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Abstract

Imagine an array with a massive (possibly uncountably infinite) number of antennas in a compact space.

We refer to a system of this sort as Holographic MIMO. Given the impressive properties of Massive MIMO,

one might expect a holographic array to realize extreme spatial resolution, incredible energy efficiency, and

unprecedented spectral efficiency. At present, however, its fundamental limits have not been conclusively

established. A major challenge for the analysis and understanding of such a paradigm shift is the lack of

mathematically tractable and numerically reproducible channel models that retain some semblance to the

physical reality. Detailed physical models are, in general, too complex for tractable analysis. This paper

aims to take a closer look at this interdisciplinary challenge. Particularly, we consider the small-scale fading

in the far-field, and we model it as a zero-mean, spatially-stationary, and correlated Gaussian scalar random

field. A physically-meaningful correlation is obtained by requiring that the random field be consistent with

the scalar Helmholtz equation. This formulation leads directly to a rather simple and exact description of the

three-dimensional small-scale fading as a Fourier plane-wave spectral representation. Suitably discretized,

this yields a discrete representation for the field as a Fourier plane-wave series expansion, from which

a computationally efficient way to generate samples of the small-scale fading over spatially-constrained

compact spaces is developed. The connections with the conventional tools of linear systems theory and

Fourier transform are thoroughly discussed.

Index Terms

Holographic MIMO, spatially-stationary random field, Helmholtz equation, Fourier spectral represen-

tation, non-isotropic propagation, physical channel modeling.

I. INTRODUCTION

Massive MIMO refers to a wireless network technology where the base stations are equipped with

a very large number N of antennas to serve a multitude of K terminals by spatial multiplexing
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is with the Dipartimento di Ingegneria dell’Informazione, University of Pisa, 56122 Pisa, Italy (luca.sanguinetti@unipi.it).
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[2]. Thanks to the intense research performed over the last decade, Massive MIMO is today a

mature technology [3], [4] whose key ingredients have made it into the 5G New Radio standard

[5]. Its advantages in terms of spectral efficiency [6], [7], energy efficiency [8], and power control

[9] are well understood and recognized. The channel capacity was shown to increase theoretically

unboundedly in the regime where N → ∞ while K is fixed [7]. In practice, however, the number

of antennas that fits into the common form factor of a base station site is fundamentally limited.

Hence, a natural question is [10]: how can we practically approach the limit N → ∞? One

solution is to integrate a massive (possibly infinite) number of antennas into a compact space,

that is, a Holographic MIMO array. In its asymptotic form, this can be thought of as a spatially-

continuous electromagnetic aperture having an uncountably infinite number of antennas separated

by an infinitesimal distance. This is the ultimate form of a Holographic MIMO array as N → ∞.

Research in this field is taking place under the names of holographic radio-frequency systems

[11], and large intelligent surfaces [12]. The technology developed in [13], known as holographic

beamforming, is the first step in this direction.

A. Motivation

Realistic performance assessment of Holographic MIMO technologies requires the use of a

channel model that reflects the main characteristics of a massive number of antennas in a compact

space. The wireless channel is typically composed of the so-called large-scale fading and small-

scale fading [14]. The former occurs on a larger scale – typically a few hundred wavelengths – and

is due to distance-dependent pathloss, shadowing, antenna gains, and penetration losses, while the

latter is a microscopic effect caused by small variations in the propagation environment. Both play

a key role in wireless communications. This paper only considers the small-scale fading. In the

multiple antenna literature, it is described by a complex-valued vector h ∈ CN , which is modeled

either deterministically or stochastically (e.g., [4, Sec. 7.3]). Examples of deterministic models are

ray-tracing models and recorded channel measurements. The perfect line-of-sight (LoS) propagation

model is another one, which is used in [12], [15] to evaluate the capacity and compute the degrees

of freedom of a planar continuous electromagnetic surface (referred to as a large intelligent surface).

A common drawback of deterministic models is that they are only valid for specific scenarios.

Unlike deterministic models, stochastic approaches are independent of a particular environment

and, consequently, allow for far-reaching general conclusions. A well-known stochastic model in

the far-field with no line-of-sight (NLoS) path is the independent and identically distributed (i.i.d.)
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Rayleigh fading, where h ∼ NC(0N , IN) is modeled as a circularly symmetric complex Gaussian

vector with zero-mean and covariance matrix IN . This model has been (and still is) the basis of most

theoretical research in multiple antenna systems. For example, in Massive MIMO it leads to neat,

understandable closed-form spectral efficiency expressions [3]. However, it is widely recognized

to be inadequate when antenna spacing reduces, and spatial correlation naturally arises [10]. A

tractable way to model spatially-correlated channels with NLoS path is the correlated Rayleigh

fading model [10]: h ∼ NC(0N ,R), where R ∈ CN×N is the spatial correlation matrix. Different

models exist for the generation of R. Consistency with the physics laws of propagation implies that

such models are based on a superposition of plane-waves (e.g., [4, Sec. 7.3]), which shifts the focus

on the characterization of their amplitudes only. The vast majority is driven by analytical arguments,

which allow us to capture key characteristics of the propagation environment but inevitably tend

to leave out significant physical phenomena. Moreover, the spatial correlation matrix is typically

modeled to capture the propagation environment and array geometry jointly. For example, the i.i.d.

Rayleigh fading models the small-scale fading over a half-wavelength spaced linear array surrounded

by an isotropic propagation environment. Their combined action makes it hard to infer the physical

properties of the propagation environment as antenna spacing reduces. For example, arrays with

larger antenna spacing in a less scattered environment yield the same spatial correlation as arrays

with smaller antenna spacing but in a more scattered environment [16], [17].

A stochastic model for the small-scale fading that retains some semblance to the physical reality

is the widely known Clarke’s model, e.g., [18] and [19] for a two-dimensional (2D) and three-

dimensional (3D) analysis, respectively. The model assumes a NLoS scenario with scalar radio

waves (i.e., no polarization) propagating in the far-field of an isotropic (i.e., no dominant spatial

directivity) random scattering environment [20]. Under these circumstances, Clarke’s model is exact,

and its autocorrelation function between two arbitrary points in 2D and 3D spaces at a distance r is,

respectively, equal to J0(2πr/λ) and sinc(2r/λ) with λ being the wavelength [21], [22].1 Notably,

the channel exhibits spatial correlation even if there is no spatial directivity.

This paper aims to generalize Clarke’s model to non-isotropic random scattering environments,

with the purpose to obtain a generalized stochastic model for the small-scale fading of 3D spatially-

stationary channels, which is: (i) physically meaningful; (ii) mathematically tractable; and (iii)

numerically reproducible. By focusing on a continuous formulation of the problem, rather than

1We use the definition sinc(x) = sin(πx)/πx throughout this paper.
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discrete, we simplify the theoretical analysis and obtain a rather simple expression for the small-

scale fading. Also, spatial sampling and discrete formulation somehow tend to hide fundamental

results, which are otherwise revealed by a continuous analysis [23]. Previous works in this direction

can be found in [16], [17], and [24]. Unlike these works, we treat radio wave propagation as a

linear system, which provides us with a simple and intuitive interpretation of the proposed model

through linear system theory and Fourier transform, without the recourse to special functions (i.e.,

Green function [16], [17], spherical harmonics [24]), detailed parametric models.

B. Contribution

We consider the 3D small-scale fading in the far-field and assume that it can be modeled as a

zero-mean, spatially-stationary, and correlated Gaussian scalar random field satisfying the Helmholtz

equation in the frequency domain (equivalent to the scalar wave equation in the time domain), as

dictated by physics. This modeling yields the only physically-meaningful spatial correlation function,

whose power spectral density (in the spatial-frequency or wavenumber domain) is impulsive with

support on the surface of a sphere of radius κ = 2π/λ, and uniquely described by a spectral factor

that specifies directionality and physically characterizes the propagation environment in its most

general form. The structure of the spatial correlation function leads directly to the so-called 2D

Fourier plane-wave spectral representation for the field, which is given by a superposition of a

continuum of plane-waves having zero-mean statistically-independent Gaussian-distributed random

amplitudes. We discuss the connection between the derived formula and the space-wavenumber

Fourier spectral representation, which represents the spatial counterpart of the time-frequency

mapping for time-domain random processes. Notably, we show that the small-scale fading has

a singularly-integrable bandlimited spectrum in the wavenumber domain that is defined on a disk

of radius κ. This is a direct consequence of the Helmholtz equation, which acts as a 2D linear

space-invariant physical filter that projects the number of observable field configurations onto a

lower-dimensional space. Comparisons with Clarke’s model are also made to show that this is the

closest physically-tenable model to i.i.d. Rayleigh fading.

Also, the bandlimited nature of the 2D Fourier plane-wave spectral representation is exploited

to statistically characterize the small-scale fading over Holographic MIMO arrays of compact size.

