
ar
X

iv
:1

70
3.

04
78

5v
7

 [
cs

.D
C

]
 1

8
Fe

b
20

21
1

Distributed Dual Coordinate Ascent in General

Tree Networks and Communication Network

Effect on Synchronous Machine Learning

Myung Cho, Lifeng Lai, and Weiyu Xu

Abstract

Due to the big size of data and limited data storage volume of a single computer or a single server,

data are often stored in a distributed manner. Thus, performing large-scale machine learning operations

with the distributed datasets through communication networks is often required. In this paper, we study

the convergence rate of the distributed dual coordinate ascent for distributed machine learning problems

in a general tree-structured network. Since a tree network model can be understood as the generalization

of a star network model, our algorithm can be thought of as the generalization of the distributed dual

coordinate ascent in a star network model. We provide the convergence rate of the distributed dual

coordinate ascent over a general tree network in a recursive manner and analyze the network effect on the

convergence rate. Secondly, by considering network communication delays, we optimize the distributed

dual coordinate ascent algorithm to maximize its convergence speed. From our analytical result, we can

choose the optimal number of local iterations depending on the communication delay severity to achieve

the fastest convergence speed. In numerical experiments, we consider machine learning scenarios over

communication networks, where local workers cannot directly reach to a central node due to constraints

in communication, and demonstrate that the usability of our distributed dual coordinate ascent algorithm

in tree networks. Additionally, we show that adapting number of local and global iterations to network

communication delays in the distributed dual coordinated ascent algorithm can improve its convergence

speed.

Index Terms

distributed machine learning, distributed dataset, machine learning over communication networks

M. Cho is with the Department of ECE, Penn State Behrend, Erie, PA 16563, USA (E-mail: mxc6077@psu.edu).

L. Lai is with the Department of ECE, University of California, Davis, CA 95616, USA (E-mail: lflai@ucdavis.edu).

W. Xu is with the Department of ECE, University of Iowa, Iowa City, IA 52242, USA (E-mail: weiyu-xu@uiowa.edu).

http://arxiv.org/abs/1703.04785v7

2

I. INTRODUCTION

In the past decade, machine learning has been driven by huge amount of data, simply called big data. In

various fields including education, finance, transportation, healthcare, engineering, and management, etc.,

big data is fundamentally changing our lives and societies [1], e.g., recommender services [2], disease

diagnosis and analysis [3], or even signal recovery [4]. However, due to limited storage volumes in

storage server and constraints in communication, we face challenges of processing big data. Especially,

big data are very often collected and stored from different locations at different times. Also, it is very

expensive, inefficient, and insecure to aggregate distributed data in one central place. Machine learning

over wireless communication networks can be a good example having these challenges, where machine

learning process is performed through multiple decentralized devices having local data over wireless

communication networks without sharing their raw data with others [5, 6]. Therefore, it is quite natural

to consider solving large-scale machine learning problems with distributed data over communication

networks in order to obtain valuable information from the distributed data.

Solving large-scale machine learning problems dealing with distributed data over communication

networks is a challenging problem, due to the limited resources and obstacles including limited communi-

cation bandwidth, limited storage volume, limited energy consumption or even privacy and security issues.

In order to handle the challenges of distributed data with limited resources, researchers have developed and

studied various algorithms in [7–17] and the references therein. More specially, synchronous Stochastic

Gradient Decent (SGD) [7, 8], synchronous Stochastic Dual Coordinate Ascent (SDCA) [9–11, 13, 14],

asynchronous SGD [12, 15], and asynchronous SDCA [16, 17] for distributed data have been intensively

investigated in the literature. Among them, [13] reports that even though the convergence of SGD does

not depend on the size of data, SDCA can outperform SGD when we need relatively high solution

accuracy. Moreover, asynchronous updating scheme in SGD and SDCA can suffer from the conflicts

between intermediate results.

Motivated by these facts, [9–11] consider using synchronous SDCA to solve regularized loss mini-

mization problems in a star network. In the scenario, data are distributed over a few local workers in the

star network, and each local worker communicates with a central station. The authors in [9–11] analyze

the convergence rate of the distributed SDCA in terms of communication rounds. Espeically, the strong

aspects of the proposed distributed optimization framework in [10, 11] include free-of-tuning parameters

or learning rates compared with SGD-based methods, and the readily computable duality gap for fair

stopping criterion and efficient accuracy certificates.

However, in practice, the local workers may be organized in various types of network topologies such as

3

a tree, a mesh, or a ring. Especially, in wireless communication networks, due to limited communication

power and energy consumption, local workers sometimes cannot directly communicate with a central node.

In this situation, the distributed dual coordinate ascent in a star network cannot be used for distributed

machine learning. And if intermediate nodes are added for the communication from local workers to

a central node, the distributed dual coordinate ascent for a star network will easily suffer from the

increased latency and delay in communication. Therefore, considering communication network topologies

in distributed machine learning problems is an important problem, and taking advantage of the network

topologies may play a significant role in finding efficient solutions for the problems. Then, it is natural

to ask how to design and analyze the distributed dual coordinate ascent over a network with general

topologies beyond a star network. Additionally, since delay and latency in communication can affect the

convergence speed of a distributed machine learning algorithm, it is essential to investigate how network

communication delays will affect the design and convergence rate of distributed dual coordinate ascent

algorithms previsouly introduced in [9–11] in terms of overall computational time instead of the number

of communication rounds. The authors in [18] analyzed the convergence bound in terms of time by

considering communication delays in a network for a consensus optimization problem. Additionally, the

research [19–23] studied separable consensus problems to each worker by using ADMM techniques. We

remark that the regularized loss minimization problem considered in [9–11] is a different problem from the

consensus problems considered in [19–23] in the aspect of separability. Moreover, in [24–26], the authors

considered a distributed deep neural network model. By introducing auxiliary variables, the authors made

the non-convex problem separable, which can lead to a consensus problem over a network. Unlike the

works in [24–26], we consider to solve distributed machine learning problems in an augmented manner

by taking into account communication networks. Therefore, our work focuses on the communication

and network topology’s effect on the distributed machine learning algorithms, while the works in [24–

26] focus on the alternating or block coordinate descent algorithm itself without considering network

constraints to solve neural network problems with auxiliary variables.

The contribution of this paper is three-fold. Firstly, we design the distributed dual coordinate ascent for

a regularized loss minimization problem in a general tree-structured communication network and analyze

the convergence rate of the algorithm over the general tree network. Since a star network is a special

case of a general tree network, our distributed dual coordinate ascent algorithm can be thought of as a

generalized version of the distributed dual coordinate ascent in a star network. Secondly, we study the

influence of the communication constraints in a network on the convergence rate of the distributed dual

coordinate ascent. By considering delays in communication, we optimize the network-constrained dual

coordinate ascent to maximize its convergence speed in terms of time, and provide an analytical solution

4

for the optimal number of local iterations depending on the communication delay severity. The analytical

solution, which is a function of the ratio between the communication delay and the local processing time,

can be used to achieve the fastest convergence speed of the distributed dual coordinate ascent in time.

Finally, we demonstrate the usability of our proposing algorithm in machine learning over communication

networks, where local workers cannot directly reach to a central node.

The rest of the paper is organized as follows. In Section II, we introduce the regularized loss minimiza-

tion problem with distributed data. Section III describes a review of existing works on the synchronous

distributed dual coordinate ascent in a star network. In Section IV, we propose the generalized distributed

dual coordinate ascent in tree-structured networks. Section V describes the convergence analysis of the

generalized distributed dual coordinate ascent. In Section VI, we study the communication delay factor

in the convergence speed of the distributed dual coordinate ascent. In Section VII, we demonstrate the

performance of the generalized distributed dual coordinate ascent and the optimal iteration numbers

for the fast convergence speed. The proposed algorithm and its convergence rate without a proof were

introduced in our previous conference paper [27]. In this journal paper, we provide the full proof of our

theorem in Appendix A, the analysis of network topology and communication effect on the algorithm in

Sections V and VI respectively, and additional numerical experiments in Section VII.

Notations: We denote the set of real numbers as R. We use [k] to denote the index set of the coordinates

in the k-th coordinate block. For an index set Q, Q and ∣Q∣ are used to represent the complement and the

cardinality of Q respectively. We use bold letters to represent vectors and matrices. If we use an index

set as a subscript of a vector (resp. matrix), we refer to the partial vector (resp. partial matrix) over the

index set (resp. with columns over the index set). The superscript (t) is used to denote the t-th iteration.

For example, α
(t)

[k]
represents a partial vector α over the k-th block coordinate set at the t-th iteration.

We reserve the superscript ⋆ to denote the optimal solution to an optimization problem.

II. PROBLEM FORMULATION

We consider the following regularized loss minimization problem [9–11, 14, 16, 17]:

minimize
w∈Rd

P (w) ≜ λ

2
∣∣w∣∣2 + 1

m

m∑
i=1

ℓi(wTxi), (1)

where xi ∈ R
d, i = 1, 2, ...,m, are data points, ℓi(⋅), i = 1, 2, ...,m, are loss functions, and λ is a

tuning parameter for a regularization term. Note that due to the regularization term for w, which is a

global variable, this minimization problem is not separable for each distributed node unlike the consensus

problems introduced in [19–23], where the regularization term is defined like ∑
K
k=1 r(wk). Here r(⋅) is a

regularization function and K is the number of distributed nodes. By considering different loss functions,

5

(1) can be interpreted as various machine learning problems including regression and classification. For

instance, for linear classification, by choosing the loss function ℓi(⋅) to the hinge loss, i.e., ℓi(wTxi) =
max(0, 1 − yi(wTxi)), (1) with labeled dataset {(xi, yi)}mi=1, where yi ∈ R is label information, can be

understood as the linear Support Vector Machine (SVM) classification problem. For regression, we can

set ℓi(wTxi) = (wTxi − yi)2 with some measurement data yi, i = 1, 2, ...,m. Throughout the paper, we

assume that the data points xi, i = 1, 2, ...,m, are normalized in ℓ2 norm, i.e., ∥xi∥ ≤ 1, i = 1, 2, ...,m,

and the dataset {(xi, yi)}mi=1 is stored in a distributed manner over a network having K local workers.

More specifically, the k-th local worker has training data {(xi, yi)}, i ∈ [k], where [k] represents the

index set for the training data of the k-th local worker. Hence, we have ∣ ∪Kk=1 [k]∣ =m.

