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Bridging the gap between scattering and reflection
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Abstract—In this work we address the distance dependence of
reconfigurable intelligent surfaces (RIS). As differentiating factor
to other works in the literature, we focus on the array near-
field, what allows us to comprehend and expose the promising
potential of RIS. The latter mostly implies an interplay between
the physical size of the RIS and the size of the Fresnel zones at
the RIS location, highlighting the major role of the phase.

To be specific, the point-like (or zero-dimensional) conventional
scattering characterization results in the well-known dependence
with the fourth power of the distance. On the contrary, the
characterization of its near-field region exposes a reflective
behavior following a dependence with the second and third
power of distance, respectively, for a two-dimensional (planar)
and one-dimensional (linear) RIS. Furthermore, a smart RIS
implementing an optimized phase control can result in a power
exponent of four that, paradoxically, outperforms free-space
propagation when operated in its near-field vicinity. All these
features have a major impact on the practical applicability of
the RIS concept.

As one contribution of this work, the article concludes by
presenting a complete signal characterization for a wireless link
in the presence of RIS on all such regions of operation.

Index Terms—Reconfigurable Intelligent Surfaces, scattering,
reflection, near-field, far-field, Fresnel, system model.

I. INTRODUCTION

The enhancement of wireless connectivity in the last
decades has radically changed the way we humans perceive
and interact with our surroundings. Nonetheless, the inter-
facing network infrastructure has been mostly confined at
rooftops and distant-away serving sites.

Recently, the ancient idea of improving wireless networks
by means of relays has been renovated through the concept
of low-cost smart mirrors. As a consequence, nowadays’
scientific literature is full of appellatives such as intelligent
reflecting surfaces (IRS), large intelligent surfaces (LIS), re-
configurable intelligent surfaces (RIS), passive relaying arrays
(PRA), among others [1], [2], [3], [4].

The underneath idea behind these is to control the char-
acteristics of the radio channel. Even-though such an idea
is in a sense revolutionary, most of the scientific literature
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is concentrated on algorithmic and signal processing aspects.
In fact, the comprehension of the involved electromagnetic
specificities has not been fully addressed.

More specifically, reconfigurable intelligent surfaces (RIS)
correspond to the arrangement of a massive amount of in-
expensive antenna elements with the objective of capturing
and scattering energy in a controllable manner. Such a control
method varies widely in the literature [1]; among which PIN-
diode and varactor based are popular.

In this context, the authors investigate an impedance con-
trolled RIS, although the addressed fundamentals are of a
much wider applicability. As a matter of fact, by characterizing
RIS in terms of the elements’ observed impedance, it is
possible to study multiple variants. Nonetheless, with energy
efficiency considerations in mind, the current work will focus
on the passive and non-dissipative purely reactive alternative.

It is well known from the radar community that, while a
mirror is a large reflecting surface with its reflected energy
decreasing with the 2nd power of distance, a scatterer is usually
considered a near-point object with the scattered energy falling
with the 4th power of the distance [5].

As a matter of fact, to the authors knowledge, there is no
consolidated concern in the literature about the nature of the
RIS as a scatterer or as a mirror. In fact, although most works
seem to use both terms interchangeably, the conventional view
has been through their characterization as scatterers.

Particularly, the authors of [1] departed from a general-
ization of the two-ray channel model to argue that the RIS
does not necessarily obey a path-loss dependence with the
fourth power of distance. On the other hand, the authors of [6]
concluded there that such a strong power law is probably
unavoidable for a practical RIS. Nevertheless, no reference
to the crucial role of the array near-field region was found as
a way to explain such discrepancies.

Consequently, in this work, we offer a view that unifies
the previous seemingly opposite scattering/reflection dual per-
spectives as a mean to identify scenarios and show the strong
potential behind the RIS concept. In particular, we show
how physical area and distance aspects become of paramount
importance for the operation of such devices.

The rest of the paper is organized as follows: the next
section begins by deepening on the importance of the near-
field region for RIS and, subsequently, section III studies the
implications of operating it over such a region.

In particular, the latter is based on the derived mathematical
model and, as well, on the understanding of the interacting
Fresnel zones. Additionally, the model and established notions
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Figure 1: Pictorial representation of the field regions of a
linear antenna arrangement.

are verified through simulation results obtained from a com-
mercial electromagnetic solver.

Further, section IV explains how RIS offers the possibil-
ity of outperforming free-space propagation over completely
obstructed direct transmitter-receiver links.

Finally, the authors conclude by presenting in section V
a complete signal-level characterization for a transmitter-
receiver link in the presence of RIS, which captures all the
described phenomena.

