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and H. Vincent Poor , Life Fellow, IEEE

ANALYZING massive amounts of data using complex
machine learning models requires significant computa-

tional resources. The conventional approach to such problems
involves centralizing training data and inference processes
in the cloud, i.e., in data centers. However, with the prolif-
eration of mobile devices and increasing application of the
Internet-of-Things (IoT) paradigm, very large amounts of data
are collected at the edges of wireless networks, and due
to privacy constraints and limited communication resources,
it is undesirable or impractical to upload this data from
mobile devices to the cloud for centralized learning. This
problem can be solved by distributed learning at the network
edge, by which edge devices collaboratively train a shared
learning model using real-time mobile data. The avoidance
of raw-data uploading not only helps to preserve privacy but
may also alleviate network-traffic congestion and minimize
latency. With that said, distributed training still requires a
substantial amount of information exchange between devices
and edge servers over wireless links. In the process, wire-
less impairments such as noise, interference, and imperfect
knowledge of channel states can significantly slow down
distributed learning (e.g., convergence speed) and degrades its
performance (e.g., learning accuracy). This makes it crucial
to optimize wireless network performance so as to support
the efficient deployment of distributed learning algorithms.
On the other hand, distributed learning algorithms provide a
powerful tool-set for solving complex problems in wireless
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communication and networking. One important framework,
called federated learning (FL), enables users to collaboratively
learn a shared model while helping to preserve local data
privacy. The application of FL can endow edge devices with
capabilities of user behavior prediction, user identification, and
wireless environment analysis. As another example, distributed
reinforcement learning is capable of leveraging distributed
computation power and data to solve complex optimization
and control problems that arise in various use cases, such as
network control, user clustering, resource management, and
interference alignment. To cover this paradigm of distributed
learning over wireless networks, this two-part Special Issue
features papers dealing with two main research challenges:
a) optimization of wireless network performance for efficient
implementation of distributed learning in wireless networks,
and b) distributed learning for solving communication prob-
lems and optimizing network performance.

Our call for papers received a strong response from the
community, and 104 papers have been received, many of which
were of extremely high quality. However, due to the tight
publication schedule of this Special Issue and the limited
number of papers that can be accepted, 35 papers finally
have been accepted and will be published in a double-issue.
The accepted papers have been grouped into three topics:
1) network optimization for FL, 2) network optimization
for other distributed learning methods, and 3) distributed
reinforcement learning for wireless network optimization.
In this guest editorial for Part I of the double-issue, we
review the key contributions of the papers in the first
cluster.

The first issue starts with an overview paper [A1] written
by the team of guest editors. We provide therein a compre-
hensive study of how distributed learning can be efficiently
and effectively deployed in wireless networks. In particular,
we introduce four distributed learning frameworks, namely,
FL, federated distillation, inference, and multi-agent reinforce-
ment learning. The discussion of each framework comprises
its motivation, basic principles, detailed literature review,
illustrative examples, and future research opportunities. The
contributions made by other papers in Part I are summarized
as follows.
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I. RESOURCE MANAGEMENT

In [A2], Luo et al. minimize the weighted sum of energy and
time consumption of training a federated averaging algorithm
via optimizing the subset of devices that participate in FL at
each iteration of the algorithm, the number of FL updates at
each device per iteration, and the number of global updates
that FL needs to converge. The authors first analyze the
relationship between these control variables and the weighted
sum of energy and time consumption. Since this relationship
contains several FL parameters related to local datasets, which
are not known by the server, a low-cost sampling-based
algorithm is proposed to estimate these FL parameters. Given
this relationship, the optimal subset of devices that should
participate in FL at each iteration and the optimal number of
local FL updates at each device per iteration are determined
by an iterative algorithm.

In [A3], Wan et al. optimize spectrum bandwidth allocation,
the subset of devices that participate in FL, the processor
frequency of each device, and the number of local updates per
iteration so as to minimize the time and energy consumption
of training a federated averaging algorithm.

In [A4], Lim et al. propose a hierarchical game framework
to study the dynamics of edge association and resource allo-
cation for a hierarchical FL network, which consists of edge
devices, edge servers, and a central controller.

In [A5], Ma et al. propose a semi-asynchronous federated
learning mechanism that enables the parameter server to
aggregate a certain number of local models of edge devices
by their arrival order in each round. The authors analyze how
the number of participating devices per iteration, the data
distribution, and edge heterogeneity affect the convergence
of the proposed FL. Given the FL convergence analysis,
the authors optimize the subset of participating devices to
minimize the convergence time.

