∣2 + 2uT
p,ku

∗
p,k

ˆ̄g
T
v,k ˆ̄g

∗
v,k

}
= N2

RFu
4
p,k+2NRFu

2
p,kδ

2
p,k+

(
N2

RF+NRF
)
δ4p,k+2NRFu

2
p,kδ

2
p,k

= N2
RFu

4
p,k + 4NRFu

2
p,kδ

2
p,k +

(
N2

RF +NRF
)
δ4p,k.



Combining a) ,b) , c), d) and e) together, we obtain

B
(1)
k = N2

RF

{
K∑
i=1

√
ηi

u2
p,i+δ2p,i

up,kup,i+

√
ηk

u2
p,k+δ2p,k

δ2p,k

}2

+NRF
(
u2
p,k + δ2p,k

) K∑
i=1

ηi
u2
p,i + δ2p,i

δ2p,i

+NRFδ
2
p,k

{
K∑
i=1

√
ηi

u2
p,i + δ2p,i

up,i

}2

. (54)

Then, we calculate B
(2)
k :

B
(2)
k = E


∣∣∣∣∣eTk

K∑
i=1

√
ηi

u2
p,i + δ2p,i

ˆ̄g
∗
i

∣∣∣∣∣
2
 (55)

=

K∑
i=1

K∑
j=1

√
ηiηj(

u2
p,i + δ2p,i

) (
u2
p,j + δ2p,j

)E{eTk ˆ̄g∗
i
ˆ̄g
T
j e

∗
k

}

=NRFδ
2
e,k

(
K∑
i=1

√
ηiu2

p,i

u2
p,i+δ2p,i

)2
+NRFδ

2
e,k

K∑
i=1

ηi
u2
p,i+δ2p,i

δ2p,i.

Noticing that Bk = ρ
(
B

(1)
k +B

(2)
k

)
− |Ak|2, we obtain

Bk = NRFρδ
2
p,k

{
K∑
i=1

√
ηi

u2
p,i + δ2p,i

up,i

}2

(56)

+NRFρ
(
u2
p,k+δ2p,k

) K∑
i=1

ηi
u2
p,i+δ2p,i

δ2p,i+NRFρδ
2
e,k

×

(
K∑
i=1

√
ηi

u2
p,i+δ2p,i

up,i

)2

+NRFρδ
2
e,k

K∑
i=1

ηi
u2
p,i+δ2p,i

δ2p,i.

Recall that u2
p,k = αku

2 and δ2p,k+δ2e,k = αkδ
2. The above

equation can be rewritten as

Bk = αkρδ
2NRF

(
K∑
i=1

√
ηiu2

p,i

u2
p,i + δ2p,i

)2

(57)

+ αkρ
(
u2 + δ2

)
NRF

K∑
i=1

ηiδ
2
p,i

u2
p,i + δ2p,i

.

Combining 1) and 2), we obtain the desired result.
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As ρp → ∞, we have up,i =
√
αiu and δ2p,i = αiδ

2, based
on which, the achievable rate of the k-th user can be expressed
as

Rk = (58)

log2

1 +

N2
RFραk

u2+δ2

(
K∑
i=1

√
ηiu

2 +
√
ηkδ

2

)2

1 + NRFραk

u2+δ2 u2δ2
(

K∑
i=1

√
ηi

)2

+NRFραkδ2
K∑
i=1

ηi

 .

Noticing that
K∑
i=1

ηi = 1, we have

Rk= (59)

log2

1+
N2

RFραk

u2+δ2

(
K∑
i=1

√
ηiu

2+
√
ηkδ

2

)2

1+NRFραk

u2+δ2 u2δ2
(

K∑
i=1

√
ηi

)2

+NRFραkδ2

 .

Comparing
K∑
i=1

√
ηiu

2 with
√
ηkδ

2, we have

K∑
i=1

√
ηiu

2

√
ηkδ2

=

Lũ0

1−ũ0
(1 +

K∑
i̸=k

√
ηi

ηk
)

2

, which shows that
K∑
i=1

√
ηiu

2 is much

greater than
√
ηkδ

2, due to the fact that L and K are large in
general. Thus, ignoring the term

√
ηkδ

2 in (59), we have the
following approximation:

Rk ≈ (60)

log2

1 +

N2
RFραk

u2+δ2 u4

(
K∑
i=1

√
ηi

)2

1 + NRFραk

u2+δ2 u2δ2
(

K∑
i=1

√
ηi

)2

+NRFραkδ2

 .

Next, we consider the maximum power control problem,
which can be formulated as

max
{ηi}

min
i=1,...,K

Ri,

s. t.
K∑
i=1

ηi = 1, ηi ≥ 0, i = 1, ...,K.
(61)

According to (60), we can observe

min
i=1,...,K

Ri = Ri∗ , i
∗ = arg

i=1,...,K
minαi, (62)

based on which, the above optimization problem can be
rewritten as

max
{ηi}

log2

1+
N2

RFρα

u2+δ2
u4

(
K∑

i=1

√
ηi

)2

1+
NRFρα
u2+δ2

u2δ2
(

K∑
i=1

√
ηi

)2

+NRFραδ2

 ,

s. t.
K∑
i=1

ηi = 1ηi ≥ 0, i = 1, ...,K,

(63)

where we define α , min
k=1,...,K

αk.

