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Energy- and Bandwidth-Efficient, QoS-Aware Edge
Caching in Fog-Enhanced Radio Access Networks

Chayan Bhar and Erik Agrell, Fellow, IEEE

Abstract—The emerging video services are associated with
stringent quality-of-service (QoS) requirements and place high
bandwidth demands on the core networks. Edge caching can
facilitate the stringent QoS demands while easing the bandwidth
requirement from core networks. However, such schemes require
on-field caching equipment, in which energy consumption is a
function of cache utilization. Designing opportunistic caching
strategies for energy efficiency is therefore essential in such
schemes. This paper studies the possibilities for achieving high
energy efficiency, QoS, and low bandwidth consumption from
the core network, in an optically fronthauled fog-enhanced radio
access network that implements edge caching. An analytical
model for such a network has been derived to measure latency,
bandwidth consumption, and cache utilization. It is deduced
from the results that low latency (high QoS) and bandwidth
consumption can be ensured in such schemes while reducing the
energy consumption by up to 93%. The derived model allows
to design caching strategies for addressing the trade-off between
energy efficiency, QoS, and bandwidth efficiency.

Index Terms—Energy-efficient edge caching, QoS-aware
content delivery, optically fronthauled wireless networks.

I. INTRODUCTION

There has been a rapid increase in the mobile video traffic,
which is predicted to account for 79% of the overall mobile
traffic in 2020 [1]. End-user mobility adversely affects the
network performance, due to the involved network dynamics
[2], [3]. However, delivering bandwidth-intensive multimedia
videos with stringent quality-of-service (QoS) constraints in
5G communications [4], [5], to mobile users from content
servers located in the core network causes high latency (poor
QoS) and significant bandwidth consumption in the core
network and other network segments. The deployment of fog-
enhanced radio access networks (Fe-RANs) is envisioned to be
a potential solution to the above network issues [6]. Fe-RANs
involve caching of bandwidth-intensive videos in edge caches
(ECs) that are co-located with on-field base stations called
enhanced remote radio heads (eRRHs) [4]. Moreover, optical
fronthauling of Fe-RANs has been proposed to satisfy the
stringent QoS demands of low latency services [7], provision
high bandwidth [8], and allow simple deployment [9] of
eRRHs. This allows the content providers to deliver QoS-
aware bandwidth-intensive videos from network locations, that

This work was funded by Vinnova under grant 2017-05228 and the Knut
and Alice Wallenberg Foundation under grant 2013.0021.

C. Bhar was with the Department of Electrical Engineering, Chalmers
University of Technology, SE-41296 Gothenburg, Sweden. He is now with the
Department of Electronics and Communication Engineering, National Institute
of Technology Warangal, Telangana, India. (e-mail: cbhar@nitw.ac.in).

E. Agrell is with the Department of Electrical Engineering, Chalmers
University of Technology, SE-41296 Gothenburg, Sweden.

are closer to end-users. Optimal caching strategies in ECs are
illustrated to decrease the video download latency [10].

The optimal caching time in ECs increases when the caching
energy consumption is low [11], thereby increasing the in-
volved complexity. However, the on-field base stations are
proposed to have low complexity radio processing function-
alities in 5G communications to facilitate easy deployment,
energy efficiency, and centralized processing. Since installing
extensive caching and processing facilities closer to the end
users may increase the caching energy requirement, limited
caching capabilities are typically installed at the eRRHs to
limit the energy consumption [12]. The energy and complexity
constraints of eRRHs enforce limitations on the cache size and
energy consumption of ECs.

These challenges necessitate deployment of hierarchical
caching, in which complex functionalities are implemented in
centralized cloud units (CUs), while the on-field eRRHs are
lightweight [13]. Implementation of hierarchical caching over
Fe-RANs [14] allows centralization of complex processing
elements, and decreases the network load in the fronthaul
segment by up to 35% [15]. It was shown that caching schemes
with more than two hierarchical levels experience high overall
bandwidth consumption [16], [17]. In such schemes, videos
from content providers are hosted in CUs that are located in
the core network and are owned by CU providers [18]. The
videos can be temporarily cached in the ECs and delivered to
end-users from either the ECs or the CUs, depending on their
demand. Therefore, video delivery to mobile users involves
ECs at eRRHs that can be owned by different mobile network
operators (MNOs), CUs, a transport network (TN) connecting
the CUs and ECs (consisting of the core network, metro
network, and fronthaul networks), the access network (AN),
and all intermediate network equipment. Business partners,
called tenants, can own the involved network segments and
equipment, and lease resources to the content providers [18]. A
network orchestrator manages end-to-end resource allocation
in these segments for facilitating delivery of videos to end-
users from ECs and CUs, through a suitable eRRH.

In a multi-tenant Fe-RAN, designing an optimal caching
strategy is essential to minimize the resource consumption
from different tenants and support QoS-aware applications.
The latency of end-user services increases with network
load [7]. On the other hand, stringent QoS specifications
for decreasing latency can increase the optimal caching time
[11]. Instead, hierarchical caching limits the content download
delay by facilitating high end-user data-rates [4], [19]. Latency
minimization through heterogeneous cache allocation to entire
videos in an Fe-RAN employing hierarchical caching assum-
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ing different capacities for the CU–user and EC–user links has
been studied in [20], [21]. The latency of streaming videos
having different file sizes can be minimized by optimizing
video delivery from ECs and the CU [4]. Moreover, caching
fractions of a video (video segments (VSs)) maximizes their
utility compared to caching the entire video when the request
process is memoryless [20]. This facilitates low network and
EC utilization in scenarios where users may consume only a
part of a video [22]. Different caching strategies like the least-
recently-used, least-frequently-used, etc., can be implemented
in the ECs. However, such schemes involve complicated analy-
sis [23]. On the other hand, timer-based strategies that involve
setting a timer when a video is stored in the cache and deleting
it when the timer expires have simple analytical frameworks
[24]. The timer duration is called the time-to-live (TTL) of
the video. TTL-based strategies can accurately replicate the
performance of the least-recently-used policy when the content
requests are Poisson distributed [24].

