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Abstract—Error correction codes are an integral part of
communication applications, boosting the reliability of trans-
mission. The optimal decoding of transmitted codewords is the
maximum likelihood rule, which is NP-hard due to the curse of
dimensionality. For practical realizations, sub-optimal decoding
algorithms are employed; yet limited theoretical insights prevent
one from exploiting the full potential of these algorithms. One
such insight is the choice of permutation in permutation decoding.
We present a data-driven framework for permutation selection,
combining domain knowledge with machine learning concepts
such as node embedding and self-attention. Significant and
consistent improvements in the bit error rate are introduced
for all simulated codes, over the baseline decoders. To the best
of the authors’ knowledge, this work is the first to leverage the
benefits of the neural Transformer networks in physical layer
communication systems.

Index Terms—Decoding, error correcting codes, belief propa-
gation, deep learning.

I. INTRODUCTION

Shannon’s well known channel coding theorem [1]] states that
for every channel a code exists, such that encoded messages
can be transmitted and decoded with an error as low as needed
while the transmission rate is below the channel’s capacity. The
converse is no less crucial: Transmitting with rate beyond the
capacity enforces uncertain reliability. For practical applications,
latency and computational complexity constrain code size. Thus,
structured codes with low complexity encoding and decoding
schemes, were devised.

Some structured codes possess a main feature known as
the permutation group (PG). The permutations in PG map
each codeword to some distinct codeword. This is crucial
to different decoders, such as the parallelizable soft-decision
Belief Propagation (BP) [2]] decoder. It empirically stems from
evidence that whereas decoding various corrupted words may
fail, decoding a permuted version of the same corrupted words
may succeed [3]. For instance, this is exploited in the mRRD [4]
and the BPL [5]] algorithms, which perform multiple runs over
different permuted versions of the same corrupted codewords
by trading off complexity for higher decoding gains.

Nonetheless, there is room for improvement since not all
permutations are required for successful decoding of a given
word: simply a fitting one is needed. Our work deals with
obtaining the best fit permutation per word, by removing
redundant runs which thus preserve computational resources.
Nevertheless, it remains unclear how to obtain this type of
permutation as indicated by the authors in [5]] who stated in their
Section III.A, “there exists no clear evidence on which graph

*Equal contribution, order determined randomly.

permutation performs best for a given input”. Explicitly, the
goal is to approximate a function mapping from a single word
to the most probable-to-decode permutation. While analytical
derivation of this function is hard, advances in the machine
learning field may be of use in the computation of this type
of function.

The recent emergence of Deep Learning (DL) has demon-
strated the advantages of Neural Networks (NN) in a myriad
of communication and information theory applications where
no analytical solutions exists [6f], [[7]. For instance in [§], a
tight lower bound on the mutual information between two
high-dimensional continuous variables was estimated with NN.
Another recurring motive for the use of NN in communications
has to do with the amount of data at hand. Several data-driven
solutions were described in [9]], [[10] for scenarios with small
amounts of data, since obtaining data samples in the real world
is costly and hard to collect on-the-fly. On the other hand, one
should not belittle the benefits of unlimited simulated data, see
(1], [12]

Lately, two main classes of decoders have been put forward
in machine learning for decoding. The first is the class of model-
free decoders employing neural network architectures as in
[13], [14]]. The second is composed of model-based decoders
[15]-[19] implementing parameterized versions of classical
BP decoders. Currently, the model-based approach dominates,
but it suffers from a regularized hypothesis space due to its
inductive bias.

Our work leverages permutation groups and DL to enhance
the decoding capabilities of constrained model-based decoders.
First, a self-attention model (introduced in Section [20] is
employed to embed all the differentiated group permutations
of a code in a word-independent manner, by extracting relevant
features. This is done once before the test phase during
a preprocess phase. At test time, a trained NN accepts a
corrupted word and the embedded permutations and predicts
the probability for successful decoding for each permutation.
Thereafter, a set of either one, five or ten most-probable-to-
decode permutations are chosen, and decoding is carried out on
the permuted channel words rather than decoding an arbitrary
dataset with all permutations, and empirically choosing the
best subset of them.

