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Abstract

Envisioned as a promising component of the future wireless Internet-of-Things (IoT) networks, the non-

orthogonal multiple access (NOMA) technique can support massive connectivity with a significantly increased

spectral efficiency. Cooperative NOMA is able to further improve the communication reliability of users under

poor channel conditions. However, the conventional system design suffers from several inherent limitations and

is not optimized from the bit error rate (BER) perspective. In this paper, we develop a novel deep cooperative

NOMA scheme, drawing upon the recent advances in deep learning (DL). We develop a novel hybrid-cascaded

deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner. On

this basis, we construct multiple loss functions to quantify the BER performance and propose a novel multi-task

oriented two-stage training method to solve the end-to-end training problem in a self-supervised manner. The

learning mechanism of each DNN module is then analyzed based on information theory, offering insights into

the proposed DNN architecture and its corresponding training method. We also adapt the proposed scheme

to handle the power allocation (PA) mismatch between training and inference and incorporate it with channel

coding to combat signal deterioration. Simulation results verify its advantages over orthogonal multiple access

(OMA) and the conventional cooperative NOMA scheme in various scenarios.
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I. INTRODUCTION

Massive wireless device connectivity under limited spectrum resources is considered as cornerstone

of the wireless Internet-of-Things (IoT) evolution. As a transformative physical-layer technology, non-

orthogonal multiple access (NOMA) [1], [2] leverages superposition coding (SC) and successive inter-

ference cancellation (SIC) techniques to support simultaneous multiple user transmission in the same

time-frequency resource block. Compared with its conventional orthogonal multiple access (OMA)

counterpart, NOMA can significantly increase the spectrum efficiency, reduce access latency, and

achieve more balanced user fairness [3]. Typically, NOMA functions in either the power domain,

by multiplexing different power levels, or the code domain, by utilizing partially overlapping codes

[4].

Cooperative NOMA, which integrates cooperative communication techniques into NOMA, can fur-

ther improve the communication reliability of users under poor channel conditions, and therefore largely

extend the radio coverage [5]. Consider a downlink transmission scenario, where there are two classes

of users: 1) near users, which have better channel conditions and are usually located close to the base

station (BS); and 2) far users, which have worse channel conditions and are usually located close to

the cell edge. The near users perform SIC or joint maximum-likelihood (JML) detection to detect their

own information, thereby obtaining the prior knowledge of the far users’ messages. Then, the near

users act as relays and forward the prior information to the far users, thereby improving the reception

reliability and reducing the outage probability for the far users. Many novel information-theoretic

NOMA contributions have been proposed. It was shown in [6]–[8] that a significant improvement in

terms of the outage probability can be achieved, compared to the non-cooperative counterpart. The

impact of user pairing on the outage probability and throughput was investigated in [9], where both

random and distance-based pairing strategies were analyzed. To address the issue that the near users

are energy-constrained, the energy harvesting technique was introduced into cooperative NOMA in

[10], where three user selection schemes were proposed and their performances were analyzed.

Different from the information-theoretic approach aforementioned, in this paper, we aim to uplift the

performance of cooperative NOMA from the bit error rate (BER) perspective, and provide specific guid-

ance to a practical system design. Our further investigation indicates that the conventional cooperative

NOMA suffers from three main limitations (detailed in Section II-B). First, the conventional composite

constellation design at the BS adopts a separate mapping rule. Based on a standard constellation

such as quadrature amplitude modulation (QAM), bits are first mapped to user symbols, which in

turn are mapped into a composite symbol using SC. This results in a reduced minimum Euclidean
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distance. Second, while forwarding the far user’s signal, the near user does not dynamically design the

corresponding constellation [11]–[13], but only reuses the same far user constellation at the BS. Last,

the far user treats the near user’s interference signal as additive white Gaussian noise (AWGN), which

is usually not the case. Besides, it applies maximal-ratio combining (MRC) for signal detection, which

ignores the potential error propagation from the near user [11].

These limitations motivate us to develop a novel cooperative NOMA design referred to as deep

cooperative NOMA. The essence lies in its holistic approach, taking into account the three limitations

simultaneously to perform an end-to-end multi-objective joint optimization. However, this task is quite

challenging, because it is intractable to transform the multiple objectives into explicit expressions, not

to mention to optimize them simultaneously. To address this challenge, we leverage the interdisciplinary

synergy from deep learning (DL) [14]–[21]. We develop a novel hybrid-cascaded deep neural network

(DNN) architecture to represent the entire system, and construct multiple loss functions to quantify the

BER performance. The DNN architecture consists of several structure-specific DNN modules, capable

of tapping the strong capability of universal function approximation and integrating the communication

domain knowledge with combined analytical and data-driven modelling.

The remaining task is how to train the proposed DNN architecture through learning the parameters

of all the DNN modules in an efficient manner. To handle multiple loss functions, we propose a novel

multi-task oriented training method with two stages. In stage I, we minimize the loss functions for the

near user, and determine the mapping and demapping between the BS and the near user. In stage II,

by fixing the DNN modules learned in stage I, we minimize the loss function for the entire network,

and determine the mapping and demapping for the near and far users, respectively. Both stages involve

self-supervised training, utilizing the input training data as the class labels and thereby eliminating the

need for human labeling effort. Instead of adopting the conventional symbol-wise training methods

[22]–[24], we propose a novel bit-wise training method to obtain bit-wise soft probability outputs,

facilitating the incorporation of channel coding and soft decoding to combat signal deterioration.

Then we examine the specific probability distribution that each DNN module has learned, abandoning

the “black-box of learning in DNN” [25] and offering insights into the mechanism and the rationale

behind the proposed DNN architecture and its corresponding training method. Besides, we propose a

solution to handle the power allocation (PA) mismatch between the training and inference processes to

enhance the model adaptation. Our simulation results demonstrate that the proposed deep cooperative

NOMA significantly outperforms both OMA and the conventional cooperative NOMA in terms of the

BER performance. Besides, the proposed scheme features a low computational complexity in both

uncoded and coded cases.
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The main contributions can be summarized as follows.

• We propose a novel deep cooperative NOMA scheme with bit-wise soft probability outputs,

where the entire system is re-designed by a hybrid-cascaded DNN architecture, such that it can

be optimized in a holistic manner.

• By constructing multiple loss functions to quantify the BER performance, we propose a novel

multi-task oriented two-stage training method to solve the end-to-end training problem in a self-

supervised manner.

• We carry out theoretical analysis based on information theory to reveal the learning mechanism

of each DNN module. We also adapt the proposed scheme to handle the PA mismatch between

training and inference, and incorporate it with channel coding.

• Our simulation results demonstrate the superiority of the proposed scheme over OMA and the

conventional cooperative NOMA in various channel scenarios.

The rest of this paper is organized as follows. In Section II, we introduce the cooperative NOMA

system model and the limitations of the conventional scheme. In Section III, our deep cooperative

NOMA and the multi-task learning problem is introduced, and the two-stage training method is

presented, followed by the analysis of the bit-wise loss function. Section IV provides the theoretical

perspective of the design principles. Section V discusses the adaptation of the proposed scheme.

Simulation results are shown in Section VI. Finally, the conclusion is presented in Section VII.

Notation: Bold lower case letters denote vectors. (·)T and (·)∗ denote the transpose and conjugate

operations, respectively. diag(a) denotes a diagonal matrix whose diagonal entries starting in the upper

left corner are a1, . . . , an. C represents the set of complex numbers. E[·] denotes the expected value.

x(r) denotes the r-th element of x. Random variables are denoted by capital font, e.g., X with the

realization x. Multivariate random variables are represented by capital bold font, e.g., Y = [Y1, Y2]
T ,

X(r), with realizations y = [y1, y2]
T , x(r), respectively. p(x, y), p(y|x), and I(X;Y ) represent the

joint probability distribution, conditional probability distribution, and mutual information of the two

random variables X and Y . The cross-entropy of two discrete distributions p(x) and q(x) is denoted

by H(p(x), q(x)) = −
∑

x p(x) log q(x).