From the primal problem (1), we have the following dual problem by considering the conjugate function,

i.e., ℓi(a) = supb ab − ℓ∗i (b), where a, b ∈ R:

maximize
α∈Rm

D(α) ≜ −λ
2
∣∣Aα∣∣2 − 1

m

m∑
i=1

ℓ∗i (−αi), (2)

where αi is the i-th element of the dual vector α ∈ Rm, and the data matrix A ∈ Rd×m whose i-th column

is 1
λm

xi, i.e., Ai =
1

λm
xi, is introduced for notation convenience. By defining w(α) ≜ Aα shown in

[10, 14], we have the duality gap as P (w(α)) −D(α) for a useful and readily computable stopping

criteria. It is noteworthy that from the duality principle [28], we have P (w) ≥ D(α) for all w and α,

and thus, P (w(α)) ≥D(α) for all α. If α = α⋆, which is the optimal solution to the dual problem (2),

and the loss function ℓ(⋅) is convex, we have P (w(α⋆)) =D(α⋆) from strong duality condition. Thus,

w(α⋆) becomes w⋆, which is the optimal solution to the primal problem (1). Additionally, if the loss

function ℓi(⋅) is non-convex, the primal problem will become a non-convex problem. However, the dual

problem is still expressed in a convex problem [28]. Therefore, our algorithm to tackle the dual problem

can provide an optimal solution to the dual problem. Unfortunately, in this case, there is no guarantee

that the optimal solution to the dual problem becomes an optimal solution to the primal problem.

In the following sections, we consider a distributed dual coordinate ascent for the regularized loss

minimization problem over distributed data. We firstly review the previous research on the distributed

dual coordinate ascent in a star network.

III. REVIEW OF THE DISTRIBUTED DUAL COORDINATE ASCENT IN A STAR NETWORK

The distributed dual coordinate ascent for the regularized loss minimization problem over distributed

data in a network has been studied in [9–11, 16], where a star network topology for the network is

considered as shown in Figure 1. In particular, the authors in [10] introduced a distributed dual coordinate

ascent framework, called the Communication-Efficient Distributed Dual Coordinate Ascent (CoCoA), and

6

Fig. 1. Illustration of a star network having one central station and three local workers W1, W2 and W3.

later proposed CoCoA+ [11], which is an enhanced version of CoCoA by adjusting the parameter value

in the accumulation of intermediate results for faster convergence speed than CoCoA. Since we are

interested in the distributed dual coordinate ascent for various structural network topologies and their

influences to the performance of the distributed algorithm, we provide a high level review of CoCoA

proposed in [10].

Suppose a star network has K local workers and each local worker has disjoint parts of dataset

{(xi, yi)}mi=1. With this problem setting, the authors in [10] introduced the distributed dual coordinate

ascent for a star network. Due to the nature of the distributed algorithm, the algorithm updates the

global variable in the outer iteration, and locally each worker has inner iterations. Particularly, at the

t-th outer iteration of the algorithm, each worker solves a local dual problem for given dataset via

LocalDualMethod(⋅), which represents any dual method to solve (2), e.g. Stochastic Dual Coordinate

Ascent (SDCA), simply denoted by LocalSDCA(⋅), through inner iterations. And then, each local worker

sends the intermediate solution to the center node. The center node collects and accumulates all the

results from the local workers, and then updates and shares the global solution w(t) at the t-th outer

iteration back to the workers. Algorithm 1 describes the detail steps of the distributed coordinate ascent

in a star network. The following theorem characterizes the convergence rate of the algorithm in [10].

Theorem 1 ([10, Theorem 2]). Suppose that Algorithm 1 is run for T outer iterations of K local

computers with the procedure LocalSDCA(⋅) having local geometric improvement Θ. Further, assume

that the loss functions ℓi(⋅) are 1/γ-smooth. Then, the following geometric convergence rate holds for

the global (dual) objective:

E[D(α⋆) −D(α(T))] ≤ (1 − (1 −Θ) 1
K

λmγ

ρ + λmγ
)T (D(α⋆) −D(α(0))), (3)

where m is the size of the whole dataset and ρ is any real number satisfying

ρ ≥ ρmin ≜ maximize
α∈Rm

λ2m2∑K
k=1 ∣∣A[k]α[k]∣∣2 − ∣∣Aα∣∣2

∣∣α∣∣2 ≥ 0.

7

Algorithm 1: Communication-efficient Distributed Dual Coordinate Ascent (CoCoA) [10]

Input: T ≥ 1
Output: w, α

Data: {(xi, yi)}mi=1 distributed over K local workers

Initialization: α
(0)

[k]
← 0 for all local workers, and w(0) ← 0

for t = 1 to T do

for all local workers k = 1,2, ...,K in parallel do

(△α[k],△wk) ← LocalDualMethod(α
(t−1)

[k]
,w(t−1))

α
(t)

[k]
← α

(t−1)

[k]
+ 1

K
△α[k]

end

send △wk, k = 1, ...,K , to the central station

w(t) ← w(t−1) + 1
K ∑K

k=1△wk

distribute w(t) to local workers

end

With LocalSDCA(⋅), which uses the SDCA to solve the dual problem for given dataset at each worker,

the local geometric improvement Θ can be set to

Θ = (1 − s/m̃)H , (4)

where m̃ ≜ maxk=1,...,K mk is the size of the largest block of coordinates among K local workers,

H is the number of local (or inner) iterations in LocalSDCA(⋅), and s ∈ [0, 1] is a step size of the

gradient ascent which determines how far the next solution will be taken from the current solution at

each iteration. Additionally, by choosing different parameter values instead of 1
K

in the summation of

△wk’s in Algorithm 1, the authors in [11] proposed CoCoA+, which has the same framework as CoCoA

introduced in Algorithm 1, for faster convergence speed than CoCoA.

CoCoA has been shown to work well for distributed machine learning problems with distributed data

in a star network, which is a simple network model. However, the topology of a network may not

necessarily be a star network. In the next section, we study the distributed dual coordinate ascent in a

general network, which is a tree-structured network model.

IV. GENERALIZED DISTRIBUTED DUAL COORDINATE ASCENT IN TREE NETWORKS

One may think of a connected communication network, e.g., a spanning tree network, as a virtual star

network by considering the long relays of links from a central node to each leaf node as a direct virtual-

link through intermediate nodes. However, since communication delays normally exist in a network and

8

Fig. 2. Illustration of a tree-structured network, which has two layers. In the network, a central station (root node) has three

direct child nodes S1, S2 and S3. Each node Si has three direct child nodes Wij , j = 1,2,3.

the communication is a big burden of distributed algorithms, the distributed algorithms in the virtual

star network can easily suffer from the long delays in communication by significantly slowing down the

convergence of the distributed algorithms. Therefore, in a connected communication network, it is efficient

to perform distributed optimization among local workers close to each other, and then, communicate the

intermediate results to a central or sub-central nodes. Based on this idea, we investigate how to design

the distributed dual coordinate ascent over a general tree-structured network, and provide its convergence

analysis. Since every connected network has a spanning tree, we choose to investigate the distributed

algorithm over a tree-structured network, which is also a generalization of a star network.

In Figure 2, we show a two-layer tree network as an example of a general tree-structured network,

where the number of layers represents the depth of the tree network. The root node of the tree network

represents the central station of the network. Each tree node may have several direct child nodes. For

example, the root node has three direct child nodes S1, S2, and S3 in Figure 2. A node not having any

child node is called as a leaf node. Without loss of generality, we assume that only leaf nodes have the

distributed data, which are disjoint segmented blocks of the data matrix A in column-wise. Note that

Ai =
1

λm
xi, where Ai is the i-th column of A and xi ∈ R

d is the i-th data point. If a non-leaf node Q

has data, we can always create a virtual leaf node L attached to Q, and “stores” the data in L. Thus,

without loss of generality, we can assume that the dataset {(xi, yi)}mi=1 are distributed only to leaf nodes.

For a tree node Q, we can consider a subtree including the tree node Q and its indirect and direct child

nodes up to leaf nodes, simply called the subtree Q. Figure 3 illustrates the subtree Q. We also denote

the set of indices of all data points stored in the subtree Q as Q, and the set of indices of data points

in the k-th direct child node of Q as [Q;k]. Therefore, [Q;k] ⊂ Q. Then, α[Q;k] represents the partial

9

Fig. 3. Illustration of a subtree including a node Q on the i-th layer and its direct and indirect child nodes.

vector of α ∈ Rm corresponding to the data points in the subtree with the k-th direct child node of Q.

Since each node is used for an index set, we denote the number of data points stored in the subtree Q,

i.e., the cardinality of Q, as ∣Q∣. In a tree network, we also assume that a node can only communicate

with its direct child nodes or its direct parent node.

We then introduce the generalized distributed dual coordinate ascent, which we call TreeDualMethod,

to solve the dual problem (2) with distributed data stored over a general tree-structured network. For

simplicity, we consider the tree network in Figure 2, where the number of layers, p, is 2. In a leaf

node Wij , TreeDualMethod in Procedure P is run with a local dataset for Tp iterations, and then, the

intermediate value △w is shared with its direct parent node, i.e., the sub-central node Si. In the sub-

central node Si, a global variable w for the i-th cluster is updated, and distributed to local workers

Wij’s. After running this process for Ti times independently in clusters, the variables △w’s from clusters

are shared with the central node. The central node updates and shares the global variable w for whole

distributed nodes. And the algorithm repeats this process until some stopping criteria holds. Algorithm

2, Algorithm 3 and Procedure P describe the computational steps of TreeDualMethod for the root node,

a general tree node (not root or leaf), and a leaf node respectively.

It is noteworthy that like the distributed algorithm in a star network case, in the distributed networks,

the output △wQ in Procedure P and Algorithm 3 or the output w in Algorithm 2 are transmitted between

nodes, while the outputs α and △αQ are not transmitted through communication networks. Each node

generates α or ∆αQ as an output of each node, but those outputs are used in each node at the next iteration

without transmission to other nodes. Therefore, even though we have a large dataset, the communication

cost is not affected by the size of the dataset. Also, when the dimension of α ∈ Rm is large, i.e., large

amount of data, and the dimension of w is much smaller than m, which is normally the case in big data,

our distributed algorithm will have less communication burden.

10

Algorithm 2: TreeDualMethod: Distributed Dual Coordinate Ascent for the Root Node Q on the

layer-0

Input: T0 ≥ 1

Initialization: α
(0)

[Q;k]
← 0 for all direct child nodes k of node Q, w(0) ← 0

for t = 1 to T0 do

for all direct child nodes k = 1,2, ...,K0 in parallel do

(△α[Q;k],△wk) ← TreeDualMethod(α
(t−1)

[Q;k]
,w(t−1))

α
(t)

[Q;k]
← α

(t−1)

[Q;k]
+ 1

K0
△α[Q;k]

end

w(t) ← w(t−1) + 1

K0
∑K0

k=1△wk

end

Output: α(T0), and w(T0)

Algorithm 3: TreeDualMethod: Distributed Dual Coordinate Ascent for a General Tree Node Q

on the layer-i, i = 1, 2, ..., p − 1

Input: Ti ≥ 1, αQ, w

Initialization: α
(0)

[Q;k]
← α[Q;k] for all direct child nodes k of node Q , w(0) ←w

for t = 1 to Ti do

for all direct child nodes k = 1,2, ...,Ki of Q in parallel do

(△α[Q;k],△wk) ← TreeDualMethod(α
(t−1)

[Q;k]
,w(t−1))

α
(t)

[Q;k]
← α

(t−1)

[Q;k]
+ 1

Ki
△α[Q;k]

end

w(t) ← w(t−1) + 1
Ki
∑Ki

k=1△wk

end

Output: △αQ ≜ α
(Ti)
Q −α

(0)
Q , and △wQ ≜AQ△αQ

V. CONVERGENCE ANALYSIS OF TREEDUALMETHOD OVER A TREE NETWORK

We analyze the convergence rate of the distributed dual coordinate ascent in a general tree-structured

network model in this section. In a nutshell, we will show a recursive relation between the convergence

rate of the algorithm at a tree node Q and that at the node Q’s direct child nodes. Hence, the overall

convergence rate of the distributed dual coordinate ascent in a general tree-structured network can be

understood in a recursive manner, where the number of recursions is dependent on the number of layers

of the tree network.