It is illustrated that proactively caching the requested VSs in
all nearby locations, where a mobile user can possibly migrate
(given its current location) ensures low latency and seamless
mobility [25]. Content download latency increases with end-
user mobility [26], while the network throughput decreases
when the number of mobile users approaches the threshold
value that can be supported [27]. Moreover, costs of migration
(network resource consumption) and latency increase if end
users are highly mobile and have the opportunity to migrate
to different neighbourhoods.

Although end-user mobility is a critically important aspect
in Fe-RANs, its effect on energy, bandwidth, and QoS in a
realistic environment has not been explicitly studied in the
literature. For example, the following research illustrates QoS
as a function of: EC size and fronthaul network capacity
limitations for a simple scenario with only two ECs and two
users [21], [20]; eRRH placement and video popularity [19];
the number of end-users [27]; the network load [7]; the effect
of centralized and de-centralized decisions for caching and
video size [4]; and EC capacity [26]. On the other hand,
[25] studies the trade-off between QoS and cost-of-caching,
[28] discusses the effect of the number of video requests on
energy efficiency, and [14] studies the effect of cache size on
its utilization. However, the design and the effect of energy-
efficient caching strategies on QoS, bandwidth consumption
in the core network and ANs, and energy consumption in the
EC, AN, and TN, and the trade-off between these parame-
ters are not studied in existing literature. Similarly, energy
consumption and latency are illustrated to increase when
more than two hierarchical caching levels are employed [16],
[17]. Yet, existing studies do not illustrate optimization of
bandwidth and energy consumption, and latency in networks
employing hierarchical caches in the presence of mobile users.
Finally, caching of VSs with TTL timers, called soft-TTL
[22] are proposed. However, its effect on the improvement
in QoS, transportation and caching energy consumption, and
bandwidth consumption at different network segments, in a
scenario with mobile users is absent in existing literature.

The main contributions of this paper are as follows:
1) We formulate analytical models for VS delivery to mobile

users in an Fe-RAN from ECs that employ fractional
caching; soft-TTL [22]; and proactive caching [25]; and
the CU. We utilize realistic models for user mobility [26],
[3] and VS request arrival [22], [3], [29].

2) We analyze the effect of user mobility on QoS and energy
and bandwidth efficiency. Using the analytical models,
we design caching strategies for ensuring QoS to mobile
users, minimize bandwidth consumption in the TN and
AN, and energy consumption in ECs, TN, and AN.

3) We illustrate that there is a trade-off between above
parameters. Using results from the analytical framework,
we discuss strategies available to the network orchestrator
and content providers for leasing network slices from
other tenants that address this trade-off and minimize the
amount of resources to be leased.

The rest of this paper is arranged as follows. In the next section
we formulate analytical models for the assumed network
scenario. This is followed by results on the performance of
such schemes in Section III and a discussion and conclusions
in Section IV.

II. SYSTEM DESCRIPTION AND MODELING

In this section, we first describe the considered system in
Fig. 1. Thereafter, the assumptions made for modeling the
Fe-RAN of Fig. 1 are stated. Finally, an analytical model is
formulated for the proposed system.

A. Assumptions

We consider the Fe-RAN illustrated in Fig. 1 that imple-
ments two levels of caches, at the ECs and CUs, respectively,
(for minimizing energy and bandwidth consumption [16], [17])
similar to [7], [21], [14], [26], [20], and [30]. The network
configuration and the assumptions made for modeling the
system are stated below using Fig. 1. The symbols used in
this paper are described in Table I. K ECs are assumed to
be deployed. The formulated model and the discussion below
is for a particular VS which may be present in an eRRH
Ei, where i ∈ {1, . . . ,K}. The eRRH Ei consists of an
EC and provides services to the users of its associated cell
i. The CUs are located in the core network as in [7], [21],
[26]. An on-field eRRH Ei provides connection and services
to the users of its respective cell i. The Fe-RAN employs
an optical fronthaul network similar to [7], [27], [31]. The
fronthaul network consists of an optical line terminal (OLT) at
the central office and K on-field optical network units (ONUs),
one in each cell. The OLT forms an interface between the
AN and TN and is co-located with the baseband unit (BBU)
that performs complex baseband functionalities. The ONUs
are co-located with the respective eRRHs E1, . . . , EK . The
AN, eRRHs, and BBU are owned by MNOs, the CUs by
cloud unit providers, the videos by content providers, and
the intermediate TN consisting of the core network, metro
network, and fronthaul network by network providers. In each
of the above cases, there can be a single or multiple tenants
at the same horizontal level. In order to facilitate end-user
content delivery, the content providers lease slices consisting
of AN bandwidth and EC space from the MNO, TN bandwidth
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Fig. 1: Optically fronthauled Fe-RAN with edge caching at
eRRHs.

from the network providers, and CU space from the cloud
unit provider, while the network orchestrator designs pricing
strategies that facilitate QoS, energy efficiency, and bandwidth
efficiency.

The Fe-RAN implements fractional caching and soft-TTL
[22] in the ECs implying that VSs are cached and deleted from
the ECs as functions of their requests and the caching strategy
implemented. VSs are streamed at higher download rates from
ECs with rate rAN, compared to when they are streamed from
the CU with rate rTN, i.e., rAN > rTN, since the ECs are located
closer to the users [26], [30], while network congestion and
statistical multiplexing are involved in the metro network and
core network segments. The VS download times are assumed
to be exponentially distributed for simplicity of analysis.