The presented method is simulated on Bose-Chaudhuri-
Hocquenghem (BCH) codes of varying lengths, achieving gains
of up to 2.75dB over the random permutation selection baseline.

The remainder of this paper is organized as follows. The
background on coding, code permutations, node embedding and
self-attention is provided in Section The formulation and
method of the Graph Permutation Selection (GPS) is presented



in Section[[V]and related work is discussed in Section [[} Finally
experimental setup and results are detailed in Section [V]

II. RELATED WORK

Permutation decoding (PD) has attracted renewed attention
[17], [21], [22]] given its proven gains for 5G-standard approved
polar codes. [21] suggested a novel PD method for these codes.
However, the main novelty lies in the proposed stopping criteria
for the list-decoder, whereas the permutations are chosen in a
random fashion. The authors in [[17] presented an algorithm
to form a permutation set, computed by fixing several first
layers of the underlying structure of the polar decoder, and
only permuting the last layers. The original graph is included
in this set as a default, with additional permutations added
during the process of a limited-space search. Finally we refer
to [22] which proposes a successive permutations scheme that
finds suitable permutations as decoding progresses. Again, due
to the exploding search space, they only considered the cyclic
shifts of each layer. This limited-search first appeared in [23].

Most PD methods, like the ones mentioned above, have made
valuable contributions. We, on the other hand, see the choice
of permutation as the most integral part of PD, and suggest
a pre-decoding module to choose the best fitting one. Note
however that a direct comparisons between the PD model-based
works mentioned and ours are infeasible.

Regarding model-free approaches, we refer in particular
to [24] since it integrates permutation groups into a model-
free approach. In that paper, the decoding network accepts
the syndrome of the hard decisions as part of the input.
This way, domain knowledge is incorporated into the model-
free approach. We introduce domain knowledge by training
the permutation embedding on the parity-check matrix and
accepting the permuted syndrome. Furthermore, each word is
chosen as a fitting permutation such that the sum of LLRs in
the positions of the information-bits is maximized. Note that
this approach only benefits model-free decoders. Here as well
comparisons are infeasible.

III. BACKGROUND
A. Coding

In a typical communication system, first, a length k binary
message m € {0, 1}* is encoded by a generator matrix G into a
length n codeword ¢ = G'm € {0, 1}". Every codeword ¢ sat-
isfies He = 0, where H is the parity-check matrix (uniquely de-
fined by GHT =0). Next, the codeword ¢ is modulated by the
Binary Phase Shift Keying (BPSK) mapping (0 — 1,1 — 1)
resulting in a modulated word x. After transmission through the
additive white Gaussian noise (AWGN) channel, the received
word is y = x +z, where z ~ N(0, 021,,).

At the receiver, the received word is checked for any
detectable errors. For that purpose, an estimated codeword ¢€ is
calculated using a hard decision (HD) rule: ¢; = 1y, <o). If the
syndrome s = H¢ is all zeros, one outputs ¢ and concludes. A
non-zero syndrome indicates that channel errors occurred. Then,
a decoding function dec : y — {0, 1}", is utilized with output
¢. One standard soft-decision decoding algorithm is Belief
Propagation (BP). BP is a graph-based inference algorithm

that can be used to decode corrupted codewords in an iterative
manner, working over a factor graph known as the Tanner graph.
The BP algorithm operates by passing messages over the nodes
of the Tanner graph until convergence or a maximum number
of iterations is reached. One property known to effect the
convergence of the algorithm is cycles. Cycles in a Tanner graph
refer to a subset of nodes connected to each other and inducing
a closed loop with every edge appearing once. Messages that
are propagated along cycles become correlated after several
BP iterations, preventing convergence to the correct posterior
distribution and thus reducing overall decoding performance.
We refer the interested reader to [25] for a full derivation of
the BP for linear codes, and to [26] for more details on the
effects of cycles in codes.

B. Permutation Group of a code

Let 7 be a permutation on {1,...,n}. A permutation of a
codeword ¢ = (cy, ..., ) exchanges the positions of the entries
of c:

T
7(€) = (Cr(1)s Cn(2)s s Cr(n))

A permutation 7 is an automorphism of a given code C if ¢ € C
implies 7(c) € C. The group of all automorphism permutations
of a code C is denoted Aut(C), also referred to as the PG of
the code.