For clear description, let us consider a general tree network model having p layers from the root node

11

Procedure P. TreeDualMethod: Distributed Dual Coordinate Ascent for a Leaf Node Q on the

layer-p

Input: Tp ≥ 1, αQ ∈ R
∣Q∣, and w ∈ Rd consistent with other coordinate blocks of α s.t. w =Aα

Data: {(xi, yi)}i∈Q
Initialization: △αQ ← 0 ∈ R∣Q∣, and w(0) ←w

for h = 1 to Tp do

choose i ∈ Q uniformly at random

find △α maximizing −λm
2
∣∣w(h−1) + 1

λm
△ αxi∣∣2 − ℓ∗i (−(α(h−1)i +△α))

α
(h)
i ← α

(h−1)
i +△α

(△αQ)i ← (△αQ)i +△α
w(h) ← w(h−1) + 1

λm
△ αxi

end

Output: △αQ and △wQ ≜AQ△αQ

to leaf nodes, where the root node is on the layer-0 and the leaf nodes are on the layer-p. Suppose a node

Q on the i-th layer has K direct child nodes on the (i + 1)-th layer shown in Figure 3. We use α[Q;k]

to denote the partial dual variable vector corresponding to its k-th direct child node, where 1 ≤ k ≤ K.

Then, let us define the local suboptimality gap for the k-th direct child node of Q as

ǫQ,k(α) ≜ maximize
α̂[Q;k]

D(α[Q;1], ..., α̂[Q;k], ...,α[Q;K],αQ
) −D(α[Q;1], ...,α[Q;k], ...,α[Q;K],αQ

). (5)

Remark that the local suboptimality gap for the k-th child node is defined with fixing α
Q

and α[Q;i]’s,

where i ≠ k, and only updating α[Q;k]. Thus, the local suboptimality gap for the k-th direct child node of

Q represents the maximum objective value gap that the k-th direct child node of Q can achieve from the

current α(t) value with fixing other αi, i ∉ [Q;k], variables. Then, we introduce the following assumption

about the local geometric improvement of TreeDualMethod at the k-th direct child node of Q.

Assumption 1 (Geometric improvement of TreeDualMethod at a direct child node). For a tree node Q

on the i-th layer, we assume that there exists Θi+1 ∈ [0, 1) such that for any given α, TreeDualMethod

at the k-th direct child node of Q returns an update △α[Q;k] satisfying

E[ǫQ,k(α[Q;1], ...,α[Q;k−1],α[Q;k] +△α[Q;k], ...,α[Q;K],αQ
)] ≤ Θi+1 ⋅ ǫQ,k(α). (6)

Note that Assumption 1 here is introduced for an arbitrary tree node in a general tree network and used

as a starting assumption in mathematical induction for recursive convergence analysis, while Assumption

1 of [10] is introduced for an abstract function in the distributed algorithm framework.

12

Fig. 4. Illustration of the structure of the tree network factor in convergence analysis.

For a leaf node, we use LocalSDCA for TreeDualMethod described in Procedure P as in [10], and

provide the following proposition about the convergence bound for a leaf node B even with the input w

also determined by α
Q

and αQ∖B in Procedure P.

Proposition 1 ([10, Proposition 1]). Let us consider a tree node Q whose direct child node B is a leaf

node. Assume that loss functions ℓi(⋅) are 1/γ-smooth. Then for the leaf node B, Assumption 1 holds with

Θp = (1 − λmγ

1 + λmγ

1

mB

)Tp
. (7)

where mB is the size of data stored at node B, Tp is the number of iterations in Procedure P.

Basically, the geometric improvement condition holds true with LocalSDCA if the k-th direct child node

of Q is a leaf child node with Θ introduced in (4), where s in (4) is
λmγ

1+λmγ
in (7).

Additionally, Theorem 2, which is our main result, shows that if the geometric improvement condition

holds true for direct child nodes of Q, then the geometric improvement condition also holds true for Q;

thus it leads to a recursive calculation of the convergence rate for the whole tree network.

Theorem 2. Let us consider a tree node Q on the i-th layer which has Ki direct child nodes satisfying

the local geometric improvement requirement introduced in Assumption 1, with parameters Θ1
i+1, Θ2

i+1,

..., and ΘKi

i+1. We assume that Algorithm 3 (or Algorithm 2) has an input w and is run for Ti iterations.

We further assume that loss functions ℓi(⋅)’s are 1/γ-smooth.

Then, for any input w to Algorithm 3 (or Algorithm 2), the following geometric convergence rate holds

for Q:

E[D(α∗Q,αQ
) −D(α(Ti)

Q
,α

Q
)] ≤ (1 − (1 −Θi+1) 1

Ki

λmγ

ρi + λmγ
)Ti(D(α∗Q,αQ

) −D(α(0)
Q

,α
Q
)),

where Θi+1 = maxkΘ
k
i+1, and ρi is any real number satisfying

ρi ≥ ρmin ≜ maximize
αQ∈R∣Q∣

λ2m2∑Ki

k=1 ∣∣A[Q;k]α[Q;k]∣∣2 − ∣∣AQαQ∣∣2
∣∣αQ ∣∣2 ≥ 0.

13

Note that the parameter ρi is related to the overlapping level among the datasets in the subtree Q. When

we have more overlap among local datasets in the subtree, the parameter ρi can become larger, which

will lead to slower convergence rate.

Proposition 1 is for the local geometric improvement of TreeDualMethod at a leaf node. Namely,

Assumption 1 holds for leaf nodes. Theorem 2 is for the local geometric improvement of TreeDualMethod

at any non-leaf tree node. Note that (1− (1−Θi+1) 1
Ki

λmγ
ρi+λmγ

)Ti in (8) becomes Θi for a tree node Q on

the i-th layer, and then, (8) is interpreted as the local geometric improvement of TreeDualMethod at the

direct child node by the direct parent node of Q, which is a node on the (i − 1)-th layer. Basically, for

the convergence rate of the generalized dual coordinate ascent over the whole tree network, we use the

mathematical induction, where Proposition 1 is the base case, Assumption 1 is the starting assumption of

the mathematical induction, and Theorem 2 completes the induction for the recursive convergence analysis.

Therefore, by combining Theorem 2 with Proposition 1, we can recursively obtain the convergence rate

of the generalized distributed dual coordinate ascent algorithm for the whole tree network with the fact

that Assumption 1 holds true for every node in a tree network. Figure 4 illustrates the structure of the

tree network factor in convergence rate, shown through Θ1 and Θ2.

We remark that Theorem 2 is different from Theorem 2 of [10] in three aspects. Firstly, Theorem 2 is

applicable to any tree node in a general tree network, beyond a star network discussed in [10]. Secondly,

even when the input w of Algorithm 3 is determined by not only αQ but also α
Q

, Theorem 2 holds.

Note that w = A(αQ,αQ
) = AQαQ +AQ

α
Q

. Unlike our Theorem, in Theorem 2 of [10], due to the

star network topology, a local worker has w as an input from the root node which is updated with

intermediate results obtained from all the local workers. Hence, α
Q

is not considered in Theorem 2 of

[10] and its proof. Our proof of Theorem 2 addresses this challenge that the input w is also affected by

α
Q

. Therefore, we have to deal with both updating coordinates αQ ∈ R
∣Q∣ and un-updating coordinates

α
Q
∈ R∣Q∣, where ∣Q∣+ ∣Q∣ =m, while in the proof of Theorem 2 of [10], all the coordinates are updating

coordinates, i.e., α ∈ Rm. For the readability, we place the proof of Theorem 2 in Appendix A. Finally,

unlike [10], we do not consider the different local-dual problem introduced in Eqn. (8) of [10] for local

workers, but deal with the original dual problem introduced in (2) with fixed w ≜ A
Q
α

Q
for a general

tree node Q. Therefore, our theorem works for any tree node in a general tree network rather than just

for one central node, which allows the recursive convergence analysis of the distributed dual coordinate

ascent in a general tree network.

By denoting the convergence bound in (8) as Θi, i.e.,

Θi = (1 − (1 −Θi+1)Ci

Ki

)
Ti

, (8)

14

where Ci represents
λmγ

ρi+λmγ
, Ti is the outer iteration in a tree node on the i-th layer, and Ki is the

number of direct child nodes attached to a tree node on the i-th layer, we can express the convergence

bound on the whole tree-network, i.e., Θ0, in terms of the number of layers p, and the number of nodes

Ki’s and Ci’s, as follows:

Θ0 = (1 − (1 −Θ1)C0

K0

)
T0

= (1 − (1 − (1 −⋯(1 −Θp)Cp−1

Kp−1
)
Tp−1)⋯C1

K1

)
T1)C0

K0

)
T0

, (9)

where Θp is introduced in (7). For simplicity, we assume that all tree nodes on the i-th layer have the

same number of direct child nodes Ki.

If ∣Ti ⋅
CiΘi+1

Ki−Ci
∣≪ 1, for i = 0, 1, ..., p − 1, by applying the binomial approximation, we can have

Θi = (Ki −Ci

Ki

)
Ti(1 + Ci

Ki −Ci

Θi+1)
Ti

≈ (Ki −Ci

Ki

)
Ti(1 + Ci

Ki −Ci

Θi+1 ⋅ Ti.)
and approximate (9) as follows:

Θ0 ≈(K0 −C0

K0

)
T0

+

p−1∑
r=1

r∏
i=0

(Ki −Ci

Ki

)
Ti

⋅
r−1∏
j=0

CjTj

Kj −Cj

+

p−1∏
i=0

(Ki −Ci

Ki

)
Ti(CiTi

Ki −Ci

)Θp. (10)

In Section VII, we will investigate the gap between (9) and (10) through numerical experiments as well

as analyze the network topology’s effect including the number of workers Ki and the number of layers

p on the convergence bounds over the whole tree network introduced in (9) and (10).

We have discussed how the network topology can affect the convergence rate of the distributed dual

coordinate ascent, which is expressed in terms of the number of layers, the number of nodes, and

the number of iterations. However, for distributed algorithms, communications in a network can be

a bottleneck of the convergence of the distributed algorithms. Therefore, it is quite natural to consider

communication delay, which is normally expressed in time, in order to predict or estimate the convergence

speed of the distributed algorithms. In the next section, we will study how communication delay, which is

one of major network constraints, impacts the convergence of distributed dual coordinate ascent algorithms.

By taking communication delays into account, we will optimize the number of local iterations Tp in

Procedure P and Ti in Algorithm 3 for maximum convergence speed.