II. COOPERATIVE NOMA COMMUNICATION SYSTEM

A. System Model

We consider a downlink cooperative NOMA system with a BS and two users (near user UN and

far user UF), as shown in Fig. 1. The BS and users are assumed to be equipped with a single antenna.
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Direct transmission phase Cooperative transmission phase

BS - UN/UF

UN - UF

UN

UN symbol

UF symbol
SC 

JML

/SIC

Transmitter Receiver

Transmitter

BS

UF

MRC

Receiver

Fig. 1: System model of the cooperative NOMA. UN can adopt the JML or SIC detector.

It is considered that only the statistical channel state information (CSI), such as the average channel

gains, are available at the BS, the instantaneous CSI of the BS to UN link is available at UN, and

the instantaneous CSI of the BS/UN to UF links are available at UF. UN and UF are classified

according to their statistical CSI. Typically, they have better and worse channel conditions, respectively.

Correspondingly, UN acts as a decode-and-forward (DF) relay and assists the signal transmission to UF.

The complete signal transmission consists of two phases, described as follows. In the direct transmission

phase, the BS transmits the composite signal to both users. In the cooperative transmission phase, UN

performs joint detection, and then forwards the re-modulated UF signal to UF.

Let sN ∈ {0, 1}kN and sF ∈ {0, 1}kF denote the transmitted bit blocks for UN and UF, with

lengths kN and kF , respectively. sN and sF are mapped to user symbols xN and xF , taking from MN -

and MF -ary unit-power constellations MN ⊂ C and MF ⊂ C, respectively, where 2kN = MN and

2kF =MF . The detailed transmission process is as follows.

In the direct transmission phase, the BS uses SC to obtain a composite symbol

xS =
√
αS,NxN +

√
αS,FxF , xS ∈MS ⊂ C (1)

and transmits xS to the two users, where αS,N and αS,F are the PA coefficients with αS,N < αS,F

and αS,N + αS,F = 1. MS is called the composite constellation, and can be written as the sumset
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MS =
√
αS,NMN +

√
αS,FMF , {√αS,N tN +

√
αS,F tF : tN ∈MN , tF ∈MF}. The received signal

at the users can be expressed as

yS,J =
√
PShS,J(

√
αS,NxN +

√
αS,FxF ) + nS,J , J ∈ {N,F}, (2)

where PS is the transmit power of the BS, nS,J ∼ CN (0, 2σ2
S,J) denotes the i.i.d complex AWGN, and

hS,J denotes the fading channel coefficient. We define the transmit signal-to-noise ratio as SNR= PS

2σ2
S,F

.

After receiving yS,N , UN performs JML detection1 given by

(x̂N , x̂
N
F ) = arg min

(xN ,xF )∈{MN×MF }

∣∣∣yS,N −√PShS,N(
√
αS,NxN +

√
αS,FxF )

∣∣∣2, (3)

where x̂N denotes the estimate of xN and x̂NF denotes the estimate of xF at UN. The corresponding

estimated user bits (ŝN , ŝ
N
F ) ∈ ({0, 1}kN , {0, 1}kF ) can be demapped from (x̂N , x̂

N
F ).

In the cooperative transmission phase, UN transmits the re-modulated signal x̂NF to UF with x̂NF ∈

MN
F =MF . The received signal at UF can be written as

yN,F =
√
PNhN,F x̂

N
F + nN,F , (4)

where PN is the transmit power of UN, nN,F ∼ CN (0, 2σ2
N,F ) denotes the AWGN, and hN,F denotes

the channel fading coefficient.

The entire transmission for UF can be considered as a cooperative transmission with a DF relay,

i.e., UN. As UF has the knowledge of hS,F and hN,F , by treating the interference term √αS,NxN in

yS,F as AWGN and leveraging the widely used MRC [7], [13], [26], UF first combines yS,F and yN,F

as

yF = βS,FyS,F + βN,FyN,F , (5)

where βS,F =

√
PSαS,F h

∗
S,F

PSαS,N |hS,F |2+2σ2
S,F

and βN,F =
√
PNh

∗
N,F

2σ2
N,F

[13]. Then, UF detects its own symbol xF from

yF as

x̂F = arg min
xF∈MF

∣∣∣yF − (βS,F√PSαS,FhS,F + βN,F
√
PNhN,F

)
xF

∣∣∣2. (6)

The corresponding estimated bits ŝF ∈ {0, 1}kF can be demapped from x̂F .

Hereafter, for convenience, we denote the bit to composite symbol mappings at the BS and UN as

fS and fN , respectively, and denote the demappings at UN and UF as gN and gF , respectively. They

are defined as

fS : ({0, 1}kN , {0, 1}kF )→MS ⊂ C, (7)

fN : ŝNF →MN
F ⊂ C, (8)

1Here we introduce JML as an example. Note that SIC can also be used.
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and

gN : yS,N → (ŝN , ŝ
N
F ) ∈ ({0, 1}kN , {0, 1}kF ), (9)

gF : (yS,F , yN,F )→ ŝF ∈ {0, 1}kF . (10)

The average symbol error rate (SER) and BER are respectively denoted as PN,es and PN,eb for

UN to detect the UN signal, as PNF,es and PNF,eb for UN to detect the UF signal, and as PF,es and

PF,eb at UF. They are defined as PN,es = ExN
[
Pr{xN 6= x̂N}

]
, PN,eb = EsN

[
Pr{sN 6= ŝN}

]
,

PNF,es = ExF
[
Pr{xF 6= x̂NF }

]
, PNF,eb = EsF

[
Pr{sF 6= ŝNF }

]
, PF,es = ExF

[
Pr{xF 6= x̂F}

]
, and

PF,eb = EsF

[
Pr{sF 6= ŝF}

]
. Note that SER and BER are functions of the constellation mappings

(i.e., fS and fN ) and demappings (i.e., gN and gF ). For a given design problem, the parameters

{kN , kF , αS,N , αS,F} are fixed and we let PS = PN = 1.

B. Limitation

The system design above has been widely adopted in the literature [6], [7], [13], [26]. In the

following, we specify its three main limitations (L1)-(L3), which serve as the underlying motivation

for a new system design in Section III.

(L1) Bit Mapping at the BS: From the signal detection perspective, the conventional mapping from

bit to composite symbol (c.f. (7)) uses a separate mapping: first ({0, 1}kN , {0, 1}kF ) → (MN ,MF ),

and then (MN ,MF ) → MS . Typically, we can adopt Gray mapping for {0, 1}kN → MN and

{0, 1}kF →MF , while MN and MF are chosen from the standard constellations, e.g., QAM. Then,

for designing fS in (7), only (MN ,MF )→MS needs to be optimized as follows

min
(MN , MF )→MS⊂C

{
PN,es(fS, gN), PNF,es(fS, gN)

}
(11)

subject to predefined condition,

where gN here is the JML detector in (3), PN,es(fS, gN) and PNF,es(fS, gN) characterize the SERs

associated with (3), and for example, the predefined condition can be the constellation rotation in [27].

Clearly, this disjoint design is suboptimal, resulting in a degraded error performance. For example,

in Fig. 2(a), xN and xF are QPSK symbols with Gray mapping. Accordingly, in Fig. 2(b), xS is the

composite symbol for (αS,N , αS,F ) = (0.4, 0.6). It can be clearly seen that at the symbol level, the

composite constellation MS for xS results in a very small minimum Euclidean distance. Furthermore,

a close look at MS reveals that, at the bit level, the mapping ({0, 1}kN , {0, 1}kF ) → MS is not

optimized.
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(b) For xS ∈MS (composite constellation)

Fig. 2: Conventional constellations for MN =MF = 4 and (αS,N , αS,F ) = (0.4, 0.6).

