
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 8, AUGUST 2021 2617

Defense-Resistant Backdoor Attacks Against Deep
Neural Networks in Outsourced Cloud Environment

Xueluan Gong, Yanjiao Chen , Senior Member, IEEE, Qian Wang, Senior Member, IEEE, Huayang Huang,

Lingshuo Meng, Chao Shen , Senior Member, IEEE, and Qian Zhang, Fellow, IEEE

Abstract— The time and monetary costs of training sophis-
ticated deep neural networks are exorbitant, which motivates
resource-limited users to outsource the training process to the
cloud. Concerning that an untrustworthy cloud service provider
may inject backdoors to the returned model, the user can
leverage state-of-the-art defense strategies to examine the model.
In this paper, we aim to develop robust backdoor attacks (named
RobNet) that can evade existing defense strategies from the
standpoint of malicious cloud providers. The key rationale is
to diversify the triggers and strengthen the model structure so
that the backdoor is hard to be detected or removed. To attain
this objective, we refine the trigger generation algorithm by
selecting the neuron(s) with large weights and activations and
then computing the triggers via gradient descent to maximize the
value of the selected neuron(s). In stark contrast to existing works
that fix the trigger location, we design a multi-location patching
method to make the model less sensitive to mild displacement of
triggers in real attacks. Furthermore, we extend the attack space
by proposing multi-trigger backdoor attacks that can misclassify
inputs with different triggers into the same or different target
label(s). We evaluate the performance of RobNet on MNIST,
GTSRB, and CIFAR-10 datasets, against four representative
defense strategies Pruning, NeuralCleanse, Strip, and ABS. The
comparison with two state-of-the-art baselines BadNets and
Hidden Backdoors demonstrates that RobNet achieves higher
attack success rate and is more resistant to potential defenses.

Manuscript received January 2, 2021; revised March 12, 2021; accepted
May 3, 2021. Date of publication June 9, 2021; date of current version
July 16, 2021. The work of Yanjiao Chen was supported in part by the
National Natural Science Foundation of China under Grant 61972296. The
work of Qian Wang was supported in part by the National Key Research
and Development Program of China under Grant 2020AAA0107700 and
in part by the National Natural Science Foundation of China under Grant
U20B2049 and Grant 61822207. The work of Chao Shen was supported
in part by the National Natural Science Foundation of China under Grant
61822309, Grant 61773310, and Grant U1736205. The work of Qian Zhang
was supported in part by the Research Grant Council (RGC) of Hong Kong
under Contract CERG 16204418, Contract 16203719, and Contract R8015
and in part by the Guangdong Natural Science Foundation under Grant
2017A030312008. (Corresponding authors: Qian Wang; Yanjiao Chen.)

Xueluan Gong, Yanjiao Chen, and Qian Wang are with the School
of Computer Science, Wuhan University, Wuhan 430072, China
(e-mail: xueluangong@whu.edu.cn; chenyanjiao@whu.edu.cn; qianwang@
whu.edu.cn).

Huayang Huang and Lingshuo Meng are with the School of Cyber Sci-
ence and Engineering, Wuhan University, Wuhan 430072, China (e-mail:
hyhuang@whu.edu.cn; emmetmeng@whu.edu.cn).

Chao Shen is with the School of Cyber Science and Engineering, Xi’an Jiao-
tong University, Xi’an 710049, China (e-mail: chaoshen@mail.xjtu.edu.cn).

Qian Zhang is with the Department of Computer Science and Engineering,
The Hong Kong University of Science and Technology, Hong Kong (e-mail:
qianzh@ust.hk).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSAC.2021.3087237.

Digital Object Identifier 10.1109/JSAC.2021.3087237

Index Terms— Outsourced cloud environment, deep neural
network, backdoor attacks.

I. INTRODUCTION

DEEP neural networks (DNN) have achieved tremendous
success in many applications, including autonomous

driving [1], voice recognition [2], and image processing [3].
DNN-based applications have profoundly changed daily lives
from many aspects. With increasing functionalities and com-
plexity, training sophisticated deep neural networks entails
enormous efforts in processing large-scale training dataset
and optimizing performance. Consequently, resource-limited
users prefer to outsource the training procedure to powerful
cloud vendors (e.g., Google, Amazon) that possess abundant
computing and storage resources [4]. For instance, Google’s
Cloud Machine Learning Engine [5] provides a platform for
users to upload their training dataset, based on which the DNN
model is trained in the cloud. Amazon offers a pre-trained
virtual machine equipped with deep learning frameworks.
Microsoft also launches the Azure Batch AI Training. Out-
sourcing training services, albeit convenient and efficient, has
also incurred various security threats.

Recent studies have shown that a malicious cloud provider
may inject backdoors into the trained deep neural networks [6].
The backdoored model misclassifies input samples with a
special trigger into a target label (targeted attacks) or any
false labels (untargeted attacks), while behaving normally
towards clean samples. Different from adversarial examples
[7]–[9] that require customized perturbations for each sample,
the backdoor trigger is universal and effective for any input
sample. Backdoor attacks are stealthy since backdoored mod-
els maintain relatively high accuracy for clean samples, and
the user may be tricked into accepting the backdoored model
by only testing its prediction capability on the clean validation
dataset. The consequence of backdoor attacks may be severe.
Consider the following scenario: A user outsources the training
process of a neural network for face recognition to a malicious
cloud vendor. The cloud returns a backdoored model that
potentially breaches the authentication system of the user’s
enterprise by misclassifying any person with a special trigger
(e.g., a carefully-designed glass) as a legitimate user. Such
security threats also exist in autonomous driving and voice
recognition [10], [11].

To protect against backdoor attacks, many defense strategies
have been proposed, and are proved to be effective in detecting

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1382-0679
https://orcid.org/0000-0002-6959-0569

2618 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 8, AUGUST 2021

and mitigating existing backdoor attacks. There are two kinds
of mainstream defense strategies, namely, model-based and
data-based. Model-based defense strategies examine whether
a model includes backdoors or not [12], [13]. Data-based
defense strategies investigate whether an input contains a trig-
ger [14]. After detection, the user can prune the DNN model to
mitigate the backdoor attack. Network pruning techniques have
been originally proposed to reduce the storage requirement and
improve the inference efficiency of deep neural networks [15].
It is shown that redundant connections with small weights
or small activations can be removed with little influence on
the performance of the model. Backdoor attacks are shown
to be sensitive to network pruning, which undermines the
injected backdoor in the model [16]. A defense-aware user
may leverage these defense strategies to check the received
model from the cloud, and conduct network pruning to remove
the backdoor. In this circumstance, existing backdoor attacks
will fail.

Motivated by the above discussion, in this paper, we propose
a robust targeted backdoor attack against deep neural networks
in the outsourced cloud environment, named ROBNET. Differ-
ent from existing works that seldom consider possible defense
strategies adopted by the user [6], [10], [11], [17], [18],
ROBNET is designed with the purpose to be resistant to state-
of-the-art defense strategies. Our key rationale is to increase
the diversity of the triggers to avoid being detected and
strengthen the neuron associated with the triggers so that the
neuron is less likely to be pruned. After a benign model is
established with the clean training dataset uploaded by the
user, ROBNET proceeds in two steps: trigger generation and
backdoor injection. The trigger is essential to the success
of backdoor attacks. Instead of randomly choosing a trigger,
we develop a novel trigger generation algorithm to produce
a model-dependent trigger that closely interrelates with the
DNN structure. More specifically, we first select a neuron with
large weights and is strongly activated by inputs of the target
misclassification label. The trigger is iteratively updated using
gradient descent to maximize the value of the selected neuron.
Due to its large weights and strong activation, the neuron is
less likely to be eliminated by existing pruning techniques,
which preserves the backdoor in the model. After trigger
generation, the backdoor is injected into the benign model by
data poisoning. The trigger is patched to clean training samples
to form poisoned samples, which are used to retrain the model.
Different from existing works that assume a fixed trigger
location, we propose a multi-location patching approach to
achieve trigger diversity, which is shown to disrupt defense
strategies. We also design multi-trigger backdoor attacks that
produce different triggers targeting the same or different
misclassification label(s), which effectively extends the attack
space.

We have conducted extensive experiments on different
DNN structures with 3 datasets, i.e., MNIST, GTSRB, and
CIFAR-10. It is confirmed that ROBNET attains a higher
attack success rate and a higher prediction accuracy than
two baselines, BadNets [6] and Hidden Backdoor (HB) [19].
In particular, we consider four state-of-the-art defense strate-
gies, namely, pruning [16], NeuralCleanse [20], Strip [14], and

ABS [13], and show that ROBNET achieves a higher resistance
to these defense strategies than the baselines.

