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Wanna Make Your TCP Scheme Great for Cellular
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Abstract—Can we instead of designing yet another new TCP
algorithm, design a TCP plug-in that can enable machines to
automatically boost the performance of the existing/future TCP
designs in cellular networks? We answer this question by intro-
ducing DeepCC. DeepCC leverages advanced deep reinforcement
learning (DRL) techniques to let machines automatically learn
how to steer throughput-oriented TCP algorithms toward achiev-
ing applications’ desired delays in a highly dynamic network
such as the cellular network. We used DeepCC plug-in to
boost the performance of various old and new TCP schemes
including TCP Cubic, Google’s BBR, TCP Westwood, and TCP
Illinois in cellular networks. Through both extensive trace-based
evaluations and real-world experiments, we show that not only
DeepCC can significantly improve the performance of TCP
schemes, but also after accompanied by DeepCC, these schemes
can outperform state-of-the-art TCP protocols including new
clean-slate machine learning-based designs and the ones designed
solely for cellular networks.

Index Terms—TCP, Bufferbloat, Congestion Control, Cellular
Network, Deep Reinforcement Learning

I. INTRODUCTION

NEARLY after 30 years from one of the earliest ver-
sions of the TCP algorithm [1], congestion control

(CC) in packet-switched networks remains a very hot and
active research topic. Every year, with the new waves of
technologies and improvements in the design of the packet-
switched networks, new TCP designs are proposed to do a
better job of controlling the congestion in the network and
satisfy the new delay/throughput demands of new emerging
applications [2], [3], [4], [5], [6], [7], [8]. Cellular networks
with their unique characteristics (highly variable channels,
radio scheduling delays, deep per-user buffers, etc.) are among
the most complicated network environments that experience a
new wave of targeted TCP designs [9], [10], [11], [12], [13].
Emerging 5G technology which holds the promise of improved
latency, throughput, and reliability for the network is another
example of the new improvements which adds fuel to the fire.

A. Motivations

1) Helping others instead of beating them; exploring new
design space: Interestingly, nearly all of the TCP schemes
proposed during the last three decades have a common theme
in their conclusions. Most of them conclude that “... We
designed a new TCP and showed that it beats the performance
of other TCP schemes in the XYZ networks ...”. But do we
really require to put aside 3 decades of designs and replace
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current TCP schemes with completely new ones? Can’t we
change the main design strategy and instead of proposing yet
another new TCP algorithm, come up with a framework that
can help existing TCP schemes and boost their performance
considering new needs or new environments?

2) Why a learning-based approach: A possible approach
for designing a plug-in for certain TCP schemes in cellular
networks is that designers manually try to tune TCP schemes’
parameters to adapt their logic to different cellular network
scenarios. Although this approach is feasible, it wont be a
scalable approach. In other words, designers need to spend
a lot of time on learning the logic of various TCP schemes,
understanding their performance issues in different scenarios,
and tune their proprietary parameters individually for various
scenarios. That is a very challenging and time-consuming
process and this needs to be done again for future new TCP
schemes. But what if we can let machines automatically learn
the behavior of TCP schemes in cellular networks and adapt
them to these highly dynamic environments? That can save a
lot of time and resources.

3) Why DRL as the learning-based approach: Generally,
learning algorithms can be categorized into supervised, un-
supervised, and reinforcement learning (RL). Supervised and
unsupervised learning are usually one-shot and myopic (as
in classification problems), while reinforcement learning is
sequential and far-sighted (as in games) [14]. Moreover, CC
problem is a sequential decision-making problem that deals
with how many packets should/can be sent to the network
by different users through time. So, RL is a better fit in the
context of CC. On the other hand, Deep neural networks
(DNN) leverage powerful and non-linear function approx-
imations that can provide rich representations of complex
environments [15], [16]. So, in the context of designing a TCP
plug-in that should boost the performance of TCP schemes
with their proprietary and sometimes complex state machines
over cellular networks with their famous complicated network
dynamics, DNNs greatly become handy for environment rep-
resentation. These points and the recent advances in DRL and
its successful examples of being applied to practical scenarios
such as DeepMind’s Atari [17] and AlphaGo [18] motivated
us to design a DRL-based plug-in which aims to boost the
performance of the existing TCP schemes in cellular networks.

4) TCP and bufferbloat issue in cellular networks: Differ-
ent studies show that the TCP schemes, which are generally
designed considering wired networks, perform poorly in cel-
lular networks when the delay is considered as the perfor-
mance metric [9], [10], [11], [12]. This problem comes from
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the throughput-oriented nature of most of the current TCP
schemes including the most popular one TCP Cubic. Large
delays caused by the bufferbloat phenomenon will not make
issues for the classic throughput-oriented applications such
as web page download. However, emerging delay-sensitive
applications such as real-time online gaming, virtual reality,
augmented reality, vehicle to vehicle communications, etc. will
suffer seriously from the bufferbloat phenomenon existed in
cellular networks. Recently, these emerging applications and
their new delay demands motivated the community toward
a more delay-centric design [9], [10], [11], [12], [3], [4],
[19]. Interestingly, the bufferbloat phenomenon and the delay
issue of throughput-oriented TCP schemes in cellular networks
reveal that these TCP schemes actually achieve very high
throughput and link utilization therein [9], [10], [11], [12].
This observation motivated us to address bufferbloat issue by
controlling the delay of the throughput-oriented TCP schemes
without compromising their throughput that much to have the
best of both worlds (very low delay and high throughput).

B. Challenges

Improving a specific TCP scheme seems to have a straight-
forward procedure. First, analyze the scheme thoroughly. Sec-
ond, find its problems, and then resolve them by proposing a
solution. Although the procedure itself is clear, it is not clear
how to really execute it even for a specific TCP scheme, let
alone targeting a solution for different TCP schemes. So, one
of the challenges is that how we can come up with a general
plug-in without digging into the details of or tying the solution
to a certain TCP algorithm.

On the other hand, unique characteristics of cellular net-
works such as highly variable and unpredictable channels,
radio downlink/uplink scheduling delays, self-inflicted queu-
ing delays, impact of the history of users’ traffic and their
channel qualities on the scheduling of their packets at the base
station (BTS), etc. make the task of applying DRL methods in
cellular networks very demanding. For instance, as we show
in section VII-A, schemes that simply apply Vanilla DRL
techniques perform poorly in cellular networks.

Moreover, due to the real-time nature of the TCP algorithms
and the very fast fluctuations of the cellular access links,
achieving operational state gathering from the network, rapid
exploration of huge action space, and execution of it, while
having low overhead, become very challenging.

C. Contributions and Sample of Results

Our key contributions in this paper are:
1) By introducing DeepCC, we show that the default strat-

egy of designing yet another new TCP is not necessarily
the best strategy toward improving TCP.

2) To the best of our knowledge, DeepCC is the first
learning-based plug-in for boosting the performance
of the classic and modern TCP schemes in cellular
networks (see section II-D).

3) We built, deployed, and successfully evaluated DeepCC
through a Linux Kernel implementation and demon-
strated how a modern tool such as DRL can be employed

to help the task of CC in a very complex environment
such as the cellular network. The added Kernel APIs
and our modular framework are open to the public and
can be exploited to design more TCP plug-ins.

We showed through both real-world experiments and exten-
sive trace-based evaluations using more than 25 LTE cellular
traces that DeepCC can significantly improve the performance
of different TCP schemes. For instance, when TCP Cubic [5]
(the default TCP in Linux, Android, macOS, etc.) and BBR
(a new TCP proposed by Google [2]) are enhanced using
DeepCC, they can respectively achieve 300% and 175% lower
queuing delay while they only compromise throughput about
6%. We also showed that DeepCC not only can improve the
performance of various TCP, but also after using DeepCC,
classic TCP schemes such as TCP Illinois [6] and TCP
Westwood [20] can outperform the performance of state-of-
the-art schemes either the clean-slate learning-based designs
or the ones solely designed for cellular networks.