II. THE RIS FAR-FIELD DECOMPOSITION

Let us begin by recalling that the far-field approximation
imposes a minimum transmitter-receiver separation distance,
notably, so that conventional antenna and propagation models
are valid. In fact, the far-field distance increases with the
square of the largest dimension of the antenna.

To be clear, in the standard cell-centric network architecture,
the far-field approximation has greatly sufficed as means of
characterization. Nevertheless, for the case of RIS, one large
issue at stake can be stated as a paradox and, also, related
to the fact that it has been mostly conceived as an entirely
passive1 architecture.

Specifically, a RIS must be large as a mean of capturing
enough energy; but as it grows, conventional far-field decom-
position mandates that the transmitter and receiver must move
away. Consequently, the larger the RIS gets, the farther the
transmitter and receiver must be and, therefore, the stronger
the path-loss of the transmitter-RIS-receiver link.

Fortunately, this paradox can be circumvented by operating
RIS over its near-field2 region. In order to understand the
relevance of its near-field, consider the RIS essentially as the
arrangement of multiple antenna elements.

More specifically, Fig. 1 shows explicitly the array far-field
and the array near-field as disjoint regions. The element near-
field is also presented in dark blue for reference. Nonetheless,
the element near-field is not considered a region of interest in
this work as it is generally too close to the RIS.

1– in the sense that it does not inherently inject energy to the environment.
2It must be stressed that we are referring exclusively to the near-field of

the array and not to the near-field of the array elementary unit itself.

As a matter of fact, any array can be approached close
enough to be in the far-field of each elementary unit but not
in the far-field of the full array. The authors of this work refer
to that particular region of space as the array near-field.

The importance of the array near-field characterization is
that a RIS requires large antenna arrangements in the close
proximity of users, unlike traditional transmitter-receiver links.
Therefore, the term array near-field is extensively used here
as a way to differentiate it, given its importance in the case
of large enough RIS.

In the array far-field, the directional characteristics of RIS
naturally decouple from the separation distance. On the other
hand, in the array near-field, the previous dependencies are
more intricate and call for a different understanding of the
problem.

For a simpler insight and self-consistency, appendix A and B
are devoted to the fundamental derivations of the far-field and
array near-field based on elementary Maxwell’s equations. To
be specific, Appendix A reviews the conventional solution
for far-field radiation problems, in order to familiarize with
the adopted notation. Subsequently, Appendix B formally
introduces the array near-field characterization via the here-
called generalized array manifold.

III. RIS-MEDIATED PROPAGATION

In light of the difficulties of the conventional far-field view
to capture the real scenarios of interest, the current section
takes a look at how RIS can be characterized using the near-
field metrics described in Appendix B.

More specifically, the section begins by reviewing existing
work on modeling of a specific RIS-like architecture in its far-
field. Subsequently, relying on the generalized array manifold,
such model is extended to RIS over the array near-field region.

Altogether, the derived model is subsequently studied on
its canonical configuration3 in order to demonstrate its valid-
ity based on results obtained from a commercially-available
electromagnetic solver.

In what follows, we also expose how the Fresnel zone
decomposition at the RIS interface can provide a powerful
and intuitive understanding of its promising potential.

A. RIS operating in the array far-field region

The authors of this paper derived in [4] the model for a
dipole-based Passive Relaying Array (PRA). Particularly, a
PRA can be regarded as a bulky RIS in which the elements
are not necessarily disposed conformal to a surface. Likewise,
the control of PRA is assumed to be mediated through
dynamically tunable reactive loads.

Let us consider the derived model for the θ-polarized
scattered field in the array far-field region of the array:

Eθ (r̂inc, r̂obs) = 
η e−  kr

kπr
ãH (r̂obs)

(
Z + XL

)−1
ã(r̂inc) Einc,θ,

(1)
where Z ∈ CN×N is the impedance matrix [5] of such an N
element array; XL = diag(x) ∈ RN×N is a diagonal matrix

3– the one in which the RIS elements are short-circuited.
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containing the values of the controllable reactive loads; r is
the PRA-observer distance; ã(r̂) is the there-called modified
steering vector4; and r̂inc and r̂obs are two (outward) unitary
vectors pointing towards the source and observer, respectively.

In spite of PRA’s structural assumptions, the model derived
in [4] is valid for architectures with arbitrarily disposed
elements.

Moreover, in the specific case of such a PRA, the archi-
tecture was based on dipoles as they are minimum scattering
antennas (MSA) [9], allowing to entirely characterize its scat-
tering behavior by the aid of the antenna circuit representation.

