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Abstract—Large-scale machine learning and data mining
methods routinely distribute computations across multiple agents
to parallelize processing. The time required for the computations
at the agents is affected by the availability of local resources
and/or poor channel conditions giving rise to the ‘straggler
problem.” As a remedy to this problem, we employ Unequal
Error Protection (UEP) codes to obtain an approximation of
the matrix product in the distributed computation setting to
provide higher protection for the blocks with higher effect on
the final result. We characterize the performance of the proposed
approach from a theoretical perspective by bounding the expected
reconstruction error for matrices with uncorrelated entries. We
also apply the proposed coding strategy to the computation of
the back-propagation step in the training of a Deep Neural
Network (DNN) for an image classification task in the evaluation
of the gradients. Our numerical experiments show that it is
indeed possible to obtain significant improvements in the overall
time required to achieve the DNN training convergence by
producing approximation of matrix products using UEP codes
in the presence of stragglers.

Index Terms—Distributed computation, approximate matrix
multiplication, stragglers, unequal error protection.

I. INTRODUCTION

ISTRIBUTED learning is a fundamental approach to
Dthe training of machine learning models as it allows
for the parallel computation of model updates. Parallelizing
computation enhances robustness, reliability, and allows for
a drastic reduction in computational and memory resources
requirements at the learner. Distributed computation is often
supported by a dedicated infrastructure comprised of comput-
ing clusters with heterogeneous capabilities. The widespread
reliance on distributed computation clusters presents sev-
eral opportunities over traditional computing paradigms, but
also offers a new set of challenges. Among the most well-
recognized issues is that of the stochasticity in the time re-
quired for the computation. This gives rise to the phenomenon
of “stragglers”, that is, agents with large response times
which delay computation. Another important reason for having
stragglers is due to the wireless communication characteris-
tics where the workers observe different channel conditions,
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resulting in delays for the ones with the poor quality links.
As a result, it may not be possible to transmit all the local
computations at the same transmission rate. Therefore, the
central server will receive some of the local computations later;
hence such workers at wireless edge computing scenarios are
stragglers. As a remedy to stragglers, channel coding can be
applied to reduce the delays in distributed computation [2].

In this paper, we propose a novel scheme for distributed
computation with stragglers which makes use of the variations
in the magnitude of the matrix entries which naturally occur
in many applications, such as gradient computation for back-
propagation in Deep Neural Network (DNN) training. We
first identify the matrix sub-products which are expected to
have the largest norms and use Unequal Error Protection
(UEP) coding to provide resiliency against stragglers. The
proposed solution offers an improved resilience by providing
an improved approximate reconstruction of the matrix product
by a given deadline.

A. Literature Review

As matrix multiplication is a fundamental algebraic opera-
tion, distributed approximate matrix multiplication has been
investigated in many contexts. In the big-data paradigm,
computation and storage are distributed, hence computer pro-
cessing architectures can be devised for efficiently performing
this operation [3], [4]. In a cloud-computing setting, dis-
tributed matrix computation is investigated in [5], [6]. DNN
training through back-propagation involves multiplication of
large matrices, for which distributed matrix computation is
studied in [7], [8]. More recently, the problem of distributed
matrix multiplication in the presence of stragglers has been
considered. Coding for matrix multiplication can be applied
to mitigate the effect of stragglers [9]. Since its inception in
[©], this line of research received significant attention in the
literature. In [10], the authors use the theory of extreme order
statistics to analyze how task replication reduces latency. In
[11], the authors introduce redundant computations in a coding
theory inspired fashion for computing linear transforms of long
vectors. Product codes for distributed matrix multiplication
are studied in [12]. A new class of codes, called polynomial
codes, is proposed in [13], and their optimality is argued for
the straggler problem.

While the above literature focuses on minimizing the time
for completing a computation task, one can also consider
approximate computation. Along these lines, in [5], the authors



propose OverSketch, an algorithm that uses matrix sketching
to approximate matrix multiplication. Further research con-
siders the intersection of distributed matrix computation and
other relevant aspects of computation. For instance, the authors
of [14] consider the distributed matrix multiplication problem
when the usefulness of the computation outcome is evaluated
through an age-of-information paradigm [15].

B. Contribution

In this paper, we investigate the trade-off between accuracy
and delay in distributed approximate matrix multiplication
with stragglers. Since for typical machine learning problems,
only approximate matrix multiplication results are sufficient,
we consider a distributed matrix multiplication scheme in
which the sub-blocks of the matrices being multiplied are
encoded using UEP codes and distributed across different
workers. Due to, for instance, wireless channel effects, the
workers respond at random completion times, with the results
of the products of the coded sub-blocks. The parameter server
(PS) chooses the protection level of each matrix sub-block
according to its norm so that the sub-products with the largest
contribution suffer the least from the effects of stragglers. Our
main goal is to produce an approximation of the product of two
matrices as quickly as possible; with a more and more accurate
approximation with more and more workers responding, i.e.,
producing a progressively improving matrix approximation in
time, exploiting the UEP code constraints.

Our main contribution is the proposal of employing UEP
codes to improve the quality of the approximation of matrix
multiplications by exploiting the variations in the matrix
entries’ magnitudes. In particular, we leverage the construction
of UEP codes described in [16] through Random Linear Codes
(RLC) to offer more protection to the sub-products with larger
norms (as induced by the choice of loss) and reduce the
effect of the randomness in the service time. Specifically,
we consider two schemes: Non-Overlapping Windows (NOW)
and Expanding Window (EW) RLC codes for UEP, and
analyze the performance of the proposed approximate matrix
multiplication schemes. Different from the existing literature,
we consider two different partitioning schemes for the matrices
to be multiplied: (i) row-times-column block products, and
(i1) column-times-row block products which are encoded and
distributed among a set of workers which can perform sub-
matrix multiplications. To illustrate the importance of our
proposed strategy for distributed machine learning algorithms,
we construct a DNN training with CIFAR-10 and MNIST
datasets, which are extensively used datasets when evaluating
the performance of machine learning applications, in a sce-
nario where multiplications in the back-propagation step are
distributed among workers using the NOW-UEP and EW-UEP
codes.

To showcase our results, the performance of our approach
for this scenario is presented in Fig. 1 where the training
performance attainable through our algorithm for the CIFAR10
image classification database between 30 and 120 epochs
are depicted. We let the response time of the servers be
exponentially distributed with a mean inversely proportional to

the number of sub-block multiplications, thus accounting for
the larger number of tasks when employing coding. Three ref-
erence curves in the plot are the red curve, corresponding to the
case with no stragglers (the response time being deterministic),
the blue curve, corresponding the performance with uncoded
transmission, and the purple curve for which computations are
simply replicated. The performance attainable through UEP
codes for the approximate computation of the weight updates
are depicted as green and yellow lines. The results clearly
show that UEP codes provide a higher model accuracy in the
presence of stragglers. Further analysis and interpretation are
provided in Sec. VII-C.