The result is a 2D Fourier plane-wave series expansion having a countably-finite number of zero-

mean statistically-independent Gaussian-distributed random coefficients with given finite variance.

We show that the provided model can be interpreted as the asymptotic version of the famous
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Karhunen-Loève series expansion. Finally, spatial discretization of the field yields a numerical

procedure to generate small-scale fading samples through inverse fast Fourier transform efficiently.

Reproducible Research: The Matlab code package to reproduce all numerical results is available

at https://github.com/lucasanguinetti/Holographic-MIMO-Small-Scale-Fading.

C. Outline and Notation

The rest of this paper is organized as follows. Section II introduces the continuous physical

modeling for the 3D small-scale fading and studies the implication of the Helmholtz equation on

its second-order statistics. Section III derives the 2D Fourier plane-wave spectral representation and

elucidates the connection with the well-known Fourier spectral representation. Section IV deals

with isotropic propagation and shows that Clarke’s model can be derived from the proposed model.

A linear-system theoretic interpretation of general non-isotropic small-scale fading models is also

provided. Section V derives the Fourier plane-wave series expansion for a spatially-continuous

compact space, which is used to numerically generate small-scale fading samples over Holographic

MIMO arrays. The numerical method is validated by means of Monte Carlo simulations. Section VI

concludes with a general discussion and outlook on the developed analytical framework.

We will use upper (lower) case letters for frequency (time) entities. We use calligraphic letters for

indicating sets and boldfaced lower case letters for vectors. E{·} denotes the expectation operator.

The notation n ∼ NC(0, σ
2) stands for a circularly-symmetric Gaussian variable with variance σ2.

We use Rn to denote the n-dimensional real-valued vector space. ∇2 = ∂2

∂x2 +
∂2

∂y2
+ ∂2

∂z2
is the scalar

Laplace operator. 1X (x) is the indicator function of a subset x ∈ X . ⌈x⌉ gives the smallest integer

equal to or greater than x. δ(x) is the Dirac delta function while δn is the Kronecker delta.

II. PHYSICS-BASED CONTINUOUS SMALL-SCALE FADING MODELING

In the far-field of a homogeneous, isotropic, source-free, and scattered infinite medium, each

of the three Cartesian components (Ex, Ey, Ez) ∈ C3 of the electrical field is a function of four

scalar variables: the frequency ω (or, equivalently, the time t) and three Cartesian coordinates

(x, y, z) ∈ R3 denoting the spatial position. Electromagnetic waves without polarization behave

similarly to acoustic waves [25], and the small-scale fading can be modeled as a space-frequency

scalar random field [21]

{

hω(x, y, z) : (x, y, z) ∈ R
3, ω ∈ (−∞,∞)

}

. (1)

A primary interest in wireless communications lies in scenarios in which hω can be modeled as a

zero-mean, spatially-stationary, and Gaussian random field [1]. The Gaussian assumption is valid

https://github.com/lucasanguinetti/Holographic-MIMO-Small-Scale-Fading
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(a) Deterministic LoS scenario.

Upgoing
plane-waves

Downgoing
plane-waves

(k̂x, k̂y,−γ̂)

h(x, y, z)
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ŷ

ẑ

infinite
plane

(b) Random scattered NLoS scenario.

Fig. 1: Propagation of scalar plane-waves in a 3D environment.

whenever the distance between scattering events is significant compared to the wavelength λ, but

small compared to the distance between source and receiver [20]. In this paper, we restrict our

analysis to monochromatic waves, i.e., propagating at the same single frequency ω. Therefore, we

omit the subscript ω in (1) and call h = hω. Following [23], we pursue a continuous approach since

discrete formulation may leave out significant physical underlying properties of wave propagation.

A. Plane-Wave Solution

The electromagnetic nature of the small-scale fading requires each realization of h(x, y, z) to

satisfy (with probability 1) the scalar Helmholtz equation in the frequency domain. In a source-free

environment, this means that [26, Eq. (1.2.17)]:

(

∇2 + κ2
)

h(x, y, z) = 0 (2)

where κ = ω
c
= 2π

λ
is the wavenumber (i.e., the angular displacement in radians per unit of length)

with c being the speed of light. The Helmholtz condition in (2) is a second-order linear partial

differential equation with constant coefficients. In analogy with ordinary differential equations, we

are led to assume a solution with probability 1 of the form [27]

h(x, y, z) = Hei(kxx+kyy+kzz) (3)

where (kx, ky, kz) ∈ R
3 and H ∈ C are unknown constant parameters. A solution of this form

is also motivated by the fact that (2) is an eigenvalue equation in the Laplacian operator whose

eigenfunction solutions can be obtained by inspection after recalling that the Laplacian operator

∇2 is linear and space-invariant [27]. The substitution of (3) into (2) transforms it into an algebraic
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equation for all (x, y, z) ∈ R
3, which yields the non-trivial solution k2

x + k2
y + k2

z = κ2. Thus, kz is

determined, apart from a sign, by the other two components kx and ky:

kz = ±γ(kx, ky) = ±
√

κ2 − k2
x − k2

y. (4)

Since we restrict the analysis to kz ∈ R, it thus follows that (kx, ky) must have compact support

D(κ) =
{

(kx, ky) ∈ R
2 : k2

x + k2
y ≤ κ2

}

(5)

given by a disk of radius κ centered on the origin. From (3) and (4), we thus have that

{H+ei(kxx+kyy+γ(kx,ky)z)} {H−ei(kxx+kyy−γ(kx,ky)z)} (6)

are both distinct eigenfunctions of (2). As illustrated in Fig. 1a, they describe two incident plane-

waves2 impinging on the spatial point (x, y, z) and spatially-propagating respectively through the

left (upgoing) or right (downgoing) half-spaces created by an infinite plane passing through (x, y, z)

and perpendicular to the arbitrarily chosen z−axis. We also notice that, by imposing the condi-

tion (kx, ky, kz) ∈ R3, we exclude the so-called evanescent waves from the analysis (since they

decay exponentially fast in space and contribute to the near-field propagation) and consider only

propagating waves as in Fig. 2b.

Notice that (6) constitutes, for every (kx, ky) ∈ D(κ), the eigenspace solution to the Helmholtz

equation and thus a solution to (2) (with probability 1) can be obtained as a linear combination of

those eigenfunctions

h(x, y, z) =

∫∫

D(κ)

(

H+(kx, ky)e
i(kxx+kyy+γ(kx,ky)z) +H−(kx, ky)e

i(kxx+kyy−γ(kx,ky)z)
)

dkxdky. (7)

In electromagnetic literature, this is known as a general homogeneous plane-wave solution to the

Helmholtz equation (e.g., [28, Ch. 6.7]), where the wave amplitudes H±(kx, ky) : D(κ) → C are

now complex-valued functions taking arbitrary values within D(κ) so that (7) is suitably convergent

[27]. In other words, there are a possibly uncountably infinite scattered waves that impinge on

(x, y, z) from directions (k̂x, k̂y,±γ̂) and have complex-valued random amplitudes H±. This effect

is due to the interaction with the scattering environment, as showed in Fig. 1b. The scattered waves

satisfy the Helmholtz equation independently, which in turn implies that (7) satisfies it, due to the

linearity of its operator.

2Their wavefronts form infinite planes all oriented towards a propagating direction (k̂x, k̂y ,±γ̂(kx, ky)) = ( kx

κ
,
ky

κ
,±

γ(kx,ky)

κ
)

[26].
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The electromagnetic characterization of plane-wave amplitudes H± is done by using either ray-

tracing modeling of the propagation environment [15] or numerical methods for solving partial

differential equations [29]. While these approaches account for specific geometries and are very

accurate, they are scenario dependent and hard to work with mathematically. We rather pursue a

statistical approach for modeling H± that leads to an analytically-tractable model.

B. The Statistical Implication of the Helmholtz Equation

For the zero-mean, spatially-stationary and Gaussian random field h, the spatial autocorrelation

function

ch(x, y, z) = E{h∗(x′, y′, z′)h(x+ x′, y + y′, z + z′)} (8)

computed for every pair of points (x′, y′, z′) and (x+x′, y+y′, z+z′) provides a complete statistical

description in the spatial domain. Alternatively, h can be statistically described in the wavenumber

domain by its power spectral density:

Sh(kx, ky, kz) =

∫∫∫

∞

−∞

ch(x, y, z) e
−i(kxx+kyy+kzz) dxdydz (9)

from which ch follows as

ch(x, y, z) =
1

(2π)3

∫∫∫

∞

−∞

Sh(kx, ky, kz) e
i(kxx+kyy+kzz) dkxdkydkz. (10)

Notice that the spatial and wavenumber (also known as spatial-frequency) domains represent re-

spectively the time and frequency counterparts of the classical Fourier analysis of time-domain

signal [23]. By applying the Laplacian operator to both sides of (8) and interchanging the order of

integration and derivation, we obtain

∇2ch(x, y, z) + κ2ch(x, y, z) = 0 (11)

which implies that the spatial autocorrelation itself satisfies the Helmholtz equation [1]. By plugging

(10) into (11) and interchanging the order of integration and differentiation yields

(

k2
x + k2

y + k2
z − κ2

)

Sh(kx, ky, kz) = 0. (12)

This implies that Sh must vanish everywhere except on the wavenumber support

S(κ) = {(kx, ky, kz) ∈ R
3 : k2

x + k2
y + k2

z = κ2} (13)

of an impulsive sphere of radius κ centered on the origin (see Fig. 2a). This is a consequence of

the so-called spectral concentration effect [30], which follows from the fact that we consider an
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infinite propagation medium. Now, being Sh defined over a support with zero measure, it cannot

be interpreted as an ordinary function, but rather as a singular Delta distribution [31]. Also, since

any two distributions that are identical except for a set of zero measure returns the same Lebesgue

integral [32], the following result is established.