VI. IMPACTS OF COMMUNICATION DELAY ON THE CONVERGENCE RATE OF DISTRIBUTED DUAL

COORDINATE ASCENT

Earlier works [9–11] bounded the convergence of distributed dual coordinate ascent algorithms with

respect to the number of inner and outer iterations. However, in distributed algorithms, there may be

significant communication delays in a distributed network. Thus, the convergence speed of distributed

algorithms depends on not only how many iterations of these algorithms have been run, but also the

communication delays in performing these iterations. Intuitively, if the communication delay is close to

15

Fig. 5. Definition of delay and computational time.

zero, local workers may be better to perform a small number of local iterations, and communicate with

the central station at a higher frequency; on the other hand, if the communication delay is large, namely,

there is a large communication cost, then local workers may want to perform more local iterations before

communicating with the central station in order to speed up convergence. Therefore, our goal here is to

investigate the convergence speed of distributed dual coordinate ascent with respect to total execution time

including computational time and communication delays, and to optimize the number of local iterations

by considering communication delays to achieve the maximum convergence speed of the distributed

dual coordinate ascent. The research [18, 29–31] studied the impact of the communication delays on

the convergence rate of algorithms in various distributed optimization problems including distributed

consensus problems. However, for the regularized loss minimization problem that we deal with in this

paper, to the best of our knowledge, our paper is the first one to analytically study the communication

delay’s impact on the convergence rate, and finds the optimal number of local iterations depending on

the communication delay severity.

For simplicity, let us first consider a star network as shown in Figure 1 and the corresponding Algorithm

1. Since the communication delay is normally given in time, we need to consider both time and the

number of iterations in the convergence analysis in order to obtain the optimal number of iterations in

practical applications having communication delay and computational time. We denote the round-trip

communication delay between a local worker and the central station as tdelay. We use tlp to denote the

computational time for one local iteration at a worker, and use tcp to denote the computational time for

parameter update at the central station. Figure 5 illustrates the communication delay, and the processing

time of each local and central station.

Suppose that each local worker performs Tp local iterations before communicating with the central

station, and there are T0 outer iterations in total. Then, the total experienced time is

ttotal = (tlpTp + tdelay + tcp) ⋅ T0. (11)

Hence, the number of outer iterations T0 is given by

16

T0 =
ttotal(tlpTp + tdelay + tcp) . (12)

From (8), for T0 outer iterations, the expected gap between the optimal objective value and the current

objective value with Algorithm 1 is expressed as

(1 − (1 − [1 − δ]Tp)C
K
)
T0

, (13)

where δ = s
m̃

, C = λmγ/(ρ+λmγ), and K is the number of local workers. In order to minimize the gap in

objective value (13) for a given total time ttotal, we introduce the following optimization problem over

the number of local iterations Tp by plugging (12) into (13):

minimize
Tp≥0

F (Tp) ≜ (1 − (1 − [1 − δ]Tp)C
K
)

ttotal
tlpTp+tdelay+tcp

. (14)

In order to figure out the optimal number of local iterations, let us find the critical point of the objective

function F (Tp). By applying logarithm to F (Tp), we have

lnF (Tp) = ttotal/tlp
Tp + (tdelay + tcp)/tlp´¹¹¸¹¹¶

(A)

ln(K −C
K

+
C

K
[1 − δ]Tp)

´¹¹¸¹¹¹¶
(B)

. (15)

(15) can be interpreted as the multiplication of two parts: the fraction part (A) and the logarithm part

(B). Note that the fraction part (A) is a decreasing function over Tp. And for the logarithm part (B),
as Tp increases, (B) goes to ln((K −C)/K), which is less than zero, due to the condition 0 ≤ 1− δ < 1.

At Tp = 0, lnF (Tp) is 0 due to (B) = 0. As Tp goes to infinity, lnF (Tp) will go to 0 due to (A) = 0.

Therefore, we can expect at least a critical point at some Tp. In order to figure out the critical point of

(15), which is the same critical point of F (Tp), we calculate the first order condition as follows:

d lnF (Tp)
dTp

=
(K−C

K
)(ttotal

tlp
)(1 − δ)Tp ln(1 − δ)

(K−C
K
+ C

K
[1 − δ]Tp)(Tp +

tdelay+tcp
tlp

) −
(ttotal

tlp
) ln (K−C

K
+ C

K
[1 − δ]Tp)

(Tp +
tdelay+tcp

tlp
)2 = 0. (16)

By simplifying (16) and denoting
tdelay+tcp

tlp
to r, we have the first order condition over Tp as

K −C

K
(Tp + r)[1 − δ]Tp

ln(1 − δ)
´¹¹¹¸¹¹¹¶

(C)

−(K −C
K

+
C

K
[1 − δ]Tp) ln(K −C

K
+
C

K
[1 − δ]Tp)

´¹¹¹¸¹¹¶
(D)

= 0. (17)

When Tp is large enough, (D) is approximated to (K−C
K
) ln(K−C

K
). And then, we have

K −C

K
(Tp + r)[1 − δ]Tp

ln(1 − δ) = K −C

K
ln(K −C

K
). (18)

Note that (18) has Lambert W-function [32], which is defined as when xex = a, the solution x is W (a),
where W (⋅) is the Lambert W-function. By using the definition of the Lamber W-function, we have the

following optimal local iteration Tp from (18):

17

Tp =
1

ln(1 − δ)W([1 − δ]
r
ln(K −C

K
)) − r. (19)

From the recursive manner of the convergence analysis in a tree network as introduced in Section

V, the optimal number of iterations Ti in Algorithm 3 for a node Q can also be obtained by using

aforementioned equation (14) with slightly different interpretation. In the tree network, the number of

local iterations Tp in (14) is understood as the number of local iteration Ti in Algorithm 3 for the

node Q. The computational time for the local iteration at a worker, denoted by tlp, is interpreted as the

computational time for one-time receiving the updating intermediate results from Q’s child nodes. And

tdelay and tcp represent the communication delay time and the processing time at Q’s direct parent node

respectively. Thus, with the same equation as (14) with different interpretation, the optimal number of

local iterations for a general tree node Q can be obtained as (19).

Since the objective function F (Tp) in (14) represents the convergence bound in terms of time, it is

clearly recognized that for a fixed local iteration Tp, the larger communication severity r = tdelay/tlp
exists, the slower convergence rate we have. Additionally, if in a network, a central node, sub-central

nodes and local workers are needed to be chosen, by considering the convergence analysis shown in a

recursive manner and the communication delay between layers, choosing a root node making the depth

of the connected network shallow will be better for fast convergence.

In the numerical experiments section, we will further investigate the impact of the communication

delay severity r, and other parameters including C , K, and δ in (19) on the optimal number of local

iterations Tp.

VII. NUMERICAL EXPERIMENTS

In wireless communication networks, it can often occur that the local workers are located out of

communication range from the central node due to communication constraints such as limited communi-

cation power, long distance, limited bandwidth, and limited latency, etc. By reflecting the communication

constraints, in the numerical experiments, we consider machine learning scenarios over communication

networks, where local workers cannot directly communicate with a central node. Thus, in the distributed

dual coordinate ascent for a star network, local workers can only share their local solutions with a central

node through multiples of intermediate nodes, which can possibly cause heavy communication delay

and latency. For comparison, we solve machine learning problems including regression and classification

over different communication networks having different delays with the following datasets: KDD Cup

18

1998 dataset1, covertype dataset2 [33], and wine quality dataset3 [34]. In addition, we numerically check

that the optimal number of local iterations and demonstrate the impact of communication delay on the

convergence speed of the distributed dual coordinate ascent by varying the communication delay in

networks. And, we further numerically investigate the effect of network topology on the convergence of

the distributed dual coordinate ascent over a tree network.

We compare the convergence of the generalized distributed dual coordinate ascent in tree networks

against that in star networks with intermediate nodes. Since the authors in [10, 11] compared the

distributed dual coordinate ascent in a star network, so-called CoCoA, with other well known methods

including mini-batch SDCA [35], local SGD and mini-batch-SGD [36], we focus on comparing our

generalized distributed dual coordinate ascent in tree networks with that in star networks by considering

network constraints, especially, communication delay and latency. Additionally, since we are interested in

the communication network’s effect on the convergence speed of the synchronous distributed dual coordi-

nate ascent, considering the CoCoA+ [11], which is the updated version of CoCoA, or an asynchronous

updating method, is out of the scope of this paper.

A. Machine learning over communication networks

We consider both regression and classification problems with KDD Cup 1998 dataset and the covtype

dataset over communication networks. In the communication networks, we assume that local workers

cannot directly reach to a central node, and huge communication delay exists due to the long relay of

communication path. In order to reflect this scenario, we deal with various communication delays between

the central node and its direct child nodes.

1) KDD Cup 1998 regression problem: In this numerical experiment, we test our algorithm and

analysis for a ridge regression problem with KDD Cup 1998 dataset having 481 attributions including a

label and 95412 instances. We consider the following specific optimization problem by setting ℓi(wTxi) =
(1
λm

wTxi − yi)2:

minimize
w∈Rd

λ

2
∣∣w∣∣2 + 1

m
∣∣ATw − y∣∣2, (20)

where A ∈ Rd×m is the feature data matrix whose i-th column is 1
λm

xi and y ∈ Rm is a label vector.

Then, the following dual problem is obtained from (20):

1KDD Cup 1998 dataset: https://archive.ics.uci.edu/ml/datasets/KDD+Cup+1998+Data

2Binary Covertype dataset: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#covtype.binary

3Wine quality dataset: https://archive.ics.uci.edu/ml/datasets/wine+quality

https://archive.ics.uci.edu/ml/datasets/KDD+Cup+1998+Data
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#covtype.binary
https://archive.ics.uci.edu/ml/datasets/wine+quality

19

(a) r = 1 (b) r = 102 (c) r = 104

Fig. 6. Duality gap at the central node in a regression problem as the operation time of the algorithms goes. The distributed

dual coordinate ascent in a tree network (red) and a star network (blue), i.e., CoCoA, are considered when the communication

delay, tdelay, exists between the central node and its direct child nodes. tdelay = r × tlp, where tlp represents the computational

time for one local iteration at a local worker, and r represents the delay severity level.

maximize
α∈Rm

−
λ

2
∣∣Aα∣∣2 − λ2m

m∑
i=1

(α2
i

4
−
yiαi

λm
). (21)

Hence, in a local worker, △α in Procedure P is simply calculated as follows:

△α = −(∣∣xi∣∣2
λm

+
λ2m2

2
)
−1

(w(h−1)Txi +
λ2m2

2
α
(h−1)
i − λmyi), (22)

where (xi, yi) is a randomly chosen data point and α
(h−1)
i is αi value at (h − 1)-th iteration.