Nonetheless, in the case of arbitrary array elementary units,
the missing piece is utterly the contribution of the structural
mode [10], which can be computed once and for all as it
is constant with respect to the controllable loads (that are
commonly assumed to be the available degrees of freedom).

Note that, in the derivation of (1), the impact of the
transmitting antenna pattern was assumed negligible as we
were assuming it to be in the array far-field.

In what follows, and for simplicity of presentation, we will
resort to the assumption that the transmitter antenna is an
isotropic source of fields.

B. The field scattered by RIS at the array near-field region

To begin with, it must be stressed that the array far-field ap-
proximation of both the reception and transmission processes5

is implicitly captured in (1) by the modified steering vector
ã(r̂) and, as well, by the distance dependence.

Nonetheless, as exposed in Appendix B, an expression valid
for the array near-field can be obtained by identifying the
steering vector as a special case of the generalized array
manifold, the latter of which is given by:

ap(r)
��
n

:= G(r − rn) F0,p

(
r − rn
|r − rn |

)
∀ n ≤ N, (2)

with G(r) being the free-space Green function of Appendix A
and F0,p(r̂) the radiation vector of the array elementary unit
along the p direction of polarization.

By doing so, it can be shown that the scattered electric field
intensity at the array near-field reads:

Eθ (rrx, rtx) = k2η2 aH
θ (rrx)

(
Z + XL

)−1
aθ (rtx) F iso

θ Itx, (3)

where rtx and rrx are the complete coordinates6 of the trans-
mitter and receiver relative to RIS’ coordinate reference (e.g.
the RIS center as in Fig. 2) and, as we are dealing with ẑ-
oriented dipoles, only the θ polarization is considered.

Moreover, note that the dependence on the input current to
the transmitter antenna Itx exposes the role of its respective
radiation vector (i.e. F iso

θ ).
Observe also that

(
Z + XL

)−1 is a transpose symmetric
matrix, which has often (e.g. [1], [2], [3]) been characterized
as a diagonal matrix containing complex exponential factors
that account for digitally-tunable phase shifts.

4The modified denomination was added given that, unlike the conventional
steering vector, the one in [4] includes the impact of the element pattern.

5– those which jointly compose the scattering process.
6– as opposed to (1) where |rtx | > rFF and |rrx | > rFF and, therefore, there

was only a dependence on the directions of incidence and observation.

Figure 2: Schematic view of Tx, Rx and RIS.

For simplicity, let us disregard the phenomenon of mutual
coupling (i.e. Z = ZA IIIN×N ) and, additionally, short circuit
all elements (x = Ω). Under those circumstances, (3) can
be simply expressed as:

Eθ (rrx, rtx) =
k2η2

ZA
aH
θ (rrx)aθ (rtx) F iso

θ Itx. (4)

If, additionally, we assume that the RIS is provided with
θ-polarized isotropic elementary units, i.e. F⊥(r̂) = θ̂F iso

θ , the
expression (4) can be simplified further to:

Eθ (rrx, rtx) =
k2η2

ZA

[
F iso
θ

]3Itx

N∑
n=1

G
(
rrx −rn

)
G

(
rtx −rn

)
, (5)

where G(r) is, once more, the Green function of Appendix A.
Even-though the expression in (5) corresponds to the array

near-field electric field intensity, it characterizes the linear
combination of (locally) far-field sources. Thus, the radiation
density (power per unit area) resulting from the RIS can be
related simply to its scattered field through P = (2η)−1 |E |2.

In particular, introducing rt,n:=|rtx −rn | and rr,n:=|rrx −rn |
as the distances from the transmitter and receiver to every
RIS element, respectively, the radiation density of the scattered
field reads:

P(rrx, rtx) =
k4η3

2|ZA |2
��F iso
θ

��6 |Itx |2
����� N∑
n=1

e−  krr,n

4πrr,n

e−  krt,n

4πrt,n

�����2. (6)

Observe that, even-though we have assumed hypothetical
isotropic elements, (6) allows to analyze the radiation density
as regards the transmitter and receiver locations relative to the
element’s disposition, i.e. rn ∀ n ≤ N .

In the scenario of Fig. 2 is shown a symmetrical setup in
which the transmitter and receiver are both at a distance r from
the center of the RIS, which is composed of a 2D periodic
structure along its planar surface with a total of N elements.

Moreover, in light of the loading condition under evaluation
(x = Ω) in (6), the transmitter and receiver are positioned



4

symmetrically (45◦ from the vector normal to RIS’ surface) as
required by the Snell-Decartes law of reflection. The latter, in
order to expose a case in which waves are naturally interfering
constructively7 towards the receiver side.