Organization: The paper is organized as follows. In Sec. II,
we formulate the distributed approximate matrix multiplication
problem for both (i) row-times-column block products and
(i1) column-times-row block products. In Sec. III, we go over
some of the existing results in the literature for coded matrix
computation and approximate matrix multiplication. In Sec.
IV, we present our proposed scheme in which UEP codes
are used to encode the matrix multiplication factors, while a
theoretical evaluation of the expected error is provided in Sec.
V. In Secs. VI and VII, we provide numerical examples using
both synthetic data and an actual data from DNN training.
Finally, the paper is concluded in Sec. VIIIL.

Notation: In the paper we adopt the following notation.
Matrices are denoted with bold capital Roman letters, e.g., A,
column vectors with bold lower-case Roman letters, e.g., v.
The Frobenius norm of the matrix A is shown as |A||r. The
set of integers {1,..., N} C N is denoted as [N]. Given two
matrices A, and A, with the same number of rows, we depict
their column-wise concatenation as A = [A;, As]. Similarly,
given A and A, with the same number of columns, their row-
wise concatenation is represented as A = [A; A] which can
also be equivalently expressed as A = [A] , AT]T. Capital
Roman letters are used for scalars. A'(y,0?) indicates the
Gaussian distribution with mean p and variance o2. Finally,
the expectation is denoted as E[-|, and 1(-) is used for the
indicator function.

Note well: In the following, we will often not explicitly
indicate the support of the independent variables indexing the
various matrix sub-blocks. We shall use lower case Roman
letters for such independent variables, i.e., n, and let the
corresponding upper case Roman letter indicate the interval
n € [N], in other words

S IEY fa )
n€[N] n

II. SYSTEM MODEL

We consider the scenarios in Fig. 2 where a PS wishes to
compute the matrix product C = AB by distributing various
factors of the matrix multiplications among W workers. Each
worker receives two separate linear combinations of sub-
matrices of A and B, computes their product, and returns it to
the PS. The time required for the response of a computation
is a random variable due to variations in the channel quality
and/or server speed for different workers [17]. Note that
we distribute the same amount of computational load to all
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Fig. 1: CIFAR-10 classification accuracy between epoch 30 and epoch 120 with A = 0.5, T4 = 1. Evaluation details are presented in Sec. VII-C.
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(b) Column-times-row (c X r) multiplication.

Fig. 2: System models with the r X ¢ and ¢ X r multiplication schemes.

the workers. Thus, the response time is independent of the
computational capacity of the workers for our system. Due
to transmission rate constraints of the wireless channel, we
consider the delay due to stragglers’ channel conditions as the
communication cost. By a given deadline, the PS produces an
approximation C of the matrix C by using sub-products from
the workers received by the prescribed deadline.

A. Distributed Matrix Computation Model
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Fig. 4: Column-times-row multiplication (c X r) in (4).

Let us next describe the problem setting in more detail.
Consider the matrices A and B with elements from a finite
field F. The matrix A is comprised of N x M sub-blocks of
dimensions U x H, thus resulting in the overall dimensions
NU x M H. Similarly, B is comprised of M x P sub-blocks
of dimensions H x @ resulting in M H x PQ). Accordingly,
the matrix C has N x P sub-blocks of dimension U x Q.
Thus, A € FNUXMH B ¢ RMHXPQ 454 C e FNUXPQ,



The aim of the PS is to produce C as an approximate
expression for the matrix multiplication C = AB with respect
to the loss!

L(C,C) = |C - C|3}. )

To accomplish this, the PS divides the matrix products into
sub-products and distributes them across a set of workers.
Specifically, following [18], we partition A and B in two
possible ways:

o Row-times-Column (r x ¢): that is, M = 1 and H =
M H such that H has the the same number of columns
as A and number of rows as B.

In this case, if uncoded multiplication are distributed to
the servers, what is returned are N P sub-blocks of sizes
U x @ belonging to the C matrix, so that

A:[A1§ An’ ...AN]’
B:[Bla"'pr"’BP}- 3)

We indicate this case with the notation r x c. This
partitioning is presented in Figs. 2a and 3.

e Column-times-Row (c x r): thatis, N =P =1,U =
NU, @ = PQ such that U has the same number of rows
as A and @ has the same number of columns as B.

In this case, if uncoded multiplication are distributed to
the servers, what is returned are M matrices of sizes
U x @, so that

A=A, -
B=[B;;- -

Ama "'A]\/[]a
By ;- Bul. “)

We indicate this case with the notation ¢ x r. This
partitioning is presented in Figs. 2b and 4.

In general, not all the sub-blocks have the same impact on
the final matrix multiplication result, as some sub-blocks may
have larger Frobenius norms than others. This motivates the
use of codes to efficiently trade-off the matrix approximation
with the computation delay. In other words, codes can be
employed to better protect the more impactful sub-products
when distributing the computation to the workers, so that a
more precise approximation is produced in a shorter time. For
this reason, we consider the coding problem in which the PS
sends the matrices WY and W obtained as

wo_ fenc—A (AL"' 7AN) r Xc (5)
A fcnc—A (Ala"' 7AM) cXr,
w o __ fenc—B (Bl,"' ,BP) r X c (6)
B fenc—B (Bla"' ,BM) cXr,

to each worker w and sets a time deadline 7},,x by which it
expects the matrix products {W3{ W7 },ciwy to be returned
where fene—4 and fene.—p are the encoding functions for the
sub-matrices of A and B, respectively. At time Ty,,x, the PS
produces the approximation of the matrix product C = AB
as

6 = fdec—C (W(Tmax)) s (7)

'In the following, we only consider the case of a Frobenius norm: the case
of a more general loss is not discussed here for brevity.

where W(Tiwax) € {WEWEL,epw) is the set of matrix
products received up to time T,,x Where fde/Q—C is thAe
decoding function for the final product estimate C. Using C
in (7), the loss in (2) can be evaluated: let us denote it as
L£(Tax).

Note that the set W(Tmax) is a random, which follows
from the randomness of the response times. More precisely,
we assume that the response time of the workers are random
variables denoted by 7, which are identical and independently
distributed (i.i.d.) with a cumulative distribution function
(CDF)

Fr,(t) = F(t),

for some CDF F(-).

The problem we consider in the following is to design the
functions in (5), (6) and (7) such that the loss in (2), averaged
over the randomness in W(T ,ax), is minimized over some
dataset of matrix multiplications D({A,B}). Let us define
this quantity as a function of the waiting time T},.x as

> L(c,C)
D

where (i) the minimization is over fenc— A, fenc— 5 and fqec—c»
(ii) the expectation is over W(Tiax), (ili) the summation is
over all matrices in the database D, and all the matrices in the
database are equally likely.

w e W], (8)

L(Thax) = min  E , 9)

Remark 1. Comparison across models. In the following,
we will be interested in comparing the performance when
the number of servers changes. For this comparison, we will
consider the scaling of the response times as in (8) as F(Qt),
where () is the number of matrix sub-products divided by the
number of workers.