Lemma 1 ([1]). The power spectral density of any h(x, y, z) obeying (2) is in the form3

Sh(kx, ky, kz) = A2
h (kx, ky, kz) δ(k

2
x + k2

y + k2
z − κ2) (14)

where Ah is a real-valued non-negative deterministic field called spectral factor, which model the

spatial selectivity of the scattering.

Any physically-meaningful small-scale fading must have a power spectral density of the form

above. This is the statistical implication of the Helmholtz equation on the second-order statistics

of h. We notice that the i.i.d. Rayleigh fading model (i.e., obtained as a collection of independent

zero-mean, circularly-symmetric Gaussian random variables for (x, y, z) ∈ R3) is strictly speaking

incompatible with the above result since it leads directly to an impulsive autocorrelation function

ch(x, y, z) = S0 δ(x)δ(y)δ(z) and, in turn, to a constant power spectral density Sh(kx, ky, kz) = S0

for (kx, ky, kz) ∈ R3 according to (9). In Section IV, we will show that the model is, however,

perfectly consistent with physics under isotropic propagation when the samples of the small-scale

fading are taken along a straight line at a spacing of integer multiples of λ/2.

III. FOURIER DESCRIPTION OF PHYSICS-BASED CHANNELS

The power spectral density Sh(kx, ky, kz) of any physically meaningful small-fading h(x, y, z) is

defined in (14) for the entire wavenumber spectrum (kx, ky, kz) ∈ R
3. The power spectral density

of the propagating waves only can be obtained by taking the Fourier inversion of Sh(kx, ky, kz)

with respect to kz ∈ R while the other two wavenumber components are held constant.

A. Fourier inversion of Sh(kx, ky, kz) in kz

From (9), we obtain

1

2π

∫

∞

−∞

Sh(kx, ky, kz)e
ikzz dkz =

∫∫

∞

−∞

ch(x, y, z) e
−i(kxx+kyy) dxdy. (15)

The composition of the Dirac delta with a differentiable function can be rewritten as [34, Eq. (181.a)]

δ
(

k2
z − (κ2 − k2

x − k2
y)
)

=
δ(kz − γ) + δ(kz + γ)

2 γ
(16)

3The interpretation of a Dirac delta function having an argument which is a non-linear function is discussed in [33].
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where γ is defined in (4). We denote A2
h,±(kx, ky) = A2

h(kx, ky,±γ) the values assumed by the

spectral factor at kz = ±γ along the axis kz (see Fig. 2a). By using (14) and (16) into (15) yields

1

2π

∫

∞

−∞

Sh(kx, ky, kz)e
ikzz dkz = S+

h (kx, ky)e
iγz + S−

h (kx, ky)e
−iγz (17)

which is the sum of the two 2D power spectral densities

S±

h (kx, ky) =
A2

h,±(kx, ky)/4π
√

κ2 − k2
x − k2

y

, (kx, ky) ∈ D(κ) (18)

where we have replaced γ with its expression in (4) and (kx, ky) ∈ D(κ) since we only considered

propagating waves. The Fourier inversion of (17) with respect to (kx, ky) ∈ D(κ) yields the

autocorrelation function ch as given in (15).

This intermediate result is instrumental to obtain later a statistical characterization of the prop-

agating wave amplitudes H± in (7) that is based on S±

h . For this reason, (18) are referred to as

plane-wave spectrums. One should not be worried about the singularity at the boundary of their

spectral support D(κ). If the spectral factor Ah is bounded on D(κ), this singularity can be removed

by applying a change of integration variables (as shown in Appendix -C for a constant Ah), which

makes S±

h singularly-integrable spectrums.

As illustrated in Fig. 2a, S±

h are obtained from Sh by independently parametrizing the upper and

lower hemispheres of S(κ) on the 2D wavenumber disk support D(κ), respectively. Their magni-

tudes are driven by the Jacobian determinant of the spherical parametrization ϕ(kx, ky) : D(κ) → S(κ)
induced by the kz-Fourier inversion

Jϕ(kx, ky) =

√

(

∂γ

∂kx

)2

+

(

∂γ

∂ky

)2

+ 1 =
κ

√

κ2 − k2
x − k2

y

(19)

which leads to large values near the boundary of D(κ).

B. The 2D Fourier Plane-Wave Spectral Representation

From (7), to generate a zero-mean, spatially-stationary and Gaussian random field model for h

we can choose the amplitudes H± independently as a 2D collection of statistically-independent,

circularly-symmetric Gaussian random variables

H±(kx, ky) =
√

S±

h (kx, ky)W
±(kx, ky) (20)

where S±

h (kx, ky) are the plane-wave spectrums in (18) and W± are two 2D independent, zero-

mean, complex-valued, white-noise Gaussian random fields with unit variance. Spatial stationarity

can thus be directly verified. Physically, S±

h (kx, ky) are associated with upgoing and downgoing
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(a) Spectral sphere S(κ) and its 2D parametrization D(κ).
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(b) Propagating and evanescent waves.

Fig. 2: Wavenumber support of the power spectral density of the channel h(x, y, z).

propagating waves in (7) and for every (kx, ky) ∈ D(κ) they specify the average power carried by

these waves at each direction (kx, ky,±γ). The white-noise fields capture the randomness of the

scattering propagation environment.

The substitution of the propagating wave amplitudes (20) into the homogeneous solution (7)

yields the following spectral representation for the 3D small-scale fading [1]

h(x, y, z) = h+(x, y, z) + h−(x, y, z) (21)

with

h±(x, y, z) =
1

4π
√
π

∫∫

D(κ)

Ah,±(kx, ky)

(κ2 − k2
x − k2

y)
1/4

W±(kx, ky) e
i(kxx+kyy±

√
κ2−k2x−k2y z) dkxdky (22)

where we have used (4). Thus, h(x, y, z) is exactly expressed as a linear superposition of possibly

an uncountably infinite number of upgoing and downgoing propagating waves having statistically-

independent Gaussian-distributed random amplitudes. This is the only physically-tenable model for

describing any arbitrary spatially-stationary Gaussian random small-scale fading. Notice that the

convergence of (22) is always guaranteed in the mean-square sense since S±

h (kx, ky) are singularly-

integrable over D(κ) for every upper-bounded spectral factor Ah,±(kx, ky); see Appendix IV.C.

Also, (22) is reminiscent of a 2D inverse Fourier transform in the spatial variables (x, y), with

fixed z, where its Fourier harmonics (normalized) physically correspond to propagating waves.

In other words, the Fourier transform acts as a continuous plane-wave decomposition of the

channel, and, for this reason, we generally refer to (21) and (22) as a Fourier plane-wave spectral

representation of h. The connection with Fourier theory will be instrumental in deriving in Section V
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a Fourier plane-wave series expansion over compact spaces, from which a numerical procedure is

derived to generate spatial samples of the small-scale fading over apertures of compact size.

C. Connection with the Fourier Spectral Representation

Statistical integral representations of stationary random processes are available in signal pro-

cessing. The most important is the Fourier spectral representation [35, Sec. 3.6], which can be

regarded as the asymptotic version of the famous Karhunen-Loeve series expansion [35, Sec. 3.2].