For the dataset, we take first 95410 instances and 404 numerical-type attributions for our numerical

experiments. And then, we normalize each attribution with ℓ2 norm of it for the performance of regression

operation, and then normalize each instance with ℓ2 norm in order to make each instance xi hold the

condition ∣∣xi∣∣ ≤ 1. We set the tuning parameter λ to 1. For the communication networks, we consider

a tree network model having ten local workers, two sub-central nodes (each having five local workers),

and one central node. The simulated star network has ten local workers and one center node. In both

cases, we evenly split the data to ten local workers; namely, 9541 instances without overlap are assigned

to each local worker.

We set up a scenario where communication delay, tdelay, exists between the center node and its direct

child node. Therefore, in a star network, the communication delay exists between the central node and

local workers, while a tree network has the delay between the central node and the sub-central node. We

assume that communication delays between sub-central nodes and local workers are negligible. We set

the communication delay tdelay = r × tlp, where tlp is the computational time for one local iteration at a

worker and the delay severity r is varied from 1 to 104. Hence, if the delay severity r is huge, then, there

exists huge communication delay in the network when it is compared to the local processing time for one

iteration. For the algorithm in the tree network, we set the number of local iterations in local workers

20

(a) r = 1 (b) r = 102 (c) r = 104

Fig. 7. Duality gap at the central node in a classification problem as the operation time of the algorithms goes. The distributed

dual coordinate ascent in a tree network (red solid line) and a star network (blue dotted line), i.e., CoCoA, are considered when

the communication delay, tdelay, exists between the central node and its direct child nodes. tdelay = r× tlp, where tlp represents

the computational time for one local iteration at a worker, and r represents the delay severity level.

and the number of communications between the local workers and the sub-central node to 1000 and 2

respectively. For the algorithm in the star network, the number of local iterations at local workers is set

to 1000. Figure 6 shows the duality gap at the central node as the operation time goes, and demonstrates

that as the communication delay severity increases, the gap between a tree network and a star network in

the convergence speed of the distributed algorithm is increased, which indicates the distributed algorithm

in a star network can suffer more from the communication delay effect.

2) Covertype dataset classification problem: We further conduct the comparison between the dis-

tributed dual coordinate scent in a star network and a tree network with a standard hinge loss ℓ2 regularized

SVM. We assume that the communication delay between the central node and its direct child nodes exists

in the communcaiton networks. In this experiment, we use the preprocessed Covertype dataset [37], which

is a binary classification dataset having 581012 instances and 12 attributions including label information.

The 12 attributions are expressed as 54 columns of data with 10 quantitative variables, 4 binary wilderness

areas and 40 binary soil type variables. In order to satisfy the condition ∣∣xi∣∣ ≤ 1, we normalize the dataset

and yi ∈ {−1, 1}, i = 1, ...,m. In this simulation, we organize a tree network having one central node,

two sub-central nodes, and eight local workers. Each sub-central node has four local workers. Each local

worker has evenly divided instances of the dataset without overlap. For the tree network, the number of

communications between the local workers and the sub-central node is set to 10. The number of local

iterations in both networks is set to 300.

For SVM, we consider the soft-margin SVM classification having hinge loss function, i.e, ℓi(wTxi) ≜
max(0, 1 − yi(1

λm
wTxi)) as follows:

21

minimize
w∈Rd

λ

2
∣∣w∣∣2 + 1

m

m∑
i=1

max(0,1 −ATw), (23)

where Ai, the i-th column of the matrix A, is 1
λm

yixi, max(⋅) is element-wise operator, and 0 ∈ Rm

and 1 ∈ Rm are the all 0 and all 1 vectors respectively.

Then, the dual problem of (23) is stated as follows:

maximize
α∈Rm

m∑
i=1

αi −
1

2λ
∣∣Aα∣∣2 subject to 0 ≤ αi ≤

1

m
, ∀i. (24)

Note here that while deriving the dual problem (24), we have w = 1
λ
Aα as the dual-primal variable

relation. Then, the local problem for a local worker Q is stated as follows:

maximize
αQ∈R∣Q∣

−
λ

2
∣∣w + 1

λ
AQαQ∣∣2 +∑

i∈Q

αi +∑
i∈Q

αi

subject to 0 ≤ αi ≤
1

m
, ∀i ∈ Q, (25)

where w ≜ 1
λ
A

Q
α

Q
= w − 1

λ
AQαQ. Then, in Procedure P for updating △α, we solve the following

optimization problem:

△α = argmax
△α

−
λ

2
∣∣w(h−1) + 1

λ2m
△αyixi∣∣2 + (α(h−1)i +△α)

subject to 0 ≤ α
(h−1)
i +△α ≤

1

m
. (26)

Here, we update the randomly chosen i-th coordinate of α, where i ∈ Q. It is also possible to update the

variable αQ with a block coordinate method. In order to solve (26), we calculate the optimal solution

of (26) without the box constraint, i.e., 0 ≤ α
(h−1)
i +△α ≤ 1

m
, and then project the optimal solution onto

the box constraint as follows:

△α =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1/m − α(h−1)i if α

(h−1)
i +△α > 1/m

−α
(h−1)
i if α

(h−1)
i +△α < 0

. (27)

Figure 7 shows the duality gap as the operation time of the algorithms goes. As shown in Figure 7, it is

better to run more local iterations before sharing intermediate results with the central node when there

is huge communication delay in a network.

B. Impact of communication delay on the convergence speed

In order to see the impact of the communication delay severity r, which is the ratio between the

communication delay and the local processing time for one iteration, on the optimal number of local

iterations Tp, we provide Figure 8 to show the optimal number of local iterations Tp by finding the critical

point of (16). In the simulation, we set (C,K, δ, ttotal , tlp, tcp) = (0.5, 3, 1/300, 1, 4 × 10−5, 3 × 10−5). We

set tdelay = r × tlp, where r is a parameter indicating how severe the communication delay is. Figure

22

(a) (b)

Fig. 8. (a) The objective value of (14), which is the convergence bound (or improvement), when the number of iterations Tp

is varied from 1 to 2000, where (C,K, δ, ttotal, tlp, tcp) = (0.5,3, 1/300,1,4 × 10
−5,3× 10−5) and tdelay = r × tlp. The red line

represents the optimal number of local iterations to achieve the fastest convergence rate. (b) Optimal number of iterations to

achieve the fastest convergence rate, when the parameters are the same as (a) and r is varied from 1 to 10
5.

8 (a) shows the objective values of (14) when Tp is varied from 1 to 2000. The red line represents

the optimal convergence bound at the optimal number of local iterations, i.e., the critical point of (16)

with different delay severity. Figure 8 (b) shows the optimal number of local iterations to achieve the

fastest convergence rate in different communication delay severity, where r is varied from 1 to 105. The

red dotted line is obtained by calculating the given analytical solution introduced in (19) with given

aforementioned parameters, while the blue solid line is obtained by numerically calculating (14) and

finding the optimal Tp which minimizes the objective value. This simulation results in Figure 8 show that

when the delay severity becomes larger, the more local iterations are desired for the fast convergence

speed of the overall algorithm. It is noteworthy that in Figure 8(b), the difference between the numerical

results from (14) and the analytical solution in (19) is observed. Especially, there is a big gap in the small

communication delay severity, e.g., r = 1. This gap occurs because in the derivation of the analytical

solution in (19), we approximate (D) of (17) by assuming that the local iteration Tp is large enough.

Hence, the gap becomes smaller when the communication delay severity is increased.

In order to see the impact of the optimal local iterations on a practical machine learning problem, we

similarly conduct a regression task with wine quality dataset [34] in a star network. For the number of

iterations in local workers, we vary Tp from 1000 to 10000, and evaluate the convergence speed in terms

of operation time and duality gap. Figures 9 (a) and (b) show the duality gap as the operation time goes

when the delay severity levels r are set to 1 and 105 respectively. When r = 1, the fastest convergence

is obtained at Tp = 2000, while when r = 105, the fastest convergence is obtained at Tp = 10000. As we

23

(a) (b)

Fig. 9. (a) Duality gap when the delay severity r is 1. (b) Duality gap when the delay severity r is 10
5.

expect in Section VI, when the communication delay is severe, it is better to perform the more local

iterations before sharing the intermediate results with the central node. Also, if the communication delay

is small, frequently sharing the intermediate results with the central node is helpful to improve the overall

convergence speed. Moreover, we calculate the optimal number of iterations in local workers from the

analytical solution (19) to see whether the analytical solution for the optimal number of local iterations

fits to the simulation results. The parameters δ, K, and C are set to δ = 1/1000, K = 4, and C = 0.9

by reflecting the network and simulation settings. With those parameter values, we obtain 2117 for r = 1

and 6028 for r = 105 from the analytical solution in (19), while in the simulation, Tp = 2000 for r = 1

and Tp = 10000 for r = 105 provide the best convergence speed. Despite a little difference between the

simulation result and the analytical solution for the optimal local number of iterations, (19) can still be

used as a guideline for the number of local iterations in local workers.

C. Network topology’s effect on convergence bound

In this subsection, we numerically investigate the effect of network topology on the convergence bound

over the whole tree network, i.e., Θ0 introduced in (9). In order to see the effect of the number of nodes

on the convergence bound, we firstly run simulations by varying the number of child nodes, Ki. For the

simulation, we take into account a tree network having three layers, i.e., p = 3. For other parameters, we

set (Ti, Ci) to (40, 0.9), for all i = 0, 1, ..., p, and Θp to 0.5. We consider that all nodes have the same

number of child nodes K, i.e., Ki = K, for all i = 0, 1, ..., p − 1, and vary K from 5 to 10. Figure 10

shows the convergence bound Θ0 by varying the number of child node K. The red solid line and the

blue dotted line represent the convergence bound expressed in (9), and its approximation introduced in

24

Fig. 10. Convergence bound over the whole tree network, Θ0, by varying number of child nodes K with fixed other parameters

(p,Ti,Ci) = (3,40,0.9) for all i = 0,1, ..., p − 1, and Θp = 0.5.

(10). As the number of nodes is increased, the convergence bound Θ0 is also increased.

We further run simulations to investigate the effect of the number of layers, p, on the convergence

bound, Θ0. For simulations, we set Ki−Ci

Ki
=

K−C
K

and Ti = T , for all i. From the setting, we can further

simplify the approximated convergence bound introduced in (10) as

Θ0 =(K −C
K
)
T

+

p−1∑
r=1

(K −C
K
)
T (r+1)

(CT

K −C
)
r

+ [(K −C
K
)
T

(CT

K −C
)]

p

Θp. (28)

For given K and C , if T is large enough to be (K−C
K
)T CT

K−C
< 1, then, the convergence bound is expressed

as

Θ0 =(K −C
K
)
T

+ (K −C
K
)
T

⋅

(K−C
K
)
T

CT
K−C

− ((K−C
K
)
T

CT
K−C
)
p

1 − (K−C
K
)
T

CT
K−C

+ (K −C
K
)
T ⋅p

(CT

K −C
)
p

Θp. (29)

Note that limT→∞(K−CK
)T CT

K−C
= 0. If T is small enough to be (K−C

K
)T CT

K−C
> 1, then, for the

convergence bound, we have

Θ0 =(K −C
K
)
T

+ (K −C
K
)
T

⋅

((K−C
K
)
T

CT
K−C
)
p

− (K−C
K
)
T

CT
K−C

(K−C
K
)
T

CT
K−C

− 1

+ (K −C
K
)
T ⋅p

(CT

K −C
)
p

Θp, (30)

Therefore, for given K and C , depending on the number of iteration T , the dominant term in (9) (or

(10)) is changed like stated in (29) or (30), and the convergence bound, Θ0, follows two different trends

as shown in Figure 11. For Figures 11(a) and 11(b), we set the number of iterations T to 5 and 20

respectively with maintaining the other parameters the same. Note that when p = 1, it represents the star

network, and when the number of iteration T is large enough, we can have the better convergence bound

in a tree network as shown in Figure 11(b).