In this paper the analysis is performed with respect to a
particular VS of size κ in a particular eRRH Ei. Users arrive
to cell i associated with Ei following a Poisson process with
a mean inter-arrival time ῡi, and depart from cell i after
an exponentially distributed interval τi with mean τ̄i similar
to [26], [3] assuming a small handover margin (< 0 dB)
and small τi (≤ 100 s) [32]. A small τ̄i corresponds to
fast end-user mobility. Since the end-user mobility follows a
Poisson process [3], [26], the average time after starting the
VS download, when the user moves away from the cell, can
be derived from splitting of Poisson process [33, Chapter 2.2]
as τ̄i − 1/λi, where 1/λi is the average inter-request interval.
Our model does not capture the behaviour of users after they
download the VS. A maximum of Ni users can simultaneously
request and download the same VS from Ei, while requests
for the same VS from other users are dropped. The users
first arrive to the cell and thereafter may request for the VSs.
The request process for VSs follows a Poisson distribution
with exponentially distributed inter-request intervals, similar
to [22], [3], [29], [34]. The popularity of a VS is assumed
to affect its per-user request arrival rate λi (overall request
arrival rate normalized by the number of users considered to
be present in the cell). Streaming of VSs to the requesting
users is performed according to the flowchart of actions in
Fig. 2, as described below. The possible events are marked
as e1 – e6 in Fig. 2. Users’ request (Request) for VSs are

served by the eRRHs either from the EC, or CU, in the order
of availability. Moreover, a VS is cached at ECs from the
CU when the number of requests εi from a particular eRRH
Ei exceeds a threshold ζi for that particular VS in Ei. λi
is assumed to be equal for all users and can be calculated
using the methods outlined in [14]. Since any caching strategy
affects the TTL of a VS we select the VS TTL in Ei σi,
as the design parameter for caching. The TTL results in
deletion (Deleted during download in Fig. 2) of the VS from
Ei after an exponentially distributed interval with mean σi
of caching it (as a function of the caching strategy). This
causes on-going VS downloads from Ei to be re-streamed
from the CU as in [35]. Content providers employ proactive
caching [25], in which the VS can be immediately downloaded
(without requesting) from all cells to which a user can possibly
move, thereby ensuring seamless connectivity to mobile users
and low delay. A fraction pi of users arriving to cell i are
assumed to be downloading the VS at the time of migration.
pi is independent of Ni. Therefore, VS requests from users
that require proactive caching are independent of the requests
from other users connected to Ei. Therefore, the overall user
arrival rate [Ni − (ωi + εi + αi)] · 1/ῡi can be divided into
[Ni − (ωi + εi + αi)] · 1/ῡi(1 − pi) that can request the VS
with Poisson intensity λi and [Ni − (ωi + εi + αi)]pi/ῡi that
immediately start downloading the VS using Poisson splitting.
Moreover, if proactive caching is absent, then pi = 0.

We analyze the effect of user mobility ῡi, τ̄i; VS parameters
λi, κ; network parameters rTN, Ni; and caching policy ζi, σi
on VS download time δi; energy consumption in AN χAN, TN
χTN, and EC χEC; and the bandwidth consumption in the AN
γAN and TN γTN, by formulating queuing models for the above
scenario. These parameters are grouped into parameters that
are controllable by tenants σi, ζi, rTN, κ, and user dependent
parameters Ni, λi, ῡi, and τ̄i. Using the analytical model, we
derive values of σi, rTN, κ, and ζi that can simultaneously
minimize the expectations of δi, χAN, χTN, χEC, γAN, and γTN

in Section II-D.
The queuing models are formulated from the perspective of

a single VS. This implies that:
(i) the request arrival process of each VS is independent [24].

The performance for a particular video is obtained by
assuming that respective VSs have independent request
arrival processes [22]. Although the VSs influence each
other due to the size restriction of ECs, we have neglected
this aspect for simplicity of analysis.

(ii) the download rate of a VS is independent of other VSs
being downloaded.

(iii) ECs allow caching of a VS independently of other VSs.

B. Markov model for ECs

A continuous-time Markov model with discouraged arrivals
and finite calling population [33, Chapter 3.8] is formulated
for Ei. The model specifies the states of Ni users that are
connected to Ei and can request or have requested the VS.
The state variables for analyzing the system performance
with respect to a particular VS in Ei can be the number of
downloads in progress from Ei εi, the number of downloads
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TABLE I: List of symbols used in the text

Symbol Description

Ei ith eRRH, consists of an EC and provides service
to users of cell i

K Number of ECs deployed
Ni, N The maximum number of users that are yet to

download the VS from Ei. Ni consists of the
users that are downloading, that have arrived but
are yet to request, and that are yet to arrive,
N =

∑K
i=1Ni

ῡi Mean of the inter-arrival time of users to cell i
κ VS size
λi Average per-user VS request arrival rate in cell i
τi, τ̄i Exponentially distributed time interval after enter-

ing cell i when users move away and its mean
σi Mean caching time of a particular VS in Ei
rAN, rTN Average VS download rates from the AN and TN
βi, ωi, εi,
αi

Components of the state variable: Indicator vari-
able for the availability of the VS in Ei, the number
of users that have arrived to the cell but are yet to
request the VS, downloading the VS from the EC,
and downloading from the CU

β̄i, ω̄i, ε̄i,
ᾱi

Expectations of the state variables βi, ωi, εi, and
αi, respectively

α, ᾱ State variable for the number of VS downloads in
progress from the CU and its expectation

ζi Maximum number of VS downloads from the CU
beyond which the VS is stored in EC

Ri average data-rate observed by a user while down-
loading the VS in Ei

δi Average delay while downloading the VS in cell i
χEC Energy consumption for caching the VS in EC
χAN, χTN Energy consumption for VS transport at the AN

and TN segments due to VS download in Ei
pi Fraction of arriving users that require proactive

caching
γAN, γTN Bandwidth consumption in the AN and TN

Request

At
EC?