II. BACKGROUND & RELATED WORK

To have a sense about the position of our design among
other existing works, here, we overview existing works and
their background and leave more detailed comparisons to the
evaluation section1. During the last 3 decades, a plethora of
CC schemes is proposed. Due to space limitations, we briefly
discuss only the most related ones. To that end, after overview-
ing the main heuristic approach behind nearly all of the CC
designs, we focus on three classes of CCs: 1) general CC
schemes targeting general environments, 2) schemes targeted
cellular networks with their unique challenges, and 3) schemes
using learning-based techniques to overcome the congestion
control.

A. Heuristic Approach

Early results during the 1980s (e.g. [21]) indicated that
achieving the optimal point of operation in which all users
get maximum throughput, minimum delay, and a fair share
of the network resources in a fully distributed way is not
feasible. These results motivated the heuristic approach toward
the design of TCP which primarily was intended to be a fully
end-to-end and distributed algorithm for controlling congestion
in the network.

B. General Designs

Among the early schemes, TCP Tahoe, TCP Reno [1], and
TCP NewReno [22] can be named. These schemes introduced
the heuristic AIMD-based algorithms based on the consider-
ation of loss of packets as the key indicator of congestion.
Later, different schemes (e.g. BIC [23] and TCP Cubic [5])
attempted to replace the linear incremental functions of these
proposals with better ones. For instance, Cubic (today’s default
TCP in most of the platforms) employed a cubic function.
While these schemes hard-wire the loss of packets to certain
control actions, another set of designs tried to find new ways

1For a brief overview of deep reinforcement learning, see Appendix B
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of interpreting congestion in the network. TCP Vegas [24] was
among the early schemes that introduced the use of delay as
a congestion signal. Designs such as Compound TCP [25]
and TCP Illinois [6] are among the schemes that followed
this delay-based approach and combined it with the loss of
packets as congestion indicators. Among some recent delay-
based designs LEDBAT [19] and Copa [4] can be named.

C. CC for Cellular

The fact is general TCP designs take general assumptions
about all network environments and use those general assump-
tions to perform predefined actions. However, this leads to
the low performance of these schemes when those general
assumptions are not met in a certain network environment.
Therefore, some TCP designs attempted to laser-focus on
a certain environment and use prior information about that
environment during the design to boost the performance of
TCP. Sprout [9], Verus [10], ExLL [12], and C2TCP [11],
[26] are among the recent end-to-end CC schemes that target
cellular networks and consider their unique features during
the design. Sprout uses a stochastic framework to predict the
bandwidth of the cellular access link, while Verus calculates
the congestion window (cwnd) using the delay profile of the
network. ExLL attempts to infer the cellular bandwidth by
looking into the pattern of data reception and control the
cwnd on the receiver side, while C2TCP attempts to use
techniques employed in AQM designs to bound the average
delay of packets considering that a user’s traffic is isolated
from other users’ traffic in cellular networks. In addition
to these end-to-end designs, another category of schemes
such as NATCP [27], ABC [28], and TG [13] leverage the
use of direct feedback from the cellular network to do the
task of CC. In other words, they abandon the fully end-to-
end approach to improve the performance of TCP by using
direct feedback from the network. However, these feedback-
based approaches face deployment issues because they require
changes in the network including the need for adding new
devices and protocols to the network and extra coordination
of different entities in the network.

D. Learning-Based CCs

Recently, a great deal of effort has been put into using
learning-based designs to automatically perform the task of
congestion control. The key idea behind this trend is to
abandon hardwiring certain events to certain actions during the
design phase (as it is done in classic TCP designs). Instead,
schemes in this category argue that the space of possible events
and possible actions corresponding to them is very huge, so
it is better to let machines explore this huge space and learn
the best actions by themselves. In other words, these designs
try to replace current TCP with fully learning-based designs.
For example, Remy [29] attempts to prepare a mapping from
all possible events to actions (including change in the cwnd)
in a brute-force and offline manner, while PCC-Vivace [3]
leverages online learning techniques to choose the best sending
rates automatically. Indigo [8] uses imitation-learning while
Aurora [7] leverages vanilla DRL techniques to determine the

sending rates. However, DeepCC fundamentally differs from
these schemes as it attempts to use learning-based techniques
to help and boost the performance of the existing TCP schemes
instead of replacing them. Besides, later (in section VII-A), we
show that these fully learning-based schemes perform poorly
in the context of highly dynamic networks such as cellular
networks.

Also, TCP-RL [30] attempts to use RL to tune the initial
congestion window of TCP for a group of users. In particular,
every 10 minutes, it changes the initial congestion window
of users, who use the same service, based on their province,
ISP, and IPs. Although changing initial congestion window
(which basically only is used once at the start of transmission
by TCP) in a 10-minute time scale may improve the average
performance of a group of users using the same service
through time, it really does not have that much of impact on
the performance of users in highly variable networks such as
cellular networks where users’ cellular access link fluctuations
happen at the order of milliseconds and there is no correlation
between the changes of access link bandwidth of different
users connected to even the same base station (e.g. a cellular
user who is walking sees a completely different link compared
to a cellular user who is in a stationary position). Interestingly,
TCP-RL and its 10-minute decision-making loop highlight the
great challenges in the design of DeepCC. DeepCC targets
real-time decision-making loops at the scale of 10ms, i.e.,
60000× faster than what TCP-RL tries to achieve! In addition
to a different scope of applicability, this fact puts tremendous
pressure on the design aspects of DeepCC including its
deployment-friendliness, operational state gathering from the
network, rapid exploration of huge action space, and rapid
execution of the actions while having low overhead.2

III. SYSTEM DESIGN OVERVIEW

The fact that throughput-oriented TCP schemes achieve very
high throughput but very large delays in cellular networks
can be described as follows. Calculated cwnds of throughput-
oriented TCP (which generally indicate the number of in-flight
packets) are usually larger than the best values of cwnd at
different times. The impact of large cwnd values is that the
user can always expect to have enough packets at BTS to
fully utilize the cellular access link when the capacity of the
link increases (e.g. due to good quality of channel). However,
having a large number of packets at BTS makes large self-
inflicted queuing delays when the capacity of the cellular link
drops (e.g. due to bad quality of channel) which leads to poor
delay performance of them [9], [11], [10].

Hence, the throughput-orientedness of the TCP schemes
can be controlled by controlling the maximum values of the
cwnd throughout time. More specifically, DeepCC controls the
cap of the cwnd value instead of the exact values of the
cwnd through time. This helps us consider the underlying
TCP of the system as a black box and avoid controlling
internal proprietary variables of different TCP schemes to have
a general plug-in. This is possible thanks to the modularity

2Since there is no publicly available code for TCP-RL, we couldn’t add it
to our evaluations.
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Figure 1: DeepCC framework

of the current TCP stacks where the TCP layer has certain
inputs/outputs independent of the choice of the TCP schemes.

The big picture of the DeepCC plugin is shown in Fig. 1.
DeepCC attempts to keep the average delay of packets below
applications’ desired Targets while keeping the throughput
high. To that end, the application passes its desired Target
delay as a socket-option parameter to DeepCC during the TCP
socket creation. The Monitor block in DeepCC periodically
collects cwnd of the system and required packet statistics
from the Kernel. Every RTT, state generator block employs the
information collected by Monitor block to generate a proper
state vector declaring the state of the environment during that
time period (detailed in section IV). Every new state vector
leads to the execution of new action by the DRL-agent. DRL-
agent considers the generated state vector, the application’s
given Target, and the reward associated to the current state
vector (which is generated by Reward block) to decide the
proper maximum value of cwnd (cwndmax) based on the
previously learned behavior of the environment (detailed in
section V). At the end, the final refined cwnd considering this
maximum value will be used to send packets into the network.
A short Q&A before going deep into the design:3

1) Is DeepCC a plug-in for all TCP schemes without any
exception? No. The current version of DeepCC stands
on top of the throughput-oriented TCP to improve the
delay performance of it. How to make DeepCC a plug-in
for “everyone” is a good motivation for future work.