For simplicity, an odd number of 2Kh+1 horizontal elements
and 2Kv + 1 vertical elements are disposed on the surface of
RIS; i.e. for a total of N = (2Kh + 1)(2Kv + 1) elements.

In what follows, two configurations will be evaluated:

1) A linear RIS with Kh = 10 and Kv = 0 for a total number
of 21 λ/2-spaced elements.

2) A planar RIS with Kh = Kv = 10 for a total number of
441 λ/2-spaced elements.

As observed in Fig. 3, the radiation density clearly exposes
different behaviors for the array near-field (r < rFF) and its
far-field region (r > rFF).

More specifically, the array far-field region unsurprisingly
exposes a path-loss related to r−4 in both the linear and
planar configurations. The operation over such a sector can
be characterized through metrics used in the radar community
(such as the radar cross section) as done in [4]. Nonetheless,
the latter is clearly not the most interesting region of operation
for the RIS.

On the other hand, the array near-field exposes a seemingly
oscillatory behavior around r−2 and r−3 for the planar and
linear configurations, respectively. The latter is explained by
the fact that, through its finite number of antenna elements,
the RIS is sampling the field at discrete points in space.

In particular, the oscillations illustrate the constructive and
destructive interference caused by the complex exponential
terms in (6) as induced by the Green function. Nonetheless, as
it is shown in section IV, such oscillations can be compensated
for through smart dephasing.

7In fact, they don’t interfere perfectly (as it will be clear later) but such a
setup serves to illustrate the point the authors want to make.
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Figure 3: Radiation density (power per unit area) of the
field scattered by RIS versus distance for the setup of Fig. 2.
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Figure 4: Schematic view of the Tx, Rx for mirror reflection.

C. The Fresnel zone perspective

Previously, it was shown that the operation of a planar RIS
in its near-field uncovers a behavior that resembles free-space
propagation, in particular, under a non-line of sight transmitter-
receiver link. In spite of this, the derived mathematical model
does not immediately offer an insightful understanding from
the perspective of the propagating wave.

Thus, the aim of this section is to develop an intuition on
how this is possible and, more specifically, on the interaction
of the size of RIS and its near-field region in relation to the
Fresnel zones at the RIS interface.

As a preamble, such an intuition will be confirmed in
section III-D through a simple yet insightful simulation on a
commercial electromagnetic solver8, based on the well known
method of moments (MoM). In addition, the latter will not
only corroborate the predictions of section III-B, but it will
open the possibility for a path-loss better than the free-space
one, as revealed in section IV.

Let us begin by considering Fig. 4, where an unobstructed
transmitter-receiver link is presented. Specifically, note the
presence of an infinite perfect electrically conducting (PEC)
plane parallel to the line joining the transmitter and receiver
sides.

Note that, by virtue of the well-known principle of images,
the PEC plane can be removed to study separately the line-
of-sight and the reflection.

In fact, the contribution of the reflection is obtained by
mirroring the receiver side and studying the equivalent envi-
ronment. Thus, the equivalent setup of Fig. 5 is used in what
follows to uncover the spatial distribution of the fields around
such an interfacing plane.

More specifically, Fig. 5 shows the transmitter as well as
the mirrored image of the receiver in a perfectly unobstructed
environment. Additionally, the first three Fresnel zones are pre-
sented as a way to understand the most contributing regions.

The l th Fresnel zone is a region of space whose boundaries
are ellipsoids defined as the paths with (l−1) π and l π propa-
gation phase-shifts with respect to the shortest central path [11]
for its inner and outer boundaries, respectively. Additionally,
the transmitter and receiver locations are the focal points of

8– i.e. WIPL-D, https://wipl-d.com/
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Figure 5: View of the equivalent Tx-Rx’ scenario for the
contribution of the reflector.

such ellipsoids, whose boundaries at the midpoint C can be
approximated by:

Rl(r) u
√

lλ
2

r , r � lλ, (7)

where Rl(r) corresponds to the radius of the lth Fresnel zone
for the symmetrical (in r) arrangement of Fig. 4.

It is well known that the contribution of the first Fresnel
zone is the most important one. In order to understand why
that is the case, note the following:

1) As shown in Fig. 6, the Fresnel zones are defined as
ellipsoids with constant propagation phase relative to the
shortest path between the transmitter and receiver. As a
consequence, the closer the transmitter and receiver sides,
the smaller the Fresnel zones and vice-versa.