A widely employed family of codes, with known PGs [27]],
is the BCH family. The PGs of this code are presented in [28]
pp- 233]:

Tap(i) = [2” ¥ +ﬁ] (mod n)

with @ € {1,...,logy(n+1)} and B € {1,...,n}. Thus a total
of nlog,(n + 1) permutations compose Aut(C).

One possible way to mitigate the detrimental effects of
cycles is by using code permutations. We can apply BP on the
permuted received word and then apply the inverse permutation
on the decoded word. This can be viewed as applying BP on
the original received word with different parity-check matrix.
Since there are cycles in the Tanner graph there is no guarantee
that the BP will converge to an optimal solution and each
permutation enables a different decoding attempt. This strategy
has proved to yield to a better convergence and overall decoding
performance gains [4]], as observed in our experiments, in
Section [V]

C. Graph Node Embedding

The method we propose uses a node embedding technique
for embedding the variable nodes of the code’s Tanner graph,
thus taking the code structure into consideration. Specifically,
in Sec. we employ the node2vec [29]] method. We briefly
describe this method and the reader can refer to the paper for
more technical details. The task of node embedding is to encode
nodes in a graph as low-dimensional vectors that summarize
their relative graph position and the structure of their local
neighborhood. Each learned vector corresponds to a node in the
graph, and it has been shown that in the learned vector space,
geometric relations are captured; e.g., interactions that are
modeled as edges between the nodes in the graph. Specifically,
node2vec is trained by maximizing the mean probability of



the occurrence of subsequent nodes in fixed length sampled
random walks. It employs both breadth-first (BFS) and depth-
first (DFS) graph searches to produce high quality informative
node representations.

D. Self-Attention

An attention mechanism for neural networks that was
designed to enable neural models to focus on the most relevant
parts of the input. This modern neural architecture allows for
the use of weighted averaging to optimize a task objective
and to deal with variable sized inputs. When feeding an input
sequence into an attention model, the resulting output is an
embedded representation of the input. When a single sequence
is fed, the attentive mechanism is employed to attend to all
positions within the same sequence. This is commonly referred
to as the self-attention representation of a sequence. Initially,
self-attention modelling was used in conjunction with recurrent
neural networks (RNNs) and convolutional neural networks
(CNNs) mostly for natural language processing (NLP) tasks. In
[30], this setup was first employed and was shown to produce
superior results on multiple automatic machine translation tasks.

Recently, an advanced form of modelling attentive relations
was introduced. Transformer networks allows modeling inter-
sequence dependencies regardless to the position in the input
sequence. [20] demonstrated that machine translation models
could achieve state-of-the-art results by solely using this self-
attention model. A more recent family of Transformer-based
self-attentive models [31]]-[33], uses multiple self-attention
layers, significantly advanced the state-of-the-art in various
linguistic tasks rather than machine translation, e.g. question
answering [33]], coreference resolution [34] and a variety
of linguistic tasks according to the GLUE benchmark [35].
Transformer networks have been employed to non-NLP fields
as well, e.g., visual object detection [36], medical imaging [37]]
and recommender systems [38]], [|39]

In this work we use self-attention for permutation represen-
tation. This mechanism enables better and richer permutation
modelling compared to a non-attentive representation. The
rationale behind using self-attention comes from permutation
distance metrics preservation; a pair of “similar” permutations
will have a close geometric self-attentive representation in the
learned vector space, since the number of index swaps between
permutations only affects the positional embedding additions.

IV. THE DECODING ALGORITHM

A. Problem Formulation and Algorithm Overview

Assume we want to decode a received word y encoded
by a code C. Picking a permutation from the PG Aut(C)
may result in better decoding capabilities. However, executing
the decoding algorithm for each permutation within the PG
is a computationally prohibitive task especially if the code
permutation group is large. An alternative approach involves
first choosing the best permutation and only then decoding the
corresponding permuted word.

