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Walid Saad , Fellow, IEEE, Mehdi Bennis , Fellow, IEEE, Aneta Vulgarakis Feljan, Member, IEEE,

and H. Vincent Poor , Life Fellow, IEEE

THIS is Part II of a double-part special issue on distrib-
uted learning over wireless edge networks. This two-part

special issue features papers dealing with two main research
challenges: optimization of wireless network performance for
efficient implementation of distributed learning in wireless
networks, and distributed learning for solving communication
problems and optimizing network performance. The accepted
papers in this special issue have been grouped into three
topics: 1) network optimization for federated learning (FL),
2) network optimization for other distributed learning methods,
and 3) distributed reinforcement learning (RL) for wireless
network optimization. In Part I (vol. 39, no. 12, Dec. 2021),
the focus is on the first cluster (network optimization for
FL). The focus of Part II is on the second and third clusters
(network optimization for other distributed learning methods
and RL for wireless network optimization). The readers are
referred to Part I for an overview paper [A1] by the team of
guest editors where a comprehensive study of how distributed
learning can be efficiently deployed over wireless edge net-
works is provided. The contributions made by the papers in
Part II are summarized as follows.

I. NETWORK OPTIMIZATION FOR

DISTRIBUTED OPTIMIZATION

In [A2], Saha et al. consider distributed optimization in a
wireless network where communication between devices is
hindered.
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In [A3], Tegin et al. use unequal error protection (UEP)
codes to obtain an approximation to a matrix product arising
in the distributed training to provide greater protection for
those blocks with greater effect on the training performance.
The authors characterize the performance of the proposed
approach from a theoretical perspective by bounding the
expected reconstruction error for matrices with uncorrelated
entries.

In [A4], Van Huynh et al. jointly optimize computational
coding and device scheduling to minimize the convergence
time of distributed learning while considering the dynamics
and uncertainty of wireless connections and edge devices.
To solve this optimization problem, the authors reformulate
the problem as a Markov decision process and then design a
novel deep RL algorithm that employs the deep dueling neural
network architecture to find a jointly optimal coding scheme
and an optimal set of edge devices for different learning tasks
without explicit information about the wireless environment
and edge devices’ straggling parameters.

In [A5], Ning et al. propose a gradient sparsification
technique with a renovating mechanism for distributed edge
learning. The authors also provide a theoretical convergence
guarantee for the proposed algorithm with non-convex loss
functions.

In [A6], Xu et al. study the impact of network topology
construction on the peer-to-peer training performance.

II. NETWORK OPTIMIZATION FOR OVER-THE-AIR

COMPUTATION BASED DISTRIBUTED LEARNING

In [A7], Paul et al. consider the deployment of FL over over-
the-air computation (AirComp) based wireless networks. The
authors propose a novel accelerated gradient-descent multiple
access algorithm that uses momentum-based gradient signals
over noisy fading multiple access channels to improve the
FL convergence rate. The authors also analyze the convergence
of the proposed scheme and establish a finite-sample bound of
the errors for both convex and strongly convex loss functions
with Lipschitz gradients.

In [A8], Lee et al. study schemes and lower bounds for dis-
tributed minimax estimation over a Gaussian multiple-access
channel under squared error loss. First, the authors develop
“analog” joint estimation-communication schemes that exploit
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the superposition property of the Gaussian multiple-access
channel. Then, the authors derive information-theoretic lower
bounds on the minimax risk of any estimation scheme that is
restricted to communicate the samples over a given number
of uses of the channel. In addition, the authors compare both
achievability and lower bound results to previous “digital”
lower bounds, where devices transmit errorless bits at the
Shannon capacity of multiple-access channels.