To sum up, this paper makes the following contributions.

• We develop a more robust backdoor attack that can
evade various state-of-the-art defense strategies in the
outsourced cloud environment.

• We propose a novel model-dependent trigger generation
algorithm, which considers both the weights and acti-
vations of the selected neuron that associates with the
trigger. The neuron has a high impact on the target
misclassification label and is less likely to be removed by
network pruning techniques. We propose a multi-location
patching method, which increases the trigger diversity to
avoid being detected.

• We design multi-trigger backdoor attacks to effectively
extend the attack space of a single backdoored model.
The model can misclassify inputs with different triggers
into the same or different target label(s).

• We validate the effectiveness of ROBNET (including
single-trigger and multi-trigger attacks) with extensive
experiments on various deep neural networks and vari-
ous state-of-the-art defense strategies. Experiment results
confirm that ROBNET achieves high attack success rate
and is resistant to defense strategies.

II. PRELIMINARIES

A. Deep Neural Networks

A Deep Neural Network (DNN) can be interpreted as a hier-
archical parametric function FΘ that maps an n-dimensional
input x ∈ Rn into one of the m predefined classes.
Θ represents the set of parameters of the deep neural network.
The output y ∈ Rm is an m-dimensional vector that contains
the confidence probabilities for each class label. Input sample
x is classified to label c with the highest confidence score,
i.e., argmaxc∈[1,m] yc. The k-th layer represents a parametric
function fk(·), applying activation functions to the output of
the previous layer xk−1 to obtain the output xk. fk is parame-
trized by a weight matrix θk, a bias vector bk and an activation
function Φk(·) as xk = fk(xk−1) = Φk(θk · xk−1 + bk).

Convolutional neural networks (CNN) are one of the
most popular DNN architectures. In CNN, there are three
types of layers: convolutional layers, pooling layers, and
fully-connected layers. Convolutional layers are the core of the
CNN, condensing a high-dimensional image by considering
spatial and temporal dependencies in the image. The para-
meters (e.g., θk) of a convolutional layer consist of multiple
filters, each of which activates a certain area of the output
features of the previous layer (e.g., xk−1). A pooling layer
returns the maximum value (max pooling) or the average value
(average pooling) of a certain area (decided by a kernel).
A fully-connected layer connects each neuron in the previous
layer to each neuron of the next layer.

The objective of training DNN is to determine the parame-
ters (i.e., weights, biases, and hyperparameters) to minimize
the difference between the ground-truth labels and the output
predictions. Mathematically, the training procedure of a deep

GONG et al.: DEFENSE-RESISTANT BACKDOOR ATTACKS AGAINST DNNs IN OUTSOURCED CLOUD ENVIRONMENT 2619

Fig. 1. Overview of our proposed attack. The number in a neuron denotes its activation, and the number beside a connection denotes the weight. In single-trigger
attacks, the yellow neuron in the first fully-connected layer is selected. In multi-trigger attacks, the yellow and the blue neurons are selected targeting different
misclassification labels. The trigger is generated to excite the selected neuron, e.g., the activation of the yellow neuron increases from 2 to 12 in the illustrated
single-trigger attack. The generated trigger is patched to different locations of the training samples. After retraining, the weight of the connection between the
selected neuron and the label is strengthened, e.g, from 0.1 to 0.7 in the illustrated single-trigger attack.

neural network is to minimize the loss function L(·).
Θ̂ = argmin

Θ

∑

xi∈X
L(FΘ(xi),yi), (1)

where Θ̂ is the obtained parameters after training, X is the
training dataset, xi is a training sample, yi is the ground-truth
label, and FΘ(xi) is the predicted label.

Model architecture is essential for a sophisticated deep
neural network. A handful of model architectures have been
designed to fulfil different tasks, among which LeNet and
VGG families are widely used for image processing. LeNet
structure is compact and suitable for small-sized training
dataset. A typical LeNet-5 has 5 hidden layers, including
3 convolutional layers and 2 fully-connected layers) [21].
VGG [22] has two widely-used structures, namely VGG-16
(13 convolutional layers and 3 fully-connected layers) and
VGG-19 (16 convolutional layers and 3 fully-connected lay-
ers). VGG-16 improves over AlexNet by replacing large kernel
filters with multiple sequential smaller kernel filters. VGG
performs well on complex dataset (e.g., ImageNet [23]), but
the computational cost is high.

B. Outsource Training of Machine Learning Models

The breathtaking development of machine learning is
driving almost all industries to take advantage of this revolu-
tionizing technology to improve business intelligence. Unfor-
tunately, the training process of machine learning models
can be extremely expensive in terms of time and costs. For
resource-limited users, outsourcing the training of machine
learning models is driven by multiple factors. Training data
is one of the major factors that decide the performance of

the trained deep neural networks, as indicated in equation (1).
A well-performed DNN may need millions of training data
samples, but to collect and annotate the training data is
labor-intensive for startup enterprises. The number of parame-
ters of deep neural networks can be as large as hundreds of
millions. To obtain these parameters, the training process may
take days or even weeks on powerful servers. The costs for
purchasing and operating these servers (e.g., Google, Amazon)
are formidable. Furthermore, to optimize the machine learn-
ing model requires expert knowledge in deciding appropriate
model architecture and intensive efforts in fine-tuning the
hyperparameters.

All the above hindrance motivates users to outsource the
training of machine learning models to cloud service providers.
The cloud amasses large quantities of computing resources,
which suits the resource-hungry machine learning training
processes. Amazon Web Services (AWS) provides machine
learning services1 to help build, train and deploy machine
learning models. As its main competitor, Microsoft Azure also
launches similar services.2

Security is one of the critical concerns for machine learning
outsourcing. While reputable cloud service providers like AWS
and Azure are supposed to be trusted, many less trustworthy
cloud service providers may deliver manipulated machine
learning models to users, e.g., one with a backdoor. Being
aware of this potential risk, many defense strategies have been
proposed to detect or to remove backdoors from suspicious
machine learning models. As shown in Fig. 1, in this paper,
our main purpose is to design a robust backdoor attack from

1https://aws.amazon.com/startups/machine-learning/
2https://azure.microsoft.com/en-us/free/machine-learning/

2620 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 8, AUGUST 2021

the perspective of malicious cloud service providers, aiming
to evade defense strategies from users.

C. Backdoor Attacks and Defenses

Backdoor attacks aim at injecting a backdoor to the DNN
such that the backdoored model misclassifies inputs with spe-
cific triggers to a false label while guaranteeing high prediction
accuracy for clean inputs. A well-performed backdoor attack
should achieve both high attack success rate (for malicious
inputs with the trigger) and high prediction accuracy (for clean
inputs), but the two objectives are contradictory. To achieve a
balanced performance, the key lies in selecting the appropriate
trigger. Considering the most common application of DNN
in image classification, a trigger is usually an icon placed
at a special location of the image samples. The pattern of
the trigger may be irrelevant to the DNN model (random)
or carefully generated according to the DNN model (model-
dependent). Intuitively, model-dependent triggers yield a better
attack success rate than random triggers but require sophis-
ticated trigger generation processes. Apart from the trigger
pattern, the size of the trigger is also of great significance
in backdoor attacks. With a larger trigger size, the attack
success rate is usually higher, but the prediction accuracy (of
normal inputs) is lower. After determining the trigger, to inject
the backdoor to the DNN model, the attacker poisons the
training dataset to retrain the victim DNN model [6], [10],
[11], [17], [18].

Existing backdoor attacks include single-trigger attacks and
multi-trigger attacks. In single-trigger attacks, there is only
one trigger, usually at a fixed location of image samples.
In multi-trigger attacks, various triggers are generated at
the same or different locations of input samples, targeting
the same or different misclassification classes. Multi-trigger
attacks extend the attack space but are more sophisticated
and complicated than single-trigger attacks. In this paper,
we consider both single-trigger and multi-trigger backdoor
attacks.

Recognizing the potential damage of backdoor attacks,
many defending strategies have been proposed to mitigate such
security threats. Existing state-of-the-art defense approaches
include model-based defenses and data-based defenses [24].
To recap, model-based defenses [12], [13], [20] focus on
detecting whether the received model is backdoored or not,
and data-based defenses [14], [25], [26] focus on detecting
whether the input sample contains the trigger or not. The state-
of-the-art defense approaches include pruning, NeuralCleanse
(NC), Strip, and ABS.