Remark 2. Matrix partitioning paradigms. A representation
of the r X ¢ paradigm is provided in Fig. 2a: in Fig. 3 we
represent the resulting block-matrix structure of C. We observe
that each sub-product in W(Tiax) contributes one sub-block
in C. The c X r paradigm is represented in Fig. 2b: in this
paradigm C is obtained as a sum of rank-one terms, or outer
product, as shown in Fig. 4. In this case, each sub-product in
W(Tax) contributes to one of such rank-one terms.

Remark 3. Let us elaborate further on the notion used in (3)
and (4). Stated more precisely, the sub-block matrix structure
of A,B and C is as follows: The matrix A is comprised
of NM sub-matrices A, with n € [N], m € [M], and
A, € FUXH Similarly, the matrix B is comprised of M P
sub-matrices By, with m € [M], p € [P], and B, € FE*Q,
Accordingly, the matrix C is composed of NP sub-matrices
C,p for n € [N], p € [P), and with C,,, € FV*%. Note that
here N P block-matrix multiplications are needed to produce
C.

e r X c scenario: For the row-times-column case in (3), we
have that A, € FV* and B, € FE*Q forn € [N], and p €
[P]. Cyp € FUXQ and NP such block-matrix multiplications
are needed to produce C.

e c X r scenario: For the column-times-row case in (4), we
have A,, € FU*H and B,, € FHXQ for m € [M].



Table I: A summary of the quantities in Sec. II (column II and III) and Sec. IV (column IV and V).

Multiplication Case | Matrix Size Constant Value
A NU x MH # of workers w
General B MH x PQ | # of importance levels (A /B) S
C NU x PQ # of importance levels (C) L
A, UxH # of row blocks (A) N
rxc B, HxQ # of column blocks (B) P
Chp Ux@Q Response time scaling Q
A, UxH # of column blocks (A) M
cXr B,, HxQ # of row blocks (B) M
Cn Ux@ Deadline Tinax

C,. € FU%Q and M such block matrix multiplications and
summations are needed to produce C. Note that the notation
r x c/cXr for the row-times-column case/column-times-row
indicates that M =1/ N = P =1, respectively.

A summary of the notation introduced in this section is
provided in Table I.

B. Deep Learning Motivation

Let us now briefly motivate the choice of system model in
Sec. II-A in the context of distributed training of DNN. Note
that we will further comment on this application of our results
in Sec. VII-C.

Generally speaking, we observe the matrices involved in
the back-propagation, both weight and gradient matrices,
have a sparse nature, which is often also enforced through
sparsification techniques. It can also be observed that the
sparsity level varies across DNN layers, often deeper layers
being sparser than shallower ones. The presence of sparsity in
these matrices means that the UEP codes have the potential
to drastically improve the back-propagation speed through
approximate matrix multiplication.

In DNN training, sparsity is often explicitly introduced in
order to introduce robustness or reduce the communication
load of the training process. One of the most straightforward
sparsification approaches is to set all the DNN weights below a
certain threshold to zero. These threshold values are increased
as the training progresses, so as to enforce sparsity in the
final weights. Additionally, the sparsity level increases with
the layer depth, as deeper layers are generally more sparse
than shallow ones. In Fig. 5 we plot Gaussian fitting of the
gradients, weights, and inputs at different layers for a DNN
model trained over the MNIST dataset for digit classification.
Since the inputs have gone through Rectified Linear Units
(ReLU), these values are nonnegative. In these simulations,
we appropriately choose a sparsity level and report it in Table
II. Note that at least half of the matrix entries are well
approximated by zero entries. As it can be observed from Fig.
5a, the non-sparse entry can be well described as being drawn
from a Gaussian distribution with a mean close to zero. In
Figs. 5b and 5c, we plot a Gaussian fitting of the gradient and
weight values, showing that the non-sparse matrix entries are
roughly Gaussian distributed with a variance increasing with
the layer depth. Finally, as the inputs is the DNN are generated

through a ReLU activation function, these matrix entries are
roughly half Gaussian distributed.

III. RELEVANT RESULTS

A. Approximate Matrix Computation

In many applications, one is interested in the trade-off
between the time required for computation and the precision of
the computation. For instance, consider the scenario in which
the PS is training a DNN so that the matrix multiplication
corresponds to the gradient back-propagation operation. In
this scenario, an approximate evaluation of the matrix product
results in an overall improvement of the training time as the
speed-up benefits far out-weight the loss of precision in the
computation results.

Approximate matrix multiplication has a long history in
mathematics, computer science, and engineering. The problem
was initially considered in [19], inspired by the problem of
finding low-rank matrix approximations in [20]. When consid-
ering a simple algorithm in which the matrix multiplication is
approximated by randomly sampling column from A and rows
from B (i.e., an outer product) and accumulating these rank-
one matrices to produce an approximation of C, approximation

[A]l7|BllF

loss of
)

is obtained where ¢ is the number of outer products accu-
mulated to produce C [20]. A similar interpretation is also
presented in [21] for block/submatix sampling.

The above approach is referred as random projection
or “sketching.” Many studies are based on the Johnson-
Lindenstrauss (JL) Lemma [22]-[24]. In [25], the authors
aims more speed up by introducing a sparse JL. In [26],
the authors come up with a very sparse subspace embedding
matrix with modifications where their results can be used to
speed up approximate matrix multiplication by the reduction
in the dimension after the JL projection.

£(C,C)=0 ( (10)

Table II: Sparseness of the matrices modeled in Fig. 5.

Layer | Gradients | Weight Input
1 50.09% 0.15% -
2 59.09% 0.11% | 33.11%
3 57.97% 0.10% | 38.63%
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(d) Input fitting:
Layer 2 ~ ReLU (N'(—2.40E — 01, 2.28E + 00))
Layer 3 ~ ReLU(N'(1.69E — 01, 1.66E + 00))

Fig. 5: Gaussian modeling for the dense portion of each layer for the
MNIST classification task at mini-batch iteration 389 / 937 with the DNN

model defined in Fig. 12 and parameters in Table IV.
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Fig. 6: Window definition for UEP-NOW codes in [16].
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Fig. 7: Window definition with UEP-EW codes [16].

B. UEP Codes

The substantial reduction in complexity attained through
approximate matrix multiplication discussed in Sec. III-A
comes from identifying the matrix features which influence
the multiplication outcome the most. In the following, we will
rely on this observation and also choose the protection levels
of our matrix products according to this influence. To do so,
we rely on UEP codes.

UEP codes were firstly introduced in [27] as a way to
provide stronger protection for certain data digits while the
other digits are protected less. The authors perform analysis
for linear codes to protect a set of digits at a higher level than
other sets of digits and provide methods of synthesizing UEP
codes using parity check matrices. Since then, there have been
many studies which investigate UEP codes to provide unequal
protection for different positions in a data sequence.