In Appendix I, we revise this representation and obtain a handy expression in (53) to work with. The

generalization of this theory to 3D spatially-stationary random fields is treated in [23, Eq. (2.12)],

which leads to a similar form as (53) given by:

h(x, y, z) =
1

(2π)3/2

∫∫∫

∞

−∞

√

Sh(kx, ky, kz)W (kx, ky, kz)e
i(kxx+kyy+kzz) dkxdkydkz (23)

where W is a 3D zero-mean, stationary, white-noise Gaussian random field with unit spectrum, Sh

is the power spectral density of the random field h. The direct evaluation of h through (23) requires

the computation of the square-root of the impulsive function Sh in (14), which makes the 3D Fourier

spectral representation in (23) inadequate to statistically describe physics-based channels.4

Notice, however, that evaluating (21) on the infinite plane z = 0 yields h(x, y, 0) = h+(x, y, 0)+

h−(x, y, 0) with

h±(x, y, 0) =
1

2π

∫∫

∞

−∞

√

S±

h (kx, ky)W
±(kx, ky)e

i(kxx+kyy) dkxdky (24)

where S±

h and W± are defined in (20). The above expression coincides with the 2D Fourier spectral

representation. By using the theory of linear-systems (reviewed in Appendix I and summarized in

Fig. 10), it thus follows that h±(x, y, 0) can be generated by passing W±(kx, ky) through 2D

linear space-invariant filters with wavenumber responses
√

S±

h (kx, ky). These physical filters are

bandlimited with wavenumber bandwidth |D(κ)| = πκ2 and of second-order having two poles

kz = ±γ(kx, ky) on the kz−axis that correspond to the plane-wave spectrum singularities. This

filtering operation is due to the Helmholtz equation (2). Indeed, the Helmholtz operator ∇2+ κ2 is

linear and space-invariant; that is, the linear combination of any two solutions is a solution, and a

space-shifted version of h is also a solution, and wave propagation can be treated by using the theory

of linear systems. Finally, the physics-based channels h±(x, y, z), evaluated at any infinite plane

4Square-root of singular functions are not defined even in the sense of distributions [31].
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infinite plane
z �= 0

infinite plane
z = 0

(x, y, 0) z−axis(x, y, z)

h+(x, y, 0)
e+iγ(kx,ky)z

h(x, y, z)

h−(x, y, 0)
e−iγ(kx,ky)z

Upgoing
plane-wave

(k̂x, k̂y,+γ̂)

migration
filters

x̂

ŷ

ẑ

Downgoing
plane-wave

(k̂x, k̂y,−γ̂)

h(x, y, 0)

Fig. 3: Extrapolation of the small-scale fading over infinite z−planes through migration filters.

z 6= 0, can be obtained as a space-shifted version of h±(x, y, 0) by passing it through two phase-

shift filters with wavenumber responses e±iγz; h(x, y, z) is eventually obtained as the sum of the

two filter outputs, as shown in Fig. 3. These filters are known as migration filters in the geophysical

literature [1] and describe lossless wave propagation through the left and right half-spaces.

IV. ISOTROPIC PROPAGATION

We now discuss the connection between the proposed model and the Clarke’s model. Particularly,

we show that the latter is the closest physically-tenable model for i.i.d. Rayleigh fading and that

every non-isotropic channel can be generated by passing a Clarke’s isotropic channel through a

linear space-invariant filter.

Definition 1 ([21]). An isotropic channel, say h̃(x, y, z), is characterized by a radially-symmetric

spectral factor, which is invariant under rotations.

This implies that we can choose the wavenumber coordinates in a convenient way such that they

are aligned to one of their axes, say the kx−axis. We may thus write

Ah̃ (kx, ky, kz) = Ah̃

(√

k2
x + k2

y + k2
z , 0, 0

)

= Ah̃(κ) (25)

where Ah̃ is the spectral factor associated with the isotropic channel. By assuming that the overall

power of h̃ is normalized to 1, in Appendix II it is shown that

Ah̃(κ) =
2π√
κ
. (26)
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By using (25) into (14), the power spectral density of h̃ becomes

Sh̃ (kx, ky, kz) =
4π2

κ
δ(k2

x + k2
y + k2

z − κ). (27)

Substituting (26) into (21) and (22) yields h̃(x, y, z) = h̃+(x, y, z) + h̃−(x, y, z) with

h̃±(x, y, z) =
1

2
√
πκ

∫∫

D(κ)

ei(kxx+kyy±
√

κ2−k2x−k2yz)

(κ2 − k2
x − k2

y)
1/4

W±(kx, ky)dkxdky (28)

where W± are two independent 2D Gaussian white noise fields with unit variance. Although (25)

implies that each propagating wave carries equal power, after the Fourier inversion along κz, the

power carried by each wave in (28) is no longer constant. This is due to the spherical parametrization

discussed above for the generic non-isotropic case. The evaluation of h̃ at z = 0 yields the 2D

Fourier spectral representation h̃(x, y, 0) = h̃+(x, y, 0) + h̃−(x, y, 0) with

h̃±(x, y, 0) =
1

2π

∫∫

∞

−∞

√

Sh̃(kx, ky)W
±(kx, ky)e

i(kxx+kyy) dkxdky (29)

where the power spectral density is of the form

Sh̃(kx, ky) =
π/κ

√

κ2 − k2
x − k2

y

, (kx, ky) ∈ D(κ) (30)

which is a bandlimited singularly-integrable spectrum that guarantees convergence of the integral

representation (29); see Appendix IV.C. The autocorrelation function is available in closed-form.

Lemma 2. If the channel is isotropic with Ah̃(κ) = 2π/
√
κ, then the 3D inverse Fourier transform

of the spectrum yields the explicit autocorrelation function5

ch̃(x, y, z) = sinc

(

2r

λ

)

=
sin(κr)

κr
(31)

where r =
√

x2 + y2 + z2 is the distance among any pair of spatial points.

Proof. The proof is given in Appendix III.

Since
sin(κr)

κr
is zero when r = kλ/2 with k ∈ Z, samples of the isotropic small-scale fading

taken along a straight line at a spacing of an integer multiple of λ/2 are independent. This result

holds true also when λ → 0 (κ → ∞).

Corollary 1. The samples of the isotropic small-scale fading become asymptotically independent

as λ → 0 (κ → ∞) with

ch̃(x, y, z) = δ(r) = δ(x)δ(y)δ(z). (32)

5The functional dependence on the distance r between every pair of points is a standard property of isotropic random fields [21].
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Proof. The Dirac delta function may be represented through the normalized sinc(·) function, i.e.,

lima→0
sinc(r/a)

a
→ δ(r) with a = λ/2, where the limits must be intended in distribution sense.

From Lemma 2 and Corollary 1, we can conclude that that the isotropic small-scale fading

h̃(x, y, z) is the closest physically-tenable model to the i.i.d. Rayleigh fading, which is thus perfectly

consistent with physics principles under the conditions above.

There is a 2D counterpart to the 3D theory presented in this paper, where the small-scale fading

depends only on (x, y). In this case, the wavenumber support of the power spectral density is an

impulsive circle of radius κ (compare this to the 3D spectral support in Fig. 2). Under isotropic

propagation, by choosing Ah̃(κ) = 2
√
π for normalization purpose (see Appendix II), we obtain

h̃(x, y) = h̃+(x, y) + h̃−(x, y) with

h̃±(x, y) =
1√
2π

∫ κ

−κ

e
i
(

kxx±
√

κ2−k2x y
)

(κ2 − k2
x)

1/4
W±(kx) dkx (33)

where W± are two independent 1D Gaussian white noise fields with unit variance. At y = 0, the

1D Fourier spectral representation reads as h̃(x, 0) = h̃+(x, 0) + h̃−(x, 0) with

h̃±(x, 0) =
1√
2π

∫

∞

−∞

√

Sh̃(kx)W
±(kx)e

ikxx dkx (34)

and bandlimited singularly integrable spectrum

Sh̃(kx) =
1

√

κ2 − k2
x

, kx ∈ [−κ, κ]. (35)

The autocorrelation function of h̃ can be computed in closed-form.

Lemma 3. If the channel is isotropic with A2
h(κ) = 4π (see Appendix ), then the autocorrelation

function is

ch̃(x, y) = J0

(

2πr

λ

)

(36)

where r =
√

x2 + y2, and J0 (x) is the Bessel function of first kind and order 0.

Proof. The proof is sketched at the end of Appendix III.

Lemma 2 and Lemma 3 show that ch̃ is the same autocorrelation function obtained by respectively

using the 3D [19] and 2D [18] Clarke’s models. The same results are obtained by using a “diffusion

approximation” in [20]. Hence, the tools developed so far allow to study small-scale fading in its

most general form, while being in agreement with previous models.
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Sh̃(kx, ky) S±
h (kx, ky)

Isotropic channel Channel

Ah,±(kx,ky)

2π/
√

κ

h̃±(x, y, 0) h±(x, y, 0)

Fig. 4: Linear system-theoretic interpretation of wave propagation through scattering.

A. Linear System-Theoretic Interpretation of Scattering

By using (30), we can rewrite (18) as follows

S±

h (kx, ky) =

(

A2
h,±(kx, ky)

4π2/κ

)

Sh̃(kx, ky) (37)

which implies that we can generate any channel h(x, y, 0) with an arbitrary spectrum by passing

an isotropic channel h̃(x, y, 0) through a 2D linear space-invariant filter with wavenumber response

given by the spectral factor (up to a normalization factor). Hence, the term between brackets in

(37) can be interpreted as the spatial frequency response of a shaping-filter that turns h̃(x, y, 0) into

h(x, y, 0); see Fig. 4. This is the system-theoretic importance of the isotropic model for generating

any random scattering channel. Then of h(x, y, z) and h̃(x, y, z) can always be obtained by passing

their versions evaluated at the infinite plane z = 0 through the corresponding migration filters

e±iγz = e±i
√

κ2−k2x−k2yz as shown in Fig. 3.