1) Pruning: Pruning is a model compression technique that
was tailored to defend backdoor attacks [16]. Assuming that
the neurons activated by malicious samples are less active for
clean samples, pruning is supposed to be useful in disabling
the backdoor by removing redundant connections of a deep
neural network. Note that the pruning strategy does not detect
whether the model contains the backdoor or not, yet we deem
pruning as a model-based defense strategy as it only deals with
the model. The user first records the number of activations of
each neuron when inputting clean inputs from the validation

dataset. Then the user iteratively prunes neurons from the deep
neural network in the ascending order of activations and exams
the accuracy of the pruned neural network in each iteration.
When the accuracy of the validation dataset hits a lower bound,
the pruning process terminates.

2) NeuralCleanse: NeuralCleanse (NC) [20] is a
model-based defense method that attempts to check whether
the model contains backdoors. It is assumed that for a
backdoored model, to modify the inputs to be misclassified
to the target label of the backdoor attack is much easier than
other non-target labels. Therefore, NC attempts to recover a
trigger for each label, and check whether the smallest trigger
is significantly smaller than others. If so, the model is deemed
as having been backdoored, and this trigger is considered
as the actual trigger. NC is effective in detecting backdoor
attacks with small-sized triggers, e.g., 18% of the image for
MNIST, but may fail for those with larger triggers.

3) Strip: Strip [14] is a data-based defense method that
examines whether the incoming inputs contain triggers.
An input image sample is duplicated for multiple times, and
each replica is merged with a different image sample to form
a perturbed sample. The prediction results of these perturbed
samples are expected to have a high entropy value if the model
is benign due to randomness, and a low entropy value if the
model is malicious since the input with the trigger is strongly
associated with the target misclassification label. The key is to
determine the entropy threshold to differentiate benign inputs
and inputs with triggers.

4) ABS: Artificial Brain Stimulation (ABS) [13] is a most
recent model-based defense strategy that scans deep neural
networks to determine whether there are backdoors. It is
inspired by Electrical Brain Stimulation (EBS) that is used to
analyze human brain neurons. Given the deep neural network,
ABS changes the activation of a neuron and observes the
corresponding output differences. When appropriate stimuli
are provided, neurons affected by the backdoor will manifest
themselves by significantly increasing the activation of the
target label and possibly inhibiting the activation of other
labels. ABS utilizes stimulus analysis to reverse engineer
backdoor triggers. ABS is effective in detecting single-trigger
attacks but not multi-trigger attacks.

With our target of a robust backdoor attack for malicious
cloud service providers, we demonstrate that our proposed
ROBNET is resistant to all these state-of-the-art defense strate-
gies via intensive experiments in Section V.

III. THREAT MODEL

In the outsourced cloud environment, there are two parties,
namely, a user who outsources the training of a deep neural
network and a cloud service provider who trains the deep
neural network. More specifically, the user negotiates with the
cloud service provider on the specifics of the neural network,
including the depth (the number of layers) of the DNN, the size
of each layer, and the activation function. The user may upload
a training dataset, or entrust the cloud service provider to
collect the training dataset. The cloud provider trains and
returns a deep neural network to the user. After receiving
the model from the cloud, the user tests its accuracy on a

GONG et al.: DEFENSE-RESISTANT BACKDOOR ATTACKS AGAINST DNNs IN OUTSOURCED CLOUD ENVIRONMENT 2621

TABLE I

APPLICATION SCENARIOS OF DIFFERENT ATTACKS

validation dataset. The user accepts the model only if the
test accuracy meets a target threshold determined by domain
knowledge or performance requirements.

We consider the threat model in which the cloud provider
is the adversary who aims to return a backdoored but
well-performed deep neural network. Unlike the prior work [6]
that assumes the user only tests the prediction accuracy of the
received model, we consider a much stronger case where the
user leverages various advanced defense strategies to check
whether the model is backdoored or not.

IV. ROBNET: CONSTRUCTION DETAILS

A. Overview

Our proposed backdoor attack ROBNET consists of two key
steps: trigger generation and backdoor injection.

1) Trigger Generation: The trigger plays an important role
in backdoor attacks. There are two kinds of triggers, namely,
random triggers and model-dependent triggers. Since random
triggers yield a low attack success rate and are easy to be
detected by defense strategies, we adopt model-dependent
triggers. Model-dependent triggers are generated based on the
deep neural network. We develop a novel model-dependent
trigger generation algorithm, which not only enhances the
attack capabilities but also evades most defense strategies.

The main idea of our trigger generation algorithm is to
decide value assignment in an empty mask (the mask covers
the location of the trigger on the image) so that certain
neuron(s) is excited the most. As shown in Fig. 1, the mask is
rectangular, and the selected neuron is highlighted in yellow
or blue. The final value assignment of the mask yields the
model-dependent trigger. In single trigger attacks, the trigger
raises the activation value of the selected neuron from 2 to 12.
The key of trigger generation lies in selecting appropriate
neurons that can best facilitate backdoor attacks. Since tar-
geted backdoor attacks aim to misclassify malicious inputs
into the target label, we seek for neurons that are closely
associated with the target label. More specifically, we choose
the neuron(s) with the highest weights and activations when
the network is fed (clean) inputs that belong to the target label.
We show in Section V that our selected neuron(s) will not be
removed by network pruning operations, thus the proposed
attacks are robust to pruning-based defense strategies.

2) Backdoor Injection: To inject the backdoor into the
DNN, we poison the training dataset (uploaded by the user)
with malicious samples to retrain the DNN model. For a
given clean sample (x, c), where c is the ground-truth label,
we construct the malicious sample(s) (x∗, c∗), where x∗ is
the clean sample with the trigger and c∗ is the target label.

Multiple malicious samples can be constructed since the
trigger can be placed at different locations of the image.

Most existing works assumed that the location of the trigger
is fixed and did not consider the influence of trigger location
on the performance of backdoor attacks. Nonetheless, we find
that the attack success rate is highly sensitive to the trigger
location. If the trigger location during testing is slightly
different from that during training, the attack success rate will
drop sharply. To make our attacks more robust, we place the
same trigger at different locations of the clean sample to form
multiple malicious samples to poison the training dataset and
retrain the benign model to inject the backdoor. In this way,
the attacks are more robust to trigger locations.

In the retraining procedure, both the clean training samples
and corresponding malicious samples are utilized to retrain
the deep neural network, aiming to strengthen the connection
between the selected neuron and the targeted label. As shown
in single trigger backdoor attacks in Fig. 1, after retraining,
the weight between the selected neuron and the output neuron
(label 1, targeted misclassification label) rises from 0.1 to 0.7.
Note that we only retrain the layers between the layer of the
selected neuron in trigger generation and the output layer,
in the aim of preserving high prediction accuracy for clean
samples. After retraining, the backdoored model will output
the target label once the trigger appears in the input but will
behave normally in the absence of the trigger.

Apart from single-trigger backdoor attacks, we also develop
and evaluate multi-trigger attacks where the adversary gen-
erates multiple triggers that target at the same or different
labels. Note that in multi-trigger attacks aiming for a single
label, the triggers generated at different patching locations are
different, while in single-trigger attacks, we patch the same
trigger generated at a specific location to different locations
to strengthen the robustness of the attack. As shown in Fig. 1,
trigger a and b are generated based on the same neuron (high-
lighted in blue) and target the same label 0 but are placed at
different locations. Trigger c is generated based on the yellow
neuron targeting label 1. Note that trigger c may have the
same location as a or b but target different labels. Multi-trigger
attacks extend the attack space of backdoor attacks by enabling
the adversary to achieve various attack targets with a single
backdoored model. For example, a backdoored traffic sign
recognition model may misclassify all inputs with trigger a
as a stop sign and all inputs with trigger b as a right-turn-only
sign.

Taking the facial recognition task as an example, we illus-
trate the attack scenarios to which different attacks are applica-
ble in Table I.

2622 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 8, AUGUST 2021

Algorithm 1 Backdoor Trigger Generation Algorithm
Require: Pretrained deep neural network F , the mask M ,

the threshold h, the maximum number of iterations I , and
the learning rate lr.