UEP codes are also studied for multimedia transmission
schemes with network coding, see e.g., [28], [29]. These
studies divide the source packet into several layers and impor-
tance levels to apply an RLC scheme which provides better
protection for certain sub-packets for prior recovery. In [16],
the authors consider a similar setup; further, they also provide
performance analysis for packet-level UEP coding over packet
erasure channels.

While there are different ways of UEP coding, here we focus
on the UEP codes introduced in [16], which also provides an
analysis based on RLC. Two families of codes are analyzed in
[16]: NOW-UEP and EW-UEP, respectively. In both codes, we
consider the case of a layered message source which consists
of K equal-length source packets of b bits each. Without
loss of generality, assume that bits are ordered in decreasing
levels of importance. A window containing a subset of these
packets is then considered, and packets inside each window
are selected according to a given probability. Once selected, a
random linear code is employed to produce parity bits.



In the NOW-UEP coding strategy, the selection windows
are non-overlapping. The encoding of the information bits is
performed by selecting a window using a window selection
polynomial I'(§) = >, ;&% where T'; is the window
selection probability for the i-th importance level. Then, the
encoded messages are generated only from the importance
levels of the selected type, as illustrated in Fig. 6. With this
coding strategy, separate and independent coding is applied
to each importance level enabling different rate allocation
for different levels with the help of the window selection
probabilities. Thus, one can interpret this coding scheme as
applying different error protection codes for each level.

The EW-UEP coding strategy also uses a probabilistic
window selection polynomial I'(¢) for the i-th importance
level; however, the window definition is different from that
of the NOW-UEP strategy. The EW-UEP constructs the i-th
window by including all the packets whose importance level is
1 or higher than ¢ as illustrated in Fig. 7. Therefore, the packets
in the first window are included in all the encoded messages;
hence they are the best-protected ones. However, the packets
with lower importance are used less in the encoding process
resulting in less protection for them. Therefore, progressive
protection is provided for the source packets. For instance, let
us assume that the third importance level is selected according
to the window selection distribution, then the coded packet
includes all the source messages from the first, second, and
third importance levels. Thus, the EW strategy includes the
most important matrices to the encoding process regardless of
the importance level of the selected window to provide a better
protection than the others.

It is also worth noting that encoding and decoding processes
of RLC have a small complexity level which makes them
feasible for real-time implementation. For instance, in [30],
[31], it is demonstrated that real-time implementation of RLC
over wireless channels is even possible by using smartphones.
Hence, the overhead introduced by our approach can be
neglected compared to the complexity of matrix multiplication.

IV. APPROXIMATE MATRIX MULTIPLICATION THROUGH
UEP CODES

In this section, we propose a distributed coded approximate
matrix multiplication scheme which aims to provide better
protection for the matrix sub-products of A,,, € RUYXH
and B,,, € RH XQ with larger norms, and thus produce
a better approximation of the matrix product within the
prescribed deadline. In particular, the coding scheme relies
on a parametrization of the protection levels matching the
distribution of the Frobenius norms of the rows and columns
of the matrices in question.

A. Importance Level of a Sub-block

1) Importance levels for r x ¢ multiplication: Let us begin
by classifying the matrix sub-blocks in (3) according to their
norms. For instance, we may select three different levels for
each sub-block, e.g., high, medium, and low to classify the
norms of A,, and B,,. Let us refer to these levels as importance
levels, and assume that there are S such levels and let the

importance be decreasing in s € [S]. Given a matrix A/B, we
have n4(s)/np(s) blocks with the importance level s € [S].
Clearly, N =" na(s), and P =) _np(s).

By construction, any sub-product C,,,, is obtained as the
multiplication of sub-blocks in two classes: accordingly C,,,
has L possible importance levels with L = S(S + 1)/2. For
instance, for the example of three importance levels, for both
A, and B,, C,, can have importance high x high, high x
medium, high x low, medium x medium, etc.

From a high level-perspective, one would want the PS to
be able to quickly recover those products corresponding to the
importance level high x high, while the importance level low
X low is not particularly urgent. We can obtain this desired
behavior by employing UEP codes.

2) Importance levels for ¢ X r multiplication: Similar to
the previous case, we will classify the matrix sub-blocks in
(4) based on their norms into S importance levels. However,
this time the classification will be based on the column sub-
blocks of A and row sub-blocks of B which are denoted by
A,, and B,,, respectively. Similarly, we have n(s)/ng(s)
for s € [S] as the number of blocks with level of importance
learly, M =" _na(s) = ,np(s).

As a result of the multiplication of A, and B,,,, C,,, will be
comprised of L different importance levels which will depend
on the pairing of column and row importance levels of A and
B, respectively. Note that, for ¢ x r multiplication, we only
have M sub-block products due to multiplication of A,, and
B,,, m € [M], which may result in less than S(S + 1)/2
importance levels depending on the order of the sub-blocks.
Different from the previously described block partitioning,
each sub-block multiplication results in a matrix C,,, whose
size is same as the original multiplication C = AB. Note that,
for the perfect recovery of C, one needs to have M separate
C,,, multiplications with m € [M].

Note that in [21], the authors consider weighted block
sampling for column-times-row partitioning, and they optimize
the sampling distribution based on the Frobenius norm of the
multiplied sub-blocks. Similar to their study, one can decide
the importance levels according to the Fronebius norms if
available at the PS instead of the block statistics.

B. UEP Coded Matrix Multiplication

For clarity, in the following we describe the UEP coding
strategies based on r X c partitioning as given in (3). For
the case c x r, the UEP coding is performed in an analogous
manner and thus shall not be detailed further. For the r x ¢
partitioning, let us detail how the NOW-UEP and EW-UEP
codes in Sec. III-B are applied to the matrix multiplication
problem in Sec. II.

The PS selects importance levels for A and B, and then
encodes the corresponding rows and columns of A and B for
the r x ¢ multiplication using

Wi = Z Oéw(i)ijg(z‘)a

(1D
B= Zﬂw(j)ng(j),
J



for the w-th worker, w € [W], where o (i) and 5% (j) are
randomly selected elements from the given finite field, and

74 (1)/7H(7) is the row/column or column/row indices of A/B
at the corresponding levels, respectively.

After the matrix sub-products are encoded, W% and W'y
are transmitted to the w-th worker. Each worker w performs
the sub-product multiplication operation resulting in WY W%,
and transmits the sub-product to the PS. Since wireless trans-
mission requires delay and energy, we consider the delay due
to stragglers’ channel conditions as the communication cost.

The PS will have W(T1,ax), which is a set of WY
products completed within a predetermined deadline Tipax. At
this point, to form the approximation C, the PS simply places
the sub-product C,,,;,, = Cymp in the positions that can be
obtained from W(Ty,ax), and sets énmp to the all-zero matrix
otherwise. With this operation, the final approximate matrix
product C is obtained.