V. DISCRETE REPRESENTATION OF THE CONTINUOUS MODEL

In the above sections, we have shown that every non-isotropic small-scale fading h(x, y, z) that

satisfies the Helmholtz equation, is a bandlimited second-order random field with wavenumber

support D(κ). The small-scale fading h(x, y, 0) observed at the infinite plane z = 0 can be obtained

from a bandlimited isotropic small-scale fading h̃(x, y, 0) through a linear space-time invariant

filtering operation (see Fig. 4), which is in turn described by the 2D Fourier spectral representation

in (29). The evaluation of h(x, y, z) at any infinite z−plane is implemented by passing h(x, y, 0)

through migration filters, as shown in Fig. 3. All this is used next to develop a numerical procedure

to efficiently generate channel samples over compact rectangular apertures (i.e., linear, planar, and

volumetric apertures).

A. Fourier Plane-Wave Series Expansion of Isotropic Channels

Consider a compact spatially-continuous rectangular space V = {(x, y) ∈ R2 : x ∈ [0, Lx], y ∈
[0, Ly]} of side lengths Lx, Ly < ∞. The same procedure described in Appendix IV.A to obtain a
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Fourier spectral series expansion approximation of a bandlimited random process with ω ∈ [−Ω,Ω]

defined over t ∈ [0, T ] can be extended to isotropic spatial random fields observed over a space

region V of finite size. This is obtained by replacing the time-frequency mapping with its space-

wavenumber counterpart: the time interval t ∈ [0, T ] must be replaced with the spatial region

(x, y) ∈ V , and the angular-frequency interval ω ∈ [−Ω,Ω] with the wavenumber region (kx, ky) ∈
D(κ). In analogy with Appendix IV.A, we partition the spectral support D(κ) in Fig. 2b uniformly

with spacing ∆kx = 2π/Lx and ∆ky = 2π/Ly along the kx and ky−axes. By rescaling the kx and

ky−axes as Lx

2π
kx and

Ly

2π
ky, these partitions are indexed by

E = {(ℓ,m) ∈ Z
2 : (ℓλ/Lx)

2 + (mλ/Ly)
2 ≤ 1} (38)

which is a 2D lattice ellipse of semi-axes Lx/λ and Ly/λ, as shown in Fig. 5. The white and red

dots indicate the wavenumber harmonics associated with propagating and evanescent plane-waves,

respectively. In the same way (53) can be approximated over t ∈ [0, T ] by (66) as ΩT → ∞, (29)

can be approximated over (x, y) ∈ V as min(Lx, Ly)/λ → ∞ by

h̃(x, y) ≈
∑∑

(ℓ,m)∈E

H̃ℓme
i2π

(

ℓx
Lx

+my
Ly

)

, (x, y) ∈ V (39)

where H̃ℓm ∼ NC(0, 2σ
2
ℓm) are statistically-independent Gaussian-distributed random variables with

variances σ2
ℓm as computed in Appendix -C. In analogy with Fourier theory, we refer to (39) as

the Fourier plane-wave series expansion of h̃(x, y) over (x, y) ∈ V . The channel energy collected

over the finite spatial region V is contained in a countably-finite number of angular directions each

one of which corresponding to a different propagating wave. In analogy to the Fourier series of a

time-domain waveform, (39) provides a periodic spatial random field with 2D fundamental period

(x, y) ∈ V . The Fourier plane-wave series expansion of h̃(x, y, z) at different z can be implemented

by using migration filters having wavenumber responses e±iγℓmz with

γℓm =

√

κ2 −
(

2πℓ

Lx

)2

−
(

2πm

Ly

)2

= κ

√

1−
(

ℓ

Lx/λ

)2

−
(

m

Ly/λ

)2

(40)

as obtained from (4) by evaluating (κx, κy) at
(

2πℓ
Lx

, 2πm
Ly

)

. The representation in (39) becomes6

h̃(x, y, z) ≈
∑∑

(ℓ,m)∈E

H̃ℓm(z)e
i2π

(

ℓx
Lx

+my
Ly

)

, (x, y) ∈ V, |z| < min(Lx, Ly) (41)

6Since the model accuracy increases as min(Lx, Ly)/λ grows large, we have that |z| < min(Lx, Ly). Otherwise one may always

find a better approximation by exchanging the z−axis with one of the other two.
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−Ly/λ
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Fig. 5: The 2D lattice ellipse E wavenumber spectral support of h(x, y, z).

where

H̃ℓm(z) = H̃+
ℓme

iγℓm z + H̃−

ℓme
−iγℓm z (42)

and H̃±

ℓm ∼ NC(0, σ
2
ℓm). The restriction to a linear aperture of length Lx < ∞ squeezes the 2D

spectral disk D(κ) in Fig. 2b to the kx−axis so that the wavenumber support becomes a 1D segment

kx ∈ [−κ, κ] as shown in (35). By partitioning the spectral segment uniformly with wavenumber

spacing interval 2π/Lx so that each partition is indexed by ℓ = {−Lx/λ, . . . , Lx/λ−1} (see Fig. 5),

the Fourier plane-wave series expansion of h̃(x) = h̃(x, 0, 0) over x ∈ [0, Lx] becomes a 1D inverse

discrete Fourier transform:

h̃(x) ≈
Lx/λ−1
∑

ℓ=−Lx/λ

H̃ℓ e
i2π ℓx

Lx , x ∈ [0, Lx] (43)

where H̃ℓ ∼ NC(0, 2σ
2
ℓ ) are statistically-independent Gaussian-distributed random variables with

variances σ2
ℓ as computed in Appendix IV.C. Next, we use (41) and (43) to develop a numerical

procedure to efficiently generate channel samples over compact rectangular apertures (i.e., linear,

planar, and volumetric apertures).

B. Planar and Volumetric Arrays

By inspection of (41), we can generate spatial samples of h̃ by using the same argument that leads

to a 2D inverse discrete Fourier transform of time-domain waveforms. Consider a 3D parallelepiped

of side lengths Lx, Ly, and Lz < min(Lx, Ly), along the three Cartesian axes, and its uniform

discretization of N = NxNyNz points so that Nx = ⌈Lx/∆x⌉, Ny = ⌈Ly/∆y⌉, and Nz = ⌈Lz/∆z⌉
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with spacing ∆x, ∆y, and ∆z, respectively. In each statistical realization of h̃, we can generate

spatial samples on the 3D uniform grid as (for an even number of points)

h̃N(xn, yj, zk) ≈
∑∑

(ℓ,m)∈E

H̃ℓm(zk)e
i2π

(

ℓ n
Nx

+mj
Ny

)

, n = −Nx

2
, . . . ,

Nx

2
− 1, j = −Ny

2
, . . . ,

Ny

2
− 1.

(44)

which can be efficiently implemented through IFFT algorithms (e.g., [36]) by choosing N to be an

integer power of 2. The Nyquist sampling condition for the spatial sampling of h̃ requires

min(∆x,∆y) ≤
π

κ
=

λ

2
(45)

which is given by the fact that h̃ is confined to the 2D spectral support D(κ) with bandwidth less

than 2κ = 4π/λ (along both the x− and y−axes). Hence, the conventional half-wavelength antenna

spacing is in general adequate to generate spatial samples of the channel, and half-wavelength arrays

can be generally seen as obtained from a spatially-continuous aperture by Nyquist sampling at λ/2

intervals. Unlike ∆x and ∆y, the sampling interval ∆z along the z−axis can be chosen arbitrarily.

When IFFT algorithms [36] are applied, the overall complexity is of order O(N log(NxNy)) which

accounts for the cost of computing a 2D NxNy−points IFFT for each of the Nz samples. The

generation of channel samples over a 2D plane aperture can be obtained from (44) by noting that

h̃(x, y) = h̃(x, y, 0) and has a computational cost of O(NxNy log(NxNy)).

To summarize, Fig. 6 depicts the block diagram of the Fourier plane-wave series expansion

in (41), for a sufficiently smooth spectral factor. To generate channel samples h̃(xn, yj, zk), one

needs to: i) generate two 2D independent Gaussian random lattice fields {H̃±

ℓm}, with variances

{σ2
ℓm} as computed in Appendix -C; ii) multiply them by their corresponding frequency responses

Ah,±(kx, ky)/(4π/κ) with (κx, κy) being evaluated at
(

2πℓ
Lx/λ

, 2πm
Ly/λ

)

to obtain {H±

ℓm}; ii) apply the

migration filters for every zk = k∆z with arbitrary ∆z and sum them up; iv) pass the generated

lattice field {H̃ℓm(zk)} through a 2D NxNy−point IFFT. Channel samples at different zk may be

generated from the same {H±

ℓm}.