Given a received word y, the optimal single permutation
7* € Aut(C) is the one that minimizes the bit error rate (BER):

a* = argmin BER|7~!(dec(n(y))), ¢
neAut (C)

(D

where ¢ is the submitted codeword and BER is the Hamming
distance between binary vectors.

The solution to Eq. is intractable since the correct
codeword is not known in the decoding process. We propose
a data-driven approach as an approximate solution. The gist
of our approach is to estimate the best permutation without
applying a tedious decoding process for each code permutation
and without relying on the correct codeword c.

We highlight the key points of our approach below, and
elaborate on each one in the rest of this section. Our architecture
is depicted in Fig. [T} The main components are the permutation
embedding (Section [[V-B) and the permutation classifier (Sec-
tion[[V=C). First, the permutation embedding block perm2vec
receives a permutation mr, and outputs an embedding vector ¢ .
Next, the vectors r(y) and ¢q, are the input to the permutation
classifier that computes an estimation p(y, 7) of the probability
of word n(y) to be successfully decoded by dec. Next, we
select the permutation whose probability of successful decoding
is maximal:

2

7 = argmax p(y,n)
neAut (C)
and decoding is done on 7#(y). Finally, the decoded word ¢ =

271 (dec(#(y))) is outputted. The full algorithm is presented
in Algorithm ]

B. Permutation Embedding

Our permutation embedding model consists of two sublayers:
self-attention followed by an average pooling layer. To the best
of our knowledge, our work is the first to leverage the benefits
of the self-attention network in physical layer communication
systems.

In [20], positional encodings are vectors that are originally
compounded with entries based on sinusoids of varying
frequency. They are added as input elements prior to the first
self-attention layer, in order to add a position-dependent signal
to each embedded token and help the model incorporate the
order of the input tokens by injecting information about the
relative or absolute position of the tokens. Inspired by this
method and other recent NLP works [31[]-[33]], we used learned
positional embeddings which have been shown to yield better
performance than the constant positional encodings, but instead
of randomly initializing them, we first pre-train node2vec
node embeddings over the corresponding code’s Tanner graph.
We then take the variable nodes output embeddings to serve
as the initial positional embeddings. This helps our model
to incorporate some graph structure and to use the code
information. We denote by d,, the dimension of the output
embedding space (this hyperparameter is set before the node
embedding training). It should be noted that any other node
embedding model can be trained instead of node2vec which we
leave for future work. Self-attention sublayers usually employ
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Fig. 1: A schematic architecture of the Graph Permutation Selection (GPS) classifier.

Algorithm 1: Decoding

Input :received word y
Output : predicted codeword ¢
1 Dec (y)

2 for n in Aut(C) do

3 ‘ p(y,ﬂ')ZGPS(y,ﬂ'); // see Fig.
4 end

s | A =argmax, p(y,n);

6 | ¢ =7%*‘(dec(ﬁ(y)));

7 return ¢;

multiple attention heads, but we found that using one attention
head was sufficient.

Denote the embedding vector of (i) by u; € R% and the
embedding of the variable nodes by v € R%. Note that both
u; and v are learned, but as stated above, v is initialized with
the output of the pre-trained variable node embedding over the
code’s Tanner graph. Thereafter, the augmented attention head
operates on an input vector sequence, W = (Wy,..., W) of n
vectors where w; € Réw W; =u; +V.

The attention head computes a same-length vector sequence
P=(pi,...,pn), wWhere p; € R%. Each encoder’s output
vector is computed as a weighted sum of linearly transformed

input entries,
n

pi= Zaij(ij),
=1
where the attention weight coefficient is computed using the
softmax function,

ebii

= n bim ’

Zm:1 e
of the normalized relative attention between two input vectors
w; and w,

aij

(Qw)T (Kw)

Vd,

bij =

Note that Q, K, V € R4wXdp gre learned parameters matrices.
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Fig. 2: Illustration of the perm2vec model architecture. The
input embeddings are the sum of the raw permutation embed-
dings and the position embeddings, which are initialized using
node2vec.