2) Why is the throughput-oriented TCP chosen as the
underlying TCP for DeepCC plug-in? Because to-
day’s most popular and widely used TCP schemes are
throughput-oriented designs.

IV. COMPONENTS OF DEEPCC: PART I

A. Monitor Block

Every RTT, the monitor block generates digested infor-
mation to be used in the state generator block. The statis-
tics we use are the collectible signals which can be mea-
sured/monitored on the fly from the network. Even though

3See section X for more

we collect traces for training, where network bandwidth is
revealed, we do not use it as state information because
when the system is running online, bandwidth is unknown
in advance. We consider the following statistics:
• d: The average packets’ delay per RTT
• n: The number of samples used for calculation of d
• p: The average delivery rate (throughput4) per RTT
• cwnd: The current cwnd calculated by the underlying

TCP.
In particular, Monitor block works as a shim layer and

continuously generates the required packets’ statistics by ob-
serving the incoming Ack packets. Monitor block periodically
exploits generated packets’ statistics and calculates d, n, and p
of each time period and passes them (combined with cwnd) to
the state generator block. Having Monitor block implemented
as a shim layer in the Kernel enables us to make the process
of gathering required statistics independent of the underlying
TCP schemes.

B. State Generator Block

The state generator is an information processing module
that manages the desired Target delay information from the
application (Target) and the network dynamics coming from
the monitor block and generates the input state for DRL-agent.
Each time the network monitor passes the packet statistics, the
state generator updates the state vector.

Network dynamics in the wireless cellular environment are
complicated and noisy. The learning process for DRL to
extract the useful feature from the high dynamic range of state
and map it to actions can be demanding. Another challenge
is how the agent can effectively learn the policy of cwndmax
based on the statistics in such a highly dynamic environment.
The uncertainty of the environment makes the learning harder
and makes the problem setting lose Markov property. The
agent is easily confused to make a decision at, if the agent only
relies on the observation at time t. To address these issues, we
use two techniques: 1) the use of filter kernel and 2) the use
of recurrent structure.

Filter kernel: Inspired by the use of filter kernel in image
processing area [31], [32], [33], first, we apply a kernel to the
state so that we can reduce the input space. We transform the
delay d with the Target as a kernel:

κ(d) =

{
0 if d > Target;
1 else

(1)

Now, we multiply p and n by the kernel: φ(p) = p×κ and
φ(n) = n×κ. Second, we encode the delay together with tar-
get: φ(d, Target) =

[
(1− d

Target )× κ,
d

Target × (1− κ)
]
.5

The observed statistics at time t, after the above preprocessing,
can be written as following vector:

ot =
[
φ(pt), φ(nt), φ(dt, Target), cwndt

]
(2)

4Throughout this paper we use delivery rate and throughput of the system
interchangeably

5
[
x1, ..., xn

]
means concatenation of x1, ..., and xn .
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Here, the intuition is that when system does not meet Target
(i.e., d > Target), the agent should focus more on delay
signal (d) and consider performing the action which reduces
the delay.

Recurrent structure: We also use a recurrent structure [34],
[35] to address the lack of Markov property issue. Since at
no time the agent has the direct knowledge of the current
exact network bandwidth, the agent can only infer it like a
latent variable from the observed statistics. In other words,
because the agent has only access to a partial local observable
state of the network, it can be confused if the decision only
relies on ot. Therefore, we represent the state at time t, st,
by a finite history of the agent’s interactions. In other words,
st becomes a vector (with length m) including the current
observed statistics (ot) concatenated to the history of observed
statistics: st = [ot, ot−1, ..., ot−m+1].

C. Reward Generator Block

One of the important parts of any RL algorithm is the
definition of the reward function which should reflect the main
objective of the system. DeepCC’s objective is to keep the
average delay of packets below the Target value (given by the
application) while maximizing the throughput. So, DeepCC
requires to have a reward function which reflects that objective
correctly. Intuitively, the RL agent is motivated to choose the
actions which generate higher rewards and to avoid choosing
the actions which lead to lower ones. When the environment
is well-behaved (such as a game environment as in [18]) and
does not show a very high random nature, the reward gained
in a certain step can be considered as the result of the action
chosen for that step. However, it is not necessarily the case for
a dynamic and unpredictable environment such as a cellular
network. For instance, when the reward function is simply
defined as the throughput achieved by the system, it is not
clear whether the currently gained very small reward is due
to choosing a bad action by the agent or due to a very bad
quality of channel in the wireless access link (which leads to
low throughput). Therefore, the reward function needs to be
carefully defined.

To that end, we use the following reward function where
w(n, d) is the moving average of the two recent values of d
(w(n, d) = nd+npredpre

n+npre
).6

r(n, d, p) =

{
− w(n,d)
Target × p× n if d > Target;

+ w(n,d)
Target × p× n else

(3)

If the agent observes a high delivery rate and a high number
of Acks, while it observes a bad average delay (d > Target),
most likely, its wrong choice of action was the source of
achieving bad delay response. That is why in our reward
function, the agent will be penalized/rewarded in proportion
with the gained delivery rate, number of received Acks, and
how far the average delay is from the Target delay. Therefore,
using the reward function described in Eq. 3, the agent will
be motivated to first keep the average delay below Target
(d <= Target) (to receive less penalty). Then, it will be

6npre and ppre show the previous values of n and p, respectively.

motivated to maximize its delivery rate and the number of
received Acks (to collect more reward).

V. COMPONENTS OF DEEPCC: PART II

Now, we describe the core component of DRL block:
DRL-agent. DRL-agent observes a set of network statistics
(given by the state generator block) and collected reward
(by the reward generator block) and outputs the cwndmax
value. The lower value of the cwndmax pushes the system
toward being more delay-sensitive (less throughput-oriented),
while the higher one pushes the system toward being more
throughput-oriented (less delay-sensitive). The goal of DRL-
agent is to learn the policy that makes underlying TCP gain
more throughput while meeting the Target delay. The space
of the action (i.e., the value of cwndmax) at different times is
immense. So, letting the DRL-agent find the best values of the
action in the huge space in a timely manner is not feasible.
To make the exploration phase feasible and efficient, we use
the cwnd calculated by the underlying TCP as the base to
calculate the cwndmax. To that end, we define a parameter
α which relates cwndmax value to the value of cwnd that
the DRL-agent receives periodically from the state generator
block using the following equation:

cwndmax = 2α × cwnd (4)

Now, instead of searching the entire space, DeepCC only
chooses the α value restricted to −1 ≤ α ≤ 1. This greatly
simplifies the exploration phase (and consequently lowers
the convergence time), while cwndmax can still easily be
increased exponentially when the DRL-agent chooses α = 1
consecutively (or decreased exponentially when α = −1 is
chosen consecutively).7 We will show in section VII-A that
this choice leads to very good system performance.

A. The Learning Algorithm

Here, we formulate the CC problem in a reinforcement
learning setting where the agent interacts sequentially with
the environment with the goal of learning reward-maximizing
behavior. At each time step t, agent observes state st and
chooses action at according to a policy π which maps states
to actions. In return, the agent receives a reward rt = r(st, at)
and a new state st+1. The return is defined as discounted sum
of rewards Rt =

∑T
t′=t γ

t′−trt′ and the agent’s ultimate goal
is to find the optimal policy πθ, with parameters θ, which
maximizes the expected return J(θ) = E[R0].