(L2) Constellation at UN: In the cooperative NOMA system, UN acts as a DF relay: first detects

xF (or equivalently, sF ), and then forwards the re-modulated signal x̂NF to UF. Here, MN
F is assumed

in the literature to be exactly the same as the UF constellation MF at the BS. Clearly, such design

for UF may not be optimal because (1) detection errors may occur at UN; (2) UF receives the signals

not only from UN, but also from the BS (yS,F including non-AWGN interference). In this case, MN
F

should be further designed, rather than simply let MN
F =MF (known as repetition coding [28]).

(L3) Detection at UF: In practice, MRC is widely adopted as it only needs hS,F and hN,F . Its

design principle can be written as

min
gF

PF,es(fS, fN , gN , gF ) (12)

subject to MN
F =MF ,

x̂NF = xF ,

where PF,es(fS, fN , gN , gF ) characterizes the SER associated with (6), fS and gN are given, andMN
F =

MF is for fN . However, it is sub-optimal due to the potential signal detection error at UN (i.e.,

x̂NF 6= xF ) [11] and the ideal assumption in (6) that the interference term √αS,NxN in yS,F is AWGN.
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III. THE PROPOSED DEEP COOPERATIVE NOMA SCHEME

A. Motivation

To overcome (L1), a desirable approach is to solve the following problem

min
fS

{
PN,eb(fS, gN), PNF,eb(fS, gN)

}
(13)

with given gN . That is, we use BER as the performance metric, and directly optimize the map-

ping fS : ({0, 1}kN , {0, 1}kF ) → MS ⊂ C. To handle (L2) and minimize the end-to-end BER

PF,eb(fS, fN , gN , gF ), the constellationMN
F in fN should be designed by solving the following problem

min
fN

PF,eb(fS, fN , gN , gF ) (14)

with given fS , gN , and gF . To handle (L3), the optimization problem can be re-designed as

min
gF

PF,eb(fS, fN , gN , gF ) (15)

with given fS , fN , and gN , where the ideal assumptions in (12), i.e., x̂NF = xF and √αS,NxN is AWGN,

are removed.

However, addressing (L1)-(L3) separately is suboptimal due to the disjoint nature of the mapping

and demapping design. This motivates us to take a holistic approach, taking into account (L1)-(L3)

simultaneously to perform an end-to-end multi-objective optimization as

(P1) min
fS , fN , gN , gF

{
PN,eb(fS, gN), PNF,eb(fS, gN), PF,eb(fS, fN , gN , gF )

}
.

Clearly, (P1) represents a joint
{
fS, fN , gN , gF

}
design for all objectives in (13)-(15).

Challenge 1: It is very challenging to find the solutions for (P1), because it is difficult to transform the

objective functions
{
PN,eb(fS, gN),PNF,eb(fS, gN),PF,eb(fS, fN , gN , gF )

}
and optimization variables{

fS, fN , gN , gF
}

into explicit expressions.

Challenge 2: Moreover, the three objectives correspond to different users’ BER and may be mutually

conflicting [24]. So it is very difficult to minimize them simultaneously [29].

To overcome these challenges, we propose a novel deep multi-task oriented learning scheme from

a combined model- and data-driven perspective. Specifically, by tapping the strong nonlinear mapping

and demapping capability of DNN (universal function approximation), we first express
{
fS, fN , gN , gF

}
by constructing a hybrid-cascaded DNN architecture and then transfer

{
PN,eb(fS, gN),

PNF,eb(fS, gN),PF,eb(fS, fN , gN , gF )
}

using the bit-level loss functions, so that they can be evaluated

empirically. Then, we develop a multi-task oriented two-stage training method to minimize the loss

functions through optimizing the DNN parameters in a self-supervised manner. Thereby the input

training data also serve as the class labels.
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Training 

stage I:

Training 

stage II:
RxPreNF

RxPreSF Channel

SC

TxS-F

TxS-NUN bits

UF bits

TxN

RxPreSN

Transmitter:

Transmitter:

Receiver:

Receiver:

RxF
Channel

Channel

BS

RxN-N

RxN-F

UF

UN

𝒔𝐹 ∈ 0,1 𝑘𝐹

𝒔𝑁 ∈ 0,1 𝑘𝑁

ො𝒔𝐹 ∈ 0,1 𝑘𝐹

ො𝒔𝐹
𝑁 ∈ 0,1 𝑘𝐹

ො𝒔𝑁 ∈ 0,1 𝑘𝑁

𝐿 𝒔𝐹, ො𝒔𝐹 ≜ 𝐿3

𝐿 𝒔𝑁, ො𝒔𝑁 ≜ 𝐿1

𝐿 𝒔𝐹, ො𝒔𝐹
𝑁 ≜ 𝐿2

Fig. 3: Block diagram of the proposed deep cooperative NOMA including nine trainable DNN modules

1©- 9©, where 1©, 2©, and 6© are mapping modules, while the remaining are demapping modules. The

inputs {sN , sF} are bits, and the outputs {ŝN , ŝNF , ŝF} are bit-wise soft probabilities from sigmoid

function, e.g., ŝF = [0.96, 0.02]. The corresponding loss functions are L1 and L2 for UN, and L3 for

UF.

B. Deep Cooperative NOMA

The block diagram of the proposed deep cooperative NOMA is shown in Fig. 3, where the entire

system (c.f. Fig. 1) is re-designed as a novel hybrid-cascaded DNN architecture including nine trainable

DNN modules, i.e., three mapping modules and six demapping modules. In essence, the whole DNN

architecture learns the mapping between the BS inputs and users outputs to combat the channel fading

and noise. Each DNN module consists of multiple hidden layers describing its input-output mapping,

including the learnable parameters, i.e., weights and biases. Here, we adopt the offline-training and

online-deploying mode in DL. This means that all the DNN modules are deployed without retraining

after initial training.

At the BS, we propose to use two parallel DNN mapping modules ( 1©TxS-N and 2©TxS-F) with an

SC operation to represent the direct mapping fS in (7), which is hereafter referred to as f ′S : {f ′S,1, f ′S,2},

denoting the mapping parameterized by the associated DNN parameters. Note that f ′S,1 and f ′S,2 are for

1©TxS-N and 2©TxS-F, respectively. Their outputs xN and xF are normalized to ensure E{|xN |2} = 1

and E{|xF |2} = 1. The composite symbol (c.f. (1)) now can be re-expressed by xS = f ′S(sN , sF ). In
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the direct transmission phase, the received signal at the users can be expressed as

yS,J = hS,Jf
′
S(sN , sF ) + nS,J , J ∈ {N,F}. (16)

At UN, we use three DNN demapping modules ( 3©RxPreSN, 4©RxN-N, and 5©RxN-F) to represent

the demapping in (9), referred to as g′N : {g′N,3, g′N,4, g′N,5}. Note that g′N,3, g′N,4, and g′N,5 are for

3©RxPreSN, 4©RxN-N, and 5©RxN-F, respectively. The received yS,N is equalized as
h∗S,NyS,N

|hS,N |2
, pro-

cessed by 3©RxPreSN, and then demapped by two parallel DNNs ( 4©RxN-N and 5©RxN-F) to obtain

the estimates ŝN and ŝNF , respectively. This process can be expressed as

(ŝN , ŝ
N
F ) = g′N(yS,N) ∈

(
[0, 1]kN , [0, 1]kF

)
, (17)

where (ŝN , ŝ
N
F ) are soft probabilities for each element in the vectors. Integrating (16)-(17), this

demapping process at UN can be described as

(ŝN , ŝ
N
F ) = g′N︸ ︷︷ ︸
(17)

◦ CS,N ◦ f ′S(sN , sF )︸ ︷︷ ︸
(16) with J=N

, (18)

where ◦ is the composition operator and CS,N , CS,N(yS,N |xS, hS,N) denotes the channel function from

the BS to UN. We refer to (18) as the first demapping phase.