Finally, the vector representation of the permutation 7 is
computed by applying the average pooling operation across
the sequence of output vectors,

1 n
qr = ;;Ph

and is passed to the permutation classifier. The permutation
embedding is illustrated in Fig. [2|

C. Permutation Classifier

We next describe a classifier that predicts the probability of a
successful decoding given received word y and a permutation 7



TABLE I: Values of the hyper-parameters, permutation embed-
ding and classifier.

Symbol Definition Value
Ir Learning rate 1073
- Optimizer Adam
dy Input embedding size 80
dp Output embedding size 80
- LeakyReLU Negative slope 0.1
- SNR range [dB] 1-7
K Mini-batch size 5000
. Number of mini-batches 10

represented by a vector g. It is more convenient to consider the
log likelihood ratio (LLR) for soft-decoding. The LLR values
in the AWGN case are given by € = % -y, and knowledge of
o, is assumed. )

The input is passed to a neural multilayer perceptron (MLP)
with the absolute value of the permuted input LLRs 7 (£) and
the syndrome s € R"7% of the permuted word 7 (f). We first
use linear mapping to obtain £’ = Wy-|n(£)| and s = W; - s re-
spectively, where W, € R4 and W, € R%*("=%) are Jearned
matrices. Then, inspired by [40], we use the following similarity
function:

g (h) = w} 93 (¢2 (¢1 (h))) + by 3)

where,

h=[q¢";s";qot’;qos’; ¢ os’s|q—C'|;|q—s"|;]¢ =5[]
“)
Here [-] stands for concatenation and o stands for the Hadamard
product. We also define

@; (x) = LeakyReLU (W;x + b;)

where W, € R%»*2dp W, € R2p*dp W3 € R9*4r/2 and
W4 € R9/2 are the learned matrices and b, € R24r, b, € R,
b3 € R%/? and by € R are the learned biases respectively.

Finally, the estimated probability for successful decoding of
n(y) is computed as follows,

p(y,n) = o(g(h))

where g(h) is the last hidden layer and o (-) is the sigmoid
function. The Graph Permutation Selection (GPS) algorithm
for choosing the most suitable permutation is depicted in Fig. [T]

D. Training Details

We jointly train the permutation embedding and the permu-
tation classifier, employing a single decoder dec. The cross
entropy loss computed for a single received word y is:

£==3"|dyxlog(p(y, ) + (1 = dy x) log(1 - p(y, m)]
where dy . =1 if decoding of m(y) was successful under
permutation 7, otherwise dy = 0. The set of decoders dec
used for the dataset generation is described in Section [V]

Each mini-batch consists of K received words from the
generated training dataset. This dataset contains pairs of

permuted word (y,n) together with a corresponding label
dy,z. We used an all-zero transmitted codeword. Empirically,
using only the all-zero word seems to be sufficient for training.
Nonetheless, the test dataset is composed of randomly chosen
binary codewords ¢ € C, as one would expect, without any
degradation in performance. Each codeword is transmitted over
the AWGN channel with o, specified by a given signal-to-
noise ratio (SNR), with an equal number of positive examples
(d =1) and negative examples (d = 0) in each batch. The
overall hyperparameters used for training the perm2vec and
the GPS classifier are depicted in Table [T

To pre-train the node embeddings, we used the default
hyperparameters suggested in the original work [29] except for
the following modifications: number of random walks 2000,
walk length 10, neighborhood size 10 and node embedding
dimension d,, = 80.

Note that because perm2vec depends solely on a given
permutation (per code), all embeddings can be computed once
and stored in memory. Then, at test time, determination of &
depends on the latency of nlog,(n + 1) parallelizable forward-
passes of the permutation classifier.

V. EXPERIMENTAL SETUP AND RESULTS

The proposed GPS algorithm is evaluated on five different
BCH codes - (31,16), (63,36), (63,45), (127,64), and
(255,163). As for the decoder dec, we applied GPS on top
of the BP (GPS+BP) and on top of a pre-trained WBP
(GPS+WBP), trained with the configuration from [41]]. For
the longest code, (255,163), we did not apply the WBP
algorithm as it raised us memory issues on our available
hardware. All decoders are tested with 5 BP iterations and the
syndrome stopping criterion is adopted after each iteration.
These decoders are based on the systematic parity-check
matrices, H = [PT |In_k], since these matrices are commonly
used. For comparison, we employ a random permutation
selection (from the PG) as a baseline for each decoder -
random+BP and random+WBP. In addition, we depict the
maximum likelihood results. Maximum likelihood results
were taken from [42], [43]. In addition, see [25, Section
1.5] for more theoretical details.