Ensure: The trigger Trigger.
1: l = layer_selection(F).
2: Trigger = Mask_Initialize(M).
3: n∗ = neuron_selection(F, l), i = 0.
4: c∗n,i = neuron_activation(F, l, n∗).
5: t∗n,i = max_value(F, l).
6: costi = |c∗n,i − t∗n,i|2
7: difi = c∗n,i.
8: flag = max(costi, difi).
9: while flag > h and i < I do

10: Δ = ∂cost/∂T rigger
11: Δ = Δ ◦ M
12: Trigger = Trigger−lr · Δ.
13: i = i + 1.
14: costi = |c∗n,i − t∗n,i|2
15: difi = c∗n,i − c∗n,i−1.
16: flag = max(costi, difi).
17: end while
18: return Trigger.

B. Step I: Trigger Generation

The most critical step in backdoor attacks is to generate
an effective trigger. Our proposed model-dependent trigger
generation approach is summarized in Algorithm 1. The trigger
generation process is equivalent to finding the value assign-
ment of an empty mask to strongly activate certain neuron(s)
in the neural network. Therefore, we need to first determine
what the mask is and which neurons to activate, then produce
the trigger accordingly.

1) Mask Determination: The mask M is a matrix in which
the number of rows and the number of columns conform to
the height and the width of the image sample. The elements in
the matrix have a value of 1 in the trigger region and 0 in the
remaining region. The trigger region in the mask is formed by
determining the shape, size, and position of the trigger. For
the shape and the position of the trigger, we follow existing
works on backdoor attacks [10]. The shape of the trigger is
rectangular, and the position of the trigger is at the lower right
corner of the image sample. To choose the appropriate size of
the trigger is a trade-off between the attack success rate and
attack stealthiness. A larger trigger boosts the attack success
rate but is more observable and easier to be detected. Through
our extensive experiment, we find that a trigger size of 7% of
the image brings an ideal performance. Note that 7% falls
into the range that can be detected by NeuralCleanse [20],
yet we show in Section V that NeuralCleanse is ineffective in
defending against ROBNET.

2) Neuron Determination: Following [10], we select a sin-
gle neuron to activate. To find the most effective neuron,
we first decide which layer the neuron should reside, then
pinpoint the neuron in the selected layer.

Layer Selection: Convolutional layers are not selected, since
a neuron in a convolutional layer only connects to a small set
of neurons of the preceding layer, thus the response to the
input trigger is weak. For similar reasons, we do not select
pooling layers. Fully-connected layers are ideal since each
neuron connects all neurons from the previous layer to all
neurons of the next layer, exerting high influence on the output.

Since the benign deep neural network will be retrained
between the selected layer and the output layer for backdoor
injection, we do not select layers close to the output layer due
to a lack of room for retraining. Taking all these factors into
consideration, we choose the first fully-connected layer of the
DNN for neuron selection.

Neuron Selection: To achieve the best attack performance,
the selected neuron should be sensitive to malicious inputs and
has a strong relationship with the target misclassification label.
Given the selected layer l, let N represent the set of neurons
in layer l, J represent the set of neurons in the preceding
layer l − 1, and wl−1,l

n,j represent the weight between neuron
n ∈ N and neuron j ∈ J across the two layers. The existing
method [10] selects the neuron n∗ that is most affected by the
preceding layer (i.e., with the largest sum of weights to the
preceding layer).

n∗ = arg max
n∈N

∑

j∈J
wl−1,l

n,j . (2)

However, the selected neuron in (2) is indiscriminately sen-
sitive to both malicious inputs and benign inputs, ignoring the
impact of the selected neuron on the target misclassification
label. Moreover, the neuron selection method of [10] did
not consider activation-based pruning defense strategies. The
selected neuron may have a low activation and will be pruned,
leading to the failure of backdoor attacks.

After carefully studying network pruning techniques,
we propose a robust neuron selection mechanism. It is shown
that certain neurons are more active when inputting specific
classes of inputs [26], [27]. Our idea is to find the neuron
with both large weights and a large number of activations
when the neural network is fed with clean inputs of the target
misclassification label. In this way, the chosen neuron has a
strong association with the target misclassification label, and
is less likely to be pruned due to its large weights.

To achieve this goal, we input massive clean samples of
the target misclassification label into the benign DNN model
and record the number of activations and the weights of each
neuron in the selected layer. The neuron with the highest
weighted sum of the number of activations and weights is
selected.

n∗ = arg max
n∈N

(λ
∑

x∈X c

I[F (x)=n] + (1 − λ)
∑

j∈J
wl−1,l

n,j), (3)

where X c is the set of benign samples of the target misclassifi-
cation label c, and I[F (x)=n] denotes that neuron n is activated
by input x.

λ balances the weights and the number of activations. The
activations reflect the connection between the neuron and the
inputs of the target label, and the weights characterize the
influence of the neuron on the neurons of the next layer. With

GONG et al.: DEFENSE-RESISTANT BACKDOOR ATTACKS AGAINST DNNs IN OUTSOURCED CLOUD ENVIRONMENT 2623

Fig. 2. Illustration of the backdoor attack mask, trigger, and location. There are eight different trigger positions for generating the multi-trigger.

a larger λ, we prefer a neuron that is more activated by the
inputs of the target label. With a smaller λ, we prefer a neuron
that is more influential on the following neurons. According
to empirical studies, we set λ as 0.65 to balance the two
aspects. A well-balanced λ will lead to a high attack success
rate (ASR), while an ill-balanced one will result in low ASR.
The prediction accuracy (PA) of clean inputs is less affected
by λ since λ is mostly related to the trigger and the poisoned
inputs.

3) Trigger Formation: Given the mask and the selected
neuron, we adopt gradient descent to iteratively update the
value assignment of the mask to minimize the cost function
|vn,t−ut|2, where vn,t is the current activation value of neuron
n in the t-th iteration, and ut is the target value. Given that
layer l−1 consists of K neurons, the activation al

n of the n-th
neuron in layer l is

al
n = Φl(

K∑

j=1

wl−1,l
n,j · al−1

j + bl
n), (4)

where Φl is the activation function of layer l, bl
n is the bias.

The target activation value ut is set as the highest activation
value of the neurons in the selected layer. If the value of the
selected neuron is already the highest in the chosen layer,
we continue to increase its value until convergence or until
the number of iterations hits the limit. In the last iteration,
the trigger is extracted from the mask area.

C. Step II: Backdoor Injection

The process of backdoor injection consists of two steps:
data poisoning and model retraining.

1) Data Poisoning: Given the generated trigger mask M,
the adversary patches the trigger to clean data samples to
construct poisoned data samples.

x∗ = x + trigger� M. (5)

where x is a clean sample, x∗ is the corresponding poisoned
malicious sample, M is the mask to locate the trigger, and � is
element-wise product. The label of the poisoned data samples
is the target misclassification label.

Existing methods patch the trigger to clean samples to
generate poisoned retraining dataset at exactly the same
location as in the trigger generation process. Nevertheless,
the attack success rate of the backdoored model will sharply
decrease if the location of the trigger in the test samples

is slightly different from that in the poisoned retraining
dataset. Furthermore, many state-of-the-art defense strategies
rely on the assumption that the position of the trigger is fixed
(e.g., NeuralCleanse). To increase the robustness of ROBNET,
we propose a multi-location patching method by patching the
trigger to different locations of the clean samples to generate
multiple poisoned data samples. For example, the same gen-
erated trigger is patched to both location 6 and location 8 of a
clean sample in Fig. 2 to construct two poisoned samples with
the same target class. These two types of poisoned samples
are both added to the poisoned dataset.

2) Model Retraining: In the outsourced cloud environment,
the malicious cloud first trains a benign neural network using
a clean training dataset. Then, the cloud performs trigger
generation algorithm based on the benign neural network.
Finally, the cloud constructs poisoned training dataset using
the generated trigger, and retrains the benign neural network
with the combined clean and poisoned datasets to obtain
the backdoored model. In this way, the backdoored model
maintains a high prediction accuracy for clean inputs, but
misclassifies malicious inputs to the target label.

It is worth noting that only the layers between the selected
layer in trigger generation and the output layer are retrained.
Besides, not all clean samples are poisoned to avoid high
retraining overhead. We only poison a fraction of the clean
training dataset. In Section V, we evaluate the influence of
the poison ratio on the performance of ROBNET.

D. Multi-Trigger Attacks

Most existing backdoor attacks only consider a single
trigger that leads to misclassification to a single target label.
Multiple triggers can enrich the attack effect of malicious
inputs without affecting the prediction accuracy of clean
inputs (the clean inputs do not contain the triggers). Fig 2
shows typical locations that we use in our experiments, but
the possible locations are not limited to those in the figure.
We consider two scenarios, i.e., multi-trigger attacks targeting
a single or multiple misclassification classes.