After obtaining ŝNF , we use the DNN mapping module 6©TxN to represent the mapping in (8),

denoted as x̂NF = f ′N(ŝ
N
F ), where f ′N = f ′N,6. A normalization layer is used at the last layer of 6©TxN

to ensure E{|x̂NF |2} = 1. In the cooperative transmission phase, UF receives

yN,F = hN,Ff
′
N(ŝ

N
F ) + nN,F . (19)

Finally at UF, we use three DNN demapping modules ( 7©RxPreSF, 8©RxPreNF, and 9©RxF) to

represent the demapping in (10) as g′F : {g′F,7, g′F,8, g′F,9}. Note that g′F,7, g
′
F,8, and g′F,9 are for

7©RxPreSF, 8©RxPreNF, and 9©RxF, respectively. The received yS,F and yN,F are equalized as
h∗S,F yS,F

|hS,F |2

and
h∗N,F yN,F

|hN,F |2
, processed by the parallel 7©RxPreSF and 8©RxPreNF, respectively, and then fed into

9©RxF to obtain ŝF . This process can be described as

ŝF = g′F (yS,F , yN,F ) ∈ [0, 1]kF . (20)

Note that the soft probability output ŝF can serve as the input of a soft channel decoder, which will

be explained in Section V-B. Integrating (16)-(20), the end-to-end demapping process at UF can be

described as

ŝF = g′F︸ ︷︷ ︸
(20)

(
CS,F ◦ f ′S(sN , sF )︸ ︷︷ ︸

(16) with J=F

, CN,F ◦ f ′N︸ ︷︷ ︸
(19)

◦ g′N ◦ CS,N ◦ f ′S(sN , sF )︸ ︷︷ ︸
(18)

)
, (21)
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(a) For Tx ∈ { 1©TxS-N, 2©TxS-F, 6©TxN} and Rx ∈

{ 4©RxN-N, 5©RxN-F, 9©RxF}

Multiply

RxPre

Rx

(b) For RxPre ∈ { 3©RxPreSN, 7©RxPreSF, 8©RxPreNF}

Fig. 4: Block diagram of the layer structure for the DNN modules.

where CS,F , CS,F (yS,F |xS, hS,F ) and CN,F , CN,F (yN,F |x̂NF , hN,F ) denote the channel functions from

the BS and UN to UF, respectively. We refer to (21) as the second demapping phase.

Having presented the overall picture of the proposed DNN architecture, next we scrutinize the layer

structure for each individual module. Fig. 4(a) shows the modules Tx ∈ { 1©TxS-N, 2©TxS-F,

6©TxN} and Rx ∈ { 4©RxN-N, 5©RxN-F, 9©RxF}, which share a common structure with multiple

cascaded DNN layers. Fig. 4(b) shows the modules RxPre ∈ { 3©RxPreSN, 7©RxPreSF, 8©RxPreNF},

which share a common structure with an element-wise multiplication operation at the output layer. The

main purpose of the multiplication operation is to extract the key feature for signal demapping. For

example, 3©RxPreSN is to learn the feature |yS,N−hS,NxS|2 = |hS,NxS|2−2Re{h∗S,Nx∗SyS,N}+ |yS,N |2

containing |xS|2, which is key to signal demapping (c.f. (3)). The input of 3©RxPreSN is
h∗S,NyS,N

|hS,N |2
. After

the multiple cascaded layers learn an estimate of xS , e.g., axS + b, the element-wise multiplication

operation computes Re
{
h∗S,NyS,N

|hS,N |2

}
Re{axS+b} = Re

{
xS+

h∗S,NnS,N

|hS,N |2

}
Re{axS+b} containing Re{xS}2

and Im
{
xS +

h∗S,NnS,N

|hS,N |2

}
Im{axS + b} containing Im{xS}2.

Given the above, the DNN based joint optimization problem for the two demapping phases (18) and

(21) can now be reformulated as

(P2) min
f ′S , f

′
N , g

′
N , g

′
F

{
L(sN ,ŝN )(f

′
S, g

′
N), L(sF ,ŝ

N
F )(f

′
S, g

′
N), L(sF ,ŝF )(f

′
S, f

′
N , g

′
N , g

′
F )
}
,

where L(sN ,ŝN )(f
′
S, g

′
N) , L1 denotes the loss between the input-output pair (sN , ŝN) as a function of

{f ′S, g′N}, and similar definition follows for L(sF ,ŝ
N
F )(f

′
S, g

′
N) , L2 and L(sF ,ŝF )(f

′
S, f

′
N , g

′
N , g

′
F ) , L3.

These losses measure the demapping errors for their respective input, and they will be mathematically

defined in Section III-C3. Note that {L1, L2} are associated with (18), and L3 associated with (21)

is the end-to-end loss for the entire network. Clearly, (P1) has been translated into (P2) in a more
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tractable form, where highly nonlinear mappings and demappings are learned by training the DNN

parameter set
{
f ′S, f

′
N , g

′
N , g

′
F

}
. This provides a solution to Challenge 1.

However, we still need to address Challenge 2, as (P2) involves three loss functions. Typically, this

is a multi-task learning (MTL) problem [30], which is more complex than the conventional single-task

learning. Moreover, the outputs {ŝN , ŝNF , ŝF} are bit-wise probabilities for each input bit, rather than

the widely used symbol-wise probabilities for each input symbol [24], [31]. Therefore, a bit-wise self-

supervised training method needs to be developed and analyzed. We will address the MTL in Section

III-C1, and the bit-wise self-supervised training in Sections III-C2 and III-C3.

C. The Proposed Two-Stage Training Method

1) Multi-Task Learning: In this MTL problem, minimizing {L1, L2, L3} simultaneously may lead to

a poor error performance. For example, we may arrive at a situation where L2 and L3 are sufficiently

small but L1 is still very large. To avoid this, we develop a novel two-stage training method by

analyzing the relationship among {L1, L2, L3}.

It is clear that L1 and L2 are related to {f ′S, g′N}, while L3 is related to {f ′S, f ′N , g′N , g′F}. As

{f ′S, g′N} ⊂ {f ′S, f ′N , g′N , g′F}, this implies a causal structure between {L1, L2} and L3. A more rigorous

analysis on this relationship is provided in Appendix A. On this basis, (P2) can be translated into the

following problem

(P3)

Stage I: min
f ′S , g

′
N

{
L1, L2

}
Stage II: min

f ′N , g
′
F

L3

subject to f ′S, g
′
N .

For (P3), as shown in Fig. 3, in stage I we minimize L1 and L2 through learning {f ′S, g′N} by data

training. In stage II, we minimize L3 through learning {f ′N , g′F} by fixing the obtained {f ′S, g′N} in stage

I. It is worth noting that stage I is still a MTL problem, but we can minimize L1 and L2 simultaneously

since they share the same {f ′S, g′N}.

2) Self-Supervised Training: For convenience, we express the three loss functions L1, L2, and L3 in

a unified form. On this basis, we elaborate on the self-supervised training method for fading channels.

Without loss of generality, we let kN = kF = k, and (k, αS,N , αS,F ) are fixed during the training.

From (P2), L1, L2, and L3 can be written as

L(s,ŝ)(f
′, g′) ,Es

[
L(s, ŝ)

]
, (s, ŝ) ∈

{
(sN , ŝN), (sF , ŝF ), (sF , ŝ

N
F )
}
, (22)
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where the input bits s also serve as the labels, ŝ denotes the output soft probabilities, and L(s, ŝ)

denotes the adopted loss function such as mean squared error and cross-entropy (CE) [14, Ch. 5]. For

f ′ and g′ specifically, we have

(f ′, g′) =

 (f ′S, g
′
N), for (s, ŝ) ∈

{
(sN , ŝN), (sF , ŝ

N
F )
}
,(

{f ′S, f ′N}, {g′N , g′F}
)
, for (s, ŝ) = (sF , ŝF ).

(23)

For a random batch of training examples {(sb, ŝb)}Bb=1 of size B, the loss in (22) can be estimated

through sampling as

L(s,ŝ)(f
′, g′) =

1

B

B∑
b=1

L(sb, ŝb). (24)

We use the stochastic gradient decent (SGD) algorithm to update the DNN parameter set {f ′, g′}

through backpropagation [14, Ch. 6.5] as

{f ′, g′}(t) = {f ′, g′}(t−1) − τ∇L(s,ŝ)

(
{f ′, g′}(t−1)

)
, (25)

starting with a random initial value {f ′, g′}(0), where τ > 0, t, and ∇ denote the learning rate, iteration

index, and gradient operator, respectively.