A. Performance Analysis

We assess the quality of our GPS using the BER metric,
for different SNR values [dB] when at least 1000 error words
occurred. Note that we refer to the SNR as the normalized SNR
(Ep/Ngp), which is commonly used in digital communication.
Fig. [3| presents the results for BCH(31,16) and BCH(63,36)
and Table [II| lists the results for all codes and decoders, with
our GPS method and random selection. For clarity, in Table [II]
we present the BER negative decimal logarithm only for the
baselines, considered as the top-1 results. As can be seen, using
our preprocess method outperforms the examined baselines.
For BCH(31,16) (Fig. [3a), perm2vec together with BP gains
up to 2.75 dB as compared to the random BP and up to 1.8 dB
over the random WBP. Similarly, for BCH(63,36) (Fig. [3b),
our method outperforms the random BP by up to 2.75 dB and
by up to 2.2 dB with respect to WBP. We also observed a
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Fig. 3: BER vs. SNR for GPS and random permutation selection. Both BP and WBP are considered.

TABLE II: A comparison of the BER negative decimal logarithm for three SNR values [dB]. Higher is better. We bold the best

results and underline the second best ones.

BCH (n,k) random+BP random+WBP GPS + BP GPS + WBP
SNR@AB) 2 4 6 2 4 6 2 4 6 2 4 6
— TOP 1 —
(31,16) 1.21 1.74 244 126 1.99 3.14 1.65 2.96 5.37 1.65 2.96 5.31
(63,36) 1.10 1.51 2.08 1.10 1.67 2.66  1.40 2.67 5.23 1.42 2.82 5.44
(63,45) 1.26 1.90 2.81 1.252.08 3.67 1.402.58 5.01 1.42 2.73 5.35
(127,64) 0.991301.74 099132211 1.011.944.04 1.011.98 4.14
(255,163) 1.11 1.44 1.73 - - - 11 1.45 2.18 - - -
— TOP 5 —
(31,16) 1.49 255417 143252412 1.723.12559 1.69 3.09 5.57
(63,36) 1.18 2.04 3.36  1.18 2.12 3.84 1.47 2.96 5.78 1.49 3.11 6.07
(63,45) 1.332.41 426 130248491 1.452.855.65 1.452.98 5.92
(127,64) 0.99 1.49 2.66 0.99 1.51 2.88 1.01 2.10 4.62 1.02 2.11 4.70
(255,163) 1.11 1.50 2.92 - - - 1.11 1.52 3.14 - - -

small gap between our method and the maximum likelihood
lower bound. The maximal gaps are 0.4 dB and 1.4 dB for
BCH(31,16) and BCH(63,36), respectively.

B. Top-k Evaluation

In order to evaluate our classifier’s confidence, we also
investigated the performance of the top-« permutations, this
method could be considered as a list-decoder with a smart
permutation selection. This extends Eq. (Z) from top-1 to the
desired top-«. The selected codeword é* is chosen from a list
of k decoders by é* = argmax, ||y — é,||?, as in [4].

The results for x € {1,5} are depicted in Table [[T and Fig. 4
Generally, as « increases better performance is observed, with
the added-gain gradually eroded. Furthermore, we plot the
empirical BP lower bound achieved by decoding with a 5-
iterations BP over all k = nlog,(n + 1) permutations; and

selecting the output word by the argmax criterion mentioned
above. In Fig. ] the reported results are for BCH(63,45). We
observed an improvement of 0.4 dB between x =1 and xk =5
and only 0.2 dB between « = 5 and « = 10. Furthermore, the
gap between « = 10 and the BP lower bound is small (0.4 dB).
Note that using the BP lower bound is impractical since each
BP scales by O(nlogn) while our method only scales by O(n).
Moreover, in our simulations, we found that the latency for
5 BP iterations was 10-100 times greater compared to our
classifier’s inference.