2) The Fresnel zone boundaries get closer for increasing l:

Rl+1(r) − Rl(r) =
√

r
λ

2
O

(√
l
)

3) There is a phase difference of 2π between any pair of
paths distanced two Fresnel zones from each other.

Therefore, in the extreme of large r , high order Fresnel
zones (i.e. higher than one) are significantly weak relative to
the first zone and, thus, they do not contribute significantly to
the received power; see 1).

Tx Rx

a
b

c
d

e

L   Fresnel zone
th

Figure 6: Geometrical representation of the lth Fresnel zone.

Phase distribution on the first four Fresnel zones

-π

-π/2

0

π/2

π

Figure 7: Phase distribution on the first four Fresnel zones.
White and orange represent constructive and destructive

interference, respectively.

On the contrary, for smaller values of r , high order Fresnel
zones are almost equally strong due to 2) but, at the same
time, they interfere destructively with their successive one as
a result of 3).

In particular, note that even numbered Fresnel zones always
interfere destructively; as opposed to odd numbered ones that
interfere constructively as shown in Fig. 7. The reader might
realize at this point how, by a proper dephasing, RIS could in
principle outperform free-space propagation.

To continue, it might be useful to look at an infinitely large
mirror as spatially integrating the fields over such an infinite
aperture. As explained by the equivalence principle over the
scenario of Fig. 4, such a spatial integration converges to the
r−2 path-loss dependence we are so familiarized to.

In fact, if the mirror were finite and centered in the shortest
transmitter-receiver path, the spatial integration would be
truncated. At the same time, due to the Fresnel zone resizing,
such a truncation would expose oscillations if the transmitter
and receiver were symmetrically moved.

The latter gives an intuitive understanding to the array near-
field behavior of Fig. 3.

Finally, as a mean of linking RIS’ field decomposition and
the Fresnel zone perspective, observe from (7) (as well as
from (19) in Appendix B) that Rl=1(rFF) = D; with rFF being
the low limit of the array far-field and D being the visible
dimension9 of the array.

In other words, the RIS is being operated in its near-field
region when at least the first Fresnel zone of the transmitter-
receiver equivalent path (see Fig. 5 and Fig. 7) is perfectly
contained within the RIS itself.

9By visible dimension we refer to the smallest diameter of a circle located
on the plane transversal to the direction of propagation and containing the
array.
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Figure 8: |S2,1 |2 quantifying the power received through
reflection from a finite metal plate vs. transmitter-receiver

distance.

D. Model and intuition corroboration

In order to confirm that the last assertions are indeed
correct, and that the model of section III-B predicts the right
phenomena, we have evaluated a very simple scenario using
WIPL-D.

More specifically, a two port setup with two vertically-
polarized half-wave dipoles (acting as the transmitter and
receiver) in the presence of a finite metal plate was simulated.
The size of the plate was fixed to 10λ × 10λ and the dipoles
were positioned symmetrically (45◦ from the vector normal to
the plate’s surface) a distance r; exactly like for the RIS setup
of section III-B.

In particular, the power transmission coefficient |S2,1 |2 was
computed as we are technically operating over the near-field
of the plate (i.e. making far-field metrics such as the radar
cross section invalid).

Additionally, as the aforementioned setup computes the
net (direct+reflected) fields, separate simulations (with and
without the plate) were done in order to subtract the the direct
path and obtain the reflected contribution.

As observed in Fig. 8, the reflected path exhibits the
expected oscillatory behavior at the near-field region of the
plate. Note as well that, in spite of the discrete nature of the
RIS, the model is able to capture with fair accuracy the details
of its continuous-equivalent10. Nonetheless, it can be shown
that the WIPL numerical results and the model converge when
the element density of the model is increased within such a
confined region of space.

10Naturally, RIS’ curve was vertically shifted to make it coincide with
WIPL’s results in the array far-field as, in particular, the multiplicative
coefficients in (6) cannot be determined for hypothetical isotropic antennas.
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Figure 9: Radiation density (power per unit area) of the field
scattered by the RIS with smart dephasing versus distance.

IV. FREE-SPACE PROPAGATION
OUTPERFORMED THROUGH RIS

Recall that, from section III-C, the contribution of the
even numbered Fresnel zones is always destructive. As a
consequence, if such zones are contained within the RIS11,
a dense enough architecture might in principle be able to
compensate for their destructive nature.

As a matter of fact, in connection with the notion estab-
lished in section III-C, the model in section III-B allows to
transparently predict the maximum obtainable power for an
architecture-specific RIS.