For the specific offline training of (P3), following the proposed two-stage training method, the DNN

parameter set {f ′S, f ′N , g′N , g′F} is first learned under AWGN channels (h = [hS,N , hS,F , hN,F ]
T =

[3, 1, 3]T ) to combat the noise. Then, by fixing {f ′S, f ′N}, only {g′N , g′F} are fine-tuned under fading

channels (h ∼ CN (0,Λ) with Λ = diag
(
[λS,N , λS,F , λN,F ]

T
)
) to combat signal fluctuation.

Another critical issue is that, in the most literature [22], [24], L(s,ŝ)(f
′, g′) only represents the symbol-

level CE loss with softmax activation function [14], where s is represented by a one-hot vector of

length 2k, i.e., only one element equals to one and others zero [22]. Fundamentally different from [22],

[24], L(s,ŝ)(f
′, g′) here characterizes the bit-level loss, thereby requiring further analysis.

3) Bit-Level Loss: Because the inputs {sN , sF} are binary bits, L(s,ŝ)(f
′, g′) minimization is a binary

classification problem, where we use the binary cross-entropy (BCE) loss to quantify the demapping

error. Accordingly, sigmoid activation function, i.e., φ(z) = 1
1+e−z , is used at the output layers of

4©RxN-N, 5©RxN-F, and 9©RxF to obtain bit-wise soft probabilities ŝN , ŝNF , and ŝF , respectively. In

this case, following (22), the BCE loss function can be written as

L(s, ŝ) =
k∑
r=1

L(s(r), ŝ(r))

=−
k∑
r=1

(
s(r) log ŝ(r) + (1− s(r)) log(1− ŝ(r))

)
,

(s, ŝ) ∈
{
(sN , ŝN), (sF , ŝ

N
F ), (sF , ŝF )

}
. (26)
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In another form, L(s, ŝ) can be shown as

L(s, ŝ) =H(pf ′(s), p̂g′(s))

=
k∑
r=1

Es(r)

[
H(s(r), ŝ(r))

]
, (27)

where H(·) represents the cross-entropy between the parameterized distributions pf ′(s) and p̂g′(s).

pf ′(s) denotes the true distribution of s for the transmitter with f ′, while p̂g′(s) denotes the estimated

distribution of s for the receiver with g′. We can see from (27) that the optimization is performed for

each individual bits in s.

Then, during training, L(s,ŝ)(f
′, g′) can be computed through averaging over all possible channel

outputs y = [yS,N , yS,F , yN,F ]
T according to

L(s,ŝ)(f
′, g′) =

k∑
r=1

Es(r),y

[
H(pf ′(s(r)|y), p̂g′(s(r)|y))

]
=H(S)−

k∑
r=1

If ′(S(r);Y) +
k∑
r=1

Ey

[
DKL(pf ′(s(r)|y)‖p̂g′(s(r)|y))

]
, (28)

where I(·; ·) is the mutual information (MI), and DKL(p‖p̂) is the Kullback-Leibler (KL) divergence

between distributions p and p̂ [32]. The first term on the right side of (28) is the entropy of s, which is

a constant. The second term can be viewed as learning f ′ at the transmitter, i.e., ({0, 1}kN , {0, 1}kF )→

MS and ŝNF →MN
F . The third term measures the difference between the true distribution pf ′(s(r)|y)

at the transmitter and the learned distribution p̂g′(s(r)|y) at the receiver, which corresponds to yS,N →

(ŝN , ŝ
N
F ) ∈ ({0, 1}kN , {0, 1}kF ) and (yS,F , yN,F )→ ŝF ∈ {0, 1}kF .

IV. A THEORETICAL PERSPECTIVE OF THE DESIGN PRINCIPLES

In Section III, we illustrated the whole picture of the proposed DNN architecture for deep cooperative

NOMA. In this section, we further analyze the specific probability distribution that each DNN module

has learned, through studying the loss functions in (28) for each training stage of (P3).

A. Training Stage I

In essence, training stage I is MTL over a multiple access channel with inputs {sN , sF}, transceiver

{f ′S, g′N}, channel function CS,N , and outputs {ŝN , ŝNF }. From information theory [32], the correspond-
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ing loss functions L1 and L2 for the two tasks can be expressed as

L1 =H(SN)−
k∑
r=1

If ′S(SN(r);YS,N)︸ ︷︷ ︸
Conflicting MI

+
k∑
r=1

EyS,N
[
DKL(pf ′S(sN(r)|yS,N)‖p̂g′N (sN(r)|yS,N))

]
(29)

=H(SN)−
k∑
r=1

If ′S(SN(r),SF (r);YS,N)︸ ︷︷ ︸
Common MI

+
k∑
r=1

If ′S,2(SF (r);YS,N |SN(r)) +
k∑
r=1

EyS,N
[
DKL

(∫
xS

pf ′S(sN(r)|xS)︸ ︷︷ ︸
Individual distribution

p(xS|yS,N)︸ ︷︷ ︸
Common distribution

dxS

∥∥∥∫
ŷS,N

p̂g′N,4
(sN(r)|ŷS,N)︸ ︷︷ ︸

Individual module

p̂g′N,3
(ŷS,N |yS,N)︸ ︷︷ ︸

Common module

dŷS,N

)]
, (30)

where ŷS,N denotes the output signal of 3©RxPreSN, and the derivations for (29) and (30) are given

in Appendix B.

Similarly, we have

L2 =H(SF )−
k∑
r=1

If ′S(SN(r),SF (r);YS,N)︸ ︷︷ ︸
Common MI

+
k∑
r=1

If ′S,1(SN(r);YS,N |SF (r))︸ ︷︷ ︸
Conflicting MI

+
k∑
r=1

EyS,N
[
DKL

(∫
xS

pf ′S(sF (r)|xS)︸ ︷︷ ︸
Individual distribution

p(xS|yS,N)︸ ︷︷ ︸
Common distribution

dxS

∥∥∥∫
ŷS,N

p̂g′N,5
(sF (r)|ŷS,N)︸ ︷︷ ︸

Individual module

p̂g′N,3
(ŷS,N |yS,N)︸ ︷︷ ︸

Common module

dŷS,N

)]
. (31)

Now we analyze the components of L1 and L2 in (29)-(31). Specifically, on one hand, (30) and (31)

share a common MI term
∑k

r=1 If ′S(SN(r),SF (r);YS,N), which corresponds to the learning of f ′S . On

the other hand, (29) and (31) have conflicting MI terms. That is, minimizing (29) leads to maximizing

the second term
∑k

r=1 If ′S(SN(r);YS,N), while minimizing (31) results in minimizing the third term∑k
r=1 If ′S,1(SN(r);YS,N |SF (r)) with f ′S,1 ⊂ f ′S . Clearly, these two objectives are contradictory for

learning f ′S .