C. Linear Arrays

Given a 1D uniform spatial grid of N = ⌈Lx/∆x⌉ points with spacing ∆x, we can generate

samples of h̃ as

h̃N (xn) ≈
Lx/λ−1
∑

ℓ=−Lx/λ

H̃ℓ e
i2πℓn/N , n = −N

2
, . . . ,

N

2
− 1 (46)
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Fig. 6: Block diagram of the numerical generation procedure of 3D spatial channel samples.

Fig. 7: 1D autocorrelation of h(x) as a function of x/λ ∈ [0, Lx/4] with Lx = 16λ, and ∆x = λ/16.

where ∆x is chosen according to the Nyquist sampling condition for a 2κ−bandlimited process

∆x ≤ λ

2
. (47)

If IFFT is used [36], the overall complexity of the channel generation procedure is O(N log(N)).

According to the procedure described above and summarized in Fig. 6, we can generate 1D channel

samples by passing (46) through two linear space-invariant filters with wavenumber responses driven

by the spectral factors Ah,±(kx).

D. Numerical Validation

Numerical results are now used to validate the accuracy of the analytical framework developed

above. We focus on the isotropic propagation scenario since it is the key to generate any non-

isotropic channel. The channel samples are generated as shown above for any N-dimensional

uniform spatial grid and then collected into a random vector h̃N ∈ CN . The accuracy of the
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proposed method is compared to the state-of-the-art model of spatially-stationary random field

channels, i.e., the discrete Karhunen-Loève representation h̃N = C
1/2

h̃
e where e ∼ NC(0, IN),

and Ch̃ ∈ CN×N is the spatial correlation matrix. This matrix is computed by sampling Clarke’s

autocorrelation function [18], [19], which for a linear aperture is given by ch(r) = J0(2πr/λ)

(see Lemma 3), whereas it is ch(r) = sinc(2r/λ) (see Lemma 2) with volumetric and planar

apertures. In general, Ch̃ is semidefinite positive and has a symmetric block-Toeplitz structure with

entries [Ch]nm = ch(rnm) with n,m = 1, . . . , N , where rnm is the distance between the n−th and

m−th grid points. By choosing a uniform spacing ∆ along the x− and y−axes, Ch̃ becomes of

symmetric Toeplitz structure and is therefore fully characterized by its first row (or column). Hence,

we compare these two methods by plotting the first row of their spatial correlation matrices.

We begin by considering a linear aperture with Lx = 16λ. Fig. 7 illustrates the 1D autocorrelation

function of the numerically generated samples h̃(xn) with spatial sampling ∆ = λ/16. As it is

seen, the empirical autocorrelation function matches well its closed form, which is known a priori

and given by ch̃(rn) = J0

(

2πrn
λ

)

with rn = xn. Fig. 8 plots the 2D autocorrelation function of

h̃N(xn, yj, 0) over a rectangular grid on the plane zk = 0 of side lengths Lx = Ly = 16λ with

uniform spacing ∆ = λ/4. Similar conclusions as for 1D apertures hold. Finally, Fig. 9 validates

the effect of migration filters to obtain the 2D autocorrelation function of h̃N (xn, yj, zk) over the

same rectangular grid on the plane zk = λ/2. These numerical results validate the accuracy of the

developed numerical procedure for both the 2D and 3D propagation models and the applicability of

the Fourier plane-wave series expansion of the channel to model the field over compact rectangular

arrays of practical size.

VI. CONCLUSIONS AND OUTLOOK

Holographic MIMO arrays, thought of as spatially-constrained MIMO arrays with a massive

number of antennas N , are considered as a possible solution to approach the practical Massive

MIMO limit N → ∞. To obtain a physically-meaningful stochastic description of non-isotropic

radio waves propagation in the far-field, we modeled the small-scale fading as a zero-mean, spatially-

stationary, complex-Gaussian and scalar random field, that satisfies the Helmholtz equation. This

modeling led directly to the only physically-meaningful power spectral density, which is given

by the product between a Dirac delta function in the three wavenumber components, and a non-

negative amplitude term that defines directional weighting. The structure of the power spectral

density provided an exact 2D Fourier plane-wave spectral representation for the small-scale fading
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Fig. 8: 2D autocorrelation of h(x, y, 0) as a function of x/λ ∈ [0, Lx/4] and y/λ ∈ [0, Ly/4] with

Lx = Ly = 16λ, and ∆x = ∆y = λ/4.

Fig. 9: 2D autocorrelation of h(x, y, λ/2) as a function of x/λ ∈ [0, Lx/4] and y/λ ∈ [0, Ly/4]

with Lx = Ly = 16λ, and ∆x = ∆y = λ/4.

with a singularly-integrable and bandlimited spectrum. Such a representation led to a 2D Fourier

plane-wave series expansion for the field over spatially-constrained compact spaces, which, suitably

discretized, provided an accurate and computationally-efficient numerical procedure to generate

small-scale fading samples of Holographic MIMO arrays. Numerical results were used to validate

this procedure with compact arrays of practical size.

We anticipate that the proposed analytical framework will be a valuable tool for the theoretical

analysis of Holographic MIMO systems in the presence of frequency-flat fading. For example, in

[37], it is directly used to determine the upper limit to the available degrees of freedom (DoF). It
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turns out that the DoF per m of a linear aperture deployment are asymptotically (as the aperture

size increases) limited to 2/λ with λ being the wavelength. For a planar deployment, the DoF per

m2 are limited to π/λ2. The expansion of a planar aperture into a volume aperture asymptotically

yields only a two-fold increase in the available DoF. The result is in agreement with previous

works (e.g., [12], [38], [39]), and imposes a limit on the number of parallel channels that can be

established on a communication link. Our treatment can be applied to the analysis of any multi-

user communication system in which all the terminals have single antennas and are sufficiently

separated in space, i.e., the spatial correlation occurs only among the service antennas (e.g. multi-

user Holographic MIMO). The developed framework can also be extended to the case of vector

electromagnetic random fields wherein each component of the field is a function of six Cartesian

coordinates denoting the spatial positions of transmitter and receiver [1]. This is instrumental for

computing the capacity of point-to-point Holographic MIMO systems.

Finally, we observe that our treatment provides an exact representation for the small-scale

fading, which is valid at any frequency range. In particular, the accuracy of the proposed model

increases as the array size becomes larger compared to the wavelength. This observation makes

the proposed model appealing to conduct both theoretical and numerical analysis of high-frequency

communication systems operating at mmWave and THz bands where Holographic MIMO arrays

are promising, and small-scale fading modeling is a fundamental challenge [40], [41].

APPENDIX I

REVIEWING THE FOURIER SPECTRAL REPRESENTATION

Every deterministic signal of finite power can be represented either in the time domain as a

waveform or in the frequency domain as a spectrum. The mapping between these two domains is

the Fourier transform. Similarly, for every zero-mean, second-order, stationary random process y(t)

with power spectral density Sy(ω) the Fourier spectral representation [35, Eq. (223)]:

y(t) =
1√
2π

∫

∞

−∞

eiωt dY (ω) (48)

provides a frequency-domain description. The integral must be interpreted in the stochastic mean-

square sense and Y (ω) is the integrated Fourier transform of y(t); that is, it is a Wiener process

such that in differential form E{dY (ω)dY ∗(ω′)} = 0 for ω 6= ω′ and

E{|dY (ω)|2} =
dω

2π
Sy(ω) (49)
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where dY (ω) is the increment integrated Fourier transform [35, Sec. 3.6]. To rewrite (48) as a

function of Sy(ω), we can proceed as follows. Take a stationary random process x(t) with power

spectral density Sx(ω) and pass it through a linear time-invariant system with arbitrary frequency

response F (ω). The output y(t) is a random process such that [35, Eq. (233)]

dY (ω) = dX(ω)F (ω) (50)

from which it follows that E{|dY (ω)|2} = |F (ω)|2E{|dX(ω)|2} with E{|dX(ω)|2} = dω
2π
Sx(ω).