In particular, a smart-enough RIS would, at its best, com-
pensate for the path-related phase shift; giving for the received
radiation density:

Pmax(rrx, rtx) =
k4η3

2|ZA |2
��F iso
θ

��6 |Itx |2
����� N∑
n=1

1
4πrr,n

1
4πrt,n

�����2, (8)

using the notation of (6) to represent all involved quantities.
Such a radiation density for the architecture of section III-B

is shown and compared to the short-circuit, i.e. x = Ω, in
the following.

As observed in Fig. 9, the path-loss for the mentioned smart-
dephasing technique does deviate from the conventional r−2

in the array near-field region. In fact, it exposes a behavior
that outperforms free-space propagation for a completely-
obstructed (NLOS) transmitter-receiver link.

Note, as well, that the lack of oscillations in the dashed
curve is a direct consequence of the removal of the (even-
numbered) Fresnel zone destructive nature; as expected from
section III-C.

It must be stressed that an element spacing of λ/2 was
enough in Fig. 9 to maintain a constant log-log increase of

11Namely, if it is being operated in the array near-field region.
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receive power with decreasing distance12 for a significant part
of the array near-field region.

More importantly, the behavior observed in Fig. 9 implies
that the dependence with the fourth power of the distance is
a consequence of the constant phase along the RIS. Typically,
the latter manifests at the array far-field region where, as
explained in section III-C, the RIS is fully contained within
the first Fresnel zone. Nonetheless, as explored in this section,
such a behavior can be artificially enforced in the array near-
field.

In particular, while a r−4 dependence at large distance
may be seen as poor, it turns out to be advantageous when
approaching the mirror below rFF as a way to avoid the
transition to the (inferior) r−2 regime.

V. COMPLETE LINK-LEVEL SYSTEM CHARACTERIZATION

To finish up, the authors would to like briefly summarize
the implications of section III to the familiar link-level char-
acterization of communication systems.

For simplicity, in what follows, we will assume single-
element, single-polarization and isotropic transmitter and re-
ceiver sides. On the other hand, the RIS elementary unit can
be arbitrarily defined as its impact is accounted for in the
generalized array manifold of (2).

It must also be added that the multi-antenna transmit-
ter/receiver extension can be straightforwardly envisaged by
virtue of the superposition principle. Nonetheless, its math-
ematical representation can easily become cumbersome as a
result of the multi-location dependencies13.

Therefore, relying on the RIS model derivation of sec-
tion III-B, the complete link-level system model can be shown
equivalent to:

y =
(
h̃tr G(rtr)+ h̃RIS a

H
p (rrx)

(
Z + XL

)−1
ap(rtx)

)
s+n, (9)

where s, y and n are the conventional input, output and additive
white Gaussian noise at the receiver side, respectively; G(r)
is the free-space Green function of Appendix A; rtr is the
shortest-path transmitter-receiver distance; rtx and rrx are the
transmitter and receiver locations relative to RIS’ coordinate
reference, respectively; and ap(r) ∈ CN is the generalized
array manifold of (2) (see Appendix B for its derivation)
polarized along p for an N element RIS.

Additionally, in (9), h̃tr and h̃RIS are spatially-flat chan-
nel coefficients that represent a scenario in which all links
(transmitter-receiver, transmitter-RIS and RIS-receiver) are
dominated by their line-of-sight components. These channel
coefficients also absorb all physical quantities that are not of
concern for link-level characterization; allowing to introduce
the dimensionless signal denomination14.

Note that, if the transmitter-receiver link is either obstructed
or suffers from strong multi-path propagation, its impact shall
be embedded onto h̃tr. On the other hand, we do not expect
h̃RIS to be greatly impacted by multi-path propagation as

12– to be specific, of 40 dB per decade.
13– in particular for the case in which the array elementary units of the

transmitter and receiver sides are not isotropic anymore.
14– where a signal is simply defined as an observable change in a quantity.

higher order scattering might strongly attenuate contributions
other than the line-of-sight ones.

VI. CONCLUSION

In this work, we have presented a view that unifies the
opposite behavior of RIS as a scatterer and as a mirror. In
particular, relying on fundamental electromagnetics, we do so
as a mean to identify scenarios and show the strong potential
behind the RIS concept.

We have shown that, depending on its size and distance, the
RIS can be observed as a zero, one or two dimensional object
whose radiated power exposes a dependence with the fourth,
third or second power of the distance, respectively.

Additionally, we have employed the Fresnel zone decom-
position to build an intuitive understanding of the interplay of
the involved quantities. More specifically, we have uncovered
the role of the phase in determining the ultimate path-loss
exponent and to show how, through smart dephasing, free-
space propagation can be outperformed.