25

(a) T = 5 (b) T = 20

Fig. 11. Convergence bound over the whole tree network, Θ0, by varying the number of layers p with fixed other parameters

(K,Ci) = (5,0.9) for all i = 0,1, ..., p − 1, and Θp = 0.5.

D. Parameter setting for faster convergence speed

In order to investigate the optimal number of local iterations which achieves the fastest convergence

speed, from (19), we generate Figure 12 by varying each parameter r, C , K, and δ. In Figure 12(a), the

communication delay severity parameter r is varied with fixed other parameters, (C,K, δ) = (0.5, 3, 1/300).
As shown in Figure 12(a) and the previous subsection, when the communication delay severity r increases,

the more number of local iterations before communication with the central node is desired for better

convergence rate. Additionally, the parameter ρ, which is reciprocal of the parameter C in (19), indicates

the distributed data overlapping level; namely, smaller ρ, less overlapping data among local workers. In

order to check the impact of the data overlapping level on the optimal local iteration Tp, we vary C with

fixing other parameters to (K, δ, r) = (3, 1/300, 100), and draw the graph in Figure 12(b). From Figure

12(b), when local workers have more overlapping dataset among them. i.e., larger ρ value or smaller C

value, it is desired to run more local iterations to have better convergence speed. And as δ decreases,

correspondingly the step size of the algorithm in a local worker decreases, the more number of local

iterations is desired. This is understandable, because with a small step size, more iterations are needed

to reach an optimal point. From Figure 12(d), as the number of local workers, K, increases, the optimal

number of local iterations, Tp, is also increased. Since we fixed other parameters except for K, increasing

K represents increasing the total size of dataset. And due to the bigger size of dataset in total, we think

that more variance in the intermediate results from local workers may lead to more local iterations to

reduce the variance.

26

(a) r varied (b) C varied

(c) δ varied (d) K varied

Fig. 12. Optimal number of local iterations, Tp, by varying parameters. Except for the varying parameter, other parameters are

fixed to (C,K, δ, r) = (0.5,3, 1/300,100).

VIII. CONCLUSION AND DISCUSSION

In this paper, we study the distributed dual coordinate ascent in a general tree-structured network, where

a central node, sub-central nodes and local workers are connected over the communication network, and its

analysis. Additionally, since the communication becomes a bottleneck in distributed network systems, we

consider the communication delay in time in the convergence analysis of the distributed dual coordinate

ascent and obtain the optimal number of iterations to achieve the best convergence speed. In the numerical

experiments, we demonstrate the usability of our algorithm and analysis in synchronous machine learning

scenarios over communication networks where local workers cannot directly reach to a central node due

to communication constraints. More specifically, the proposed algorithm in a tree-structured network can

reduce the communication overhead at the cost of more local computation complexity. However, since

the communication is normally a bottleneck in a distributed process, the distributed algorithm in a tree

network can play a significant role in the reduction of communication burden in distributed machine

learning process.

27

In addition to the work in the paper, the following topics are possible directions for future research.

We leave them for the future research.

● Asynchronous updating scheme: Due to the possible performance difference among local workers,

it is quite natural to consider asynchronous scheme. Thus, the design and analysis of asynchronous

dual coordinate ascent algorithm for generalized tree network topologies can be the next direction

of the research.

● Different network topologies: Since every connected network has its spanning tree, in this paper,

a general tree network topology is studied. However, in some network models organized in a mesh,

thanks to the network connections in a mesh, the intermediate results from local workers can be

easily shared with sub-central nodes and central node or even between local workers. Therefore, the

distributed algorithm in mesh networks can have potentials to have faster convergence speed than

the algorithm in tree networks. Thus, studying distributed algorithms in mesh networks is of great

interest for distributed machine learning operations.

● Various network constraints: The communication networks can have a variety of network con-

straints including communication delay, limited communication bandwidth, and limited transmission

power. Motivated by these network constraints, the impact of communication delay on the conver-

gence speed of distributed dual coordinate ascent is studied in this paper. It is also interesting to

study the other communication constraints in distributed algorithms.

● Training a neural network over distributed datasets: Since distributed data can be stored in any

communication network, training a neural network over distributed datasets is also of great interest.

By considering a spanning tree network, a distributed algorithm framework on a tree-structured

network can be a possible approach to this problem.

REFERENCES

[1] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile Networks and Applications, vol. 19, no. 2, pp. 171–209, 2014.

2

[2] J. P. Verma, B. Patel, and A. Patel, “Big data analysis: recommendation system with hadoop framework,” in Proceedings

of IEEE International Conference on Computational Intelligence & Communication Technology, 2015, pp. 92–97. 2

[3] J. Andreu-Perez, C. Poon, R. D. Merrifield, S. Wong, and G.-Z. Yang, “Big data for health,” IEEE journal of biomedical

and health informatics, vol. 19, no. 4, pp. 1193–1208, 2015. 2

[4] S. Efromovich, J. Lakey, M. C. Pereyra, and N. Tymes, “Data-driven and optimal denoising of a signal and recovery of

its derivative using multiwavelets,” IEEE Transactions on Signal Processing, vol. 52, no. 3, pp. 628–635, 2004. 2

[5] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless network intelligence at the edge,” Proceedings of the IEEE,

vol. 107, no. 11, pp. 2204–2239, 2019. 2

[6] G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Toward an intelligent edge: Wireless communication meets

machine learning,” IEEE Communications Magazine, vol. 58, no. 1, pp. 19–25, 2020. 2

28

[7] J. Chen, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting distributed synchronous SGD,” in Proceedings of the

International Conference on Learning Representations Workshop Track, 2016. 2

[8] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, “Large-scale matrix factorization with distributed stochastic gradient

descent,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,

2011, pp. 69–77. 2

[9] T. Yang, “Trading computation for communication: Distributed stochastic dual coordinate ascent,” in Advances in Neural

Information Processing Systems, 2013, pp. 629–637. 2, 3, 4, 5, 14

[10] M. Jaggi, V. Smith, M. Takác, J. Terhorst, S. Krishnan, T. Hofmann, and M. I. Jordan, “Communication-efficient distributed

dual coordinate ascent,” in Advances in Neural Information Processing Systems, 2014, pp. 3068–3076. 2, 3, 4, 5, 6, 7, 11,

12, 13, 14, 18, 29

[11] C. Ma, V. Smith, M. Jaggi, M. I. Jordan, P. Richtárik, and M. Takáč, “Adding vs. averaging in distributed primal-dual

optimization,” in Proceedings of the International Conference on Machine Learning, 2015, vol. 37, pp. 1973–1982. 2, 3,

4, 5, 6, 7, 14, 18

[12] S.-Y. Zhao and W.-J. Li, “Fast asynchronous parallel stochastic gradient descent: A lock-free approach with convergence

guarantee,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2016, pp. 2379–2385. 2

[13] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan, “A dual coordinate descent method for large-scale

linear SVM,” in Proceedings of International Conference on Machine Learning. ACM, 2008, pp. 408–415. 2

[14] S. Shalev-Shwartz and T. Zhang, “Stochastic dual coordinate ascent methods for regularized loss minimization,” Journal

of Machine Learning Research, vol. 14, pp. 567–599, 2013. 2, 4, 5, 33

[15] R. Zhang, S. Zheng, and J. T. Kwok, “Fast distributed asynchronous SGD with variance reduction,” CoRR, abs/1508.01633,

2015. 2

[16] Z. Huo and H. Huang, “Distributed asynchronous dual free stochastic dual coordinate ascent,” in Proceedings of the IEEE

International Conference on Data Mining, 2018. 2, 4, 5

[17] C.-J. Hsieh, H.-F. Yu, and I. S. Dhillon, “PASSCoDe: Parallel asynchronous stochastic dual co-ordinate descent,” in

Proceedings of the International Conference on Machine Learning, 2015, vol. 15, pp. 2370–2379. 2, 4

[18] K. Tsianos, S. Lawlor, and M. G. Rabbat, “Communication/computation tradeoffs in consensus-based distributed

optimization,” in Advances in Neural Information Processing Systems, 2012, pp. 1943–1951. 3, 15

[19] B. Ying, K. Yuan, and A. H. Sayed, “Supervised learning under distributed features,” IEEE Transactions on Signal

Processing, vol. 67, no. 4, pp. 977–992, 2019. 3, 4

[20] T.-H. Chang, M. Hong, and X. Wang, “Multi-agent distributed optimization via inexact consensus ADMM,” IEEE

Transactions on Signal Processing, vol. 63, no. 2, pp. 482–497, 2015. 3, 4

[21] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear convergence of the ADMM in decentralized consensus

optimization,” IEEE Transactions on Signal Processing, vol. 62, no. 7, pp. 1750–1761, 2014. 3, 4

[22] G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed sparse linear regression,” IEEE Transactions on Signal

Processing, vol. 58, no. 10, pp. 5262–5276, 2010. 3, 4

[23] M. Hong and T. Chang, “Stochastic proximal gradient consensus over random networks,” IEEE Transactions on Signal

Processing, vol. 65, no. 11, pp. 2933–2948, 2017. 3, 4

[24] M. Carreira-Perpinan and W. Wang, “Distributed optimization of deeply nested systems,” in Proceedings of International

Conference on Artificial Intelligence and Statistics, 2014, pp. 10–19. 3

[25] J. Zeng, T. T.-K. Lau, S. Lin, and Y. Yao, “Global convergence of block coordinate descent in deep learning,” in Proceedings

of International Conference on Machine Learning, 2019, pp. 7313–7323. 3

29

[26] T. T.-K. Lau, J. Zeng, B. Wu, and Y. Yao, “A proximal block coordinate descent algorithm for deep neural network

training,” arXiv preprint arXiv:1803.09082, 2018. 3

[27] M. Cho, L. Lai, and W. Xu, “Generalized distributed dual coordinate ascent in a tree network for machine learning,”

in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp.