Noticing that the objective function is an increasing function

with respect to
K∑
i=1

√
ηi, the optimization problem is equivalent

to

max
{ηi}

K∑
i=1

√
ηi,

s. t.
K∑
i=1

ηi = 1, ηi ≥ 0, i = 1, ...,K.

(64)

Denote xi ,
√
ηi. Then we have a convex problem:

max
{xi}

K∑
i=1

xi,

s. t.
K∑
i=1

x2
i = 1, xi ≥ 0, i = 1, ...,K.

(65)



By applying KKT conditions, we can obtain the optimal
power control coefficients ηi =

1
K , i = 1, ...,K. To this end,

substituting the optimal coefficients into the objective function
of (63), we complete our proof.
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Starting from Theorem 1, we have

Rk
NRF→∞

= (66)

log2

1 +

NRF

{
K∑
i=1

√
ηi

u2
p,i+δ

2
p,i

up,kup,i+
√

ηk

u2
p,k+δ

2
p,k

δ2p,k

}2

αkδ2
(

K∑
i=1

√
ηiu2

p,i

u2
p,i+δ

2
p,i

)2

+αk (u2+δ2)
K∑
i=1

ηiδ2p,i
u2
p,i+δ

2
p,i

 .

Recall that up,k =
√
αku, and the above equation can be

written as

Rk
NRF→∞

= (67)

log2

1 +

NRF

{
K∑
i=1

√
ηiu2

p,i

u2
p,i+δ2p,i

u+

√
ηkδ4p,k

αk(u2
p,k+δ2p,k)

}2

δ2
(

K∑
i=1

√
ηiu2

p,i

u2
p,i+δ2p,i

)2

+ (u2 + δ2)
K∑
i=1

ηiδ2p,i
u2
p,i+δ2p,i

 .

Next, we try to deal with the maximum power control
problem:

max
{ηi}

min
k=1,...,K

Rk
NRF→∞

,

s. t.
K∑
i=1

ηi = 1, ηi ≥ 0, i = 1, ...,K,
(68)

which is equivalent to

max
{ηi}

min
k=1,...,K

SINRk,

s. t.
K∑
i=1

ηi = 1, ηi ≥ 0, i = 1, ...,K,
(69)

where

SINRk =

NRF

{
K∑
i=1

√
ηiu2

p,i

u2
p,i+δ2p,i

u+

√
ηkδ4p,k

αk(u2
p,k+δ2p,k)

}2

δ2
(

K∑
i=1

√
ηiu2

p,i

u2
p,i+δ2p,i

)2

+ (u2 + δ2)
K∑
i=1

ηiδ2p,i
u2
p,i+δ2p,i

.

(70)

With optimal power control coefficients, the following e-
quation holds: SINR1 = ... = SINRk = ... = SINRK ,
which can be simplified as

η1δ
4
p,1

α1

(
u2
p,1 + δ2p,1

) = ... =
ηkδ

4
p,k

αk

(
u2
p,k + δ2p,k

) (71)

= ... =
ηKδ4p,K

αK

(
u2
p,K + δ2p,K

) .
Utilizing (71) and noticing

K∑
k=1

ηk = 1, we can obtain the

optimal power control coefficient

ηk =
αk

(
u2
p,k + δ2p,k

)
ϕδ4p,k

, ϕ =
K∑

k=1

αk

(
u2
p,k + δ2p,k

)
δ4p,k

. (72)

Then, substituting (72) into (67), we have

R = log2

1 +

NRF

(
u

K∑
i=1

√
αiup,i

δ2p,i
+ 1

)2

δ2
(

K∑
i=1

√
αiup,i

δ2p,i

)2

+ (u2 + δ2)
K∑
i=1

αi

δ2p,i

 .

(73)

Finally, substituting the results given by Proposition 3 into
(73) yields the desired result.
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As L → ∞, we have δ2 = Lβ2
(
1− ũ2

0

)
→ ∞. Then,

using the results given in Proposition 3, we have δ2p,i =
αiδ

2 τpρpαk
1
δ2

+τpρpαiδ2
≈ αiδ

2.

Leveraging the above equation and noticing that up,i =√
αiu, we obtain

Rk = log2

1 +

N2
RFραk

u2+δ2

(
K∑
i=1

√
ηiu

2 +
√
ηkδ

2

)2

1 + NRFραk

u2+δ2 u2δ2
(

K∑
i=1

√
ηi

)2

+NRFραkδ2

 .

(74)

Substituting u = Lβũ0 and δ2 = Lβ2−Lβũ2
0 into (74) and

after some manipulations, we express Rk as (75) given on the
top of the next page.

Neglecting the small items that do not scale with L2, the
above equation can be simplified as

Rk = log2

1 +

NRFLũ
2
0

(
K∑
i=1

√
ηi

)2

(1− ũ2
0)

{(
K∑
i=1

√
ηi

)2

+ 1

}
 , (76)

which is an increasing function with respect to
K∑
i=1

√
ηi. Then,

following the similar process in the proof of Theorem 2, we
can obtain the optimal maximum power control coefficients
ηk = 1

K , k = 1, ...,K.
To this end, substituting the optimal power control coeffi-

cients into (76) yields the desired result.
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