For multiple triggers that target at the same class label,
we generate different triggers at different locations. Each
trigger is generated in the same way as single-trigger attacks.
To construct poisoned data samples, we patch each trigger
to the corresponding location to build multiple poisoned data
samples. For instance, we generate trigger A with mask MA

at location 6 (as in Fig. 2) and trigger B with mask MB at

2624 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 8, AUGUST 2021

location 8, both targeting at the same misclassification label c.
We can construct two poisoned samples (x+A�MA, c) and
(x+B�MB, c) for model retraining. During attacks, multiple
triggers can be present in test samples, i.e., x + A � MA,
x + B � MB and x + A � MA + B � MB will all be
misclassified as c. Note that different from multi-location
patching in single-trigger attacks that patch the same generated
trigger to different locations of the image for data poisoning,
multi-trigger attacks (targeting one misclassification label)
patch different generated triggers to different locations of
the image for data poisoning. Both multi-trigger attacks and
multi-location patching make the attacks more robust to the
location of the trigger in test samples.

For multiple triggers that target at different class labels,
we generate different triggers at the same or different loca-
tions. Each trigger targets a different misclassification label,
and is generated in the same way as single-trigger attacks.
To construct poisoned data samples, we patch each trigger
to the corresponding location to build multiple poisoned data
samples. For instance, we generate trigger A with mask M
at location 6 targeting label c1, trigger B with the same mask
M at location 6 targeting label c2, trigger C with mask M�

at location 8 targeting label c3. We can construct poisoned
samples (x+A�M, c1), (x+B�M, c2), and (x+C�M�, c3)
for model retraining. During attacks, only one trigger will be
present in test samples, i.e., x + A�M will be misclassified
as c1, x+B�M will be misclassified as c2 and x+C�M�

will be misclassified as c3. The adversary will not use samples
such as x + A � M + C� M� for attacks.

Note that the selected neuron is related to the target
misclassification label but not the trigger location, and the
generated trigger is related to the selected neuron and the
trigger location. In multi-trigger same-label attacks, the same
neuron is selected to generate different triggers at different
locations. In multi-trigger multi-label attacks, it is possible
that the same neuron may be selected for different target
labels (the neuron is strongly activated by both labels). In this
case, the same trigger will be generated for different target
labels at the same trigger location. A simple way to solve this
problem is to choose different trigger locations for different
target labels. Another way is to refine the neuron selection
process. For instance, we target label cA and label cB , and
neuron A has the highest weighted sum of weights and the
number of activations for both labels. We may select neuron
A for label cA and select the second-best neuron for label
cB . In the experiments, we demonstrate the effectiveness of
multi-trigger attacks.

V. IMPLEMENTATION AND EVALUATION

A. Experiment Setup

We consider two state-of-the-art backdoor attacks
BadNets [6] and Hidden-Backdoor (HB) [19] as the baselines,
which have the same threat model as ours. BadNets uses ran-
dom triggers, and HB uses invisible random triggers. Although
BadNets can achieve both high prediction accuracy and attack
success rate, our experiments show that BadNets can be
defended by all four defense strategies [13], [14], [16], [20]

that we evaluate. The invisibility concern of HB affects its
performance in attack success rate, and we show that HB
is detected by three of the four defense strategies that we
evaluate even if the trigger is imperceptible by sight. Note
that we did not experiment on [10] that has model-dependent
triggers as ours, since the threat model of [10] is different
from ours.

All experiments are carried out on an Ubuntu 16.04 system
with Intel CPU of 4 cores and 4 GeForce RTX 2080 Ti GPU.
We consider 3 most commonly-used datasets.

1) MNIST: MNIST [28] consists of 70,000 gray-scale
images that belong to 10 classes (classes 0 ∼ 9). According
to existing works, we select 60,000 samples as the training
dataset, and the remaining 10,000 image samples as the test
dataset. We assume that the user specifies the structure of
the trained deep neural network as LeNet-5 [21], i.e., two
convolutional layers with pooling and two fully-connected
layers. In the training process, the base learning rate is set as
0.01 with the inverse decay policy. The max iteration is set as
10,000. The momentum of stochastic gradient descent (SGD)
is set as 0.9 and the benign model achieves an accuracy
of 99.12%.

2) GTSRB: GTSRB [29] consists of 39,209 training sam-
ples and 12,630 testing samples. The image samples vary in
size from 28 × 28 to 215 × 215. We utilize the annotation
information that describes the number and the type of traffic
signs in an image to crop and enlarge the area that contains
the traffic sign(s). In this way, we obtain all the samples with a
uniform size of 224×224. We train a traffic sign classifier on
the VGG-16 structure with pretrained weights of ImageNet
[22], [23]. We train the model using SGD with momentum
optimizer for 5,000 epochs. The base learning rate is 0.0001,
and polynomial decay is adopted with a power of 1.0. The
trained benign VGG model achieves a prediction accuracy
of 94.98% on the test dataset.

3) CIFAR-10: CIFAR-10 [30] contains 60,000 color images
that belong to 10 classes. Each class includes 6,000 images,
and each image has a size of 32 × 32. We use 50,000 image
samples for training and the remaining 10,000 samples for test-
ing. We train a CIFAR-10 classifier on the VGG-16 structure
with batch normalization. To achieve a better performance,
we perform data augmentation by randomly rotating, shifting,
and horizontally flipping the training data samples. We use the
SGD optimizer, and the base learning rate is 0.1 with a step
drop every 50 iterations. We train the model for 200 epochs
with a batch size of 128. The obtained benign model has a
prediction accuracy of 96.05% on the test set.

We employ prediction accuracy (PA) and attack success rate
(ASR) to evaluate the effectiveness of ROBNET. Prediction
accuracy measures the ratio of correctly-labeled clean samples
in the test dataset. Mathematically, prediction accuracy is
defined as

PA(F ∗, T) =
1
|T |

∑

x∈T

I[F ∗(x) = c], (6)

where T is the set of clean inputs, F ∗ is the backdoored deep
neural network, c is the corresponding ground-truth label of x.

GONG et al.: DEFENSE-RESISTANT BACKDOOR ATTACKS AGAINST DNNs IN OUTSOURCED CLOUD ENVIRONMENT 2625

TABLE II

THE IMPACT OF POISON RATIO ON THE ATTACK PERFORMANCE

TABLE III

SINGLE-ATTACK PERFORMANCE COMPARISON

Attack success rate is calculated as the percentage of mali-
cious samples that are misclassified by the backdoored deep
neural network into the target label. Mathematically, the attack
success rate is defined as

ASR(F ∗, T ∗) =
1

|T ∗|
∑

x∗∈T∗
I[F ∗(x∗) = c∗], (7)

where T ∗ denotes the set of malicious inputs, c∗ is the target
label.

B. Evaluation Results

1) Effectiveness of Backdoor Attacks: We first validate the
effectiveness of ROBNET in terms of single-trigger attacks and
multi-trigger attacks, then evaluate the impact of the number
of triggers on the performance of ROBNET.

Single-Trigger Attacks: Before comparing ROBNET with
other state-of-the-art attacks, we first investigate the impact
of poison ratio on the attack performance. Poison ratio refers
to the percentage of benign samples that are poisoned in
the training dataset. As shown in Table II, as the poisoning
rate increases, the attack success rate will increase, but the
prediction accuracy will slightly decrease. Even with 1%
poison ratio, ROBNET can achieve a mean attack success rate
of 97% while maintaining a high prediction accuracy.

Table III summarizes the performance of single-trigger
backdoor attacks. With the same settings (e.g., poison ratio
(20%), retraining operations), ROBNET outperforms both Bad-
Nets and HB with a large margin. Note that we set the
poison ratio as 20% since HB [19] is not effective at a lower
poison ratio. The high attack success rate can be attributed to
our proposed trigger generation algorithm, which takes into
account the association of the neuron with the target label.
In comparison, both baselines choose a random backdoor
trigger, which cannot strongly activate the inner neurons
(especially the neurons associated with the targeted label).