DeepCC’s agent is built on top of DDPG [36] which is
designed for learning policies in continuous action space. Our
agent consists of a policy network (πθ) which determines a
deterministic action at = πθ(st) and a critic network (Qw,
with parameters w) that predicts the action-value function. The
action-value function is defined as Qπ(st, at) = E[Rt|st, at]
and shows the expected return when taking action at from state

7Note that there is only one cwnd value per TCP socket. So, when the filter
caps the value of cwnd to the desired maximum value, the cwnd of the socket
is replaced by the capped value.
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Algorithm 1 DRL-Agent’s Learning Algorithm

for Learning is not finished do
for t = 1, 2, ..., T do

Select action at = πθ(st) +Nt
Execute at and observe reward rt and new state st+1

Store transition (st, at, rt, st+1) in D
Sample minibatch of N transitions (si, ai, ri, si+1)
from D
Compute yi = ri + γQw′(si+1, πθ′(si+1))
Update the critic by minimizing the loss:
L = 1

N

∑
i(yi −Qw(si, ai))2

Update the policy using policy gradient:
∇θJ ≈ 1

N

∑
i∇aQw(s, a)|s=si,a=πθ(si)∇θπθ(s)|s=si

Update the target networks:
θ′ ← τθ + (1− τ)θ′,
w′ ← τw + (1− τ)w′

end for
end for

st, and subsequently acting following π. Considering J(θ) as
the expected return, we have:

J(θ) = E[Qπθ (s, πθ(s))] (s0 = s) (5)

In the learning algorithm, the parameters of the policy
network are updated using policy gradient ascent. Leveraging
deterministic policy gradient theorem [37], the gradient of
expected return can be computed as:

∇θJ(θ) = E[∇aQπθ (s, a)|a=πθ(s)∇θπθ(s)] (6)

Parameters of the critic network, that estimates the action-
value of the policy Qw(s, a) ≈ Qπθ (s, a), are trained by min-
imizing the loss function (L(w)) which indicates a temporal
difference error between a target function (yt) and Qw

L(w) = E[(yt −Qw(st, at))2] (7)

where yt = rt + γQw′(st+1, πθ′(st+1)). πθ′ (target policy
network) and Qw′ (target critic network) are two separate deep
neural networks with parameters θ′ and w′, respectively. θ′ and
w′ are exponentially weighted moving averages of θ and w.
Employing the target networks is shown to make the training
procedure more stable [38].

The policy and critic networks are trained by iteratively
updating their parameters using an experience replay. At each
iteration, the tuple (st, at, rt, st+1) is put in a finite-sized
cache D called replay buffer. The update of policy happens by
applying the gradient with respect to θ in Eq. 6 while the critic
is updated by performing gradient descent step on Eq. 7. To
calculate the gradient a minibatch of randomly chosen tuples
from D is employed. We summarize DRL-agent’s learning
algorithm in Algorithm 1.

B. Batch Normalization and Exploration

Batch Normalization: To increase the training perfor-
mance, we also use the Batch Normalization techniques. Batch
Normalization [39] is a technique that makes the optimization

landscape smoother [40]. The smoothing effect on the opti-
mization increases the training speed and makes our DRL
block less sensitive to the variation of the hyperparameter
setting. The Batch Normalization technique is implemented
in our actor-network as an augmented layer after each hidden
layer’s output right before the non-linearity activation.

Exploration: Adequate exploration in action space is cru-
cial in our problem. The idea of exploration is to allow the
agent to try different actions to improve the model. During
exploration, although some actions that the agent chooses
have a lower return at that moment, later after the agent
may discover the trajectories with better policies, might lead
to a higher return. The exploration techniques add noise to
the actor as if the deterministic actor selecting an action
in stochastic behavior. We experimented with different types
of noise including variations of Ornstein-Uhlenbeck (OU)
noise [41] and variations of Gaussian noise. We observed that
the uncorrelated additive Gaussian action space noise leads to
better performance. Using noise (N ), the final generated action
becomes at = µθ(st)+N (Algorithm 1, line 3). Before using
this equation, at the cold-start of training, we use an additional
exploration method, in which we enforce the agent to walk
over the action space (in a piece-wise manner) for a fixed
amount of steps without experiencing noise.

VI. IMPLEMENTATION AND TRAINING

Now, we examine DeepCC plug-in by using four different
TCP schemes as the underlying TCP schemes. Without loss
of generality, we chose TCP Cubic [5], TCP Westwood [20],
TCP Illinois [6], and TCP BBR [2] as underlying schemes
using DeepCC plug-in throughout this section. From now on,
when a TCPx uses DeepCC plug-in, we add prefix character
D to the name of the TCPx scheme to refer to the new scheme
(i.e., DCubic, DWest, DIlli, and DBBR).

A. Implementation

To have a general solution that can work with various TCP
schemes, we have modified Linux Kernel 4.13 and added a
plug-in that works independent of the TCP scheme of the
system. It can be considered as a shim layer above the TCP
layer. In particular, we modify the Kernel to calculate the
required statistics, provide new socket options to collect the
statistics needed from the Kernel, and provide new socket
options to enforce a calculated action in the Kernel. For this
prototype version, we use a user-space implementation of the
DRL-agent using TensorFlow [42], though putting the final
learned model in the Kernel will improve the performance.
The DRL-agent’s actor and critic networks are implemented
using two fully-connected hidden-layers with 1000 neurons on
each layer. For brevity, here, we skip the details of the imple-
mentation. The source code is available to the community at
https://github.com/Soheil-ab/DeepCC.v1.0.git.

B. Clean-Slate version

Also, we use the same setting and DeepCC’s framework
and design a clean-slate learning TCP scheme that instead

https://github.com/Soheil-ab/DeepCC.v1.0.git
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of capping the cwnd value of underlying TCP, it directly
calculates the cwnd of the system. We use the same training
setting that we use for training DeepCC to train Clean-Slate
scheme and later compare the performance of the Clean-Slate
version with DeepCC.

C. Training Phase

We trained DeepCC over emulated LTE network environ-
ments using Mahimahi [43] a trace-based emulator. For cel-
lular environment, we employed cellular LTE traces including
more than 100,000 variations of cellular link bandwidths,
as our base environment. The statistics of the base cellular
environment during training are shown in Table I. Later, during
the evaluation phase (starting from section VII-A), we don’t
use this cellular environment anymore and test the agent on
other unseen environments to examine how good the agent
can generalize the environment. Also, we used Target value
of 50ms during the training phase (Since we do not use the
absolute value of Target in our Reward function (we use the
normalized value of delay), the learning phase is not that
sensitive to the choice of the Target value. For instance, see
Fig. 10 and the discussion around it). The 50ms delay is a
classic definition of resiliency requirement for the networks.
For example, in optical networks, devices are required to
recover from failures by less than 50ms, because it was known
that for video/audio signals, humans cannot detect less than
50ms signal mismatches [44], [45], [46], [47], [48].

To train the agent, we used Dell PowerEdge R730 servers
with 48 cores. To observe the gradual improvements achieved
during the learning, after every 30 minutes of training, we
use the trained model, run an evaluation using the setting
described in section VII-A, and gather the average delay and
utilization of the scheme over the entire trace used for the
learning (Totally, we trained the system over more than 2
million steps). Results are shown in Fig. 2. While keeping
average delay below the target value, DeepCC gradually learns
to boost the utilization/throughput of the underlying TCP.
For DeepCC, the behavior of underlying TCP is part of the
dynamic nature of the environment that it observes. In other
words, although the cellular environment is the same during
the training of all TCP schemes, due to the different nature of
these TCP schemes, DeepCC observes different environments
when underlying TCP is different. That is why for different
TCP schemes, DeepCC’s learning curves are different. We use
this trained model for all evaluations done throughout the rest
of this paper.

Table I: Statistics of the cellular access link capacity used
during training (bandwidth units are Mbps)

Mean Std Deviation Skewness Kurtosis [Min,Max]
12.7875 11.3804 1.6027 6.5076 [0,90]

During the evaluation phases (starting from section VII-A),
agent experiences unseen LTE environments with different
dynamics compared to the dynamics of the LTE environment
used during the training. Besides, cellular traces used during
the training are gathered from T-Mobile service provider.
However, during the evaluation phases, in addition to new LTE
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Figure 2: Average delay and utilization as a function of wall
clock time for various schemes.

traces gathered from T-Mobile service provider on different
base stations, LTE traces from other service providers namely
Verizon and AT&T are also gathered and the agent is tested
over all of them. Results reported in section VII-B and
section VIII show that with the described training setting, the
trained model achieves good performance over unseen real
LTE cellular networks and unseen twenty-seven LTE cellular
traces.