Combing this result with (49) yields Sy(ω) = Sx(ω)|F (ω)|2 from which

F (ω) =
√

Sy(ω)/Sx(ω). (51)

From (48), by plugging (51) into (50), it follows that we can generate y(t) with a given power

spectrum Sy(ω) by passing a stationary white-noise random process x(t) (i.e., with Sx(ω) = 1

for ω ∈ R) through a linear time-invariant filter with frequency response F (ω) =
√

Sy(ω). This

provides us with the linear-system form of the Fourier spectral representation

y(t) =
1√
2π

∫

∞

−∞

√

Sy(ω)e
iωt dX(ω). (52)

The Riemann integral form of (52) reads as

y(t) =
1√
2π

∫

∞

−∞

√

Sy(ω)W (ω)eiωt dω (53)

where W (ω) is a white-noise Gaussian process with unit spectrum, which can be seen as a super-

position of an uncountably-infinite number of harmonics having statistically-independent Gaussian-

distributed random coefficients. For any second-order random process (i.e, with
∫

∞

−∞
Sy(ω)dω < ∞),

the above spectral representation converges in the mean-square sense and finds its justification

through the linear functional of a white-noise random process W (ω) with a complex-valued square-

integrable function [32, Sec. 7.4]. In fact, W (ω) can be viewed as a generalized random process

with cW (ω) = E{W (ω + ω′)W ∗(ω′)} = δ(ω) [32, Sec. 7.7] in the same manner the Dirac delta

function can be viewed as a generalized function, or distributions [31]. Hence, a white-noise process

can be regarded as the stochastic counterpart to the Dirac delta function, which provides us with

a system-theoretic interpretation of (53). In particular, the generation of a random process with a

given power spectral density is analogous to the generation of a deterministic signal with a given

Fourier transform; see Fig. 10.
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H(ω)

X(ω) = 1 Y (ω) = H(ω)

H(ω) =
√

Sh(ω)

Sx(ω) = 1 Sy(ω) = Sh(ω)

Deterministic signals Stationary random processes

Fig. 10: Analogy between Dirac delta function and white-noise process in linear systems.

APPENDIX II

POWER NORMALIZATION

Assume that h̃(x, y, z) has unit power, i.e., 1/(2π)3
∫∫∫

∞

−∞
Sh̃(kx, ky, kz) dkxdkydkz = 1. By

substituting (25) into (14), we obtain the following condition

A2
h(κ) =

(2π)3
∫∫∫

∞

−∞
δ(k2

x + k2
y + k2

z − κ2) dkxdkydkz
. (54)

The above integral can be solved by a change of integration variables to spherical coordinates
∫ 2π

0

∫ π

0

∫

∞

0

δ(k2
r − κ2)k2

r sin(kθ) dkφdkθdkr = 4π

∫

∞

0

δ(k2
r − κ2)k2

r dkr (55)

where we have used
∫ 2π

0

∫ π

0
sin(kθ) dkφdkθ = 4π. We now observe that [34, Eq. 181.a]

δ(k2
r − κ2) =

δ(kr − κ) + δ(kr + κ)

2κ
(56)

which substituted into (55) yields 2πκ, where we picked up the positive zero only. The normalizing

spectral factor is thus given by A2
h(κ) = 4π2/κ. The spectral factor for an isotropic 2D channel can

be obtained by following the same arguments above by using polar coordinates instead.

APPENDIX III

PROOF OF LEMMA 2

The substitution of (27) into (10) yields the autocorrelation function of an isotropic channel

ch̃(x, y, z) =
1

4πκ

∫∫∫

∞

−∞

δ(k2
x + k2

y + k2
z − κ2)ei(kxx+kyy+kzz) dkxdkydkz. (57)

The above integral is a 3D Fourier inverse transform of a spherically symmetric function δ(k2
x +

k2
y + k2

z − κ2). Thus, by aligning the spatial vector to one of the axis, say the z−axis, such that

(x, y, z) = (0, 0, R) with R =
√

x2 + y2 + z2 we obtain

ch̃(x, y, z) =
1

2πκ

∫∫∫

∞

−∞

δ(k2
x + k2

y + k2
z − κ2)eikzR dkxdkydkz. (58)
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The change of integration variables from Cartesian to spherical (kx, ky, kz) → (kr, kθ, kφ) yields

ch̃(x, y, z) =
1

2πκ

∫

∞

0

∫ π

0

∫ 2π

0

δ(k2
r − κ2)eikrR cos(kθ)k2

r sin(kθ) dkrdkθdkφ (59)

which by using (56) and exploiting the angular symmetry over kφ leads to

ch̃(x, y, z) =
1

2

∫ π

0

eiκR cos(kθ) sin(kθ) dkθ
(a)
= j0(κR) (60)

where (a) follows from Poisson’s integral [42, Eq. 10.1.14] and j0(x) is the spherical Bessel

function of the first kind and order 0, defined as j0(x) = sin(x)/x. The autocorrelation function of

an isotropic 2D channel follows similarly from polar coordinates and the integral representation of

Bessel’s functions of first kind 1
π

∫ π

0
eiz cos(kθ) dkθ = J0(z) [42, Eq. (9.1.21)].

APPENDIX IV

A. Fourier spectral series expansion

Consider a zero-mean, second-order, stationary Gaussian random process y(t) having a ban-

dlimited singularly-integrable spectrum Sy(ω) with ω ∈ [−Ω,Ω] of angular-frequency bandwidth

Ω < ∞ and defined over a time interval t ∈ (−∞,∞). The, its frequency-domain description is

given by the Fourier spectral representation in (53). Let us now observe y over a large, but finite,

time interval t ∈ [0, T ] of duration T < ∞. We aim to provide a discrete-frequency approximation

for the Fourier spectral representation in (53) over t ∈ [0, T ]. We start by partitioning the integration

interval uniformly with frequency spacing ∆ω = 2π/T

y(t) =
1√
2π

ΩT/π−1
∑

ℓ=−ΩT/π

(

∫ 2π(ℓ+1)/T

2πℓ/T

√

Sy(ω)W (ω)eiωt dω

)

, t ∈ [0, T ]. (61)

Applying the first mean-value theorem [43, Ch. 3] over each interval ω ∈ [2πℓ
T
, 2π(ℓ+1)

T
] yields

y(t) ≈ 1√
2π

ΩT/π−1
∑

ℓ=−ΩT/π

(

∫ 2π(ℓ+1)/T

2πℓ/T

√

Sy(ω)W (ω) dω

)

ei2π(ℓ+1/2)t/T , t ∈ [0, T ] (62)

where the approximation error becomes negligible as ∆ω/Ω → 0 (i.e, ΩT → ∞). The integral

between brackets is a linear functional of a white Gaussian noise process W (ω) [32, Ch. 7.4]

Yℓ =
1√
2π

∫ 2π(ℓ+1)/T

2πℓ/T

√

Sy(ω)W (ω) dω =

∫

∞

−∞

gℓ(ω)W (ω) dω (63)

with a real-valued square-integrable (L2) function

gℓ(ω) =











√

Sy(ω)/2π ω ∈ [2πℓ
T
, 2π(ℓ+1)

T
]

0 elsewhere.
(64)
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We notice that {gℓ(ω)} with ℓ ∈ {−ΩT/π, . . . ,ΩT/π − 1} are such that
∫

∞

−∞
gℓ(ω)gm(ω) dω =

σ2
ℓ δm−ℓ and each function has energy

σ2
ℓ =

∫ 2π(ℓ+1)/T

2πℓ/T

Sy(ω)
dω

2π
< ∞ (65)

which is finite for every second-order random process. Thus {gℓ(ω)} form a set of orthogonal

functions, or better, an orthogonal basis for the space of real-valued L2 functions. As a consequence,

we can interpret (63) as the ℓ−th coordinate of an orthonormal series expansion of W over

the basis {gℓ(ω)}. Now, the expansion of any white Gaussian noise process over an arbitrary

orthogonal L2 basis of functions produces a sequence Yℓ ∼ NC(0, σ
2
ℓ ) of independent zero-mean,

circularly-symmetric Gaussian random variables with finite variances σ2
ℓ [32, Ch. 7.7]. Thus, we

may approximate (53) for a bandlimited spectra Sy as

y(t) ≈
ΩT/π−1
∑

ℓ=−ΩT/π

Yℓ e
i2π(ℓ+1/2)t/T (a)∼

ΩT/π−1
∑

ℓ=−ΩT/π

Yℓ e
i2πℓt/T , t ∈ [0, T ] (66)

where (a) holds in the statistical distribution sense and it is due the phase-invariance of circularly-

symmetric Gaussian random variables. The approximation error becomes negligible as ΩT → ∞.

The above formula provides an orthonormal decomposition of y taking the form of a bandlim-

ited Fourier spectral series expansion having a countably-finite number of statistically-independent

Gaussian-distributed coefficients. Hence, it provides an approximation of y over t ∈ [0, T ] through

a periodic stationary random process over its fundamental period T = 2π/∆ω. The convergence of

(66) in mean square may be proven by recurring to the Parseval’s theorem and use (65)

E{|y(t)|2} =

ΩT/π−1
∑

ℓ=−ΩT/π

σ2
ℓ =

∫ Ω

−Ω

Sy(ω)
dω

2π
< ∞. (67)

Similar to the Fourier series of a time-domain waveform, (66) provides a periodic output. However,

the Fourier coefficients Yℓ of y(t) cannot be simply obtained by frequency sampling its spectra at

ℓ∆ω = 2πℓ/T . This is better explained next.