Next, let us observe the KL divergence terms in (30)-(31) at the receiver side. The true distributions

in (30) and (31) share a common distribution term p(xS|yS,N), and individual (but related) distribution

terms pf ′S(sJ(r)|xS), J ∈ {N,F}. By exploiting this relationship, we use a common demapping module

3©RxPreSN to learn the common distribution p̂g′N,3
(ŷS,N |yS,N) for p(xS|yS,N), such that ŷS,N learns

to estimate xS . Then, two individual demapping modules 4©RxN-N and 5©RxN-F are used to learn

p̂g′N,4
(sN(r)|ŷS,N) and p̂g′N,5

(sF (r)|ŷS,N) for estimating pf ′S(sN(r)|xS) and pf ′S(sF (r)|xS), respectively.
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B. Training Stage II

Training stage II is end-to-end training with fixed {f ′S, g′N} learned from stage I. As such, L3 can

be expressed as (c.f. (28))

L3 =H(SF )−
k∑
r=1

If ′N (SF (r);YS,F , YN,F ) +
k∑
r=1

EyS,F ,yN,F

[
DKL(pf ′N (sF (r)|yS,F , yN,F )‖

p̂g′F (sF (r)|yS,F , yN,F ))
]
. (32)

Minimizing L3 results in maximizing the second term
∑k

r=1 If ′N (SF (r);YS,F , YN,F ), corresponding

to optimizing f ′N . By probability factorization, the true distribution in the third term in (32) can be

expressed as

pf ′N (sF (r)|yS,F , yN,F ) =
∫
xS

∫
ŝNF

p(sF (r)|xS, ŝNF , yS,F , yN,F )p(xS|yS,F )pf ′N (ŝ
N
F |yN,F ) dŝNF dxS

=

∫
xS

∫
ŝNF

p(sF (r)|xS, ŝNF )︸ ︷︷ ︸
Learned by 9©

p(xS|yS,F )︸ ︷︷ ︸
Learned by 7©

pf ′N (ŝ
N
F |yN,F )︸ ︷︷ ︸

Learned by 8©

dŝNF dxS, (33)

where p(sF (r)|xS, ŝNF )p(xS|yS,F ) is determined through the stage I training. To exploit such factoriza-

tion, we introduce auxiliary variables ŷS,F and ŷN,F to estimate xS and ŝNF , respectively, and express

the distribution p̂g′(sF (r)|yS,F , yN,F ) in (32) as

p̂g′(sF (r)|yS,F , yN,F ) =
∫
ŷS,F

∫
ŷN,F

p̂g′F,9
(sF (r)|ŷS,F , ŷN,F )p̂g′F,7

(ŷS,F |yS,F )p̂g′F,8
(ŷN,F |yN,F )

dŷN,F dŷS,F , (34)

where ŷS,F and ŷN,F denote the outputs of demapping modules 7©RxPreSF and 8©RxPreNF, respec-

tively. Correspondingly, p̂g′F,7
(ŷS,F |yS,F ) and p̂g′F,8

(ŷN,F |yN,F ) describe the learned distributions for

these two modules. It can be observed that p̂g′F,7
(ŷS,F |yS,F ) and p̂g′F,8

(ŷN,F |yN,F ) can estimate the true

distributions p(xS|yS,F ) and pf ′N (ŝ
N
F |yN,F ), respectively. Table I summarizes the distributions that the

DNN demapping modules have learned. In Section VI, we will show that the learned distribution is

consistent with the true one.

V. MODEL ADAPTATION

In this section, we adapt the proposed DNN scheme to suit more practical scenarios. We first address

the PA mismatch between training and inference. Then, we investigate the incorporation of the widely

adopted channel coding into our proposed scheme. In both scenarios, our adaptation enjoys the benefit

of reusing the original trained DNN modules without carrying out a new training process.
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TABLE I: Learned distributions by the DNN demapping modules and the corresponding true ones

Demapping Module Learned Distribution True Distribution

3©RxPreSN p̂g′
N,3

(ŷS,N |yS,N ) p(xS |yS,N )

4©RxN-N p̂g′
N,4

(sN |ŷS,N ) pf ′
S
(sN |xS)

5©RxN-F p̂g′
N,5

(sF |ŷS,N ) pf ′
S
(sF |xS)

7©RxPreSF p̂g′
F,7

(ŷS,F |yS,F ) p(xS |yS,F )

8©RxPreNF p̂g′
F,8

(ŷN,F |yN,F ) pf ′
N
(ŝN

F |yN,F )

9©RxF p̂g′
F,9

(sF |ŷS,F , ŷN,F ) p(sF |xS , ŝN
F )

A. Adaptation to Power Allocation

In Section III, the PA coefficients (αS,N , αS,F ) at the BS are fixed during the training process.

However, their values might change during the inference process due to the nonlinear behaviors of

the power amplifier in different power regions [33], [34], resulting in the mismatch between the two

processes. Denote the new PA coefficient for inference as α̂S,N for UN, and α̂S,F for UF.

As a solution, we propose to scale the received signals for g′N and g′F . The goal is to ensure that

their input signal-to-interference-plus-noise ratios (SINRs) are equal to those during the inference

process, i.e., α̂S,N |hS,N |2
α̂S,F |hS,N |2+2σ2

S,N
for sN demapping by g′N , α̂S,F |hS,N |2

α̂S,N |hS,N |2+2σ2
S,N

for sF demapping by g′N , and
α̂S,F |hS,F |2

α̂S,N |hS,F |2+2σ2
S,F

for sF demapping by g′F,7 ⊂ g′F . In this case, their new expressions are given by

ŝN =g′N

(
1

ωN
yS,N

)
, (35)

ŝNF =g′N

(
1

ωF
yS,N

)
, (36)

ŝF =g′F

(
1

ωF
yS,F , yN,F

)
, (37)

where the scaling factors are defined as

ωN =

√
α̂S,N
αS,N

, ωF =

√
α̂S,F
αS,F

. (38)

Note that in (35) and (36), given two different inputs, g′N(·) is used twice to obtain ŝN and ŝNF ,

respectively. We prove in Appendix C that the SINR is exactly α̂S,N |hS,N |2
α̂S,F |hS,N |2+2σ2

S,N
for 1

ωN
yS,N in (35),

α̂S,F |hS,N |2
α̂S,N |hS,N |2+2σ2

S,N
for 1

ωF
yS,N in (36), and α̂S,F |hS,F |2

α̂S,N |hS,F |2+2σ2
S,F

for 1
ωF
yS,F in (37).

B. Incorporation of Channel Coding

Channel coding has been widely adopted to improve the communication reliability [35]. However,

the conventional DNN based symbol-wise demapping [22], [24] cannot be directly connected to a
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soft channel decoder [36], [37], such as the soft low-density parity-check code (LDPC) decoder [38]

and polar code decoder [39]. By contrast, our proposed scheme in Section III outputs bit-wise soft

information (c.f. (18), (21)), enabling the straightforward cascade of a soft channel decoder.

Specifically, denote the information bit blocks for UN and UF as cN and cF , respectively. They are

encoded as binary codewords 〈sN〉 = E(cN) and 〈sF 〉 = E(cF ) by channel encoder E(·), and then

split into multiple transmitted bit blocks (i.e., sN and sF ), which are sent into f ′S . At the receiver, the

log-likelihood ratios (LLRs) of bits in s are calculated as

LLR(s(r)) = log
(1− ŝ(r)

ŝ(r)

)
, r ∈ {1, 2, · · · , k}, (39)

where we interpret ŝ(r) as the soft probability for bit s(r) with ŝ(r) = Pr{s(r) = 1|ŝ} [40]. The

LLRs serve as the input of the soft channel decoder, denoted as D(·).

At UN, we assume that it decodes its own information cN as ĉN = D(LLR(〈ŝN〉)), but still performs

x̂NF = f ′N(ŝ
N
F ) as in the uncoded case without decoding cF (called demapping-and-forward). These two

operations are separable because we use two parallel DNNs, i.e., 4©RxN-N and 5©RxN-F, to obtain ŝN

and ŝNF , respectively. Note that this parallel demapping can also reduce the error propagation compared

to SIC. At UF, it decodes cF as ĉF = D(LLR(〈ŝF 〉)). By contrast, the conventional SIC and JML

decoding schemes need to decode ŝN and ŝNF jointly.

VI. SIMULATION RESULTS

In this section, we perform simulation to verify the superiority of the proposed deep cooperative

NOMA scheme, and compare it with OMA and the conventional cooperative NOMA scheme. In OMA,

the BS transmits xN and xF to UN and UF, respectively, in two consecutive time slots, and there is

no cooperation between UN and UF. Default parameters for simulation are: k = 2 (MN = MF = 4)

and σS,F = σS,N = σN,F = σ, λS,F = 1, λS,N = λN,F for the three links. We consider six scenarios

(S1-S6), and their parameters are summarized in Table II, where “cooperative link” refers to the BS

to UN to UF link. Note that for S1-S4, we have
(
α̂S,N , α̂S,F

)
= (αS,N , αS,F ).