D. Clean-Slate vs DeepCC

Interestingly, DeepCC enhanced schemes outperform the
Clean-Slate scheme and achieve 10% higher utilization. There
is a subtle reason behind that. In Clean-Slate version, no
changes occur in the cwnd until the end of each monitoring
period (time of enforcing a new cwnd), because Clean-Slate
scheme is the only entity controlling the cwnd. However,
in DeepCC, during each monitoring period, underlying TCP
can still actively change the values of cwnd to probe more
bandwidth. This dynamism helps DeepCC achieve a more
solid performance compared to Clean-Slate version and boost
its throughput performance. Also, later in section VII-A, we
show that DeepCC performs better than Clean-Slate version
in other scenarios.

VII. EVALUATION: TRACE-BASED EMULATIONS

Here, we report the results of our trace-based evaluations
comparing the performance of various TCP schemes in various
cellular network conditions.

A. Setup

1) Emulator: To have more freedom to compare the perfor-
mance of various schemes in a reproducible environment, we
use Mahimahi [43] which is a trace-based network emulator.

2) Schemes Compared: To cover variety of designs, we
compared DeepCC with 14 schemes each representing dif-
ferent design strategy. Among them, Sprout [9], Verus [10],
C2TCP [11], Copa [4], and LEDBAT [19] are delay-
sensitive and delay-based, while Cubic [5] and Westwood [20],
BBR [2], and Illinois [6] are mainly throughput-oriented
schemes. In addition, PCC-Vivace [3], Remy [29], Indigo [8],
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(a) Stationary scenario (b) Moving scenario #1 (c) Moving scenario #2

Figure 3: Ratio of Queuing delay and throughput of different schemes over their DeepCC enabled counterparts ( TCP
DeepTCP ).

Table II: Samples of statistics for the cellular access link traces
from each of three scenarios (bandwidth units are Mbps)

# Scen. Mean Std dev. Skewness Kurtosis [Min,Max]
(1) Stationary 16.0260 3.3751 -0.4480 6.1678 [0,34]
(2) Stationary 21.5223 3.3262 -0.3097 5.8972 [0,50]
(3) Stationary 7.6064 2.8675 -0.4376 2.7488 [0,18]
(4) Moving#1 11.8125 5.8968 0.1172 2.2938 [0,28]
(5) Moving#1 7.2437 4.6935 0.1615 1.8565 [0,28]
(6) Moving#1 3.9667 3.1363 1.2482 4.4013 [0,18]
(7) Moving#2 4.9487 5.3328 2.8663 15.5169 [0,51]
(8) Moving#2 18.0001 7.3393 -0.6261 2.3710 [0,48]
(9) Moving#2 9.7758 9.5413 1.6356 6.0892 [0,95]

and Aurora [7] are learning-based approaches.8 Moreover, we
use our Clean-Slate scheme which has trained over the same
setting that DeepCC is trained over.

3) Setting: We set the minimum RTT of the network to
20ms and the buffer size to 150KB. Throughout the evaluation,
unless it is mentioned, we choose the Target value of 50ms
for DeepCC. Throughout the paper, we set m = 20.

4) Performance Metrics: We mainly use three performance
metrics: averaged overall delay of packets, average queuing
delay, and averaged throughput/utilization throughout the run
of an algorithm.9 For utilization, we consider the average
delivery rate of packets over the average capacity of the access
link during the experiment.

B. Various Unseen Scenarios

Here, we examine the performance of DeepCC in 3 different
general scenarios:

1) Stationary scenario: When the cellular user is in static
position and does not move

2) Moving scenario #1: When the cellular user is walking
in crowded places

8For Indigo and Aurora, we use the same model trained by their authors
over variety of network scenarios. For Remy, similar to others (e.g. [8], [4],
[7]) we use the model trained for a 100 range of link rates in prior work [4].

9We have also used 95th percentile delay as another performance metric. We
observed that all schemes perform relatively similar for both 95th percentile
and average delay metrics. So, for brevity and considering DeepCC’s objective
of keeping the average delay below a target value, here, we skip reporting the
95th percentile results.

3) Moving scenario #2: When the cellular user is riding a
bus, a taxi, or driving a car

To that end, We use a combination of 23 LTE cellular traces
that we have collected in NYC (using Saturatr [9] tool) and
5 other LTE traces gathered by prior work [9], [11] from 3
cellular network providers in the US. In particular, for the
stationary scenario, we collected five new traces in residential
buildings and in Times Square (a crowded place with different
moving obstacles in the environment) and used two additional
static traces collected in NYC by prior work [11]. For moving
scenario #1, we collected and used twelve different new traces
in different crowded areas of NYC. For moving scenario #2,
we collected six new traces while the cellular user was riding
taxi/bus and used three additional traces collected in Boston
by prior work [9] while user was driving. An important note
here is that these traces are gathered from three different
cellular LTE providers and from different base stations. So,
they can represent a good set of LTE cellular environments
with different network dynamics for examining performance
of DeepCC over unseen LTE environments. To quantify the
differences among traces gathered, we report statistics of nine
of these traces in Table II. Also, to have a qualitative sense
about these traces, we also report a few minutes of these nine
traces in Appendix A.

C. Performance Results: With & Without DeepCC

To highlight the significant improvements achieved by using
DeepCC plug-in for different underlying TCP schemes, we
start by focusing on the averaged queuing delay and averaged
throughput that schemes can achieve with and without using
DeepCC plug-in over different scenarios. To that end, we
average performance of a scheme over all environments in
a scenario and report the queuing delay and throughput of a
certain TCP scheme over the queuing delay and throughput
of that scheme when it is accompanied by DeepCC. In other
words, this ratio indicates how much performance improve-
ments DeepCC can bring to the table. Results are shown in
Fig. 3.

Fig. 3 shows clear delay improvements gained by using
DeepCC plug-in for all schemes in all scenarios. For instance,
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(a) Stationary scenario (b) Moving scenario #1 (c) Moving scenario #2

Figure 4: Average end-to-end delay and utilization results of various schemes in different scenarios

DeepCC reduces queuing delay of Illinois about 4× while
it’s throughput is only 9% lower than Illinois in the moving
scenario#1 (Fig. 3b). As another example, Dcubic causes 4×
lower queuing delay while it only reduces Cubic’s throughput
11% in the Moving scenario#2.

Remark 1: The key takeaway from Fig. 3 is that DeepCC
significantly enhances the delay performances of all four TCP
schemes while it only compromises a few percentages of their
throughput.

D. Performance Results: DeepCC vs. State-of-the-Art

Now, we compare DeepCC’s performance with all other
state-of-the-art schemes. Fig. 4a, Fig. 4b, and Fig. 4c show
the averaged end-to-end delay and utilization of all schemes
over all cellular traces used in the stationary scenario, moving
scenario #1, and moving scenario #2, respectively. We depict
different classes of CC designs with a different color in Fig. 4.
In particular, we use orange for mainly throughput-oriented
schemes, green for delay-oriented designs, blue for learning-
based schemes, and violet for DeepCC enabled schemes.

Remark 2: DeepCC helps TCP schemes to become perfor-
mance frontiers and operate close to the right top region of the
graphs in Fig. 4. As Table II illustrates, cellular LTE traces
used here are very different from each other (and from the
cellular environment during the training). So, although the
agent trained over LTE environment with certain statistics,
results reported in Fig. 4 illustrate that DRL-agent’s trained
model is not overfitted during the training and it can achieve
a good generalization of the environment and perform well
for different unseen LTE environments. For more discussion
on generalization, see section X-A.

Remark 3: DeepCC outperforms its Clean-Slate version up
to 2× in terms of delay (Fig.4b) and up to 20% in terms
of utilization/throughput (Fig.4c). Generally, as we showed in
Fig. 2, during the training phase, Clean-Slate scheme learned a
model that achieves lower performance compared to DeepCC
counterparts. So, its performance was expected to remain
lower than DeepCC in other unseen scenarios. Besides, in
Clean-Slate version, no change occurs in the cwnd until the
end of each monitoring period, because Clean-Slate scheme
is the only entity controlling the cwnd. However, in DeepCC,

during each monitoring period, underlying TCP actively can
change the values of cwnd. This dynamism brings a more solid
performance for DeepCC compared to Clean-Slate version.