Download
from EC

Deleted during
download?

Download
from CU

Downloaded

e1

yes

e2, e4
no

e3, e5

yes
e6

e8
no
e7

Fig. 2: Flowchart of actions for streaming VS to a user.

in progress from the CU in Ei αi, indicator for availability
of the VS in Ei βi, the number of users that can request
the VS in cell i, and the number of users that can arrive to
cell i. βi can be either 0 or 1, while other state variables
lie in the range {0, . . . , Ni}. Such a system description will
encompass

∑K
i=1Ni users and the state space will be of the

order
∑K
i=0N

4i
i ×2i. Solving for the steady state probabilities

of such a large state space is complicated. Instead, we analyze
the system by reducing the state space size and making
separate models for eRRHs and the CU.

In the model for a VS in Ei we concentrate on the users
that (can) potentially affect the network performance, i.e., the
users downloading the VS from Ei εi, or the CU αi, and the
users that have arrived to the cell but have not requested for
the VS ωi. We do not consider other users present in the cell.
We assume that εi+αi+ωi is upper limited by Ni. Therefore,
Ni − (εi + αi + ωi) users can arrive to cell i. Although this
places a limitation on the arrival of users, thereby introducing a
memory between the involved processes, we illustrate through
network simulations that if 1/λi is in the order of seconds, the
analytical results are sufficiently accurate. We define the state
vector s1 = (βi, ωi, εi, αi) and S1 as the set of possible values
for s1. The events e1 – e8 in Fig. 2 result in the following state
transitions of the Markov chain, mobility of end-users cause
e9 – e11, while VS transfer from CU to EC causes e12. The
state transitions caused by the events along with the necessary
conditions for the transitions are also described in Table II, in
which the initial state is assumed to be s1 = (βi, ωi, εi, αi)
before the respective events.

(i) e1: Arrival of a non-requesting user, i.e., the user is yet
to request the VS and proactive caching is not done for
it, to cell i if ωi + εi + αi < Ni, with rate [Ni − (ωi +
εi + αi)](1− pi)/ῡi s−1.

(ii) Arrival of a VS request with rate ωiλi s−1 to
• e2: EC if βi = 1,
• e3: CU if βi = 0.

(iii) Arrival of VS request with rate [Ni−(ωi+εi+αi)]pi/ῡi
s−1 due to proactive caching to
• e4: EC if βi = 1,
• e5: CU if βi = 0.

(iv) e6: VS deletion from the EC after σi s, along with transfer
of the εi VS downloads from the EC to CU.

(v) Completion of VS download from either the
• e7: EC at rate rAN/κ VSs s−1,
• e8: or CU with rate rTN/κ VSs s−1.

(vi) Mobility of a user that
• e9: has not requested VS τ̄i s after entering the cell
• e10: is downloading from the EC 1/(τ̄i− 1/λi) s after

starting VS download.
• e11: is downloading from CU 1/(τ̄i − 1/λi) s after

starting VS download.
(vii) e12: VS transfer to the EC from CU at rate rTN if αi ≥ ζi.
The state variables follow the conditions ωi + εi + αi ≤ Ni
(finite calling population) and βi ∈ {0, 1} with the additional
constraints εi = 0 if βi = 0, resulting in |S1|=

∑N
n=0

(
n+2
2

)
+(

n+1
1

)
states. The above description of the Markov chain
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TABLE II: Description and consequences of events at Ei from a state s1 = (βi, ωi, εi, αi)

Event Rate (s−1) Condition New state
e1 [Ni − (ωi + εi + αi)](1− pi)/ῡi ωi + εi + αi < Ni βi, ωi + 1, εi, αi
e2 ωiλi βi = 1, ωi > 0 1, ωi − 1, εi + 1, αi
e3 ωiλi βi = 0, ωi > 0 0, ωi − 1, εi, αi + 1
e4 [Ni − (ωi + εi + αi)]pi/ῡi βi = 1 1, ωi, εi + 1, αi
e5 [Ni − (ωi + εi + αi)]pi/ῡi βi = 0 0, ωi, εi, αi + 1
e6 1/σi βi = 1 0, ωi, 0, εi + αi
e7 rAN/κ εi > 0, βi = 1 1, ωi, εi − 1, αi
e8 rTN/κ αi > 0 βi, ωi, εi, αi − 1
e9 1/τ̄i ωi > 0 βi, ωi − 1, εi, αi
e10 1/(τ̄i − 1/λi) βi = 1 1, ωi, εi − 1, αi
e11 1/(τ̄i − 1/λi) αi > 0 βi, ωi, εi, αi − 1
e12 rTN/κ αi ≥ ζi, βi = 0 1, ωi, εi, αi

allows us to formulate the |S1|×|S1| state transition rate matrix
Q for the transition from one state to another.

The Markov chain so formed has the following prop-
erties: (i) is time-homogeneous as the state transitions are
independent of time, (ii) has a finite number of states, and
(iii) is connected. The steady-state probability for a state s1
is denoted by πs1

, while the steady-state probability vector is
π1 = {πs1

}s1∈S1 . These properties of the Markov chain allow
us to solve for the steady state probabilities using π1Q = 0
together with

∑
s1∈S1 πs1 = 1. We have solved the steady

state probabilities in MATLAB. Furthermore, we define

(β̄i, ω̄i, ε̄i, ᾱi) =
∑

s1∈S1

πs1
(i) s1, (1)

where ε̄i and ᾱi are the average number of VSs in download
from the EC in Ei and the CU at any given instant, respec-
tively. The occupancy of the EC in Ei is β̄i.