For the specific layer structure of each DNN module in Fig. 3, all three transmitters ( 1©, 2© and

6©) have the same layer structure, with an input layer (dimension of kN or kF ) followed by 4 hidden

layers with 16, 8, 4, and 2 neurons, respectively. Modules 3©, 7© and 8© also have the same layer

structure. There are three hidden layers of dimensions 64, 32 and 2, respectively. Modules 4©, 5©, and

9© have three hidden layers of dimensions 128, 64 and 32, respectively, with output of dimension kN

or kF . We adopt tanh as the activation function for the hidden layers [41].
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TABLE II: Parameters for scenarios S1-S6

Scenario λS,N (αS,N , αS,F ) Explanation

S1 10 (0.4, 0.6) Balanced PA

S2 10 (0.25, 0.75) Optimized PA

S3 6 (0.25, 0.75) Weaker cooperative link

S4 6 (0.1, 0.9) Unbalanced PA

S5 10 (0.25, 0.75) PA mismatch:
(
α̂S,N , α̂S,F

)
= (0.3, 0.7)

S6 10 (0.25, 0.75) PA mismatch:
(
α̂S,N , α̂S,F

)
= (0.2, 0.8)

We use Keras with TensorFlow backend to implement the proposed DNN architecture, which is

first trained under AWGN channels at SNR= 5 dB, and then {g′N , g′F} are fine-tuned under Rayleigh

fading channels (c.f. Section III-C2) at a list of SNR values in [15, 5, 6, 7, 30] dB to achieve a favorable

error performance in both low and high SNR regions. We have the learning rate τ = 0.001 and 0.01

for AWGN and Rayleigh fading channels, respectively. After training, we test the DNN scheme for

various SNRs, including those beyond the trained SNRs. In the uncoded case, the demapping rule for

bit s(r) is LLR(s(r)) = log
(

1−ŝ(r)
ŝ(r)

) s(r)=0

≷
s(r)=1

0.

A. Network Losses L1, L2, and L3 during Testing

Upon obtaining the proposed DNN through training, in Fig. 5, we check whether all the losses L1,

L2, and L3 can be significantly reduced by our proposed two-stage training method in Section III-C.

For each SNR value, 8×105 data bits are randomly generated for each user, divided into Bt = 4×105

data blocks with k = 2 bits per block, and then sent into the DNN. We calculate L1, L2, and L3

according to (24), as well as the average loss
∑3

t=1 Lt/3.

We can see that for all scenarios in Fig. 5, as SNR increases, L1, L2 and L3 each asymptotically

decreases to a small value, e.g., 0.13 for L2 in Fig. 5(a). The only exception is that L1 in S4 (Fig. 5(d))

asymptotically decreases to 0.25, because of the relatively small PA coefficient αS,N = 0.1. Besides,

L1, L2, and L3 are all close to the average loss
∑3

t=1 Lt/3 within 0.14. These results indicate that

the proposed two-stage training can significantly reduce L1, L2, and L3, and provide a solution to the

original MTL problem (P2).

B. Learned Mappings by DNN Mapping Modules

As discussed in Section III-B, the proposed DNN can learn mappings ({0, 1}kN , {0, 1}kF )→MS

and ŝNF → MN
F automatically, resulting in a new constellation and bit mapping. Fig. 6 presents the
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Fig. 5: Network losses L1, L2, L3, and the average loss
∑3

t=1 Lt/3 for different channel scenarios.
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Fig. 6: Learned constellations by f ′S and f ′N with bit mapping for (αS,N , αS,F ) = (0.4, 0.6).

learned constellations by f ′S and f ′N with bit mapping for (αS,N , αS,F ) = (0.4, 0.6). Fig. 6(a) shows
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Fig. 7: Learned constellations by f ′S for the individual bit positions, where (αS,N , αS,F ) = (0.4, 0.6),

and the red and blue markers denote bit 0 and 1, respectively.

the individual constellations sN ∈ MN , sF ∈ MF , and ŝNF ∈ MN
F , and it can be seen that MN ,

MF , and MN
F all have learned parallelogram-like shapes with different orientations and aspect ratios.

Fig. 6(b) shows the composite constellation MS , where the minimum Euclidean distance is improved

significantly compared with that in Fig. 2(b), i.e., from 0.2 to 0.36.

In Section III, we use the bit-wise binary classification method to achieve the demappings g′N and

g′F . In Fig. 7, we demonstrate that the two classes (bit 0 and 1) are separable by presenting the location

of each individual bit. Specifically, the constellations sN ∈MN and sS ∈MS in Fig. 6 are presented

here in a different form in Figs. 7(a) and 7(b), respectively. It is clearly shown that these two classes (bit

0 and 1) are easily separable for all bit positions. This indicates that the demapping can be achieved.
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(ŝN

F |yN,F ) ∝ pf ′
N
(yN,F |ŝN
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Fig. 8: Signal clusters corresponding to the learned distributions for 3©RxPreSN, 7©RxPreSF, and

8©RxPreNF (top), and the respective true ones, where (αS,N , αS,F ) = (0.4, 0.6), h = [1, 1, 1]T , and

SNR= 25 dB. The x-axis and y-axis denote the in-phase and quadrature parts, respectively.

C. Learned Distributions by DNN Demapping Modules

The learned distributions of 3©RxPreSN, 7©RxPreSF, and 8©RxPreNF for demapping and the corre-

sponding true ones are shown in Table I. Here, to verify that 3©, 7©, and 8© have successfully learned

their respective true distributions, we visualize these distributions in Fig. 8 by sampling, where each

colored cluster consists of 200 signal points. The results for 3©, 7©, and 8© are shown in Figs. 8(a),

8(b), and 8(c), respectively, while the corresponding true distributions in Figs. 8(d), 8(e), and 8(f),

respectively.

It is shown that the two figures in the same column have similar cluster shapes, indicating that 3©,

7©, and 8© have successfully learned the true distributions. Besides, it can be seen that various forms of

signal transformations have been learned. For example, Fig. 8(a) can be regarded as a non-uniformly

scaled version of Fig. 8(d), Fig. 8(b) can be regarded as a rotated and scaled version of Fig. 8(e),

while Fig. 8(c) can be regarded as a mirrored and scaled version of Fig. 8(f). These transformations

keep the original signal structure, and meanwhile can introduce more degrees of freedom to facilitate

demapping. Similar observations are made in other scenarios.
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Fig. 9: BER performance comparison of the proposed deep cooperative NOMA scheme, OMA, and

the conventional NOMA scheme for different channel scenarios.

D. Uncoded BER Performance Comparison for S1-S4

Fig. 9 compares the uncoded BER performance of the proposed deep cooperative NOMA, OMA,

and the conventional NOMA for (αS,N , αS,F ) = (α̂S,N , α̂S,F ), i.e., the PA coefficients for training and

inference are the same.

We first consider the scenario S1 in Fig. 9(a). It is clearly shown that the proposed scheme signif-

icantly outperforms the conventional one by 6.25 dB for both UN and UF, while outperforming the

OMA by 1.25 dB at BER=10−3. It can also be seen that the conventional scheme is worse than the

OMA scheme in S1, due to the lack of an appropriate PA.
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Fig. 10: BER performance comparison of the proposed deep cooperative NOMA and the conventional

NOMA schemes with PA mismatch between training and inference.

We then compare the BER with optimized PA coefficients (αS,N , αS,F ), as shown in Fig. 9(b) for S2.

We can see that for UF, the proposed scheme outperforms the conventional one when SNR≥ 12.5 dB,

while outperforming the OMA across the whole SNR range. For example, the performance gap between

the proposed scheme and the conventional one (resp. OMA) is around 2.5 dB (resp. 5 dB) at BER=10−4

(resp. 10−3). For UN, the proposed scheme has a similar BER performance with the conventional one.

Together with Fig. 9(a), we can see that the proposed scheme is robust to the PA.