In [A9], Liu and Simeone study distributed Bayesian learn-
ing in a wireless data center setting consisting of a cen-
tral server and multiple distributed workers. In particular,
the authors investigate the design of distributed one-shot
Bayesian learning protocols via consensus Monte Carlo.
Uncoded transmission is introduced not only as a way to
implement AirComp but also as a mechanism to deploy
channel-driven Monte Carlo sampling. Rather than treating
channel noise as a nuisance to be mitigated, channel-driven
sampling utilizes channel noise as an integral part of the
Monte Carlo sampling process.

In [A10], Pu et al. propose an incremental learning frame-
work within a 5th generation (5G) network architecture. In par-
ticular, the authors first formulate an online data scheduling
problem to optimize the training cost while alleviating the
data skew caused by the capacity heterogeneity of devices.
To solve this problem, the authors use duality to separate
the original problem into a series of time-independent per-
slot problems and each per-slot problem can be separated
into a data collection and a data training subproblem. Then,
the authors treat these two subproblems in a skew-aware
manner and propose optimal algorithms based on novel graph
constructions to respectively solve them.

In [A11], Shi et al. design a proactive defense method for
local model poisoning attacks. More specifically, the authors
propose a federated anomaly analytics enhanced distributed
learning algorithm, where the devices and the server col-
laboratively analyze anomalies. In the proposed algorithm,
the server firstly detects all the uploaded local models and
splits out the potentially malicious ones using a lightweight
and unsupervised anomaly detection method based on support
vector machine. Then, it verifies each potentially malicious
local model with functional encryption. Finally, it removes
the verified anomalies and aggregates the remaining local FL
models to generate a global model.

III. NETWORK OPTIMIZATION FOR DISTRIBUTED

CONVOLUTIONAL NEURAL NETWORKS

In [A12], Cai et al. focus on accelerating the training of dis-
tributed convolutional neural networks (CNNs) at the network
edge. The authors introduce a novel dynamic programming-
based communication scheduler that dynamically decomposes
each transmission procedure into several segments such that
each device can simultaneously perform optimal layer-wise
model transmission and computation.

IV. NETWORK OPTIMIZATION FOR MULTI-SPLIT

MACHINE LEARNING

In [A13], Wang et al. present a practical multi-split machine
learning system tailored for 5G cellular networks. The authors

first introduce the optimization problem whose goal is to
minimize the total transmission and computation latency via
finding an optimal machine learning model split decision.
To solve the proposed problem, the authors reformulate this
problem into a min-cost graph search and propose a distributed
min-cost graph algorithm tailored for 5G networks. Through
graph pruning and information aggregation, the designed algo-
rithm can reduce the communication overhead among different
devices.

V. REINFORCEMENT LEARNING FOR

NETWORK OPTIMIZATION

In [A14], Wu et al. consider a resource allocation and
offloading decision-making problem in a mobile edge com-
puting (MEC) network where mobile devices may connect to
different computational access points (CAPs) during different
time slots. To solve this problem, the authors propose a robust
distributed hierarchical online learning approach.

In [A15], Liu et al. study the deployment of FL in an
AirComp-based network and propose a learning rate optimiza-
tion scheme to reduce the FL model errors caused by fading
channels.

In [A16], Zhang et al. propose a multi-agent double deep
Q network-based approach to jointly optimize the beamform-
ing vectors and power splitting ratio in multi-user multiple-
input single-output simultaneous wireless information and
power transfer-enabled heterogeneous networks.

In [A17], Zhang et al. propose a mobile edge computing-
enabled virtual reality (VR) streaming system, where VR video
viewport prediction and communication resource allocation
are integrated to achieve efficient VR streaming. The authors
first propose a federated averaging-based algorithm to learn
the VR video viewing pattern in a distributed manner. Then,
the dueling double deep recurrent Q-network is used to find
an optimal resource allocation strategy for each VR user.

In [A18], Liu et al. study the use of MEC, reconfigurable
intelligent surfaces (RISs), and terahertz (THz) technology to
service VR users in an indoor scenario, by taking into account
the uplink viewpoint prediction and position transmission,
MEC rendering, and downlink transmission.
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