C. Markov model for the CU

The model for CU is an abstract model and utilizes pa-
rameters from the EC model for each cell that summarize
all processes at the respective cells. We assume that N =∑K
i=1Ni users can simultaneously download the VS from

the CU and concentrate only on those users that request
and download the VS from the CU. Other users and the
streaming of VS from CU to ECs are not considered in the
model for CU. The state variable consists of a single non-
negative integer α, representing the number of downloads in
progress from the CU at a given time. The possible values
for α are S2 = [0, 1, . . . , N ]. A user can request the VS
from cell i if βi = 0, whereas j users downloading the VS
from cell i can request the VS from the CU if it is deleted
from the EC. The state transitions caused by the events along
with the necessary conditions for the transitions are described
in Table III, in which the initial state is assumed to be α
before the respective events. The case of VS deletion during
download is represented here as J = maxiNi separate events
c2,1, . . . , c2,J , in which each have different arrival rates.

(i) c1: For a user requesting from cell i, the VS is streamed
from the CU only if βi = 0 with rate λiωi + {Ni −
(ωi + εi + αi)}pi/ῡi from Section II-B. Therefore, re-
quests for the VS from cell i is with the average rate

∑
s1∈S1,βi=0 πs1

(i) [λiωi+{Ni− (ωi+ εi+αi)}pi/ῡi].
The overall request rate is the sum of request rates from
individual cells. The per-user request rate from the CU is
obtained by dividing the overall request rate by the maxi-
mum number of downloads possible for a VS N . Assum-
ing that α downloads are in progress, N − α more users
can request the VS from K cells. Therefore, the per-user
request rate is (N−α)

∑K
i=1

∑
s1∈S1,βi=0 πs1(i) {λiωi+

[Ni− (ωi + εi +αi)]pi/ῡi}/N due to non-availability of
the VS in ECs, i.e., e3 and e5 in Section II-B.

(ii) c2,j : VS deletion in Ei causes the ongoing j downloads
to be re-streamed, i.e, requested from the CU, as the
download process is assumed to be memoryless. Since
the probability for multiple events at the same instant is
almost zero, only one EC can delete the considered VS
at any time. Therefore, bulk arrival [33, Chapter 4.1] of
j = 1, . . . , J VS requests from cell i to the CU can occur
with the rate

∑
s1∈S1,εi=j πs1

(i) 1/σi and probability
1/σi/

∑K
i=1 1/σi. This results in the overall arrival rate

(
∑K
i=1

∑
s1∈S1,εi=j πs1

(i) 1/σi
2
)/
∑K
i=1 1/σi due to VS

deletion from ECs e6 in Section II-B.
(iii) c3: Completion of a VS download.
(iv) c4: Mobility of of an user downloading from CU.

Since α ≤ N (finite calling population), there are N + 1
states. Table III allows us to formulate the (N + 1)× (N + 1)
state transition rate matrix Q. The Markov chain so formed
is time-homogeneous as the state transitions are independent
of time, has a finite number of states N , and is connected, as
in Section II-B. Assuming the steady state probability for a
state α is denoted by πα, the steady state probability vector is
π2 = {πα}Nα=0. These properties of the Markov chain allow
us to solve for the steady state probabilities using π2Q = 0
together with

∑N
α=0 πα = 1. We have solved the steady state

probabilities in MATLAB. Furthermore, we define

ᾱ =

N∑
α=0

παα, (2)

where ᾱ is the average number of VS downloads from the CU
at any given instant.
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TABLE III: Description and consequences of events at CU from a state α

Event Rate (s−1) Condition New state

c1 (N − α)
∑K
i=1

∑
s1∈S1,βi=0 πs1(i) {λiωi + (Ni − (ωi + εi + αi))pi/ῡi}/N α < N α+ 1

c2,j , j = 1, . . . , J (
∑K
i=1

∑
s1∈S1,εi=j πs1(i) 1/σi

2)/
∑K
i=1 1/σi α+ j < N α+ j

c3 α rTN/κ α > 0 α− 1
c4 1/τ̄i α > 0 α− 1

TABLE IV: Energy consumption of network components [12]

Network device Energy
consumption
(nJ/bit)

Symbolic
representation

Core router 17 ρCR
Edge router 26.3 ρER
Aggr. switch 8.21 ρAS
OLT 19.2 ρOLT

eRRH (eNodeB) 2 · 103 ρeRRH

Solid state drive 1.97 · 105 ρSSD
a

aAssuming operation over a one year period, ρSSD = 6.25 · 10−12 W/b ×
31536 · 103 s

D. Performance parameters from the Markov model

The average data-rate Ri observed by a user in cell i while
downloading a VS is the sum of rAN and rTN multiplied with
the average number of downloads ε̄i and ᾱi, respectively,
divided by the average number of VS downloads from EC
and CU in cell i. Thus,

Ri =
ε̄i rAN + ᾱi rTN

ε̄i + ᾱi
. (3)

The delay is calculated from (3) as δi = κ/Ri. Since all
processes are assumed to be memoryless, the analytical model
considers that upon deletion of the VS from an EC, it is
streamed again from CU to the users that were downloading
from the EC. However, (3) does not take this repeated VS
streaming into consideration. Therefore, (3) is accurate only
when rAN and rTN are high or κ is small.