Fig. 3 demonstrates the performance of single-trigger
attacks when different patching locations are considered. The

Fig. 3. The robustness of the attacks under different possible patching
locations of the trigger.

experiments are conducted using the MNIST dataset. As we
have mentioned before, during the attack, patching the trigger
to the test sample at exactly the same location as that of
the training sample is difficult, and a slight difference may
lead to large performance degradation. Therefore, ROBNET

allows the adversary to patch the triggers to different locations
of the image samples, which increases the robustness of the
attacks. Note that we achieve this by constructing poisoned
samples with the same trigger placed at different locations of
the clean samples and retrain the neural network. Naturally,
with more possible patching locations, both attack success rate
and prediction accuracy decrease. When only one location is
considered, the attack success rate can reach 99.59% and the
prediction accuracy can reach 98.68%. When there are eight
possible locations, the attack success rate drops to 91.75% and
the prediction accuracy is 90.29%, which are still very high.
This confirms that ROBNET is robust to the patching location
of the trigger during attacks.

Multi-Trigger Attacks: We extend the single-trigger attacks
to multi-trigger attacks with two settings, i.e., single-label and
multi-label. We conduct experiments on both scenarios and
show the results in Fig. 4. The number of triggers is set as two.
It is shown that both scenarios achieve a high attack success
rate and a high prediction accuracy. In general, the same-label
scenario has higher attack success rate and prediction accuracy
than the multi-label scenario, since the multi-label scenario is
more complicated and involves more neurons in the neural
network.

The number of triggers in multi-trigger attacks has a crucial
influence on the performance. Table IV displays the attack
success rate and prediction accuracy when there are different
numbers of generated triggers. We conduct the experiments
in MNIST. It is shown that in both scenarios, the attack
success rate and prediction accuracy decrease with more
backdoor triggers. In the same-label scenario, having more
triggers makes the attack more robust to different possible
trigger locations in test samples, but introduces more changes
during retraining and reduces the prediction accuracy. In the
multi-label scenario, multiple triggers target at different labels,
leading to more complicated neuron selection and retraining
processes, which affects the attack performance.

Overall, the attack success rate and the prediction accuracy
of multi-trigger attacks are over 90%, which validates the
effectiveness of ROBNET.

2626 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 8, AUGUST 2021

Fig. 4. Multi-trigger attack performance.

Fig. 5. Comparison in prune.

TABLE IV

THE IMPACT OF THE NUMBER OF TRIGGERS ON MULTI-TRIGGER ATTACKS

2) Robustness to State-of-the-Art Defense Strategies: We
have reproduced four state-of-the-art defense strategies against
ROBNET and the baselines BadNets and HB.

Pruning: We apply pruning to the backdoored models of
ROBNET, BadNets and HB on all three datasets under the

single-trigger multi-location scenario. Note that the pruning
approach in [16] removes neurons with low activations, but
ROBNET can also resist weight-based pruning methods. The
results are shown in Fig. 5. BadNets and HB show an obvious
decline in both attack success rate and prediction accuracy as
a larger percentage of neurons are removed. This shows that
network pruning is effective in defending against BadNets and
HB. In contrast, the attack success rate of ROBNET remains
steady as more neurons are pruned. This is due to the fact that
we select the neuron that has a high activation when inputting
massive clean samples. Thus the neuron is more likely to be
preserved during pruning.

NeuralCleanse: We apply NC to the backdoored models
of ROBNET and the baselines on all three datasets. In par-
ticular, ROBNET adopts the multi-trigger same-label model
with two different triggers targeting the same label at location
1 and 8 of Fig. 2. NC generates a potential trigger for a label by

GONG et al.: DEFENSE-RESISTANT BACKDOOR ATTACKS AGAINST DNNs IN OUTSOURCED CLOUD ENVIRONMENT 2627

Fig. 6. Comparison in NC. In each group, the left one is the original trigger and the right one is the inversed trigger.

maximizing the probability of misclassifying inputs with the
trigger as the target label. The optimization result is a mask
(indicating the location of the trigger) and a corresponding pat-
tern. Since the location of our trigger is not fixed, the location
of the generated mask of NC does not yield much information.
Therefore, we focus on comparing the difference between
the pattern of the trigger generated by NC and the actual
trigger of backdoor attacks. As shown in Fig. 6, regarding the
backdoored models of ROBNET and HB, the trigger pattern
generated by NC is quite different from any of the original
trigger. On the contrary, the recovered trigger by NC is similar
to the actual trigger of BadNets. For the MAD (Median
Absolute Deviation) anomaly detection of NC, we set the
threshold as 1.4, meaning that any label with a MAD larger
than 1.4 is regarded as the target label. Experiments show
that BadNets can be detected successfully in all cases, while
HB and ROBNET can evade the detection. This demonstrates
that NC is effective in detecting BadNets but not ROBNET

that leverages multi-trigger same-label method and HB. The
reason why HB can evade NC is that its poisoned samples
(used to train DNN) are similar to benign samples (the trigger
is hidden). Thus, given the backdoored model, NC fails to
reverse a trigger, and the outlier detection based on MAD is
also ineffective. Similarly, NC is also ineffective against our
multi-trigger multi-label attacks.

Strip: We apply Strip to the backdoored models of ROBNET

and the baselines on all three datasets. In particular, ROBNET

adopts single-trigger multi-location attacks with the same trig-
ger attached at both location 1 and 8 as in Fig. 2. We randomly
select 2,000 clean image samples and 2,000 inputs with trig-
gers. Each input is superimposed with 200 randomly-selected
images. The entropy distribution of the classification results of
the clean inputs and the malicious inputs is shown in Fig. 7.
It is obvious that in BadNets and HB, the entropy distributions
of malicious inputs and clean inputs are well separated, which
enables the user to detect malicious inputs with a probability
of more than 90%. In comparison, in ROBNET, the entropy
distributions of clean inputs and malicious inputs are very
similar. The overlap is substantial, thus it is hard to differen-
tiate malicious inputs and clean inputs. Clean samples usually
have a high entropy distribution due to randomness. BadNets

and HB add the same trigger at a fixed location, creating a
unique pattern with a low entropy. In this way, the entropy
of malicious inputs with the trigger is much lower than that
of clean inputs, thus easily detected by Strip. In comparison,
our proposed single-trigger multi-location attacks patch the
same trigger at different locations, which leads to more ran-
domness and results in high entropy. Therefore, Strip cannot
differentiate clean samples and malicious samples of ROBNET

according to the entropy distribution.
ABS: We apply ABS to the backdoored model of ROB-

NET and the baselines on CIFAR-10 since the authors only
published their detection APIs on CIFAR-10 DNN models.
In particular, ROBNET adopts the multi-trigger multi-label
scheme with two different locations at 1 and 8 as in Fig. 2.
ABS uses the abnormal stimulus of neurons to reverse the trig-
ger to target a certain REASR (attack success rate of reverse
engineered trojan triggers). We found that ABS detected 21,
11, and 4 suspicious neurons in BadNets, HB, and ROBNET,
respectively. When we set REASR to at least 90%, ABS
detected 4, 2, and 0 suspicious neurons in BadNets, HB,
and ROBNET, respectively. The possible reason that ROBNET

evades ABS may be that we undermine the assumption of
ABS that the target misclassification label is activated by only
one neuron (we activate multiple inner neurons with different
triggers).

VI. RELATED WORK

A. Backdoor Attacks

Backdoor attacks aim to manipulate DNN models so that
the backdoored models behave normally on clean inputs but
misclassify malicious inputs with the special trigger. Backdoor
attacks are usually performed under two cases, i.e., the adver-
sary is a malicious model vendor or a malicious training data
vendor. In the former case, the user outsources the training
process to cloud service providers (e.g., AWS, Google) [6],
[31], [32] or directly reuse the trained model from the model
sharing platform (e.g., Caffe model zoo, and ONNX zoo) [10],
[11], [18], [24], [33]. In the latter case, a user with insufficient
training data downloads image samples from the internet as
training data samples [17], [19], and the image samples are
poisoned with the backdoor trigger.

2628 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 8, AUGUST 2021

Fig. 7. Comparison in strip.

To recap, Gu et al. proposed the first backdoor attacks
against deep neural networks, namely BadNets [6]. BadNets
deals with the machine learning outsource scenario, where
the malicious cloud service provider injects the backdoor
by poisoning the training dataset with a random trigger.
Liu et al. [10] considered a different scenario where the
adversary downloads a trained model from the internet and
reverses the training data samples. A trigger is then gen-
erated by selecting a neuron with large weights, however,
the association between the neuron and the target label is
not considered. The adversary then publishes the backdoored
model for users to download. Ji et al. discussed multi-trigger
attacks [11], [18] and gave mathematical formulation, but did
not verify the performance via experiments. Yao et al. [33]
proposed backdoor attacks for transfer learning, in which the
adversary injects latent backdoors to the “teacher” model,
and the “student” model inherits the malicious characteristics.
Saha et al. [19] proposed a hidden random backdoor trigger
injection method, but it needs a large poison ratio and a
large trigger size to achieve an acceptable attack success rate.
More recently, Lin et al. [31] proposed a novel composite
backdoor attack that uses the composition of benign features
as the backdoor trigger. Pang et al. [34] discovered that it is
possible to optimize the current backdoor attacks (e.g., [10])
in terms of both visibility (e.g., trigger transparency and size)
and detection resistance. This work is complementary to ours,

and will be leveraged to enhance our backdoor attacks in the
future.