V. ANALYSIS OF THE APPROXIMATION ERROR

In this section, we bound the loss in (2) using UEP codes.
Our bounds rely on the results in [16] to characterize the
performance of the proposed schemes in Sec. IV. These
bounds are applied to the case of matrices with i.i.d. entries
as per the following assumption.

Assumption 1. i.i.d. entries matrix computation: For the
matrix A and B we assume that the sub-matrices in the r X C
/cxr partitioning have i.i.d. entries with zero mean and
variance Ul 4 and (Tl p corresponding to the l-th importance
level of the ﬁnal product C.

A. Row-times-Column Case

We assume for simplicity that the entries of the matrices are
zero mean and with variance 0% and o7 B, for the n-th and
p-th sub-block of (3), respectively, for A and B, and they are
uncorrelated, so that

E[IICupl}| = UHQo? o},

Let us denote the number of encoded matrix products received
at time ¢ by N(t), then the probability of receiving w packets
from W workers at time ¢ is Py ;) (w), which is obtained as

12)

Peot) = ()= FOp e o). ad

From [16, Eq. 5], we obtain a bound (which is achievable
with large field sizes) on the decoding probabilities of NOW-
UEP strategy for each importance level as a function of
received matrices as

Pgi(N) < Z Prg),n(n) 1(ng > k), (14)
(n1,n2,...,n1)
>y =N
where n = [n1,ng,...,ng], k; is the number of packets in
class [, and
N!
Prg),n(n) = TR T (15)

nilna!. . .ng!

EW

- #= EW

- - w= EW

0g*e™es 10 15 20 25 30
Received packets (N)

Decoding probabilities

Fig. 8: Decoding probabilities of NOW-UEP and EW-UEP strategies with
three classes, and W = 30 workers.

It is also worth noting that the decoding probabilities for EW-
UEP coding can be calculated similarly as they are given in
[16, Eq. 6-9].

As an example, with three classes, W = 30 workers, and
window selection probabilities (0.40, 0.35,0.25), the decoding
probabilities of each class with NOW and EW-UEP codes
with 3 sub-products in each level are as depicted in Fig. 8.
The figure clearly illustrates how the most important class is
protected better.

We can bound the performance of the coded matrix multi-
plication scheme in Sec. IV as follows.

Theorem 1. UEP loss for the row-times-column partition-
ing: Consider the loss minimization problem in Sec. Il for
the case in which the set of matrix products D({A,B}) that
satisfy Assumption 1. The expected value of the loss in (2)
attainable with the NOW-UEP strategy described in Sec. IV
for r X c partitioning is

ZPN Tinax)

JE[|C— CHF|N( Tinax) = W),
(16)

max

with
E[|C—C|[|N(t) = w]

=UHQY ki (1-Py(w)ojoip, (7
l

where k; is the number of blocks in the l-th importance level

of C, and the expectation in (16) is taken over the random

entries of A, B.

Note that, since (14) is in fact an upper bound on the correct
recovery probability, applying it to (16) results in a lower
bound on the expected loss, however, this bound is tight as
the field size tends to infinity, i.e., the lower bound on the
loss is asymptotically achievable. The analog of Theorem 1 for
the EW-UEP can be obtained using corresponding decoding
probabilities Py ;(N)’s from the results in [16, Eq. 6-9]. They
are not presented here for brevity.

Remark 4. Note that, in Theorem 1, there exists a “matching”
between the probabilistic structure of the matrices to be
multiplied and their r X c block partitioning. In reality, one
would not observe such a neat organization of the matrix
values, and instead would have to fit the row/column weight
distribution in the data to design the UEP code resulting in



the minimal loss.

B. Column-times-Row Case

We now consider the case of column-times-row multiplica-
tion with partitioning (4). With a similar sub-block partition-
ing, we assume for simplicity that the entries of the matrix are
zero mean and with variance 0% and 0% for the m-th sub-
blocks of (4), respectively, for A and B. Since A,, € RU*H
and B, € R7*XQ for m € [M], the resulting multiplication
is C,, € RUX® with the same dimension of the original
multiplication result C. Note that, the Frobenius norm of C,,
can be easily calculated as IE[HCmH%} = UHQo% o% .
Similar to the previous section, the decoding probability (14)
as given in [16, Eq. 5] is used for ¢ x r matrix multiplication
with NOW-UEP codes. Same approach can be extended to the
EW-UEP code by using [16, Eq. 6-9]. Assuming that there are
W workers where N (t) encoded matrix products are received
up to time t, we have the following analog of Theorem 1
which can be used with both NOW- and EW-UEP schemes
by using the relevant decoding probabilities.

Theorem 2. UEP loss for the column-times-row multipli-
cation: Consider the loss minimization problem in Sec. I for
the case in which the set of matrix product D({A,B}) is the
set of matrices under Assumption 1. The expected value of the
loss in (2) with the NOW-UEP strategy described in Sec. 1V
for c X r partitioning is

E [ﬁ(TmaX)} = ZPN(Tmax)(w)E[HC_C‘|%|N(TmaX) = w]v

(18)
with

E[|C—C|7IN(t) = w]
< MUHQY ki (1= Pay(w))of y07 5, (19)
l
where k; is the number of blocks in the l-th importance level

of C, and the expectation in (18) is taken over the random
entries of A, B.

Proof. Consider the partitioning given in (4).

A (a) N
IC=Cllr <> ICm — Cullr, (20)
m
2
IC— Q| < (ZcmémllF> : Q1)
(22)

(b) ~

where (a) is the result of triangular inequality, and (b) follows
Cauchy-Schwartz inequality. The proof is concluded by taking
the expectation on the random entries by conditioning on the
number of received packets at time ¢. O

VI. MATRIX APPROXIMATION WITH SYNTHETIC DATA

Let us begin by evaluating the multiplication in the r x ¢ and
cxr cases for a class of matrices satisfying Assumption 1. The
task is performed with the help of W = 30 workers whose task
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Fig. 9: Normalized loss of the estimator using UEP codes with three classes
with exponential latency model.

10°

== EW (rxc)
= §= EW (cxr)
—@— NOW (rxc)
= @= NOW (cxr)

Number of blocks needed without
UEP with MDS codes (N, : 9)

Normalized Loss

| | |
0 2 4 6 8 10 12 14

Number of received packets

Fig. 10: Normalized loss of the estimator using UEP codes with three
classes as a function of number of received packets.

completion times are modeled by exponential latency model
with parameter A = 1. We select N = P =3, U = @ = 300,
and H = 900 for the r x c case, and U = @ = 900, H = 100,
and M = 9 for the cXr case to be fair in the comparison of two
different multiplication schemes in terms of the computational
load of the workers.