The energy consumed by the transportation and caching of
VSs at different network levels are modeled by:

• TN: core and edge routers, OLT and aggregation switch,
ρTN = ρCR + ρER + ρOLT + ρAS,

• AN: eRRH, ρAN = ρeRRH, and
• EC: Solid state drives, ρSSD,

where the energy consumed by the respective network compo-
nents are given in Table IV. The baseline energy consumption
in solid state drives is neglected, as other VSs may be
also cached. Therefore, the baseline energy consumption is
not directly influenced by a single VS. β̄i depends on the
probability that the VS is present at Ei. Since a cache needs
to be operational for caching the VS, the energy consumption
of EC is χEC = β̄iρSSD. The transport of VSs from eRRH or
CU due to the switches located in these network segments, is
assumed to cause energy consumption at the AN

χAN = (ε̄i + ᾱi)ρAN, (4)

and at the TN
χTN = ᾱρTN, (5)

because the CU utilizes the TN and AN, while the EC utilizes
only the AN to stream a VS.

The average bandwidth consumed in the AN εirAN is
normalized with the bandwidth available from the AN to Ni
users NirAN to derive the normalized bandwidth consumption
in the AN,

γAN =
ε̄i
Ni
. (6)

Similarly, the average bandwidth consumed in the TN due
to VS download from the CU ᾱ rTN is normalized with the
bandwidth available from the TN to N users, NrTN, to derive
the normalized bandwidth consumption in the TN,

γTN =
ᾱ

N
. (7)

III. RESULTS

In this section, we perform a case study using the model
derived in Section II for the scenario depicted in Table V
along with an additional round-trip delay of 300 ms for VS
download from the CU [36]. The average time spent by a
user in a cell τ̄i is calculated by assuming that cells cover
an area of 1 km2 and vehicle speeds 180 km/h or 50 km/h
[27]. Thus, low τ̄i corresponds to high mobility. Although, the
analytical and simulation frameworks have been implemented
for Ni = {25, 30} users that are yet to download the VS
from Ei, these models can also be scaled up to analyze
scenarios with higher Ni. The values of parameters that are
common in all simulations are grouped under the scenario
C and listed in Table V. The performance results for C are
a benchmark in the calculations for energy and bandwidth
efficiency. The scenarios C1–C3 consist of the parameters
in C with variation in the parameters controllable by tenants,
namely the maximum number of VS downloads from the CU
beyond which it is stored in Ei ζi, average download rate from
TN rTN, and VS size κ. Furthermore, the scenarios C4–C7

consist of user-dependent parameters, namely Ni, per-user VS
request arrival rate in cell i λi, mean inter-arrival time of users
to cell i ῡi, and τ̄i as mentioned in Table V. The delay and
bandwidth consumption obtained from the analytical models
proposed in Section II are validated using network simulations
in OMNET++.

A. Analysis of VS download time

There is a finite probability of VS deletion from Ei before
download completion when κ is high, resulting in high delay
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Fig. 3: δi, χEC, χAN, χTN, γAN, γTN, as a function of σi. Analytical model - black and network simulations - red.

TABLE V: Values assumed for different scenarios (Sc.). Ar-
rows indicate changes compared with the benchmark C.

Sc. Para-
meter

Value Sc. Para-
meter

Value

C

κ 109 bits

C

ζi 5
ῡi 20 s Ni 25
λi 0.05 s−1 [29] rTN 250 Mbps
τ̄i 72 s [27] rAN 1 Gbps [37]
K 4 Ni 25
pi 0.1

C1 ζi ↘ 2 C2 rTN ↗ 500 Mbps
C3 κ ↘ 108 bits C4 Ni ↗ 30
C5 λi ↘ 0.01 s−1 [29] C6 ῡi ↗ 100 s
C7 τ̄i ↘ 25 s [27]

δi, as rAN > rTN. This highlights the importance of fractional
caching [22], i.e., storing VSs with small κ at ECs. Decreasing
ζi, forces Ei to cache the VS even for a small εi. This increases
β̄i. Similarly, high σi causes high β̄i and ε̄i. Therefore,
the VS is streamed to the demanding users at rAN > rTN
and consequently low δi. The overall VS request rate in Ei
decreases with λi and on increasing ῡi, resulting in low β̄i.
Under such circumstances the VS is streamed from the CU,
resulting in a high δi. High user mobility, i.e., low τ̄i implies
that more users move out of the cell faster. Hence, ε̄i and β̄i
decrease. Therefore, δi decreases with decreasing κ, ζi, and
ῡi; and with increasing λi, τ̄i, and σi, as illustrated in Figs.
3(a) and 3(b).

B. Energy-efficient VS caching

The caching energy consumption χEC is a function of β̄i and
ε̄i (Section II-D) which are affected by different parameters
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as discussed below. Frequent requests due to high Ni, and
λi, low ῡi, or low ζi, cause εi to reach ζi faster. Therefore,
cells serving VSs with high popularity will experience high
χEC as discussed in [27]. On the other hand, β̄i increases
with σi. These factors also cause high β̄i and correspondingly
high χEC. A high τ̄i, i.e., low mobility, allows more users to
complete the VS download before moving out from the cell,
resulting in high ε̄i and χEC. In summary, χEC increases with
increasing Ni, λi, σi, and τ̄i; and with decreasing ῡi and ζ̄i,
as illustrated in Figs. 3(c) and 3(d).

C. Energy-efficient VS transport

The analytical model assumes memoryless processes.
Therefore, on deletion of a VS from Ei, it is assumed to be
re-streamed entirely from the CU. VS transportation energy
consumption in the AN χAN and TN χTN as a function of σi
is discussed below.

1) VS transport in the AN: Increasing σi and decreasing
κ increases the probability that a VS is completely streamed
from Ei. For low σi and ζi, ᾱi and consequently χAN are
high. Users arrive faster to the cell for low ῡi which increases
the overall VS request rate. Finally, increasing τ̄i allows more
users to complete VS download, before moving away from
cell i. Therefore, χAN increases with increasing κ, and τ̄i; and
with decreasing σi, ζi, rTN, ῡi.