Remark 4: Throughput-oriented schemes such as Cubic,
Westwood, and Illinois intend to fill up the buffers. As
expected, this leads to their good utilization, while it causes
bufferbloat/delay problems for them.

Remark 5: Sprout and Verus (which are designed for cellular
networks) use the delay of packets in a white-box approach
to predict future packet arrivals or make a delay profile of the
network respectively. BBR also uses a white-box approach.
Modeling network in a certain way helps these schemes per-
form better in terms of delay compared to Cubic, Westwood,
and Illinois. However, the unpredictable nature of the cellular
environment leads to the inaccuracy of their network models.
That’s why at the end of the day, the white-box approach
cannot keep up with the dynamics of the cellular network
and delay performance of these schemes remains behind the
top 6 schemes (e.g. in the stationary scenario, they achieve
∼ 1.6− 2.3× more delay compared to DWest).

Remark 6: Learning-based approaches (e.g. Aurora, Indigo,
and Vivace) cannot do a good job in cellular networks. The
key reasons are the fast link fluctuations and intrinsic uncer-
tainty property of the cellular environments. These properties
cause wrong interpretation of the network for these schemes
leading to their poor performance. For instance, we observed
that Vivace (an online learning-based approach) experiences
convergence problems and most of the time it settles down
on wrong sending rates in the cellular networks. Lack of
mechanisms to deal with high uncertainty in highly dynamic
environments makes these schemes not suitable for cellular
networks. LEDBAT (which is originally designed for wired
network) suffers from the same issue and cannot keep up with
the dynamics of the network. Among other schemes (excluding
DeepCC assisted ones!), Copa and C2TCP (which is designed
for cellular networks) achieve a better trade-off between delay
and throughput.

VIII. EVALUATION: REAL-WORLD EXPERIMENTS

To evaluate the performance of DeepCC in the real-world
where other flows coexist in the network, cellular packet
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Figure 5: Performance results of various schemes over all in-field tests
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Figure 6: The average CPU utilization of
various TCP schemes

schedulers are employed to schedule the traffic, and various
unknown traffic policer and AQMs are used on Internet
paths, we made a testbed. In particular, we employed three
GENI [49] servers (where our patched Kernels are installed
on) located in New York, Indiana, and Virginia and six cellular
clients (with vanilla Kernels) located in different dynamic and
crowded places in New York City and New Jersey including
Times Square, Herald Square, Washington Square, NYU’s
Bobst library, and Newport Center. Using them, we performed
our tests over two different cellular LTE network providers
(namely TMobile and AT&T). We repeated each test two
times. Considering all combinations of server-client pairs, the
minimum RTT (mRTT) in our testbed spans from 30-70ms.
For reporting an aggregated view of the performance across all
experiments, we use the average normalized throughput, aver-
age queuing delay, and 95th percentile queuing delay. For each
experiment, the throughput of each scheme is normalized to
the flow achieving the highest throughput in that experiment.10

Each experiment lasts 15 seconds. Half of them have one flow
and the other half have three flows which start at 0, 5, and 10
seconds (after the start of the experiment). The overall results
are shown in Fig. 5.11

Key Takeaway: The relative performance of the schemes in
Fig. 5 is very close to the results reported in the trace-based
evaluations done in section VII-B. The bottom line is that
DeepCC not only improves the performance of the classic and
modern TCP schemes but also makes them the performance
frontiers outperforming state-of-the-art schemes. Also, results
from the real-world evaluations indicate that training over an
emulated environment can provide us with models that can
achieve good performances in real-world scenarios that the
agent has not seen before.

IX. EVALUATION: DEEP DIVE

A. Overhead
Having an extra module as a plug-in might arise the

concern of its overhead on the system. As mentioned earlier,
the current version of DeepCC is only a prototype/proof-of-
concept version that is not fully implemented in the kernel

10For DeepCC, we set the Target to have 50ms delay budget for the average
queuing delay.

11Since both DeepCC and C2TCP require different patched Kernels, we
could not include C2TCP in our in-field tests where flows are sent back-to-
back. We didn’t have this problem during our traced-based tests, because we
could switch from one Kernel to another one without time constraint.

(DRL-Agent block is implemented at user-space). This greatly
impacts the overall overhead of the current version. However,
here, we would like to show that using a plug-in, especially
when that plug-in is based on a modern and (seemingly)
complicated tool such as DRL, will not necessarily lead to high
overhead on the system when it is compared to the overhead
of the current state-of-the-art TCP schemes (which are also
implemented at user-space). To illustrate that, we use various
state-of-the-art TCP schemes and send traffic from a server
to a client over an arbitrary LTE trace for about 8 minutes
and measure the average CPU utilization of these schemes
on the sender side. Moreover, to have a sample of a fully
optimized and implemented scheme in the kernel as the base,
we use Cubic Scheme (by measuring iperf’s CPU utilization).
As results reported in Fig. 6 show, DeepCC has way lower
overhead compared to most of the state-of-the-art schemes,
though its overhead (mainly due to its user-space DRL-Agent
block) is still required to be reduced. We leave the optimization
of the DRL-agent and its kernel implementation to our future
work.

B. Under The Hood

It is already a well-known fact that we still lack a theoretical
understanding of many methods that are currently used in
learning-based approaches, particularly in deep learning [50],
[51]. In other words, why learning-based methods work very
well in practice is still an open question seeking solid theoret-
ical answers. That being said, here, we attempt to intuitively
explain how DeepCC performs. To that end, we pick an
arbitrary cellular trace and send traffic (following the setting in
section VII-B) over that using DCubic and Dillinois schemes
and record the variations of cwnd, cwndmax, delay, and
throughput. To have a better picture, we zoom in to an arbitrary
three seconds of the evaluation (Fig. 7). Generally, there are
two key things that DeepCC learns: 1) when (how frequently)
to cap the cwnd? and 2) by how much? Note that at every
monitoring time period, DeepCC observes 100 (= 5 × 20)
different input statistics. Following all of them to find the exact
answers to the mentioned two questions is impractical here.

How frequently does DeepCC cap the cwnd? It depends
on the underlying TCP’s behavior. For instance, DeepCC
allows Cubic to control the growth of cwnd for most of the
times (blue dots in Fig. 7.c), while occasionally it caps the
cwnd to lower values than the ones calculated by Cubic (red
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Figure 7: Dynamics of DeepCC enhanced versions of Cubic
(left) and Illinois (right) for a cellular trace

shaded regions in Fig. 7.c) to keep the average delay below
the Target value (50ms in this case). For example, during
[73.5s, 74.25s], when available link capacity is increased,
DeepCC only caps cwnd 3times at 73.6s, 73.8, and 74.2s
(Fig. 7.c). The first 2 times partly happen because DeepCC
does not observe any improvement in the gained throughput
(note that around 73.6s and 73.8s, link capacity (blue shaded
region in Fig. 7.a) temporarily remains constant), while the
3rd time partly happens because available capacity suddenly
drops at 74.2s. Also, note that DeepCC chooses a different
amount of reduction in cwnd in these 3 events, due to the
different dynamics of its input signals.

On the other hand, when underlying TCP is Illinois,
DeepCC caps cwnd of the system more often, because gener-
ally as Fig. 7.f illustrates, cwnd growth of Illinois is more
aggressive compared to Cubic’s scenario. So, DeepCC has
learned to control it more frequently to effectively manage
its bufferbloat issue. Also, Fig. 7 depicts that in some cases,
similar to [72.6s, 73s] duration in Fig. 7.d, DeepCC can behave
conservatively to control the underlying TCP’s delay and
compromise a bit of throughput.