For r x ¢ multiplication, as discussed earlier, we classify
each row and column blocks of A and B with importance
levels high, medium, and low. The elements of each block are
i.i.d. and distributed with N(0,10), A/(0,1), and N(0,0.1),
for high, medium, and low levels, respectively. We assume that
both A and B have only one instance of row and column from
each level, i.e., N = 3, P = 3 with descending importance
levels. A; and B; are from the high importance level, A,
and B, are from the medium importance level, A3 and Bj
are from the low importance level. We take the multiplication
of (high and high) and (high and medium) blocks as class one,
(medium and medium) and (high and low) blocks as class two,
and the remaining as class three. With this definition, we have
(k1, ko, k3) = (3, 3,3) sub-blocks in each class.

For ¢ x r multiplication, the importance levels are high,
medium, and low as in r X ¢ case with same distributions. We
assume that A; and B; are from high importance level if i €
{1, 2,3}, from medium importance level if i € {4,5,6}, and
from low importance level if ¢ € {7,8,9}. The multiplication
of (high and high) blocks are considered as class one, (medium
and medium) blocks as class two and (low and low) blocks as
class three, resulting in three sub-blocks in each class.

In our simulations, we select the window selection probabil-
ities for both NOW and EW-UEP strategies as (I'1,T'2,T'3) =
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Fig. 11: Normalized loss of the estimator using UEP codes with cxr
multiplication and its upper bound.

Table III: UEP coding parameters for the matrix approximation used in
Secs. VI and VIIL

Class 1 | Class 2 | Class 3
# of blocks 3 3 3
Window selection probs. 0.40 0.35 0.25

(0.40,0.35,0.25) for both r x ¢ and ¢ x r multiplication as
shown in Table III. The decoding probabilities for each class
are obtained through the formulation given in [16], as also
depicted for the NOW-UEP and EW-UEP strategies in Fig.
8. As expected, the first class has higher decoding probability
with both NOW and EW-UEP strategies since we choose a
window selection function in which I'; is greater than others
which ensures better protection for the most important class.

In Fig. 9, these decoding probabilities are used to obtain
the normalized expected loss values of r X ¢ and ¢ X r as
a function of time ¢ along with the performance obtained
with the Maximum Distance Separable (MDS) codes which
are also used in [9] for coded computation. With utilizing
MDS codes, the perfect reconstruction is achieved when the
number of received packets are equal to total number of sub-
blocks. Until time ¢ = 0.44, the UEP protection with NOW
scheme performs better than that of MDS with both r x ¢ and
c x r, since the UEP coding strategy enables early recovery
of important classes with a small number of received packets.
With the EW-UEP protection, we have higher protection for
more important classes which gives a better approximation
than the MDS coding until time ¢ = 0.825 and ¢ = 0.975,
respectively, with r X ¢ and ¢ x r multiplication schemes. This
also shows that c x r multiplication scheme is more efficient
than r x ¢ multiplication scheme. In other words, if we are
interested in an earlier recovery of certain important parts,
using the UEP coding approach for matrix approximation
is highly advantageous, especially with EW-UEP and ¢ X r
multiplication scheme. After time ¢ = 0.975, the MDS code
starts to perform better than all the others since it can fully
recover C after receiving nine packets. If we wait long enough,
the UEP strategy will also fully recover the desired matrix
product.

For further interpretation, we give the normalized loss
values of matrix multiplication with MDS coding and approx-
imate matrix multiplication using NOW and EW-UEP coding
with both r X ¢ and ¢ X r in Fig. 10 as a function of the
number of received packets. The matrix multiplication with

MDS codes needs to receive ), k; packets to fully recover
the result, where k; is the number of packets in the [-th
level. Receiving less than ), k; will not provide any partial
information, and results in no recovery, hence the normalized
loss with MDS coding is unity until it receives nine packets
(the minimum required for recovery). However, matrix product
approximation with NOW and EW-UEP coding strategies start
to recover more important classes after receiving only very few
packets, and continue to provide additional partial information
after each received block. It is also important to note that the
loss formulation given in Theorem 1 for r x ¢ is an exact result
that is achievable with large field sizes. Hence the simulation
results given in both Figs. 9 and 10 for r x ¢ case match our
theoretical expectations.

Furthermore, in Fig. 11, we compare the upper bound of the
loss of ¢ x r multiplication given in Theorem 2 with simulation
results using NOW and EW-UEP codes. As shown in the
figure, the upper bound is not tight, however it can be used
to illustrate the behavior of the loss curve. Even though the
bounds are not tight, they successfully reflect the loss behavior
of the proposed scheme. Thus, one can use these bounds
to examine the difference between NOW-UEP and EW-UEP
schemes or their performance with different corresponding
window selection probabilities. It is also worth noting that we
choose the window selection distributions for the UEP codes
arbitrarily. As a further improvement, this distribution can be
optimized to minimize the expected loss.

VII. DNN BACK-PROPAGATION WITH APPROXIMATE
MATRIX MULTIPLICATION

In this section, we consider an application of the ap-
proximate matrix multiplication approach in Sec. IV to the
training of DNNs on two classification datasets: the MNIST
handwritten digits [32] and the CIFAR-10 images [33]. The
next sub-section introduces the DNN settings, Sec. VII-B
numerically validates the sparsity in gradient matrices, and
Sec. VII-C presents the relevant training results.

A. DNN Settings

In this section, we consider the training for the MNIST
and CIFAR-10 datasets. The MNIST dataset requires a quite
simple DNN structure with three dense layers followed by a
softmax layer, and training requires only a few epochs to attain
a high classification accuracy. Unlike the MNIST, the CIFAR-
10 dataset has more features and thus, requires both a more
complex DNN architecture and more epochs for learning. In
this DNN model, we use two 2D Convolution Layers followed
by a 2D Max Pooling. After the Max Pooling, the processed
images pass through the fully connected layers, where we
employ three dense layers

A conceptual representation of the network structure for
the MNIST digit classification task is provided in Fig. 12.
The overall network structure for the CIFAR-10 classification
task is defined in Table V. Further parameters utilized in the
numerical evaluations are provided in Table IV.

Let us now denote the network as D and the total number
of layer as I. Let us further denote the weights, bias, inputs,
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Fig. 12: DNN used for classifying the MNIST dataset in Sec. VII.

outputs, and gradients of the corresponding layer as V;, b;,
X, O;, and G;. From this we can define the output of each
layer as

0; = Di(Xy), (23)
and the output of the network as
0 = D(X), (24)

where X = X is the initial input and O = Oy is the final
output. Note that O; = X, ;. Then the forward propagation
of a dense layer can be defined as

D;(X;) =X;V;+Db,. (25)
However, for the back-propagation we must consider two
matrix multiplications

G;=G; V], (26)

and

Vi =X]Giy, 27)

where V7 is used for updating V; and (26) for calculating the
G, used in D;_4 for (27). G, is calculated from the derivative
of the loss between Oy, and Y, the ground truth.

The dimensions of these matrices are defined in Table VI
for both the MNIST and CIFAR-10 DNN models. The reason
we focus on these matrices will be explained in Sec VII-B.