In [A6], Lee and Lee design three device selection
schemes for asynchronous federated learning according to
the network and FL information obtained by the parameter
server.

In [A7], Zhang et al. aim to minimize the training loss
of a hierarchical FL algorithm, while considering the energy
and time consumption of each device in transmitting and
updating the FL parameters. The authors study the use of
a policy gradient-based multi-agent reinforcement learning
method to find the device selection vector, the uplink and
downlink bandwidth allocation vectors, and the computa-
tional resource allocation vector to minimize FL training
loss.

In [A8], Jin et al. study the deployment of FL over a
network in which devices will continuously receive new data
samples. The authors introduce an FL convergence time mini-
mization problem via optimizing the number of local updates,
gradient-descent steps, and edge server selection. To solve the
proposed problem, the authors first decouple it and design an
online learning algorithm for controlling the number of local
model updates and rectified gradient-descent steps. Then, the
authors design a bandit learning algorithm for selecting the
edge server for global model aggregations so as to minimize
the FL convergence time.

II. FL PARAMETER OPTIMIZATION

In [A9], Xing et al. study the deployment of FL over
wireless device-to-device (D2D) networks by providing the-
oretical insights into the performance of digital and analog
implementations of decentralized stochastic gradient descent
(DSGD).

In [A10], Xu et al. study the deployment of FL in an
AirComp-based network and propose a learning rate optimiza-
tion scheme to reduce the FL model errors caused by fading
channels.

In [A11], Fan et al. investigate over-the-air model aggre-
gation for FL. The authors introduce a Markovian probability
model to characterize the intrinsic temporal structure of the
global FL model series. Given this temporal probability model,
the authors formulate the global FL model estimation prob-
lem as an online Bayesian inference problem and develop a
message-passing-based solution with low complexity and near-
optimal performance.

In [A12], Li et al. analyze the distribution of the conver-
gence time of FL implemented over wireless networks, where
the time-varying nature of wireless channels affects the FL
parameter transmission delay.

III. PRIVACY AND SECURITY ISSUES

In [A13], Zhang et al. first analyze how unbalanced and
independent and identically distributed (Non-IID) data affect
devices’ incentives to voluntarily participate in FL and then
design two faithful federated learning algorithms that satisfy
economic properties, scalability, and privacy.

In [A14], Sun et al. propose a contract-based personal-
ized privacy-preserving incentive for FL. In particular, the
authors derive a set of optimal contracts analytically under
both complete and incomplete information models, which
could optimize the convergence performance of the finally
learned global model, while bearing some desired economic
properties, such as budget feasibility, individual rationality, and
incentive compatibility.

In [A15], Seif et al. consider the optimization of training
federated stochastic gradient descent (FedSGD) over fading
multiple access channels, subject to central and local dif-
ferential privacy constraints. The authors propose a wireless
FedSGD scheme with user sampling, where users are sampled
uniformly or based on their channel conditions. The authors
also analyze the convergence rate of the proposed scheme and
study the tradeoffs between wireless resources, convergence,
and privacy theoretically and empirically for the two scenarios
in which the number of sampled participants are either known
or unknown at the parameter server.

IV. TRAINING METHOD DESIGN

In [A16], Yang et al. consider training binary neural net-
works (BNNs) in an FL setting, and hence, each device
needs to upload only the binary parameters to the server,
thus fulfilling the stringent delay and efficiency requirements
in wireless edge networks. The authors also propose a novel
parameter updating scheme based on the maximum likelihood
estimation that preserves the performance of the BNNs even
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without the availability of aggregated real-valued auxiliary
parameters that are usually needed during BNN training.

In [A17], Lin et al. propose a semi-decentralized learning
architecture that combines the consensus-based method with
the FL training. In each global FL iteration, devices perform
multiple local stochastic gradient descent updates and aperi-
odically use consensus-based methods to update their model
parameters through cooperative, distributed D2D communica-
tions. With a new general definition of gradient diversity, the
authors analyze the convergence of the proposed FL. Given the
convergence analysis, the authors design an adaptive control
algorithm that tunes the step size, D2D communication rounds,
and global aggregation period to target a sublinear convergence
rate while minimizing network resource utilization.

In [A18], Han et al. minimize the convergence time of
FL implemented by multiple wireless edge servers that have
their own local coverage. The authors utilize the devices
located in the overlapping coverage areas among adjacent edge
servers to improve FL model synchronization, thus reducing
FL convergence time.
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