C. Impact of Buffer Size on Performance

DeepCC tries to resolve the bufferbloat issue of the under-
lying TCP scheme and to keep the average delay of packets
around the desired value no matter how much buffer exists
in the network. Therefore, it is expected to have very low
sensitivity to the size of the buffer in the network. This
property of DeepCC helps the loss-based TCP schemes (which
normally fill up the buffer until they see a packet loss)
achieve controlled self-inflicted delays in the cellular networks

independent of the buffer sizes in the network. To show that,
we vary the buffer size from 30KB to 1MB and explore the
performance of Cubic, Westwood, Illinois, BBR, and their
DeepCC counterparts across various buffer sizes. Fig. 8 shows
the results. As expected, DeepCC can effectively control the
delay of underlying schemes below target (green region), while
without DeepCC, increasing buffer size leads to high delays
of the schemes under the tests.

D. Impact of mRTT on Performance

In this paper, we trained DeepCC in a cellular environment
with a fixed mRTT (20ms). Here, we show that the learned
model can still perform well when environments’ mRTT
differs compared to the training setting, though training over
multiple mRTT can improve the learned model. To that end,
we arbitrarily pick one of our traces and change the mRTT
from 4ms to 30ms, while fixing the Target to 50ms and record
the performance of different schemes. Results are shown in
Fig. 9. Without using DeepCC, TCP schemes either show
low sensitivity to the changes of mRTT, because they have
already reached very high delays (e.g. Cubic, Illinois, and
Westwood), or show high sensitivity to the values of mRTT
that can end up to having high delays (e.g. BBR). In contrast,
When DeepCC is enabled, these schemes show low sensitivity
to mRTT and DeepCC can effectively keep their performance
in the desired operation range (green region). Note that with a
fixed Target, for large mRTT values, there is a lower budget for
queuing delay. So, achieving that lower queuing delay requires
compromising more throughput.

E. A Flexible End-to-End Scheme vs. an In-Network AQM
Scheme

Here, we compare the performance of our fully end-to-
end scheme with a delay-centric in-network AQM scheme
CoDel [52]. We use various TCP schemes at sender combined
with CoDel as AQM scheme in the network (CoDel+TCPx),
While for other schemes we use normal FIFO queues. More-
over, here, we examine the flexibility of DeepCC for providing
various Target delays by varying Target delay of the system.
Although we only used one Target value during the training
of our model, we show that the trained model performs
well for the other Targets as well. More training using more
Target values will increase the accuracy and performance of
the model. However, we deliberately decided to use only
one Target to see how well DRL-agent can generalize the
environment. So, without loss of generality, we use one of our
traces and change the Target value from 25ms to 100ms (with
mRTT=20ms). The average delay and utilization results are
shown in Fig. 10. CoDel can improve the performance of TCP
schemes very well. However, CoDel similar to other AQM
designs such as BoDe [53] and PIE [54] requires changes in
the network devices which leads to having extra CAPEX costs
for the cellular network providers. On the other hand, DeepCC
as a fully end-to-end and deployment-ready approach, which
does not require any changes in the network, can improve
classic schemes such as Westwood to even outperform the
performance of new TCP schemes (e.g. BBR and Cubic)
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combined with a modern in-network AQM schemes such as
CoDel.

F. Impact of Filter Kernel on Performance

In our context, there are two fully dynamic entities: 1)
cellular network itself and 2) behavior of the underlying TCP
scheme which make the learning phase normally a very long
process. In such a dynamic environment the use of approaches
such as filter kernel will guide the system toward a faster
and more efficient training phase. To investigate the impact of
our filter kernel (detailed in section IV-B) on the performance
of DeepCC, we compare DeepCC with another version of it
which simply uses the raw state inputs (without filtering them).
We use the new version to train four TCP schemes (for the
same amount of time used for training schemes in section VI)
following the instructions provided in section VI. After the
training phase, we compare their performance results with the
results of their DeepCC counterparts (using the filter kernel)
over an arbitrary cellular trace. As expected, results shown in
Fig. 11 confirm that using filter kernel in DeepCC plug-in can
lead to significant performance benefits.

G. Fairness

To investigate the impact of DeepCC on the fairness prop-
erty of the underlying scheme, we use 4 servers to send 4
separate DeepCC enhanced flows to the client (servers are
connected to the client through a switch). We use Mahimahi
at the client to control the client’s bottleneck link properties.
Particularly, we set the client’s bandwidth to 24Mbps, the
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Figure 11: The util. (left) and the delay (right) of schemes
after training with/w.o using filter kernels

unidirectional link delay to 5ms, and the buffer size to the BDP
(bandwidth-delay product). Note that in cellular networks,
flows can be put into separate bearers identifying separate
classes with different delay requirements to avoid a bandwidth-
hungry application taking entire bandwidth from a delay-
sensitive application, if both are destined to the same user [55].
Therefore, here, we consider that flows are in the same
class and have the same Target delay. We use Jain index
metric [56] to quantify the fairness and compare it among
various schemes with and without DeepCC. Jain index, J ,
for n competing flows with rates (r1, r2, . . . , rn) is defined
by J (r1, r2, . . . , rn) = r2

r2
=

(
∑n
i=1 ri)

2

n×
∑n
i=1 ri

2 . As this equation
reveals, Jain Index is a number between 1/n (worst index)
and 1 (best index). To do the evaluation, we fix number of
competing flows and the scheme under the test. Then we let
all flows start at the same time and give them 60s to settle
down on the bottleneck link. At the end, we calculate the Jain
indices. The Jain indices of various schemes with and without
DeepCC are summarized in Table III.

As Table III illustrates, the DeepCC enhanced schemes’
fairness property is at least as good as the underlying TCP
schemes’ fairness. Discussions around Fig. 7 can shed light
on the possible reasons. When DeepCC observes that a cer-
tain scheme has less aggressive cwnd growth, it allows the
underlying TCP scheme to control the calculation of cwnd for
most of the time, while occasionally it overrules the value of
cwnd. Therefore, if an underlying TCP scheme is already a fair
protocol, most likely after using DeepCC, it still remains a fair
protocol (e.g. Cubic and Westwood in Table III). However, if
the underlying TCP is aggressive (so, potentially shows lower
fairness (e.g. Illinois in Table III)), DeepCC acts more and

Table III: Jain index of different schemes with and without
using DeepCC plug-in

Scheme 2 flows 3 flows 4 flows
DIllinois 0.985 0.976 0.977
Illinois 0.738 0.868 0.761

DWestwood 0.982 0.980 0.974
Westwood 0.987 0.986 0.978

DCubic 0.969 0.953 0.936
Cubic 0.973 0.941 0.918
DBBR 0.967 0.979 0.981
BBR 0.855 0.953 0.833
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Figure 12: The performance when bottleneck link switches
between cellular and non-cellular links

caps the cwnd values more frequently (as shown in Fig. 7.f).
So, this can provide room for other flows to potentially have
more chances to compete with that flow. In these cases, using
DeepCC can lead to tangible fairness index improvements.

H. Non-Cellular Bottleneck

In recent trends and cellular architectures data is pushed
very close to the end-users (e.g. MEC [57], Mobile CDN,
etc.), so the assumption that cellular access links are the
bottleneck links in the network is valid. That being said, in
this section, we investigate the performance of DeepCC in
scenarios where the cellular link is not the bottleneck link. In
the first scenario, we throttle the bandwidth of a wired link
located on the path of the traffic from a server to a cellular
client to make a non-cellular bottleneck link. In particular, we
throttle the wired bandwidth from 30Mbps (which is higher
than the maximum cellular link trace’s bandwidth used during
the test) to 6Mbps (which is less than the used cellular access
link’s bandwidth during a particular period (check Fig. 12)).
After 30 seconds, we roll back the bandwidth of the wired
link to 30Mbps. The delay and throughput of schemes with
and without using DeepCC plug-in are shown in Fig. 12 (Due
to space limitation and the fact that results for BBR and Illinois
are similar to the results for Cubic and Westwood, here, we
only report the graphs for Cubic and Westwood). As Fig. 12
illustrates, DeepCC performs very well even when bottleneck
link changes among cellular and non-cellular links.