B. Connection to the Karhunen-Loève series expansion

The Fourier series expansion (66) is reminiscent of the famous Karhunen-Loève series expansion

y(t) =
∑

ℓ cℓϕℓ(t) with t ∈ [0, T ] where cℓ and ϕℓ are the eigenvalues and eigenfunctions of such

expansion. This is the continuous analog of the decomposition of a random vector into its principal

components (i.e., eigenvalue decomposition) [35]. In particular, for a bandlimited random process

of bandwidth Ω, (66) can be interpreted as the asymptotic version of the Karhunen-Loève series
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expansion [35, Sec. 3.4.6]. In fact, as the observation interval T grows large (i.e., ΩT ≫ 1) the

eigenvalues’ power E{|cℓ|2} approach the power spectral density Sy, and the eigenfunctions ϕℓ

become harmonics. Thus, the Fourier coefficients {Yℓ} and basis {ei2πℓt/T } respectively assume the

meaning of Karhunen-Loève’s eigenvalues and eigenfunctions.

We finally notice that the direct application of the Karhunen-Loève expansion to the modeling of

y would lead to a divergent series due to the evaluation of the singular spectrum Sy on its boundary.

This is analogous to the problem encountered in the use of the Fourier spectral representation in

Section III-C. Asymptotically as ΩT → ∞, the Fourier coefficients become a continuum and both

the Fourier series and Karhunen-Loève expansion tend to the Fourier spectral representation in (53).

C. Computation of variances of Fourier coefficients

The variance σ2
ℓ of the ℓ−th Fourier random coefficient Hℓ in (43) is computed from (65) by

replacing the time-frequency mapping with its space-wavenumber counterpart:

σ2
ℓ =

∫ 2π(ℓ+1)/Lx

2πℓ/Lx

Sh̃(kx)
dkx
2π

=

∫ 2π(ℓ+1)/Lx

2πℓ/Lx

1
√

κ2 − k2
x

dkx
2π

=
1

2π

∫ (ℓ+1)λ/Lx

ℓλ/Lx

1
√

1− k2
x

dkx (68)

where we substitute the 1D power spectrum Sh̃ in (35) and use κ = 2π/λ. Since the integrand

is symmetric with respect the origin, the variances corresponding to the negative indexes can be

easily found by symmetry σ2
−ℓ−1 = σ2

ℓ for ℓ = 0, 1, . . . , Lx/λ− 1. By applying, e.g., the change of

integration variable kx = sin u we obtain

σ2
ℓ =

1

2π

(

arcsin

(

(ℓ+ 1)
λ

Lx

)

− arcsin

(

ℓ
λ

Lx

))

, ℓ = 0, 1, . . . , Lx/λ− 1. (69)

Similarly, from (65) the variance σ2
ℓ,m of the (ℓ,m)−th Fourier random coefficient Hℓm in (39) is

σ2
ℓ,m =

∫ 2π(ℓ+1)/Lx

2πℓ/Lx

∫ 2π(m+1)/Ly

2πm/Ly

Sh̃(kx, ky)
dkx
2π

dky
2π

, (ℓ,m) ∈ E

=

∫ 2π(ℓ+1)/Lx

2πℓ/Lx

∫ 2π(m+1)/Ly

2πm/Ly

π

κ

1D(κ)(kx, ky)
√

κ2 − k2
x − k2

y

dkx
2π

dky
2π

, (ℓ,m) ∈ E

=
1

4π

∫ (ℓ+1)λ/Lx

ℓλ/Lx

∫ (m+1)λ/Ly

mλ/Ly

1D(1)(kx, ky)
√

1− k2
x − k2

y

dkxdky, (ℓ,m) ∈ E (70)

where we substitute the 2D power spectrum Sh̃ in (30) and use κ = 2π/λ. The set E is the 2D

lattice ellipse as defined in (38). Due to the rotational symmetry of the integrand we focus on the

first wavenumber quadrant only, that is, ℓ = 0, 1, . . . , Lx/λ − 1 and m = 0, 1, . . . , Ly/λ− 1 from

which we can derive the variances in all the other quadrants. By change of integration variable to
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polar coordinates (kx, ky) = (kr cos kφ, kr sin kφ) with kr ∈ [0, 1] and kφ ∈ [0, π/2), for the case

ℓ ≥ m we obtain

σ2
ℓ,m =

1

4π

(

∫ kφ,2

kφ,1

∫ min

(

1,
(ℓ+1)λ

Lx cos kφ

)

min

(

1, mλ
Ly sin kφ

)

kr
√

1− k2
r

dkrdkφ +

∫ kφ,3

kφ,2

∫ min

(

1,
(ℓ+1)λ

Lx cos kφ

)

min

(

1, ℓλ
Lx cos kφ

)

kr
√

1− k2
r

dkrdkφ

+

∫ kφ,4

kφ,3

∫ min

(

1,
(m+1)λ
Ly sin kφ

)

min

(

1, ℓλ
Lx cos kφ

)

kr
√

1− k2
r

)

dkrdkφ, ℓ ≥ m (71)

where kφ,1 = arctan
(

mLx

(ℓ+1)Ly

)

, kφ,2 = arctan
(

mLx

ℓLy

)

, kφ,3 = arctan
(

(m+1)Lx

(ℓ+1)Ly

)

, and kφ,4 =

arctan
(

(m+1)Lx

ℓLy

)

such that kφ,1 ≤ kφ,2 ≤ kφ,3 ≤ kφ,4. Now, the integration of (71) over the

radial wavenumber component yields to

σ2
ℓ,m =

1

4π

(

∫ kφ,2

kφ,1

√

1−min

(

1,
1

a211 sin
2 kφ

)

dkφ −
∫ kφ,2

kφ,1

√

1−min

(

1,
1

a212 cos
2 kφ

)

dkφ

+

∫ kφ,3

kφ,2

√

1−min

(

1,
1

a221 cos
2 kφ

)

dkφ −
∫ kφ,3

kφ,2

√

1−min

(

1,
1

a222 cos
2 kφ

)

dkφ (72)

+

∫ kφ,4

kφ,3

√

1−min

(

1,
1

a231 cos
2 kφ

)

dkφ −
∫ kφ,4

kφ,3

√

1−min

(

1,
1

a232 sin
2 kφ

)

dkφ

)

, ℓ ≥ m

where a11 =
Ly

λm
, a12 =

Lx

λ(ℓ+1)
, a21 =

Lx

λℓ
, a22 =

Lx

λ(ℓ+1)
, a31 =

Lx

λℓ
, and a32 =

Ly

λ(m+1)
. The above

expression can be rewritten equivalently as

σ2
ℓ,m =

1

4π

(

∫ max
(

kφ,2,arcsin
(

1
a11

))

max
(

kφ,1,arcsin
(

1
a11

))

√

1− 1

a211 sin
2 kφ

dkφ −
∫ min

(

kφ,2,arccos
(

1
a12

))

min
(

kφ,1,arccos
(

1
a12

))

√

1− 1

a212 cos
2 kφ

dkφ

+

∫ min
(

kφ,3,arccos
(

1
a21

))

min
(

kφ,2,arccos
(

1
a21

))

√

1− 1

a221 cos
2 kφ

dkφ −
∫ min

(

kφ,3,arccos(
1

a22
)
)

min
(

kφ,2,arccos
(

1
a22

))

√

1− 1

a222 cos
2 kφ

dkφ

+

∫ min
(

kφ,4,arccos
(

1
a31

))

min
(

kφ,3,arccos
(

1
a31

))

√

1− 1

a231 cos
2 kφ

dkφ −
∫ max

(

kφ,4,arcsin
(

1
a32

))

max
(

kφ,3,arcsin
(

1
a32

))

√

1− 1

a232 sin
2 kφ

dkφ

)

(73)

where we used the fact that each of the above integrals yields non-zero value in the intervals

kφ ∈ [arcsin(1/a), π/2] (kφ ∈ [0, arccos(1/a)]), where a > 1 is one of the parameters listed above.

The variances σ2
ℓ,m are obtained by solving the following indefinite integrals [43, Ch. 2.611]

∫

√

1− 1

a2 sin2 kφ
dkφ =

1

a
arctan

(

cos kφ
√

a2 sin2 kφ − 1

)

− a arcsin

(

cos kφ
√

1− 1/a2

)

(74)

∫

√

1− 1

a2 cos2 kφ
dkφ = −1

a
arctan

(

sin kφ
√

a2 cos2 kφ − 1

)

+ arcsin

(

sin kφ
√

1− 1/a2

)

. (75)
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Mathematical details are omitted for space limitations and will be provided upon request. Fi-

nally, the case ℓ < m can be treated similarly by exchanging kφ,2 and kφ,3 so that now kφ,2 =

arctan
(

(m+1)Lx

(ℓ+1)Ly

)

and kφ,3 = arctan
(

mLx

ℓLy

)

, and change the integration limits of (71) accordingly,

which can be again solved by following the same procedure explained above.
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