In our paper, we propose a novel model-dependent backdoor
trigger generation algorithm that considers selecting neuron
with both high activations and weights, and propose our own
version of multi-trigger backdoor attacks. In particular, we ver-
ify the effectiveness of ROBNET and its resistance to state-of-
the-art defense strategies through extensive experiments.

B. Backdoor Defenses

As far as we know, existing defense against backdoor attacks
can be classified into two categories, i.e., model-based and
data-based.

Model-based defense strategies examine whether the DNN
model contains backdoors. NeuralCleanes (NC) [20] gener-
ates potential triggers for each label and checks whether
there exists a trigger that is significantly smaller than others.
ABS [13] changes the activations of neurons and observes their
outputs to detect the backdoor. Activation Clustering (AC) [12]
inspects whether the DNN model performs differently for
clean inputs and malicious inputs under the same label as
evidence of backdoors, but access to the training dataset is
required. To reduce the overhead, Huang et al. proposed
NeuronInspect [35] that combines output explanation with
outlier detection. DeepInspect [36] requires no access to the

GONG et al.: DEFENSE-RESISTANT BACKDOOR ATTACKS AGAINST DNNs IN OUTSOURCED CLOUD ENVIRONMENT 2629

training dataset since its first step is to reverse training data.
Its key idea is to use a conditional generative model to obtain
the probabilistic distribution of likely backdoor triggers. The
backdoor trigger can be generated by the conditional genera-
tive model if its perturbation level incurs an anomaly detection.
Gotta Catch ‘Em All [37] discovered that the backdoor attack
may change the DNN models’ decision boundary during the
backdoor injection, based on which the malicious model may
be detected.

Data-based defense strategies check whether the inputs con-
tain triggers. Strip [14] detects the trigger by superimposing
input samples and measuring the entropy distribution of the
output results. SentiNet [25] considers that input contains the
trigger if certain contiguous regions have a strong influence
on the classification results. However, the computational com-
plexity of SentiNet is relatively high. Epistemic Classifier [38]
is based on the following hypothesis: the backdoored input
may start close to benign source class sample in the input
layer, but its trajectory over the DNN will slowly or abruptly
approach the targeted label.

In this paper, we only evaluate the performance of ROB-
NET against four representative defense works, covering both
model-based and data-based defense strategies. Some other
defense strategies [12], [25], [35], [36], [38] are either the
precursor of these four defense strategies or not open-sourced
for implementation.

C. Adversarial Examples

The concept of adversarial examples is first proposed by
Szegedy et al. [27], i.e., the attacker adds carefully-designed
noise to an image so that the classifier misclassifies the
image. Based on the attack ability of the attacker, adversarial
example attack can be classified into white-box attacks [8] and
black-box attacks [39]. Recently, researchers have explored
the feasibility of adversarial examples in the physical world
[7], [9]. Athalye et al. proposed to used 3D printing technology
to create a physical world adversarial sample which can
deceive the recognition model [7]. Eykholt et al. analyzed the
impact of various physical factors, and designed adversarial
example attacks against the self-driving system [9]. The above
instances demonstrate that the threat of adversarial samples
may occur in both information domain and physical domain.
Unlike adversarial examples that customize noises for each
image, backdoor attacks generate a universal backdoor trigger
that can be added to any sample and trigger the backdoor of
the deep neural networks.

VII. DISCUSSION

A. Trigger Visibility

Like most existing works on backdoor attacks [6], [10],
[11], [18], [31], [33], ROBNET does not consider hiding
the backdoor triggers in sight. The conventional thought is
that visible triggers are small and neglectable, or can be
camouflaged as logos or watermarks. As far as we know, only a
few existing works consider invisible triggers [19], [40], and it
is shown that to achieve invisibility may greatly degrade attack

success rate [19]. As invisibility is an ultimate requirement in
adversarial attacks, we expect that invisible triggers are also
worth studying for backdoor attacks in the future.

B. Model Transfer

Users may retrain the model downloaded from the internet
so that the retrained model can be transferred to their own
tasks. In this case, the backdoor injected in the model may
be disabled during the retraining process. The most common
ways of model retraining or transfer learning include freezing,
fine-tuning, and knowledge distillation. Most existing works
on backdoor attacks did not consider model transfer [6],
[10], [11], [18], [19], [31], [32]. As far as we know, only
a few backdoor attacks deal with transfer learning [33], but
it is required that the student model must keep the target
misclassification label of the teacher model, which is not a
guarantee in many cases. To maintain a high attack success
rate and defense-resistance after model retrain/transfer is our
future direction.

C. Physical World

We did not evaluate ROBNET in the physical world. In the
physical world, the backdoored samples may be impacted by
various aspects, e.g., lighting, blurring, noise. To the best
of our knowledge, there is only one work that investigated
backdoor attacks against facial recognition in the physical
world [41]. Nevertheless, [41] only conducted experiments in
the physical world without a specific algorithm design that
deals with restrictions of the physical viability of backdoor
attacks. We plan to consider more physical factors when
designing backdoor attacks in the future.

D. Potential Defense

A possible defense against ROBNET is to analyze the feature
space of the test samples. Since the DNN model can effectively
extract the images’ feature, the defender can first perform
feature analysis on the benign training data in each category
and analyze the feature commonality. Then, the defender
detects each test data sample by analyzing if there is a big
difference in the feature commonality between the data and
its corresponding label. Since the backdoor sample’s feature
will deviate from that of the normal sample under the target
category, it is easy to be detected and cleaned.

VIII. CONCLUSION

This paper presents the design, implementation, and evalua-
tion of a robust backdoor attack against deep neural networks
in outsourced cloud environment. In our paper, a novel back-
door trigger generation algorithm is designed to excite the
neuron that has the highest impact on the target label and can
also evade network pruning. Besides, a multi-location patch-
ing mechanism is developed to increase trigger diversity to
circumvent many state-of-the-art defense strategies. Extensive
experiments on various datasets including MNIST, GTSRB,
and CIFAR-10 verify the effectiveness of both single-trigger
and multi-trigger attacks.

2630 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 39, NO. 8, AUGUST 2021

REFERENCES

[1] M. Bojarski et al., “End to end learning for self-driving cars,” 2016,
arXiv:1604.07316. [Online]. Available: https://arxiv.org/abs/1604.07316

[2] F. Bie, Z. Zhang, D. Wang, and T. F. Zheng, “DNN-based voice activity
detection for speaker recognition,” CSLT, San Francisco, CA, USA,
Tech. Rep. REPORT-20150030, 2015, pp. 1–11.

[3] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,”
in Proc. Brit. Mach. Vis. Conf. Swansea, U.K.: BMVA Press, 2015,
pp. 41.1–41.12.

[4] Y. Chen, X. Gong, Q. Wang, X. Di, and H. Huang, “Backdoor attacks
and defenses for deep neural networks in outsourced cloud environ-
ments,” IEEE Netw., vol. 34, no. 5, pp. 141–147, Sep. 2020.

[5] P. A.-C. M. L. Engine. Google Cloud. Google. Accessed: Jun. 11, 2021.
[Online]. Available: https://cloud.google.com/appengine/

[6] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “BadNets: Evaluating
backdooring attacks on deep neural networks,” IEEE Access, vol. 7,
pp. 47230–47244, 2019.

[7] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, “Synthesizing
robust adversarial examples,” in Proc. Int. Conf. Mach. Learn., 2018,
pp. 284–293.

[8] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool:
A simple and accurate method to fool deep neural networks,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 2574–2582.

[9] K. Eykholt et al., “Robust physical-world attacks on deep learning visual
classification,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 1625–1634.

[10] Y. Liu et al., “Trojaning attack on neural networks,” in Proc. Netw.
Distrib. Syst. Secur. Symp., 2018, pp. 1–17.

[11] Y. Ji, X. Zhang, S. Ji, X. Luo, and T. Wang, “Model-reuse attacks on
deep learning systems,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Oct. 2018, pp. 349–363.