X. DISCUSSION

A. Generalization and Transfer Concern

Both traced-based evaluations and real-world experiments
in section VII-A indicate that DeepCC learned the policy that
performs well in different cellular LTE scenarios. Although
performance results are promising, understanding, formula-
tion, measurement, and improving generalization in the context
of RL (and deep learning) and whether a learned model can
be successfully transferred are still active research topics in
machine learning community [58], [59], [60], [61], [62], [63],
[64].

B. Does DeepCC guarantee the delay performance?

After 3 decades of active research, none of the proposed
CC designs can provide performance guarantees over uncertain
network conditions of the Internet. That is partly due to the
nondecentralized nature of Power (see section II). Also, to
have a guarantee on delay performance, it is already proven
that admission control is a must have feature in the net-
work [65]. In other words, without having admission control
by network operators and by simply using an end-to-end TCP
protocol, guaranteeing a delay for the end-users is not feasible.
Besides, Internet and its underlying packet-switch architecture
are evolved on the basis of having a best-effort nature. That
said, the essence of having the objective of achieving/having
performance guarantees for an end-to-end CC scheme which at
the end of the day runs on a best-effort medium (i.e., Internet)
is debatable.

C. Can DeepCC Be Used in Other Networks?

Although our framework is general and can be used in
other networks, the objective that we chose for the current
version of DeepCC suites cellular networks and not a general
network. The objective of meeting applications’ desired target
delays is feasible in today’s cellular networks due to their
distinguishing key characteristics. For instance, combination
of having different bearers for different QoS requirements and
isolation of different clients’ traffic from each other (through
using per-client separate queues at BTS) make it possible to
avoid the competition among multiple flows with contradicting
objectives such as achieving ultra-low latency for one flow
and achieving very high throughput for another one. Also,
emerging solutions such as 5G’s network slicing [66] can
greatly help this isolation. Another unique property of cellular
networks is the existence of wireless scheduler at BTS to
directly control and resolve the fairness issue among flows and
make inter-protocol fairness a less relevant concern therein. So,
it can be seen that without these properties, no TCP scheme
can achieve ultra-low latency for a flow when this flow coexists
with a throughput-hungry flow (which is not necessarily using
the same TCP scheme).

D. Setting Target Delay

Different approaches can be used to let applications set the
target delay. For instance, instead of giving total freedom to
applications, they may just choose which “class” of appli-
cations they belong to. Then, based on the predefined class
properties, target delays can be set at the underlying layers.
An important point is that as we showed in Fig. 1, DeepCC
provides continuous packet statistics to the applications. So,
applications can even adjust the target dynamically based on
the available statistics. For example, if mRTT of the network
(part of available statistics) is larger than their desired target,
they can change target accordingly during the life of a session.
Also, they can set a relative value for the target considering
mRTT of the network. For instance, applications can specify
Target = 2×mRTT .
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E. What If an Application Only Cares About Throughput?

Part of the flexibility of having a TCP plug-in such as
DeepCC is that it can be disabled/enabled. We have made new
socket options to enable/disable DeepCC per connection. As
we showed in section VII-A, when throughput is considered as
the only performance metric, current throughput-oriented TCP
schemes already perform very well in cellular networks. So,
a throughput-oriented application such as web page download
can simply disable DeepCC plugin and roll-back to default
TCP, if it prefers.

XI. FINAL NOTE

Instead of proposing yet another new TCP scheme, we pre-
sented a new design direction and demonstrated that machines
can automatically learn to significantly boost the performance
of existing TCP designs in highly dynamic networks. We
hope that DeepCC’s framework and its performance benefits
motivate the community toward the design of more plug-in-
based approaches benefiting current/future protocols to allevi-
ate congestion, particularly in a highly dynamic environment
such as the cellular network and for emerging delay-centric
applications and services.
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APPENDIX A
SAMPLE OF CELLULAR TRACES USED DURING

EVALUATION

To have a qualitative view of the collected traces, in Fig. 13,
we show the sample of link capacity variations for the cropped
first few minutes of the traces reported in Table II.

APPENDIX B
BACKGROUND

A. Deep Neural Networks

DNNs enable the automatic feature extraction from raw
sensory input. This property reduces the efforts of handcraft
feature engineering that requires different domain knowledge.
In essence, DNN can be described as a non-linear function
transformation. The goal of DNN is to find the function
approximation F ∗ that models the relationship between input
vector x and output vector y. Fig. 14 declares a generic DNN.
DNN consists of multiple layers each consisting of multiple
neurons. Each neuron is a computational unit that computes
the weighted sum of input values and applies a non-linear
activation function to the weighted sum. The output of a
neuron is passed to the connected neurons in the next layer.
The computation for layer l can be written as:

z
(l)
j = g(a

(l)
j ), a

(l)
j =

∑
i

w
(l)
i,j · z

(l−1)
i , (8)

where g is an activation function, w is the connection weights,
and z(0) corresponds to the input x. A DNN has many stages
of layers: an input layer which takes the input vector x, more
than one hidden layers, and an output layer which produces
the final output. Each layer processes its input information to
a higher-level of representations. The DNN allows the model
to learn multiple-level abstractions of data.

The training process of a DNN is done through adjusting
the value of the weights w to find a set of weights, w, that
maximizes the objective or minimizes the cost.

B. Reinforcement Learning

Reinforcement learning is learning how to act from in-
teraction, by mapping a situation to action, to achieve a
goal. As Fig 15 illustrates, an RL system consists of an
agent (the decision-maker block) and the environment (where
agent interacts with and draws observations). The reward is
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Figure 13: Link capacity variations for the cropped few first minutes of the traces reported in Table II

Environment Agent

Action

Reward

State

Figure 15: Big picture of an RL system

a feedback signal to the agent showing whether the goal is
achieved. The agent selects an action and the environment
responds to the action and presents a new situation, and the
interactions are repeated. The agent’s objective is to select a
sequence of actions that maximize cumulative future rewards.

C. RL problem setup

The foundation of solving the general RL problem is to
model the task as a Markov Decision Process (MDP) [67].
An MDP is a stochastic decision-making model, defined as a
tuple (S,A,R, T , γ), where S denotes the state space and A
denotes the set of actions. At each time step t, the environment
reveals the current state st ∈ S, and the agent chooses an
actions at ∈ A. The environment then reveals the reward
rt ∼ R(st, at) and the next state st+1 as a consequence of
the action. The probability function of state transition satisfies
Markov property, which means the state from the environment
at time t + 1 only depends on state and action at time t, but
not the history of them. The environment dynamics can be

Input Layer

Hidden Layers

Output Layer

Figure 14: The structure of a general DNN
written as:

T (s′|s, a) = P(st+1 = s′|st = s, at = a), (9)

A policy π : S → A, specifies a mapping from any given
state to an action. The learning goal of RL is to find the policy,
that maximize the cumulative reward

Es∼T ,a∼π[
T∑
t=0

γtrt], (10)

where γ ∈ [0, 1] is the discount factor. The q-function is
defined as the expected return taking the action a in state s,
and thereafter following policy π:

Qπ(s, a) = E[
T∑
i=t

γi−tri|st = s, at = a], (11)

The optimal policy π∗ maximizes the optimal q-function
Q∗. The optimal q-function corresponding to the optimal
policy can be unrolled by Bellman optimal equation [68]:

Q∗(s, a) = Es′ [rt + γmax
a′

Q∗(s′, a′)|st = s, at = a] (12)

The optimal policy can be written as:

π∗ = argmax
a

Q∗(s, a) (13)
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D. Deep Reinforcement Learning
The challenge of using RL in a real-world task is how

to represent the policy and the q-function effectively. The
function approximations for computing π and Q(s, a) are
indispensable, and the state representation needs to be tackled.

Deep Reinforcement Learning (DRL) is the integration of
RL with DNN, where the DNN is used as function approxima-

tions in the RL framework. DRL learns the essential features
directly from the raw inputs, reducing the need for specialized
handcraft features used to be carefully designed previously
for successful RL application. DRL enables the training in
an end-to-end fashion, reaching or surpassing human-level
performance.
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