Remark 5. In our simulations we apply the proposed approx-
imate matrix multiplication method only to the dense layer’s
back-propagation. An extension of the proposed method to the
convolutional layers is left for future research.

Table IV: Parameters and hyperparameters used for the training of the DNN

models.
MNIST CIFAR-10

Training Samples 60k 50k
Optimizer SGD
Learning Rate 0.01

Loss Categorical Cross Entropy

Epochs 3 [ 120

Mini-Batch Sizes 64

B. Sparsity of DNN Gradients

Generally speaking, as the training of a DNN proceeds
toward convergence, weights updates become increasingly
smaller and thus gradients converge to zero. In order to
introduce resilience toward numerical errors and encourage
sparsity in the trained model, gradient sparsification is often
applied. Broadly speaking, gradient sparsification is defined as
the setting of some elements of the gradient updates to zero
according to some policy. For simplicity, let us assume that
sparsification takes the form of a simple thresholding, that is

z, |z|>7T

R f—
=10, ki<,

(28)
where 7 € [Z] is the threshold and x is an element of
matrix A/B. The value of 7 is chosen close to the machine
precision at the beginning of training and is increased at each
epoch. Also, 7 is chosen differently for each layer: making
the shallow layers less sparse than the deeper layers. As
mentioned in [7], DNNs are fault-tolerant and resilient to these
approximations in the gradient evaluations.

In applying the method in Sec. IV, we shall rely on the
gradient matrix sparsity to define the protection level of each
packet. Consider the DNN for the MNIST classification task
described in Sec. VII-A, and use 7 = 10~° for sparcification
of the gradient inputs, and 7 = 10~ for the weights and inputs
of each layer. This choice of 7 at mini-batch iteration 389 /
937 of the first epoch and for each layer results in the sparsity
level as given in Table II. The empirical distribution of the
remaining weights very much resembles that of a Gaussian
distribution with zero mean and a variance which increases
with the depth of the layer. The Gaussian fitting of these
non-sparse values are presented in Fig. 5. It can be observed

Table V: A summary of the model layers of the DNN used for CIFAR-10

classification.

Layer Name Kernel/Weights | Padding | Activation Layer
Conv2D 1 3 x3x 32 Same ReLU
Conv2D 2 3 x3x 32 Valid ReLU

MaxPooling2D 2x2 - -
Flatten - - -
Dense 1 7200 x 512 - ReLLU
Dense 2 512 x 256 - ReLLU
Dense 3 256 x 12 - Softmax




Table VI: A summary of the back-propagation matrices for the DNN
models. For T, see Remark 5.
MNIST

Layer G; v
Dense 1 (64 x 100) - (100 x 784) (784 x 64) - (64 x 100)
Dense 2 (64 x 200) - (200 x 100) (100 x 64) - (64 x 200)
Dense 3 (64 x 10) - (10 x 200) (200 x 64) - (64 x 10)

CIFAR-10

Layer G; v
Conv 172 + +
Dense 1 (64 x 512) - (512 x 7200) | (7200 x 64) - (64 x 512)
Dense 2 (64 x 256) - (256 x 512) (512 x 64) - (64 x 256)
Dense 3 (64 x 10) - (10 x 256) (256 x 64) - (64 x 10)

that indeed sparsity increases with the layer depth, as well as
the variance of the fitted Gaussian. This shows that indeed
exploiting the variability in the matrix sub-block norms to
apply unequal error protection has the potential of drastically
improving the training performance.

C. DNN Performance with UEP Coded Matrix Multiplication

In this section, we finally investigate the accuracy of the
proposed solution for the two DNN models described in Sec.
VII-A. In our comparisons, we show the performance of the
DNN training with

o red line: centralized computation with no stragglers,

o green line: distributed computation with NOW-UEP

codes,

o yellow line: distributed computation with EW-UEP
codes,

o purple line: distributed computation with 2-block repe-
tition.

In all cases above,

« continuous line: is for the r x ¢ paradigm, while

« dotted line: is for the c x r paradigm.

For a fair comparison among these scenarios, we scale
the time required to complete a task as F'(Q2t), where  is
the number of matrix sub-products divided by the number of
workers (see Remark 1). For the simulations, we have that the
total number of matrix sub-products is 9, where N = P = 3,
thus NP =9 for r xcand M =9 for c x r case. Additionally,
we consider an exponential latency model A = 0.5. We take
Tmax € {0.25,0.5,1,2}. Other simulation parameters are
given in Tables VII and VIII. The dimension of the encoding
matrices A/B for each dense layer and gradient are shown in
Table VI. The settings above are for both the r x ¢ and the
C X r cases.

Table VII: A summary of the encoding parameters in Sec. VII-C.

Encoding Type w Q
Uncoded 9 9/9
NOW/EW - UEP | 15 | 9/15
2-Block Rep 18 | 9/18

Table VIII: A summary of the number of sub-blocks belonging to each
importance level for UEP codes used in Sec. VII-C.

Importance Level | nc(s)
High 1
Medium 2
Low 6

Accuracy
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Fig. 13: MNIST classification accuracy using row-times-column matrix
multiplication for the DNN proposed in Sec. VII-A.

Next, let us describe how the importance levels are obtained
in our coding scheme. Similar to [34], which proposes a
fast matrix multiplication algorithm, the column/row indexes
are permuted so as to obtain a descending magnitude of the
column/row weights. Note that ordering has average complex-
ity O(nlogn) in the number of columns/rows, so that the
computational burden at the PS is minimal as compared to the
matrix multiplication complexity. Once ordered in decreasing
magnitudes, column/row sub-blocks are formed by dividing
them into three groups of (roughly) equal size. The sub-blocks
are then encoded using the NOW/EW-UEP code as specified
in Table III.
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Fig. 14: MNIST classification accuracy using column-times-row matrix
multiplication for the DNN proposed in Sec. VII-A.

MNIST: Figs. 13 and 14 depict the results of using different
multiplication strategies at different 7., r X ¢ for the former
and ¢ x r for the latter with the MNIST dataset, and Fig.
15 serves as a merger of these two by fixing the mini-
batch iteration to compare the accuracy trade-off when using
different deadlines. Ideally, we would want to increase the
accuracy while decreasing the deadline, so the model can
achieve convergence in the least time possible. Note that since
the no straggler receives all sub-blocks back by any deadline,
it is a constant and our benchmark.

We observe from Fig. 15 that for T, < 2, the UEP
coding strategy shows an advantage over the others, with a

Accuracy

Accuracy

Accuracy

Accuracy

13

T

Tmax

(d) Mini-batch iteration = 2000.