3512–3516. 4

[28] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge university press, 2004. 5

[29] A. Nedic, A. Olshevsky, and M. G. Rabbat, “Network topology and communication-computation tradeoffs in decentralized

optimization,” Proceedings of the IEEE, vol. 106, no. 5, pp. 953–976, 2018. 15

[30] T. T. Doan, C. L. Beck, and R. Srikant, “Impact of communication delays on the convergence rate of distributed optimization

algorithms,” arXiv preprint arXiv:1708.03277, 2017. 15

[31] K. I. Tsianos, The Role of the Network in Distributed Optimization Algorithms: Convergence Rates, Scalability,

Communication/Computation Tradeoffs and Communication Delays, Ph.D. thesis, McGill University, 2013. 15

[32] R. M. Corless, G. H. Gonnet, D. EG. Hare, D. J. Jeffrey, and D. E. Knuth, “On the LambertW function,” Advances in

Computational Mathematics, vol. 5, no. 1, pp. 329–359, 1996. 16

[33] J. A. Blackard and D. J. Dean, “Comparative accuracies of artificial neural networks and discriminant analysis in predicting

forest cover types from cartographic variables,” Computers and Electronics in Agriculture, vol. 24, no. 3, pp. 131–151,

1999. 18

[34] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, “Modeling wine preferences by data mining from physicochemical

properties,” Decision Support Systems, vol. 47, no. 4, pp. 547–553, 2009. 18, 22

[35] M. Takáč, A. Bijral, P. Richtárik, and N. Srebro, “Mini-batch primal and dual methods for SVMs,” in Proceedings of the

International Conference on Machine Learning, 2013, vol. 28, pp. III–1022–III–1030. 18

[36] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: primal estimated sub-gradient solver for SVM,”

Mathematical Programming, vol. 127, no. 1, pp. 3–30, 2011. 18

[37] R. Collobert, S. Bengio, and Y. Bengio, “A parallel mixture of SVMs for very large scale problems,” in Advances in

Neural Information Processing Systems, 2002, pp. 633–640. 20

APPENDIX A

PROOF OF THEOREM 2

For this proof, we follow the proof of Theorem 2 of [10] with the additional difference, i.e., dealing

with both updating coordinates αQ and un-updating coordinates α
Q

, and show that for a general tree

node Q, the convergence analysis introduced in (8) holds.

Proof. Suppose the tree node Q has K direct child nodes, and we simply represent the child nodes from

1 to K. The convergence rate of the algorithm at a tree node Q is obtained by considering the updating

scheme at the node Q as follows.

α(t+1) = (α(t+1)
[1∶K]

,α
Q
) = (α(t)

[1∶K]
+

1

K

K∑
k=1

△α<[k]>,αQ
), (31)

where α<[k]> is the zero-padding version of α[k] and Q = [1 ∶K] = ∪Kk=1[k] is the index set corresponding

to workers connected to the node Q. The optimal value at the node Q is stated as

30

D(αQ,αQ
) = −λ

2
∣∣AQαQ +AQ

α
Q
∣∣2 − 1

m
∑
i∈Q

ℓ∗i (−αi) − 1

m
∑
i∈Q

ℓ∗i (−αi)

= −
λ

2
∣∣A[1∶K]α[1∶K] +w∣∣2 − 1

m
∑

i∈[1∶K]

ℓ∗i (−αi) − 1

m
∑
i∈Q

ℓ∗i (−αi),
where AQ is the partial matrix of A by choosing the columns of A over the index set Q, and A

Q
α

Q

is denoted as w. From (31), we have

D(α(t+1)
[1∶K]

,α
Q
) =D(α(t)

[1∶K]
+

1

K

K∑
k=1

△α<[k]>,αQ
)

=D(1
K

K∑
k=1

(α(t)
[1∶K]

+△α<[k]>),αQ
)

≥
1

K

K∑
k=1

D(α(t)
[1∶K]

+△α<[k]>,αQ
),

where the inequality is obtained from the Jensen’s inequality. Then, we have

D(α(t+1)
[1∶K]

,α
Q
) −D(α(t)

[1∶K]
,α

Q
) ≥ 1

K

K∑
k=1

[D(α(t)
[1∶K]

+△α<[k]>,αQ
) −D(α(t)

[1∶K]
,α

Q
)]

=
1

K

K∑
k=1

[D(α(t)
[1∶K]

+△α<[k]>,αQ
)

−D((α(t)
[Q;1]

, ...,α⋆[Q;k], ...,α
(t)

[Q;K]
,α

Q
))

+D((α(t)
[Q;1]

, ...,α⋆[Q;k], ...,α
(t)

[Q;K]
,α

Q
)) −D(α(t)

[1∶K]
,α

Q
)]

=
1

K

K∑
k=1

[ǫQ,k(α(t)[1∶K],αQ
) − ǫQ,k(α(t)[1∶K] +△α<[k]>,αQ

)],
where ǫQ,k(⋅) is defined in (5) and the super-script ⋆ represents the optimal solution. Then, the expectation

of D(α(t+1)
[1∶K]

,α
Q
) −D(α(t)

[1∶K]
,α

Q
) is lower-bounded as follows:

E[D(α(t+1)
[1∶K]

,α
Q
) −D(α(t)

[1∶K]
,α

Q
)] ≥ 1

K

K∑
k=1

[E[ǫQ,k(α(t)[1∶K],αQ
)] − E[ǫQ,k(α(t)[1∶K] +△α<[k]>,αQ

)]]

≥
1

K
(1 −Θ) K∑

k=1

ǫQ,k(α(t)[1∶K],αQ
),

where the last inequality is obtained from Assumption 1. And ∑
K
k=1 ǫQ,k(α(t)[1∶K],αQ

) can be bounded as

follows.

31

K∑
k=1

ǫQ,k(α(t)[1∶K],αQ
)

=

K∑
k=1

maximize
α̂[Q;k]

[D((α(t)
[Q;1]

, ..., α̂[Q;k], ...,α
(t)

[Q;K]
,α

Q
)) −D((α(t)

[Q;1]
, ...,α

(t)

[Q;k]
, ...,α

(t)

[Q;K]
,α

Q
))]

= maximize
α̂∈R∣[1∶K]∣

K∑
k=1

[D((α(t)
[Q;1]

, ..., α̂[Q;k], ...,α
(t)

[Q;K]
,α

Q
)) −D((α(t)

[Q;1]
, ...,α

(t)

[Q;k]
, ...,α

(t)

[Q;K]
,α

Q
))]

= maximize
α̂∈R∣[1∶K]∣

K∑
k=1

[− λ

2
∣∣A[1∶K](α(t)[Q;1]

, ..., α̂[Q;k], ...,α
(t)

[Q;K]
) +w∣∣2 + λ

2
∣∣A[1∶K]α(t)[1∶K] +w∣∣2]

−
1

m
∑

i∈[1∶K]

ℓ∗i (−α̂i) + 1

m
∑

i∈[1∶K]

ℓ∗i (−α(t)i)

= maximize
α̂∈R∣[1∶K]∣

[1
m
∑

i∈[1∶K]

(− ℓ∗i (−α̂i) + ℓ∗i (−α(t)i))] − λ

2

K∑
k=1

[∣∣A[1∶K](α(t)[Q;1]
, ..., α̂[Q;k], ...,α

(t)

[Q;K]
) +w∣∣2

− ∣∣A[1∶K]α(t)[1∶K] +w∣∣2]
= maximize

α̂∈R∣[1∶K]∣
[− 1

m
∑

i∈[1∶K]

(ℓ∗i (−α̂i) − ℓ∗i (−α(t)i))] − λ

2

K∑
k=1

[∣∣A[1∶K]α(t)[1∶K] −A[k](α(t)[k] − α̂[k]) +w∣∣2

− ∣∣A[1∶K]α(t)[1∶K] +w∣∣2]
= maximize

α̂∈R∣[1∶K]∣
[D(α̂[1∶K],αQ

) + λ

2
∣∣A[1∶K]α̂[1∶K] +w∣∣2 −D(α(t)[1∶K],αQ

) − λ

2
∣∣A[1∶K]α(t)[1∶K] +w∣∣2]

−
λ

2

K∑
k=1

[∣∣A[1∶K]α(t)[1∶K] −A[k](α(t)[k] − α̂[k]) +w∣∣2 − ∣∣A[1∶K]α(t)[1∶K] +w∣∣2]
= maximize

α̂∈R∣[1∶K]∣
D(α̂[1∶K],αQ

) −D(α(t)
[1∶K]

,α
Q
) + λ

2
∣∣A[1∶K]α̂[1∶K] +w∣∣2 − λ

2
∣∣A[1∶K]α(t)[1∶K] +w∣∣2

−
λ

2

K∑
k=1

[∣∣A[k](α(t)[k] − α̂[k])∣∣2 − 2(A[1∶K]α(t)[1∶K] +w)TA[k](α(t)[k] − α̂[k])]
= maximize

α̂∈R∣[1∶K]∣
D(α̂[1∶K],αQ

) −D(α(t)
[1∶K]

,α
Q
) + λ

2
(∣∣A[1∶K]α̂[1∶K] +w∣∣2 − ∣∣A[1∶K]α(t)[1∶K] +w∣∣2)

−
λ

2

K∑
k=1

[∣∣A[k](α(t)[k] − α̂[k])∣∣2] + λ(A[1∶K]α(t)[1∶K] +w)T (A[1∶K]α(t)[1∶K] −A[1∶K]α̂[1∶K] +w −w)
= maximize

α̂∈R∣[1∶K]∣
D(α̂[1∶K],αQ

) −D(α(t)
[1∶K]

,α
Q
) + λ

2
(∣∣A[1∶K]α̂[1∶K] +w∣∣2 − ∣∣A[1∶K]α(t)[1∶K] +w∣∣2)

−
λ

2

K∑
k=1

[∣∣A[k](α(t)[k] − α̂[k])∣∣2] + λ∣∣A[1∶K]α(t)[1∶K] +w∣∣2 − λ(A[1∶K]α(t)[1∶K] +w)T (A[1∶K]α̂[1∶K] +w)

= maximize
α̂∈R∣[1∶K]∣

D(α̂[1∶K],αQ
) −D(α(t)

[1∶K]
,α

Q
) − λ

2

K∑
k=1

[∣∣A[k](α(t)[k] − α̂[k])∣∣2]
+
λ

2
(∣∣A[1∶K]α̂[1∶K] +w∣∣2 + ∣∣A[1∶K]α(t)[1∶K] +w∣∣2 − 2(A[1∶K]α(t)[1∶K] +w)T (A[1∶K]α̂[1∶K] +w))

= maximize
α̂∈R∣[1∶K]∣

D(α̂[1∶K],αQ
) −D(α(t)

[1∶K]
,α

Q
) − λ

2
[K∑
k=1

[∣∣A[k](α(t)[k] − α̂[k])∣∣2] − ∣∣A[1∶K](α̂[1∶K] −α(t)[1∶K])∣∣2]
´¹¹¹¸¹¹¶

=(A)

(32)

32

We can lower-bound (32) by upper-bounding (A). For the upper-bound of (A), we have

(A) = K∑
k=1

[∣∣A[k](α(t)[k] − α̂[k])∣∣2] − ∣∣A[1∶K](α̂[1∶K] −α(t)[1∶K])∣∣2

≤ ∑
i∈[1∶K]

∣∣Ai(α(t)i − α̂i)∣∣2 − ∣∣A[1∶K](α̂[1∶K] −α(t)[1∶K])∣∣2

≤ ∑
i∈[1∶K]

1

λ2m2
∣∣xi∣∣2(α(t)i − α̂i)2 − ∣∣A[1∶K](α̂[1∶K] −α(t)[1∶K])∣∣2

≤
1

λ2m2
∑

i∈[1∶K]

(α(t)i − α̂i)2 − ∣∣A[1∶K](α̂[1∶K] −α(t)[1∶K])∣∣2

≤
1

λ2m2
∣∣α(t)
[1∶K]

− α̂[1∶K]∣∣2 − ∣∣A[1∶K](α̂[1∶K] −α(t)[1∶K])∣∣2
≤

ρ

λ2m2
∣∣α(t)
[1∶K]

− α̂[1∶K]∣∣2,
where the second inequality is from Ai =

1
λm

xi, and the third inequality is obtained from the assumption

of the scaled input data, i.e., ∥xi∥ ≤ 1. We can have the last inequality by introducing ρmin, which is the

minimum value of ρ, to hold the last inequality as follows:

ρ ≥ ρmin ≜ maximize
α∈R∣[1∶K]∣

λ2m2∑K
k=1 ∣∣A[k]α[k]∣∣2 − ∣∣A[1∶K]α∣∣2∣∣α∣∣2 ≥ 0. (33)

The condition ρmin ≥ 0 can be shown by considering a feasible solution making ∑
K
k=1 ∣∣A[k]α[k]∣∣2 −

∣∣A[1∶K]α∣∣2 = 0, e.g., α = ei, where ei is a standard unit vector having 1 in the i-th entry and 0

elsewhere.