Moreover, as one of the main contributions of the current
work, we have presented a model for the signal-level char-
acterization of a transmitter-receiver link in the presence of
RIS. Particularly, such a model concisely captures all described
phenomena over all the regions of operation.

To finalize, even though the amount of elements studied in
this work might seem tremendous, it must be kept in mind that
the described planar architecture would barely occupy 1 m2

at a central frequency of 3 GHz. More importantly, it would
present a path-loss more favorable than free-space (under a
completely obstructed direct transmitter-receiver link) for a
distance up to rFF = 10 m, on such a frequency of operation.

APPENDIX A
THE FAR-FIELD RADIATED BY AN ANTENNA

Recall that the electric field intensity radiated by a source
current density is given in terms of the so-called a magnetic
potential vector A [7]:

E =
1

 ωµε

[
∇
(
∇ ·A

)
+ k2A

]
, (10)

where ε and µ are the electric permittivity and magnetic
permeability of the propagation medium, and ω = 2π f .

Particularly, the magnetic potential vector (used as a conve-
nient step to obtain E) is obtained as the convolution of the
source current density J (r) with the free-space Green function
of the Helmholtz equation [7]:

∇2G(r) + k2G(r) = −δ(r), G(r) :=
e−  k |r |

4π |r | , (11)

where G(r) is the Green function, k = 2π/λ is the wave-number
and δ(r) is the three-dimensional delta function.

In mathematical form, the magnetic potential vector reads:

A(r) = Iµ
∫
V ′
J (r′)G(r − r′) d3r′, (12)

where I is the input current, J (r) is the current distribution of
the element normalized to such an input current, r is the field
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(observation) point and r′ is the source (integration) point (i.e.
over V ′ that is a volume containing all sources).

At this point, we ought to highlight the linearity of the
integro-differential operator in (12) with the input current that
propagates until E as per (10).

In particular, it is because of such a linearity that we are
allowed to resort to tools such as the array factor as a mean of
describing the behavior of arrays in terms of their elementary
unit.

A. Far-field approximation

The shifted argument of the Green function, i.e. G(r − r′)
in (12), can be approximated for the region known as far-field
through:

G(r − r′) u e−  k ( |r |−r̂ ·r′)

4π |r | , for |r | � l and |r | � 2l2

λ
, (13)

where l is the largest dimension of the smallest integration
volume V ′ in (12) containing all sources and r̂ is a unitary
vector pointing at the far-field observation point.

Therefore, in (13), the dependence with the shifted obser-
vation point in the numerator was replaced by a first order
approximation whereas, in the denominator, it was replaced
by an approximation of order zero.

Moreover, solving (12) with (13) and plugging it in (10), the
radiated electric field intensity E can be shown equal to [7]:

E(r) = −  Ikη
e−  kr

4πr
F⊥(r̂), F⊥(r̂) = F (r̂) × r̂, (14)

where F (r̂) is a far-field measure known as the radiation
vector and is explicitly defined as:

F (r̂) :=
∫
V ′
J (r′) e  kr̂ ·r′ d3r′, (15)

with V ′ fully containing the source current distribution.
To conclude, it must be noted that F⊥(r̂) = F (r̂)× r̂ in (14)

is also known as the effective length (vector) of the antenna.
In particular, the effective length vector is of relevance when
studying far-field radiation incident to the antenna.

More specifically, the electro-motive force E at the antenna
terminals can be written simply as [5]:

E = F⊥(r̂) ·Einc, (16)

where Einc is the electric field intensity characterizing the
incident radiation at the location of the receiving antenna under
consideration.

APPENDIX B
THE ARRAY NEAR-FIELD RADIATION

Let us continue by considering the problem of determining
the electric field intensity E at the array near-field region
resulting from a multi-antenna arrangement as source of fields.

In particular, as it will be clear in what follows, the
characterization at the array near-field region captures the
behavior over the array far-field as a particular case. Thus,
allowing to model RIS on both such regions of interest.

Therefore, as a first step, consider the source current density
of a multiple antenna architecture such as:

J (r) =
N∑
n=1

In J0(r − rn), (17)

where N is the number of elements, rn is the location of the
nth element with respect to a common reference, In is the input
current at the nth element and J0(r) is the (identical) current
distribution of the array elementary unit normalized to such
an input current.

Based on Appendix A, the magnetic potential vector for
such an architecture can be written as15:

A(r) = µ
∫
V ′

N∑
n=1

In J0(r′ − rn)G(r − r′) d3r′, (18)

where V ′ should include all the sources represented by (17).
Recall that the most commonly used antenna metrics (di-

rectivity, gain, antenna aperture, etc.) give an approximately
correct characterization for the far-field region of the antenna
or antenna array under consideration.