Fig. 15: MNIST classification accuracy at different Timax for the DNN

proposed in Sec. VII-A.
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Fig. 16: Legend for Fig. 13 to Fig. 15.



more significant accuracy gap with ¢ X r at Tax = 0.5 and
1. By selecting two deadlines that are multiples of each other
by a factor of = in Figs. 15a and 15b, such as 1 and 2 by a
factor of 2, we can observe a clear trade-off in the accuracy:
if it takes n iterations for the longer deadline to achieve a
y accuracy, it will take = times n iterations for the shorter
deadline to achieve an accuracy close to y. However, further
study is necessary to determine whether this holds true with
other datasets and DNN architectures.

Although the uncoded scheme provides no protection

against stragglers, missing a few of blocks does not cause
much damage to the learning, showing once again the inherent
fault-tolerance of DNNs. Perhaps not too surprisingly, employ-
ing block repetition coding increases the number of workers
required but does not result in a better overall performance
as compared to the uncoded scheme. This result follows from
the choice of the waiting time distribution and it provides an
understanding on the computational complexity scaling in our
simulations, as discussed in Remark 1. Consider the following
two scenarios: (i) one machine completes a job, versus (ii) the
same job is given to two machines and the job is completed
whenever one of the two machines finishes. To compare these
two scenarios in a fair manner, the expected value of the
waiting time of the second scenario must be double of the
first one. For our choice of waiting time distribution, scenario
(1) performs better than scenario (ii) above, so that there is no
intrinsic advantage in distributing one job to multiple workers.
From Fig. 15, we observe that r X ¢ and ¢ X r partitioning
have roughly the same performance as uncoded and 2-block
repetition. However, in the case of UEP codes, ¢ X r shows
an advantage over r X c, i.e., mini-batch 1000 and 1500 for
Tiax = 0.25 to 1. Further exploration of this phenomenon
is need to be understood whether this is true for this specific
DNN or it is more general.
CIFAR-10: For the simulations with the CIFAR-10 dataset in
Fig. 1, we use A = 0.5 with an exponential latency model
and T,,x = 1. Since the model evolves slowly, the first few
epochs result in gradient computations that are rather uniform
in row/column norms. For this reason, we let the model train
for the first 30 epochs without stragglers. After these first set
of epochs, there is enough sparsification in the gradients to
justify UEP coding: accordingly Fig. 1 presents simulation
results between 30 and 120 epochs. The calculations for the
convolutional layer are performed without stragglers through
central computations. For the dense layers, we use the coding
strategy summarized in Table VII and the corresponding
scaling of the waiting time distribution. The only exception is
the set of matrices in (27) for the last layer, for which we use
the uncoded scheme since they were not sufficiently sparse.

As we can observe from Fig. 1, after around 60 epochs,
the UEP codes widen the accuracy margin and learn faster
than the other two encoding strategies. This is in part due to
the gradient evolution where the weights of the sub-blocks
show a higher variance than they did between epochs 30 to
60 due to sparsification and convergence. This effect continues
to amplify as the epoch progresses, promoting the need of
unequal error protection. In particular, it appears that both
classes of the UEP codes employed yield an accuracy which

tends to those attainable without stragglers, i.e., 1, while the
uncoded transmission performance saturates below 0.9. It is
interesting to note that this situation is substantially different
from the scenario in Fig. 13 in which the MNIST dataset DNN
is trained with the same value of T},.x. In the latter case, in
fact, no substantial improvement is provided by the UEP codes
over the uncoded transmission.

We close this section by noting that all the sim-
ulation results can be reproduced using Matlab and
Python codes available at: https://github.com/HernandezEduin/
UEP-Straggler-Mitigation.

D. Future Work

In Sec. VII we apply the distributed approximate matrix
computation scheme in Sec. IV to the evaluation of gradient
through back-propagation for training a DNN. The perfor-
mance of the proposed approach is evaluated only through
numerical simulations, and a more detailed analysis of the
relationship between distributed computation and distributed
learning is left for future research. Here we would like to point
out some aspects of this problem which we believe deserve
further investigation.

Error feedback: in the current implementation for DNN
training, the back-propagation algorithm does not account for
the specific nature of the gradient noise arising from the
application of scheme in Sec. IV. A more efficient scheme
can be implemented by accounting for the accumulation of
the approximation error at each gradient evaluation, similarly
to the approach in [35].

Computation accuracy/learning accuracy: DNN training re-
quires the successive evaluation of matrix products. Currently,
it is not clear how the error in approximate computation
propagates through these successive evaluations. Additionally,
it is not well-understood how the error in the gradient approx-
imation affects the learning accuracy at different iterations.
Once these aspects have been better understood, the scheme
in Sec. VII can be optimally designed at each DNN layer
and at each iteration to yield the best expected accuracy by a
chosen deadline.

Computation time: The current modeling of the computation
delay in (8) is an accurate model for queuing delays and might
not properly account for the computation time requirement
more specific to DNN training. By more appropriately choos-
ing the response time in (8), one could obtain a more practical
design for the scheme in Sec. IV.

Computation load: Inherent in the design of the scheme
in Sec. IV is the assumption that the computational cost of
matrix summation and scaling is negligible when compared to
that of matrix multiplication. Accordingly, the PS can perform
any type of coding which only employs linear combination of
matrices. In actuality, the computational load might be better
expressed in terms of memory allocation or overall number of
flops. In this scenario, the design of the scheme in Sec. IV
should be modified to account for such limitations.
Extension to Federated Learning (FL): The current coding
scheme is implemented in a non-standard distributed learning
fashion, where computations are distributed from the PS to the
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workers on a per layer basis of the DNN. One can imagine
the extension of the scheme to the FL setting in which the
computational nodes (workers) have access to the training
dataset through the cloud or have them locally available. In
such a scenario, the PS would have its complexity reduced
even further with the use of UEP codes.

Optimization of UEP codes: In our work, we did not perform
any optimization of UEP codes, instead we chose the window
selection distributions for NOW-UEP and EW-UEP schemes
arbitrarily. An interesting direction for future research is the
UEP code optimization for matrix product approximation. To
do this, the window selection probabilities can be optimized
to minimize the loss in the matrix approximation for the given
setup. For instance, in the distributed DNN model, one should
optimize these probabilities to minimize the error according
to the current sub-weights.

VIII. CONCLUSIONS

In this paper we have studied distributed approximate matrix
multiplication using UEP codes with the objective of mitigat-
ing the straggler phenomenon.The proposed approach has a
wide range of applications as it allows one to speed up large-
scale operations which are common in machine learning and
data mining algorithms. We use UEP codes to provide better
protection for the sub-operations which have higher effects
on the resulting matrix product by better protecting the sub-
operations with larger norms. We validate the effectiveness of
the proposed approach through analytical assessments based
on simplified models for sparse matrices, and compare our
results with those obtained with MDS codes via simulations.
Furthermore, the proposed strategy is applied to the back-
propagation steps of a DNN for the MNIST digit classification
task and CIFAR-10 image classification task. Our results
clearly show that, in the presence of stragglers, we can have
a performance close to the centralized training earlier by
striking a balance between the precision of the updates and
the response time of the edge devices.
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