Then, (32), which is ∑
K
k=1 ǫQ,k(α(t)[1∶K],αQ

), is lower-bounded as follows:

K∑
k=1

ǫQ,k(α(t)[1∶K],αQ
)

≥ maximize
α̂∈R∣[1∶K]∣

D(α̂[1∶K],αQ
) −D(α(t)

[1∶K]
,α

Q
) − ρ

2λm2
∣∣α̂[1∶K] −α(t)[1∶K]∣∣2

≥ maximize
η∈[0,1]

D(ηα⋆[1∶K] + (1 − η)α(t)[1∶K],αQ
) −D(α(t)

[1∶K]
,α

Q
) − ρ

2λm2
∣∣ηα⋆[1∶K] + (1 − η)α(t)[1∶K] −α(t)[1∶K]∣∣2

≥ maximize
η∈[0,1]

ηD(α⋆[1∶K],αQ
) + (1 − η)D(α(t)

[1∶K]
,α

Q
) −D(α(t)

[1∶K]
,α

Q
) + γη(1 − η)

2m
∣∣α⋆[1∶K] −α(t)[1∶K]∣∣2

−
ρη2

2λm2
∣∣α⋆[1∶K] −α(t)[1∶K]∣∣2

≥ maximize
η∈[0,1]

ηD(α⋆[1∶K],αQ
) − ηD(α(t)

[1∶K]
,α

Q
) + γη(1 − η)

2m
∣∣α⋆[1∶K] −α(t)[1∶K]∣∣2 − ρη2

2λm2
∣∣α⋆[1∶K] −α(t)[1∶K]∣∣2

= maximize
η∈[0,1]

ηD(α⋆[1∶K],αQ
) − ηD(α(t)

[1∶K]
,α

Q
) + η

2m
(γ − λmγ + ρ

λm
η)∣∣α⋆[1∶K] −α(t)[1∶K]∣∣2, (34)

where η in the second inequality is introduced for line search between the optimal solution α⋆[1∶K] and

α
(t)

[1∶K]
, and the equality holds when α̂[1∶K] is in the line between α⋆[1∶K] and α

(t)

[1∶K]
. And the third

inequality is obtained from the strong concavity of D(α). Specifically, we use the well-known fact that

33

if a function ℓi(a) is 1
γ

-smooth, the conjugate function ℓ∗i is γ strongly convex: for all u, v ∈ R and

η ∈ [0, 1] [14]:

− ℓ∗i (ηu + (1 − η)v) ≥ −ηℓ∗i (u) − (1 − η)ℓ∗i (v) + γη(1 − η)
2

(u − v)2. (35)

From (35), we have the following inequality for D(ηα⋆[1∶K] + (1 − η)α(t)[1∶K],αQ
):

D(ηα⋆[1∶K] + (1 − η)α(t)[1∶K],αQ
)

= −
1

2
∥A(ηα⋆[1∶K] + (1 − η)α(t)[1∶K], αQ

)∥
2

−
1

m
∑

i∈[1∶K]

ℓ∗i (−ηα⋆i − (1 − η)α(t)i) − 1

m
∑
i∈Q

ℓ∗i (−ηαi − (1 − η)αi)

= −
1

2
∥ηA(α⋆[1∶K], αQ

) + (1 − η)A(α(t)
[1∶K]

, α
Q
)∥

2

−
1

m
∑

i∈[1∶K]

ℓ∗i (−ηα⋆i − (1 − η)α(t)i) − 1

m
∑
i∈Q

ℓ∗i (−ηαi − (1 − η)αi)
(35)
≥ −

1

2
∥ηA(α⋆[1∶K], αQ

) + (1 − η)A(α(t)
[1∶K]

, α
Q
)∥

2

−
1

m
∑

i∈[1∶K]

[ηℓ∗i (−α⋆i) + (1 − η)ℓ∗i (−α(t)i) − γη(1 − η)
2

(α⋆i − α(t)i)2]

−
1

m
∑
i∈Q

[ηℓ∗i (−αi) + (1 − η)ℓ∗i (−αi)]

≥ −
η

2
∥A(α⋆[1∶K], αQ

)∥
2

−
(1 − η)

2
∥A(α(t)

[1∶K]
, α

Q
)∥

2

−
1

m
∑

i∈[1∶K]

[ηℓ∗i (−α⋆i) + (1 − η)ℓ∗i (−α(t)i) − γη(1 − η)
2

(α⋆i − α(t)i)2]

−
1

m
∑
i∈Q

[ηℓ∗i (−αi) + (1 − η)ℓ∗i (−αi)]

= −
η

2
∥A(α⋆[1∶K], αQ

)∥
2

−
η

m
[∑
i∈[1∶K]

ℓ∗i (−α⋆i) +∑
i∈Q

ℓ∗i (−αi)] − (1 − η)
2
∥A(α(t)

[1∶K]
, α

Q
)∥

2

−
(1 − η)

m
[∑
i∈[1∶K]

ℓ∗i (−α(t)i) +∑
i∈Q

ℓ∗i (−αi)] + γη(1 − η)
2m

∑
i∈[1∶K]

(α⋆i − α(t)i)2

= ηD(α⋆[1∶K],αQ
) + (1 − η)D(α(t)

[1∶K]
,α

Q
) + γη(1 − η)

2m
∥α⋆[1∶K] −α(t)[1∶K]∥2.

Notice that η ∈ [0, 1]. Also note that we derive the equations by using A(α⋆[1∶K],αQ
); however, at each

node, we do not know A
Q

, but w. Therefore, for the term A(α⋆[1∶K],αQ
), (AQα

⋆
[1∶K]+w) is the correct

notation; however in order to clearly show the dual objective function, we use the term A(α⋆[1∶K],αQ
)

instead of (AQα
⋆
[1∶K] +w) with which the derivation can also go through.

(34) can be lower-bounded by choosing η = λmγ
λmγ+ρ

≥ 0 as

(34) ≥ λmγ

λmγ + ρ
(D(α⋆[1∶K],αQ

) −D(α(t)
[1∶K]

,α
Q
))

Therefore, we have

34

E[D(α(t+1)
[1∶K]

,α
Q
) −D(α(t)

[1∶K]
,α

Q
) ∣w,α

(t)

[1∶K]
] ≥ 1

K
(1 −Θ) K∑

k=1

ǫQ,k(α(t)[1∶K],αQ
)

≥
1

K
(1 −Θ) λmγ

λmγ + ρ
(D(α⋆[1∶K],αQ

) −D(α(t)
[1∶K]

,α
Q
)) (36)

From (36), we have

E[D(α(t+1)
[1∶K]

,α
Q
) −D(α⋆[1∶K],αQ

) +D(α⋆[1∶K],αQ
) −D(α(t)

[1∶K]
,α

Q
) ∣w,α

(t)

[1∶K]
]

≥
1

K
(1 −Θ) λmγ

λmγ + ρ
(D(α⋆[1∶K],αQ

) −D(α(t)
[1∶K]

,α
Q
)).

By moving the term D(α⋆[1∶K]) −D(α(t)[1∶K],αQ
) in LHS to RHS and multiplying −1 in both sides, we

have

E[D(α⋆[1∶K],αQ
) −D(α(t+1)

[1∶K]
,α

Q
) ∣ α(t)

[1∶K]
,w] ≤ (1 − 1

K
(1 −Θ) λmγ

λmγ + ρ
)(D(α⋆[1∶K],αQ

) −D(α(t)
[1∶K]

,α
Q
))

APPENDIX B

DERIVATION OF THE OPTIMAL NUMBER OF LOCAL ITERATIONS Tp

For the sake of simplicity of (16), by denoting 1 − δ, K−C
K

, C
K

, and (tdelay + tcp)/tlp to a, b, c, and r

respectively, we have the following first order condition over Tp for given a, b, c, and r:

b(Tp + r)aTp ln(a) − (b + caTp) ln(b + caTp) = 0, (37)

where a, b, c ∈ [0, 1) and b+ c = 1. When Tp is large enough, b(Tp + r)aTp ln(a) is the dominant term of

(37) and notice that 0 < a < 1. Therefore, by approximating the term (b + caTp) ln(b + caTp) to b ln(b),
we have b(Tp + r)aTp ln(a) = b ln(b). And then, the equation is re-stated as follows:

(Tp + r) ln(a)eTp ln(a)
= ln(b)⇒ (Tp + r) ln(a)e(Tp+r) ln(a) = ln(b)er ln(a)

From the definition of the Lambert W-function, which is when xex = a, the solution x is W (a), where

W (⋅) is the Lambert W-function, we have

(Tp + r) ln(a) =W (ln(b)er ln(a)).
Therefore, for the optimal number of local iterations Tp, we have

Tp =
1

ln(a)W (ln(b)er ln(a)) − r.

	I Introduction
	II Problem formulation
	III Review of the distributed dual coordinate ascent in a star network
	IV Generalized distributed dual coordinate ascent in tree networks
	V Convergence analysis of TreeDualMethod over a tree network
	VI Impacts of communication delay on the convergence rate of distributed dual coordinate ascent
	VII Numerical experiments
	VII-A Machine learning over communication networks
	VII-A1 KDD Cup 1998 regression problem
	VII-A2 Covertype dataset classification problem

	VII-B Impact of communication delay on the convergence speed
	VII-C Network topology's effect on convergence bound
	VII-D Parameter setting for faster convergence speed

	VIII Conclusion and discussion
	References
	Appendix A: Proof of Theorem 2
	Appendix B: Derivation of the optimal number of local iterations Tp