[12] B. Chen et al., “Detecting backdoor attacks on deep neural networks
by activation clustering,” 2018, arXiv:1811.03728. [Online]. Available:
https://arxiv.org/abs/1811.03728

[13] Y. Liu, W.-C. Lee, G. Tao, S. Ma, Y. Aafer, and X. Zhang, “ABS:
Scanning neural networks for back-doors by artificial brain stimulation,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2019,
pp. 1265–1282.

[14] Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe, and S. Nepal,
“STRIP: A defence against trojan attacks on deep neural networks,” in
Proc. 35th Annu. Comput. Secur. Appl. Conf., Dec. 2019, pp. 113–125.

[15] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 1135–1143.

[16] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending against
backdooring attacks on deep neural networks,” in Proc. Int. Symp.
Res. Attacks, Intrusions, Defenses. Berlin, Germany: Springer, 2018,
pp. 273–294.

[17] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted back-
door attacks on deep learning systems using data poisoning,” 2017,
arXiv:1712.05526. [Online]. Available: https://arxiv.org/abs/1712.05526

[18] Y. Ji, X. Zhang, and T. Wang, “Backdoor attacks against learning
systems,” in Proc. IEEE Conf. Commun. Netw. Secur. (CNS), Oct. 2017,
pp. 1–9.

[19] A. Saha, A. Subramanya, and H. Pirsiavash, “Hidden trigger backdoor
attacks,” in Proc. AAAI Conf. Artif. Intell., 2020, pp. 1957–11965.

[20] B. Wang et al., “Neural cleanse: Identifying and mitigating backdoor
attacks in neural networks,” in Proc. IEEE Symp. Secur. Privacy (SP),
May 2019, pp. 707–723.

[21] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[22] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Represent.,
2015, pp. 1–14.

[23] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[24] A. Salem, R. Wen, M. Backes, S. Ma, and Y. Zhang, “Dynamic backdoor
attacks against machine learning models,” 2020, arXiv:2003.03675.
[Online]. Available: https://arxiv.org/abs/2003.03675

[25] E. Chou, F. Tramèr, and G. Pellegrino, “SentiNet: Detecting
localized universal attacks against deep learning systems,” 2018,
arXiv:1812.00292. [Online]. Available: https://arxiv.org/abs/1812.00292

[26] S. Ma, Y. Liu, G. Tao, W.-C. Lee, and X. Zhang, “NIC: Detecting
adversarial samples with neural network invariant checking,” in Proc.
Netw. Distrib. Syst. Secur. Symp., 2019, pp. 1–15.

[27] C. Szegedy et al., “Intriguing properties of neural networks,” in Proc.
Int. Conf. Learn. Represent., 2014, pp. 1–10.

[28] L. Deng, “The MNIST database of handwritten digit images for machine
learning research [best of the Web],” IEEE Signal Process. Mag., vol. 29,
no. 6, pp. 141–142, Nov. 2012.

[29] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs. Computer:
Benchmarking machine learning algorithms for traffic sign recognition,”
Neural Netw., vol. 32, pp. 323–332, Aug. 2012.

[30] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada,
Tech. Rep. TR-2009, 2009.

[31] J. Lin, L. Xu, Y. Liu, and X. Zhang, “Composite backdoor attack for
deep neural network by mixing existing benign features,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2020, pp. 113–131.

[32] T. A. Nguyen and A. Tran, “Input-aware dynamic backdoor attack,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 1–17.

[33] Y. Yao, H. Li, H. Zheng, and B. Y. Zhao, “Latent backdoor attacks on
deep neural networks,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Nov. 2019, pp. 2041–2055.

[34] R. Pang et al., “A tale of evil twins: Adversarial inputs versus poi-
soned models,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2020, pp. 85–99.

[35] X. Huang, M. Alzantot, and M. Srivastava, “NeuronInspect: Detect-
ing backdoors in neural networks via output explanations,” 2019,
arXiv:1911.07399. [Online]. Available: https://arxiv.org/abs/1911.07399

[36] H. Chen, C. Fu, J. Zhao, and F. Koushanfar, “DeepInspect: A black-box
trojan detection and mitigation framework for deep neural networks,” in
Proc. 28th Int. Joint Conf. Artif. Intell., Aug. 2019, pp. 4658–4664.

[37] S. Shan, E. Wenger, B. Wang, B. Li, H. Zheng, and B. Y. Zhao, “Gotta
Catch’Em all: Using honeypots to catch adversarial attacks on neural
networks,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2020, pp. 67–83.

[38] Z. Yang, N. Virani, and N. S. Iyer, “Countermeasure against backdoor
attacks using epistemic classifiers,” Proc. SPIE, vol. 11413, Apr. 2020,
Art. no. 114130P.

[39] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,”
in Proc. ACM Asia Conf. Comput. Commun. Secur., Apr. 2017,
pp. 506–519.

[40] S. Li, M. Xue, B. Zhao, H. Zhu, and X. Zhang, “Invisible backdoor
attacks on deep neural networks via steganography and regularization,”
IEEE Trans. Dependable Secure Comput., early access, Sep. 3, 2020,
doi: 10.1109/TDSC.2020.3021407.

[41] E. Wenger, J. Passananti, A. Bhagoji, Y. Yao, H. Zheng, and
B. Y. Zhao, “Backdoor attacks against deep learning systems in
the physical world,” 2020, arXiv:2006.14580. [Online]. Available:
https://arxiv.org/abs/2006.14580

Xueluan Gong received the B.S. degree in computer
science and electronic engineering from Hunan Uni-
versity in 2018. She is currently pursuing the Ph.D.
degree with the School of Computer Science, Wuhan
University. Her research interests include network
security and AI security.

Yanjiao Chen (Senior Member, IEEE) received the
B.E. degree in electronic engineering from Tsinghua
University in 2010 and the Ph.D. degree in computer
science and engineering from The Hong Kong Uni-
versity of Science and Technology in 2015. She is
currently a Professor with the School of Computer
Science, Wuhan University. Her research interests
include spectrum management for Femtocell net-
works, network economics, network security, and
quality of experience (QoE) of multimedia delivery/
distribution.

http://dx.doi.org/10.1109/TDSC.2020.3021407

GONG et al.: DEFENSE-RESISTANT BACKDOOR ATTACKS AGAINST DNNs IN OUTSOURCED CLOUD ENVIRONMENT 2631

Qian Wang (Senior Member, IEEE) received the
Ph.D. degree from the Illinois Institute of Tech-
nology, USA. He is currently a Professor with the
School of Computer Science, Wuhan University. His
research interests include AI security, data storage,
and search and computation outsourcing security.
He received the National Science Fund for Excellent
Young Scholars of China in 2018. He was a recipient
of the 2016 IEEE Asia–Pacific Outstanding Young
Researcher Award. He serves as an Associate Editors
for IEEE TRANSACTIONS ON DEPENDABLE AND

SECURE COMPUTING (TDSC) and IEEE TRANSACTIONS ON INFORMATION

FORENSICS AND SECURITY (TIFS).

Huayang Huang is currently pursuing the B.E.
degree in information security with the School of
Cyber Science and Engineering, Wuhan University,
China. Her research interests include network secu-
rity and AI security.

Lingshuo Meng is currently pursuing the B.E.
degree with the School of Cyber Science and Engi-
neering, Wuhan University, China. His research
interests include network security and information
security.

Chao Shen (Senior Member, IEEE) was a Research
Scholar with Carnegie Mellon University from
2011 to 2013. He is currently a Professor with the
School of Electronic and Information Engineering,
Xi’an Jiaotong University, China. He also works as
the Associate Dean of the School of Cyber Security,
Xi’an Jiaotong University. He is also with the
Ministry of Education Key Laboratory for Intelligent
Networks and Network Security. His research
interests include network security, human–computer
interaction, insider detection, and behavioral
biometrics.

Qian Zhang (Fellow, IEEE) joined The Hong Kong
University of Science and Technology in Septem-
ber 2005, where she is currently a Full Profes-
sor with the Department of Computer Science and
Engineering. She has published about 300 refereed
articles in international leading journals and key con-
ferences in wireless/Internet multimedia networking,
wireless communications and networking, and wire-
less sensor networks. She is a Fellow of IEEE for
“contribution to the mobility and spectrum manage-
ment of wireless networks and mobile communica-

tions.” She has received MIT TR100 world’s top young innovator award. Her
current research interests include cognitive and cooperative networks, dynamic
spectrum access and management, and wireless sensor networks.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