In Fig. 9(c), we compare the BER in S3 with channel conditions different from S1 and S2. Likewise,

for UF, the proposed scheme outperforms the conventional one for SNR> 12.5 dB, e.g., by 3 dB at

BER=10−4. It outperforms the OMA across the whole SNR range, e.g., by 3 dB at BER=10−4. Fig. 9(d)

compares the BER in S4 with an unbalanced PA, i.e., (αS,N , αS,F ) = (0.1, 0.9). Similar observations

to Fig. 9(c) can be made, and the proposed scheme outperforms both OMA and the conventional

one. Moreover, we can see from Figs. 9(b)-9(d) that the proposed scheme shows a larger decay rate

for UF BER for large SNRs, revealing that the demapping errors at UN are successfully learned and

compensated at UF, achieving higher diversity orders.

E. Adaptation to Power Allocation for S5 and S6

To demonstrate its adaptation to the mismatch between the training and inference PA discussed in

Section V-A, we validate the proposed scheme in S5 (α̂S,F < αS,F ) and S6 (α̂S,F > αS,F ) in Figs. 10(a)

and 10(b), respectively. It can be seen that for UF, the proposed scheme outperforms the conventional
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Fig. 11: BER performance comparison of the proposed deep cooperative NOMA and the conventional

NOMA schemes with the LDPC code.

one at SNR> 15 dB. It can also be seen that the proposed scheme still achieves larger BER decay

rates in both S5 and S6. These results clearly verify that, without carrying out a new training process,

the proposed scheme can handle the PA mismatch.

F. BER Performance Comparison with Channel Coding

In Fig. 11, we evaluate the coded BER performance with the LDPC code in S2 and S4. The code

parity-check matrix comes from the DVB-S2 standard [42] with the rate 1/2 and size of 32400×64800.

Therefore, cN and cF have the length of 32400 bits, while the E(·) encoded 〈sN〉 and 〈sF 〉 have the

length of 64800 bits. The LDPC decoder D(·) is based on the classic belief propagation algorithm

with soft LLR as input. The coded BER is defined as Pr{cJ 6= ĉJ}, J ∈ {N,F}. For the conventional

scheme, UN adopts SIC due to its low computational complexity. Specifically, it first decodes cF as

ĉNF = D(·), cancels the interference after re-encoding and re-modulating ĉNF , and then decodes ĉN .

Then, UN forwards the re-modulated signal to UF. Note that the decoding is terminated on reaching

the maximum number of decoding iterations (50 here) or when all parity checks are satisfied.

In both scenarios, we observe a significant increasing decoding performance gap between the

proposed and conventional schemes. For example, in Fig. 11(b), to achieve BER=10−4 for UF, the

SNRs for the proposed and the conventional2 schemes are 0.25 and 20 dB, respectively, which shows a

2The performance of the conventional scheme can also be found in [38].
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gap more than 19 dB. Similar observations can be made from Fig. 11(a). The performance superiority

of the proposed scheme mainly originates from its utilizations of soft information and the parallel

demapping at UN attributing to the error performance optimization. In the meantime, the performance

of the conventional scheme is limited to the interference and error propagation [38].

G. Computational Complexity Comparisons

As discussed before, we adopt the offline-training and online-deploying mode for the proposed

scheme. Therefore, we only need to consider the computational complexity in the online-deploying

phase. Specifically, in the uncoded case, the complexity for signal detection is O(2k) for the con-

ventional scheme. By contrast, the mapping-demapping complexity is O(k) for the proposed scheme,

which is only linear in k. In the coded case, the conventional scheme includes two decoding processes

to jointly decode ŝN and ŝNF at UN, resulting in a high decoding complexity. The proposed scheme

only involves a single decoding process to separately decode its own information ŝN , so that a low-

complexity demapping-and-forward scheme can be used for the UF signal.

VII. CONCLUSION

In this paper, we proposed a novel deep cooperative NOMA scheme to optimize the BER perfor-

mance. We developed a new hybrid-cascaded DNN architecture to represent the cooperative NOMA

system, which can then be optimized in a holistic manner. Multiple loss functions were constructed to

quantify the BER performance, and a novel multi-task oriented two-stage training method was proposed

to solve the end-to-end training problem in a self-supervised manner. Theoretical perspective was then

established to reveal the learning mechanism of each DNN module. Simulation results demonstrate the

merits of our scheme over OMA and the conventional NOMA scheme in various channel environments.

As a main advantage, the proposed scheme can adapt to PA mismatch between training and inference,

and can be incorporated with channel coding to combat signal deterioration. In our future work, we

will consider the system designs for high-order constellations, transmission rate adaptation [43], and

grant-free access [44], and to include more cooperative users [45], [46].

APPENDIX

A. Relationship among {L1, L2, L3}

Demapping at UN is described as in (18), and {L1, L2} are the associated loss functions. The ultimate

end-to-end demapping at UF is described in (21), and L3 is the associated end-to-end loss for the entire

network. Let us observe (21). There are in total three random processes {CS,F , CN,F , CS,N} (due to
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noise), while the remaining
{
f ′S, f

′
N , g

′
N , g

′
F

}
are trainable modules.

{
f ′S, f

′
N , g

′
N , g

′
F

}
are determined

through training to combat the randomness from {CS,F , CN,F , CS,N}. We can see that to solve (21)

exactly, {hS,F , hN,F , hS,N} are all needed to describe {CS,F , CN,F , CS,N} correspondingly. However,

hS,N is practically not available at UF (recalling Section II-A), meaning that CS,N lacks description.

This unavailable knowledge may potentially lead to a poor demapping performance. We further observe

that conditioned on the case of ŝNF = sF , (21) can be described as

ŝF = g′F (CS,F ◦ f ′S(sN , sF ), CN,F ◦ f ′N︸︷︷︸
Input: ŝNF

◦ g′N ◦ CS,N ◦ f ′S(sN , sF )︸ ︷︷ ︸
Output:

(
ŝN ,ŝ

N
F

) |ŝNF = sF )

= g′F (CS,F ◦ f ′S(sN , sF ), CN,F ◦ f ′N(sF )|ŝNF = sF ), (40)

where the description of CS,N can be avoided. This observation inspires us to maximize Pr
{
ŝNF = sF

}
to achieve (40) and solve (21) exactly with a high probability. It needs to be pointed out that the case

ŝNF = sF means that the demapping (18) at UN succeeds for sF (L2 is sufficiently small). The above

analysis reveals the causal structure between (18) and (21), which motivates us to perform optimization

first for (18) and then for (21). Note that Pr
{
ŝNF = sF

}
can be maximized (or equivalently, L2 can

be minimized) through training stage I to achieve (40). Besides, considering the causal structure, in

stage II, the modules learned from stage I, i.e., f ′S and g′N , are fixed.

B. Derivations of (29) and (30)

First, (29) can be derived according to (28) by averaging over the channel output yS,N . Then,

by applying If ′S(SN(r),SF (r);YS,N) = If ′S(SN(r);YS,N) + If ′S,2(SF (r);YS,N |SN(r)) from information

theory and pf ′S(sN(r)|yS,N) =
∫
xS
pf ′S(sN(r)|xS)p(xS|yS,N)dxS from probability theory (to include the

composite signal xS), (30) can be derived from (29).

C. Proof of SINR Values for (35), (36), and (37)

Taking a closer look at (35) and (36), the respective inputs of g′N(·) can be written as

1

ωN
yS,N =hS,N

(√
αS,NxN +

1

ωN

√
α̂S,FxF

)
+

1

ωN
nS,N , (41)

1

ωF
yS,N =hS,N

(√
αS,FxF +

1

ωF

√
α̂S,NxN

)
+

1

ωF
nS,N . (42)

The SINRs can be calculated as α̂S,N |hS,N |2
α̂S,F |hS,N |2+2σ2

S,N
from (41) and α̂S,F |hS,N |2

α̂S,N |hS,N |2+2σ2
S,N

from (42). Similar

proof can be given for (37).
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