2) VS transport in the TN: A low overall VS request rate
at high ῡi and incomplete downloads at low τ̄i cause low χTN.
When σi and ζi are simultaneously low, β̄i is also low and
the VS is rapidly deleted from ECs, resulting in high χTN.
However, β̄i increases rapidly at high σi and low ζi thereby
causing χTN to decrease. ε̄i increases with σi (Sections III-A,
III-B) which causes ᾱi and χTN to decrease. In summary, χTN
decreases with decreasing τ̄i and with increasing σi, ῡi, rTN,
and ζi.
χAN is observed to be more significant than χTN from Figs.

3(e)–3(h). This is because VSs from both the CU and the EC
are streamed through the AN. Finally, the energy consumed
for downloading a video can be calculated by multiplying χEC,
χAN, and χTN with the number of VSs.

D. Analysis of bandwidth consumption

The effect of σi on bandwidth consumption in AN γAN and
TN γTN is discussed below.

1) Bandwidth consumption in AN: Ri increases with σi
and rTN (discussed in Sections III-A and III-C), whereas,
increasing ῡi decreases the request rate (Section III-C) re-
sulting in low γAN. ᾱi decreases with ζi which causes γAN
to simultaneously decrease. An increase in τ̄i allows more
users to complete VS downloads, before moving out of the
considered cell, resulting in high γAN. In summary, γAN
decreases with increasing σi, rTN, and ῡi; and with decreasing
ζi and τ̄i, as observed from Figs. 3(i) and 3(j).

2) Bandwidth consumption in TN: γTN decreases on in-
creasing σi, ζi, rTN, and ῡi, and on decreasing τ̄i as observed
from Figs. 3(k) and 3(l). The reasons for these observations
are similar to that for γAN (Section III-D1). Fig. 4 illustrates
the effect of different ῡi and λi on γTN. Heterogeneous user
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Fig. 4: γTN as a function of σi.

mobility patterns can cause different ῡi in the respective cells,
whereas different VSs in the same or different cells can have
different λi. Moreover, a particular VS can also be associated
with different λi due to the spatio-temporal variation of VS
popularity [15]. It is observed from Fig. 4 that γTN has a
similar trend as γTN in Fig. 3(l). However, ῡi ∈ {20 s, 100 s}
in Fig. 3(l), whereas ῡ1 = ῡ2 = 100 s and ῡ3 = ῡ4 = 20 s
in Fig. 4. Therefore, γTN is intermediate between the plots of
ῡi = 20 s and ῡi = 100 s of Fig. 3(l). A similar observation
is made by comparing the plots for λ1 = λ2 = 0.05 s−1

and λ3 = λ4 = 0.01 s−1 in Fig. 4, with λi = 0.05 s−1 and
λi = 0.01 s−1 in Fig. 3(l).

E. Design of caching strategies

In this sub-section we discuss the strategies that can
be adopted by the content providers, MNOs, and network
provider, owning the VSs, AN, and the TN, respectively.
The discussion below is with respect to σi, ζi, rTN, and κ
that are controllable by tenants. We assume that MNOs aim
for caching energy efficiency, i.e., low χEC, while network
providers target bandwidth efficiency in the TN, i.e., low γTN.
The content providers aim to achieve delay efficiency, i.e., low
δi, by leasing required network slices from MNOs and network
providers depending on Ni, τ̄i, λi, and ῡi. As discussed in
Section I, ensuring low γTN (7) is the prime motivation behind
deploying an Fe-RAN. However, there is a trade-off between
χEC, γTN, and δi. This results in conflicting goals, thereby
requiring slice management by the network orchestrator. Since
the on-field ECs are more numerous compared to a centrally
located CU and χEC > χTN, the minimization of caching
energy efficiency prioritizes low χEC. On the other hand, γTN
is prioritized for transport energy efficiency, as TN resources
are more expensive [18].

In a scenario with highly mobile users (low τ̄i) or low
request arrival rate (low λi and ῡi), the content provider can
minimize δi if σi ≥ 30 s. Although δi can also be minimized
using high rTN, it is concluded from Figs. 3(c) and 3(d) that
content providers can support services with stringent QoS
bounds using the required σi, instead of leasing bandwidth
slices with high rTN from network providers that are more
expensive. This highlights the importance of edge caching [7].
Therefore, millisecond order δi (≈ 700 ms) can be achieved
if κ is limited to 108 bits.



9

The energy efficiency of ECs can improve by more than
1− 4.5 · 10−5/1.1 · 10−4 = 59% if σi ≤ 100 s. Furthermore,
if σi ≤ 100 s and κ = 108 bits simultaneously, the energy
efficiency can improve by 1 − 7.2 · 10−6/1.1 · 10−4 = 93%.
Such a choice of σi is essential for the MNOs to ensure low
χEC in scenarios with high τ̄i, Ni, and λi, or low ῡi. On the
other hand MNOs will tend to select κ = 108 bits and high σi,
i.e., σi ≥ 30 s to reduce bandwidth consumption. MNOs select
small κ for delay, bandwidth, and energy efficiency which
highlights the importance of fractional caching and soft-TTL
[22]. The size of ECs is assumed to be 1 TB in the network
simulations. A change in the EC size will not affect χEC for
respective VSs under the independence assumption of Section
II. However, it will allow ECs to cache more VSs. The overall
energy consumed by an EC can be calculated by summing χEC
of all VSs.