Nonetheless, note that the lower limit of the array and
element far-field regions are given in terms of the largest
dimension of the array D and its elementary unit D0 by:

rFF =
2D2

λ
, relem

FF =
2D2

0
λ
, (19)

where λ = c/f corresponds to the wavelength of operation and
c to the speed of light.

As a consequence, the far-field approximation of the Green
function of (13) cannot be used in (18) to compute A over
the array near-field region of interest (i.e. relem

FF < |r | < rFF).
On the other hand, in the following, we will resort to a

different strategy as a mean of approximating it at the region
of interest.

The far-field condition revisited: if the integration and
summation are swapped in (18), such an expression can be
rewritten as:

A(r) = µ
N∑
n=1

In

∫
V ′′
J0(r′′)G

(
(r − rn) − r′′

)
d3r′′, (20)

where the substitution r′′ = r′ − rn was used and accounted
for in the volume of integration.

Note that, if J0(r) is concentrated in a closed domain over
r ∈ R3 and |rn−rm | > dmax ∀n , m with dmax being the largest
dimension of such a closed domain, (20) can be expressed as:

A(r) = µ
N∑
n=1

In

∫
V ′′n

J0(r′′)G
(
(r − rn) − r′′

)
d3r′′, (21)

where V ′′ =
⋃N

n=1 V ′′n with V ′′n tightly enclosing the domain
over which J0(r − rn) is concentrated and, more importantly,
such regions are disjoint, i.e. V ′′i

⋂
V ′′j = ∅ ∀ i , j.

The importance of the previous result lies on that, while the
far-field Green function cannot be used in (20), it can be used

15– observe that we don’t resort directly to the radiation vector as this one
would inherently solve the problem in the array far-field region.
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over the separate domains of integration in (21). The latter, as
long as |r − rn | > relem

FF ∀n with relem
FF given by (19).

In particular, the expression (21) can be largely simplified
by identifying the radiation vector of (15) through:

A(r) =
N∑
n=1

In

AFF
0 (r−rn)︷                              ︸︸                              ︷

µ
e−  k |r−rn |

4π |r − rn |︸       ︷︷       ︸
G(r−rn)

F0

(
r − rn
|r − rn |

)
, (22)

where AFF
0 (r) is identified as the far-field approximation of the

magnetic potential vector of the array elementary unit, G(r)
as the Green function in (11) and F0(r̂) is the radiation vector
of the elementary array unit of Appendix A.

Note in (22) that F0(r̂) depends exclusively on the direction
of the observation point relative to the location of the nth

element16. Moreover, unlike the conventional array far-field,
the radiation vector cannot be factored out of the summation
and, therefore, an array factor cannot be defined anymore.

By properties of the operators in (10), given that the
argument of AFF

0 (r) in (22) is simply translated on every
summation term, the total radiated field in the array near-field
region can be written as:

E(r) = −  kη
N∑
n=1

In G(r − rn)F0,⊥

(
r − rn
|r − rn |

)
. (23)

Note also that, for the general case of dual polarized
transmitting antennas, such a total radiated field can be written
in terms of its p polarization as:

Ep(r) = −  kη
N∑
n=1

In an,p(r). (24)

where an,p(r) is an order-2 tensor quantity called here the
generalized array manifold; formally defined as:

an,p(r) := G(r − rn) F0,p

(
r − rn
|r − rn |

)
∀ n ≤ N, (25)

with G(r − rn) being the translation of the Green function
of (11) and F0,p(r) denoting the radiation vector along the p
direction of polarization17.

Particularly, observe that if single p-polarized radiation is
considered, the array manifold in (25) collapses into a vector
that can be simply denoted as ap(r)

��
n
= an,p ∀ n ≤ N; for N

array elements.
Moreover, if (23) is to be evaluated in the array far-field

region (i.e. |r | > rFF), the conventional array factor can
be recovered by replacing the Green function with its far-
field approximation of (13). Thus, showing that (25) indeed
generalizes the array manifold with the array far-field region
as a special case.

16– as this last one is a far-field measure with respect to such an element.
17note that p̂ must always be orthogonal to r̂.

NOTE TO THE READER

Observe that the definition of the radiation vector in terms
of the normalized current density makes the radiation vector
be slightly different to the one in [7].

As a matter of fact, their definition is equal to ours mul-
tiplied by the input current. Nonetheless, this makes the link
between transmission and reception modes straightforward; i.e.
through the same metric (not having to introduce a different
notation for the effective length vector as these become
essentially equivalent).
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