C. Embedding Size Evaluation

In Fig. [5] we present the performance of our method using
two embedding sizes. We compare our base model, that
uses embedding size d, = 80 to the small model that uses
embedding size d, = 20 (note that d, = d,,). Recall that
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changing the embedding size also affects the number of
parameters in g, as in Eq. (). Using a smaller embedding size
causes a slight degradation in performance, but still dramatically
improves the random BP baseline. For the shorter BCH(63,36),
the gap is 0.5 dB and for BCH(127,64) the gap is 0.2 dB.

D. Evaluating different Parity-Check Matrices

In Fig. [7] we depict the results for applying our method over
two different parity-check matrices: the cycle-reduced Hcr and
the systematic Hyys, both define the codes. These matrices are
taken from [44].

By inspecting the number of length-4 cycles in the Tanner
graphs induced by these matrices, substantial differences can
be noticed, as seen in Fig |§I While Hcg induces a low amount
of length-4 cycles evenly across all nodes, Hgys induces an
imbalanced distribution: the information bits have high amount
of length-4 cycles while the parity bits have none.

PCM
CR
Sys

o I =4 4 Iy
N IS o © o

Normalized number of length-4 cycles

o
o
L

(63:45) (127‘,64)

BCH

(63.36)

Fig. 6: Distribution of variable node’s normalized number of
length-4 cycles for each BCH code. Note that each code was
normalized by the following value (from left to right) - 3042,
1022 and 20214.

As is evident from Fig. [/} our method is able to exploit the
structure of Hgys, outperforming the Hcr based parity-check
matrix by 0.75, 0.4 and 0.6 dB for BCH (63,36), (63,45) and
(127,64), respectively.

E. Ablation Study

We present an analysis over a number of facets of our
permutation embedding and classifier for BCH (63,36), (63,45)
and (127,64). We fixed the BER to 107> and inspected the
SNR degradation of various excluded components with respect
to our complete model. We present the ablation analysis for our
permutation classifier and permutation embedding separately.

Regarding the permutation classifier, we evaluated the
complete classifier (described in Section [[V-C) against its
three partial versions; Omitting the permutation embedding
feature vector q, caused a performance degradation of 1.5 to
2 dB. Note that the permutation 7 still affects both £’ and s’.
Excluding ¢’ or s’ caused a degradation of 1-1.5 and 2.5-3
dB, respectively. In addition, we tried a simpler feature vector
h = [q;¢’;s’] which led to a performance degradation of 1 to
1.5 dB.

For ablating the permutation embedding component, we
compared the complete perm2vec (described in Section
[V-B) against its two partial versions: omitting the self-
attention mechanism decreased performance by 1.25 to 1.75
dB. Initializing the positional embedding randomly instead of
using node embedding also caused a performance degradation
of 1.25 to 1.75 dB.

The above results illustrate the advantages of our complete
method, and, as observed, the importance of the permutation
embedding component. Note that we preserved the total number
of parameters after each exclusion for fair comparison.

VI. CONCLUSION

We presented a self-attention mechanism to improve decod-
ing of linear error correction codes. For every received noisy
word, the proposed model selects a suitable permutation out
of the code’s PG without actually trying all the permutation
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Fig. 7: Performance comparison for different parity-check matrices.

based decodings. Our method pre-computes the permutations’
representations, thus allowing for fast and accurate permutation
selection at the inference phase. Furthermore, our method is
independent of the code length and therefore is considered
scalable. We demonstrate the effectiveness of perm2vec by
showing significant BER performance improvement compared
to the baseline decoding algorithms for various code lengths.
Future research should extend our method to polar codes,
replacing the embedded Tanner graph variable nodes by
embedded factor graph variable nodes, and further investigate
other codes, e.g., non-binary Reed—Solomon codes. Another
possible research direction would be to train both perm2vec
and WBP jointly in an end-to-end manner, or consider an
iterative training solution that alternates between training the
graph permutation selection model and the WBP algorithm (or
any other trainable decoder).
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