For energy efficiency in the TN, it is concluded from Figs.
3(g) and 3(h) that if σi ≥ 30 s, then χTN is limited to
4.2 ·10−7/1 ·10−6 = 42% of the worst case energy consump-
tion 1 ·10−6 J/bit. Instead, decreasing κ to 108 bits limits χTN
to 9.7 · 10−8/1 · 10−6 = 9.7%, while if σi ≥ 100 s, χTN can
be ≤ 2.9 · 10−7/1 · 10−6 = 29%. Since the TN is involved
in delivering multiple services, network providers may be
interested in limiting χTN. On the other hand, χAN is limited
to 3.8 ·10−6/4.53 ·10−6 = 83%–2.9 ·10−6/4.53 ·10−6 = 64%
for 30 s ≤ σi ≤ 100 s, and to 8 · 10−7/4.53 · 10−6 = 17.7%
if κ = 108 bits, resulting in an energy efficiency of 17%–36%
(Figs. 3(e) and 3(f)).

It is observed from Figs. 3(c)–3(f) that low κ will enhance
energy efficiency when users do not download an entire VS
[22]. Such conditions arise in high user mobility scenarios (low
τ̄i), where some users may move to a new cell before download
completion. Due to proactive caching, the VS is streamed
afresh from the new cell. Thus, the same VS is downloaded
over a longer period, resulting in low χTN in one cell, but high
overall energy consumption. Without proactive caching, the pi
fraction of concerned users will experience high latency [25].
However, our model does not capture the effect of proactive
caching on overall latency experienced by these mobile users
and energy consumption in the cells through which the users
move. The proposed model also does not consider the scenario
in which proactive caching is implemented only when the ECs
are vacant [25].

It is also concluded that the network orchestrator can
encourage network providers (through pricing strategies) to
increase statistical multiplexing on the TN by installing more
ANs with low rTN. This will result in economic benefits for
the network providers. In such scenarios, degradation of QoS
and energy efficiency in the AN can be prevented if the
MNOs can be incentivized to maintain high σi. In scenarios
with high user mobility, more caching resources (high σi) are
required to ensure low δi. Although χEC decreases when τ̄i
increases, thereby profiting MNOs, limited cache availabil-
ity may allow MNOs to exploit content providers through
overcharging. MNOs and network providers may also over-
charge content providers for VSs with high λi which causes
an increase in χEC and γTN. The network orchestrator can
prevent such situations by providing incentives to MNOs and

network providers for leasing more resources. This ensures fair
pricing due to market competition among network providers
and MNOs, while allowing MNOs and network providers to
achieve energy and bandwidth efficiency respectively; ensuring
QoS to mobile users; and sufficient profits to content providers.
It is also observed from Figs. 3(c)–3(h), that ECs form
the most energy-expensive segment, thereby highlighting the
importance of this study.

It is concluded from Figs. 3(i)–3(l) that network providers
can limit γAN and γTN to 7.7% and 6.1% respectively, if
σi ≥ 30 s. Furthermore, γTN is limited to ≤ 1.3%, if
κ = 108 bits. Since the TN bandwidth slice is a more
expensive resource than the AN slice [18], it is recommended
that content providers lease sufficient resources (high σi) from
the MNOs so that σi ≥ 30 s can be maintained.

The above benefits are observable only if there is no con-
straint on the total cache size deployed in the entire network.
Instead, if there is a fixed budget on the cache size deployed
in the network, then cache deployment at intermediate levels
is essential to maximize resource utilization [34].

IV. DISCUSSION AND CONCLUSIONS

Real-time networks are often faced with a trade-off between
delay, energy efficiency, and bandwidth efficiency. In the
network scenario considered in Section III, reasonable delay,
transport energy, and bandwidth efficiency are achieved if the
mean caching time σi ≥ 30 s, while caching energy efficiency
is achieved for low σi, i.e., σi ≤ 100 s. Therefore, delay,
energy efficiency, and bandwidth efficiency are simultaneously
achieved if σi is maintained between 30 s and 100 s for the
considered scenario. This allows the network orchestrator to
address the trade-off between bandwidth efficiency, energy
efficiency, and delay in an Fe-RAN, and facilitates simple EC
design for 5G to MNOs. Moreover, caching energy efficiency
improves marginally on decreasing σi (say from 10 s to
1 s) which highlights the importance of the derived model.
Therefore, arbitrarily choosing high σi to enhance QoS or
low σi for energy efficiency will incrementally improve the
respective figures at the cost of a significant decrease in other
performance metrics.

Moreover, it is concluded that in a scenario with a low delay
δi requirement, energy efficiency can be achieved by selecting
low VS size κ and moderate σi (Figs. 3(a), 3(c)). Otherwise,
the content provider will have to pay a high amount to the
MNO in order to maintain a high σi. Furthermore, a QoS-
aware energy- and bandwidth-efficient caching strategy should
also aim to appropriately select the maximum number of VS
downloads from the CU beyond which it is transferred to Ei.
Finally, low user mobility and high caching time adversely
affects caching energy efficiency as discussed in Section III.

Properly designed pricing strategies by the network or-
chestrator can enable MNOs to maintain σi in the desirable
range [38]. This will facilitate bandwidth efficiency to the
network providers by limiting the bandwidth consumed in
the TN γTN to less than 6.1% (Section III-E), and allow
content providers to satisfy stringent QoS requirements by
limiting δi to ≈ 1 s. It will also allow MNOs to decrease VS
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caching and transportation energy consumption by up to 93%
and 90.3%, respectively, under the assumed network scenario
(Section III-E). This corresponds to relatively better bandwidth
efficiency and QoS compared to [15], in which a fronthaul load
reduction of ≈ 35%− 50% was reported.

The performance results derived from the model illustrate
the importance of setting the VS deletion rates at ECs to
achieve delay, energy, and bandwidth efficiency. Moreover,
the ability to set the desired delay (QoS, Fig. 3(a)) can allow
the network orchestrator to design caching schemes for het-
erogeneous services. The analytical framework also provides
insights into a possible game-theoretic setup, in which multiple
tenants own the ECs and TN, and independently control σi
and ζi to achieve the desired network performance with high
energy efficiency.
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